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ABSTRACT

Modern policy gradient algorithms, notably Proximal Policy Optimization (PPO),
rely on an arsenal of heuristics, including loss clipping and gradient clipping, to
ensure successful learning. These heuristics are reminiscent of techniques from
robust statistics, commonly used for estimation in outlier-rich (“heavy-tailed”)
regimes. In this paper, we present a detailed empirical study to characterize the
heavy-tailed nature of the gradients of the PPO surrogate reward function. We
demonstrate pronounced heavy-tailedness of the gradients, specifically for the ac-
tor network, which increases as the current policy diverges from the behavioral
one (i.e., as the agent goes further off policy). Further examination implicates the
likelihood ratios and advantages in the surrogate reward as the main sources of
the observed heavy-tailedness. Subsequently, we study the effects of the standard
PPO clipping heuristics, demonstrating how these tricks primarily serve to offset
heavy-tailedness in gradients. Motivated by these connections, we propose incor-
porating GMOM, a high-dimensional robust estimator, into PPO as a substitute
for three clipping tricks. Our method achieves comparable performance to that of
PPO with all heuristics enabled on a battery of MuJoCo continuous control tasks.

1 INTRODUCTION

As Deep Reinforcement Learning (DRL) methods have made strides on such diverse tasks as game
playing and continuous control (Berner et al., 2019; Silver et al., 2017; Mnih et al., 2015), policy
gradient methods (Williams, 1992; Sutton et al., 2000; Mnih et al., 2016) have emerged as a popular
alternative to dynamic programming approaches. Since the breakthrough results of Mnih et al.
(2016) demonstrated the applicability of policy gradients in DRL, a number of popular variants
have emerged (Schulman et al., 2017; Espeholt et al., 2018). Proximal Policy Optimization (PPO)
(Schulman et al., 2017)—one of the most popular policy gradient methods—introduced the clipped
importance sampling update, an effective heuristic for off-policy learning. However, while their
stated motivation for clipping draws upon trust-region enforcement, the behavior of these methods
tends to deviate from its key algorithmic principle (Ilyas et al., 2018), and exhibit sensitivity to
implementation details (Engstrom et al., 2019). More generally, policy gradient methods are brittle,
sensitive to both the random seed and hyperparameter choices, and poorly understood (Ilyas et al.,
2018; Engstrom et al., 2019; Henderson et al., 2017; 2018; Islam et al., 2017). The ubiquity of these
issues raises a broader concern about our understanding of policy gradient methods.

In this work, we take a step forward towards understanding the workings of PPO, the most prominent
and widely used deep policy gradient method. Noting that the heuristics implemented in PPO are
evocative of estimation techniques from robust statistics in outlier-rich settings, we conjecture that
the heavy-tailed distribution of gradients is the main obstacle addressed by these heuristics. We
perform a rigorous empirical study to understand the causes of heavy-tailedness in PPO gradients.
Furthermore, we provide a novel perspective on the clipping heuristics implemented in PPO by
showing that these heuristics primarily serve to alleviate heavy-tailedness in gradients.

Our first contribution is to analyze the role played by each component of the PPO objective in the
heavy-tailedness of the gradients. We observe that as the training proceeds, gradients of both the ac-
tor and the critic loss get more heavy-tailed. Our findings show that during on-policy gradient steps
the advantage estimates are the primary contributors to the heavy-tailed nature of the gradients.
Moreover, as off-policyness increases (i.e. as the behavioral policy and actor policy diverge) dur-
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ing training, the likelihood-ratios that appear in the surrogate objective exacerbates the heavy-tailed
behavior. Subsequently, we demonstrate that the clipping heuristics present in standard PPO im-
plementations (i.e., gradient clipping, actor objective clipping, and value loss clipping) significantly
counteract the heavy-tailedness induced by off-policy training. Finally, motivated by this analysis,
we present an algorithm that uses Geometric Median-of-Means (GMOM), a high-dimensional ro-
bust aggregation method adapted from the statistics literature. Without using any of the objective
clipping and gradient clipping heuristics implemented in PPO, the GMOM algorithm nearly matches
PPO’s performance on MuJoCo (Todorov et al., 2012) continuous control tasks.

2 PRELIMINARIES

We define a Markov Decision Process (MDP) as a tuple (S,A, R, γ, P ), where S represent the set
of environments states, A represent the set of agent actions, R : S ×A → R is the reward function,
γ is the discount factor, and P : S × A × S → R is the state transition probability distribution.
The goal in reinforcement learning is to learn a policy πθ : S × A → R+, parameterized by θ,
such that the expected cumulative discounted reward (known as returns) is maximized. Formally,
π∗ : = argmaxπ Eat∼π(·|st),st+1∼P (·|st,at) [

∑∞
t=0 γ

tR(st, at)].

Policy gradient methods directly parameterize the policy (also known as actor network). Since
directly optimizing the cumulative rewards can be challenging, modern policy gradient algorithms
typically optimize a surrogate reward function. Often the surrogate objective includes a likelihood
ratio to allow importance sampling from a behavior policy π0 while optimizing policy πθ. For
example, Schulman et al. (2015a) optimize:

max
θ

E(st,at)∼π0

[
πθ(at, st)

π0(at, st)
Aπ0

(st, at)

]
, (1)

where Aπθ = Qπθ (st, at) − Vπθ (st). Here, Q-function , i.e. Qπθ (s, a), is the expected discounted
reward after taking an action a at state s and following πθ afterwards and Vπθ (s) is the value estimate
(implemented with a critic network).

However, the surrogate is indicative of the true reward function only when πθ and π0 are close in
distribution. Different policy gradient methods (Schulman et al., 2015a; 2017; Kakade, 2002) at-
tempt to enforce the closeness in different ways. In Natural Policy Gradients (Kakade, 2002) and
Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a), authors utilize a conservation
policy iteration with an explicit divergence constraint which provides provable lower bounds guar-
antee on the improvements of the parameterized policy. On the other hand, PPO (Schulman et al.,
2017) implements a clipping heuristic on the likelihood ratio of the surrogate reward function to
avoid excessively large policy updates. Specifically, PPO optimizes the following objective:

max
θ

E(st,at)∼π0

[
min

(
clip(ρt, 1− ε, 1 + ε)Âπ0(st, at), ρtÂπ0(st, at)

)]
, (2)

where ρt : =πθ(at,st)
π0(at,st)

. We refer to ρt as likelihood-ratios. Due to a minimum with the unclipped
surrogate reward, the PPO objective acts as a pessimistic bound on the true surrogate reward. As in
standard PPO implementation, we use Generalized Advantage Estimation (GAE) (Schulman et al.,
2015b). Moreover, instead of fitting the value network via regression to target values:

LV = (Vθt − Vtarg)2, (3)

standard implementations fit the value network with a PPO-like objective:

LV = max
{

(Vθt − Vtarg)
2
,
(
clip

(
Vθt , Vθt−1

− ε, Vθt−1
+ ε
)
− Vtarg

)2}
, , (4)

where ε is the same value used to clip probability raitos in PPO’s loss function (Eq. 9).

PPO uses the following training procedure: At any iteration t, the agent creates a clone of the
current policy πθt which interacts with the environment to collect rollouts B (i.e., state-action pairs
{(si, ai)}Ni=1). Then the algorithm optimizes the policy πθ and value function Vθ for a fixed K
gradient steps on the sampled data B. Since at every iteration the first gradient step is taken on the
same policy from which the data was sampled, we refer to these gradient updates as on-policy steps.
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And as for the remaining K − 1 steps, the sampling policy differs from the current agent, we refer
to these updates as off-policy steps.

Throughout the paper, we consider a stripped-down variant of PPO (denoted PPO-NOCLIP) that
consists of policy gradient with importance weighting (Eq. 1), but has been simplified as follows:
i) no likelihood-ratio clipping, i.e., no objective function clipping; ii) value network optimized via
regression to target values (Eq. 3) without value function clipping; and iii) no gradient clipping.
Overall PPO-NOCLIP uses the objective summarized in App. A. One may argue that since PPO-
NOCLIP removes the clipping heuristic from PPO, the unconstrained maximization of Eq. 1 may
lead to excessively large policy updates. In App. I, we empirically justify the use of Eq. 1 by showing
that with the small learning rate used in our experiments (tuned hyperparameters in Table 1), PPO-
NOCLIP maintains a KL based trust-region like PPO throughout the training. We elaborate this in
App. I.

2.1 FRAMEWORK FOR ESTIMATING HEAVY-TAILEDNESS

We now formalize our setup for studying the distribution of gradients. Throughout the paper, we use
the following definition of the heavy-tailed property:
Definition 1 (Resnick (2007)). A non-negative random variable w is called heavy-tailed if its tail
probability Fw(t) : =P (w ≥ t) is asymptotically equivalent to t−α

∗
as t → ∞ for some positive

number α∗. Here α∗ determines the heavy-tailedness and α∗ is called tail index of w.

For a heavy-tailed distribution with index α∗, its α-th moment exists only if α < α∗, i.e., E[wα] <
∞ iff α < α∗. A value of α∗ = 1.0 corresponds to a Cauchy distribution and α∗ = ∞ (i.e.,
all moments exist) corresponds to a Gaussian distribution. Intuitively, as α∗ decreases, the central
peak of the distribution gets higher, the valley before the central peak gets deeper, and the tails get
heavier. In other words, the lower the tail-index, the more heavy-tailed the distribution. However, in
the finite sample setting, estimating the tail index is notoriously challenging (Simsekli et al., 2019;
Danielsson et al., 2016; Hill, 1975).

In this study, we explore three estimators as heuristic measures to understand heavy tails and non-
Gaussianity of gradients (refer to App. B for details). (i) Alpha-index estimator which measures
alpha-index for symmeteric α-stable distributions. This estimator is derived under the (strong) as-
sumption that the stochastic Gradient Noise (GN) vectors are coordinate-wise independent and fol-
low a symmetric alpha-stable distribution. (ii) Anderson-Darling test (Anderson & Darling, 1954)
on random projections of GN to perform Gaussianity testing (Panigrahi et al., 2019). To our knowl-
edge, the deep learning literature has only explored these two estimators for analyzing the heavy-
tailed nature of gradients. (iii) Finally, in our work, we propose using Kurtosis. To quantify the
heavy-tailedness relative to a normal distribution, we measure kurtosis (fourth standardized mo-
ment) of the gradient norms. Given samples {Xi}Ni=1, the kurtosis κ is given by:

κ =

∑N
i=1(Xi − X̄)4/N(∑N
i=1(Xi − X̄)2/N

)2 ,
where X̄ is the empirical mean of the samples. With a slight breach of notation, we use kurtosis to
denote κ1/4. It is well known that for a Pareto distribution with shape α ≥ 4, the lower the tail-index
(shape parameter α) the higher the kurtosis. For α < 4, since the fourth moment is non-existent,
kurtosis is infinity. While for Gaussian distribution, the kurtosis value is approximately 1.31. In
App. B, we show behavior of kurtosis on Gaussian and Pareto data with varying sample sizes and
tail-indices for Pareto data.

3 HEAVY-TAILEDNESS IN POLICY-GRADIENTS: A CASE STUDY ON PPO

We now examine the distribution of gradients in PPO. To start, we examine the behavior of gradients
at only on-policy steps. We fix the policy at the beginning of every training iteration and just consider
the gradients for the first step (see App. D for details). As the training proceeds, the gradients clearly
become more heavy-tailed (Fig. 1(a)). To thoroughly understand this behavior and the contributing
factors, we separately analyze the contributions from different components in the loss function. We
also separate out the contributions coming from actor and critic networks.
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Figure 1: Heavy-tailedness in PPO during on-policy iterations. All plots show mean kurtosis
aggregated over 8 MuJoCo environments. For other estimators, see App. F. For individual environ-
ments with error bars, see App. H. Increases in Kurtosis implies an increase in heavy-tailedness.
Dotted line represents the Kurtosis value for a Gaussian distribution. (a) Kurtosis vs on-policy
iterations for A2C and PPO. Evidently, as training proceeds, the gradients become more heavy-
tailed for both the methods. (b) Kurtosis vs on-policy iterations for actor networks in PPO. (c)
Kurtosis vs on-policy iterations for critic networks in PPO. Both critic and actor gradients become
more heavy-tailed as the agent is trained. Note that as the gradients become more heavy-tailed,
we observe a corresponding increase of heavy-tailedness in the advantage estimates (Âπ0

). How-
ever, “actor/Âπ0

” and “critic/Âπ0
” (i.e., actor or critic gradient norm divided by advantage) remain

light-tailed throughout the training. In App. E, we perform ablation tests to highlight the reason for
heavy-tailed behavior of advantages.

Alongside, we also perform ablations to understand how PPO heuristics affect the heavy-tailed na-
ture of the gradient distribution. To decouple the behavior of naı̈ve policy gradients from PPO
optimizations, we consider a variant of PPO which we call PPO-NOCLIP as described in Section 2.
Recall that in a nutshell PPO-NOCLIP implements policy gradient with just importance sampling.
In what follows, we perform a fine-grained analysis of PPO at on-policy iterations.

3.1 HEAVY-TAILEDNESS IN ON-POLICY TRAINING

Given the trend of increasing heavy-tailedness in on-policy gradients, we first separately analyze
the contributions of the actor and critic networks. On both these component network gradients,
we observe similar trends, with the heavy-tailedness in the actor gradients being marginally higher
than the critic network (Fig. 1). Note that during on-policy steps, since the likelihood-ratios are just
1, the gradient of actor network is given by ∇θ log (πθ(at, st)) Âπ0(st, at) and the gradient of the
critic network is given by ∇θVθÂπ0

(st, at) where π0 is the behavioral policy. To explain the rising
heavy-tailed behavior, we separately plot the advantages Âπ0

and the advantage divided gradients (
i.e, ∇ log(πθ(at|st)) and ∇θVθ). Strikingly, we observe that while the advantage divided gradients
are not heavy-tailed for both value and policy network, the heavy-tailedness in advantage estimates
increases as training proceeds. This elucidates that during on-policy updates, outliers in advantage
estimates are the only source of heavy-tailedness in actor and critic networks.

To understand the reasons behind the observed characteristic of advantages, we plot value estimates
as computed by the critic network and the discounted returns used to calculate advantages (Fig. 7
in App. E) We don’t observe any discernable heavy-tailedness trends in value estimates and a slight
increase in returns. However, remarkably, we notice a very similar course of an increase in heavy-
tailedness with negative advantages (whereas positive advantages remained light-tailed) as training
proceeds. In App. E.3, we also provide evidence to this observation by showing the trends of in-
creasing heavy-tailed behavior with the histograms of log(|Aπθ |) grouped by their sign as training
proceeds for one MuJoCo environment (HalfCheetah-v2). This observation highlights that, at least
in MuJoCo continuous control environments, there is a positive bias of the learned value estimate for
actions with negative advantages. And in addition, our experiments also suggest that the outliers in
advantages (primarily, in negative advantages) are the root cause of observed heavy-tailed behavior
in the actor and critic gradients.

We also analyse the gradients of A2C (Mnih et al., 2016)—an on-policy RL algorithm—and observe
similar trends (Fig. 1(a)), but at a relatively smaller degree of heavy-tailedness. Although they start
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Figure 2: Heavy-tailedness in PPO-NOCLIP during off-policy steps at various stages of training
iterations in MuJoCo environments. All plots show mean kurtosis aggregated over 8 Mujoco envi-
ronments. Plots for other estimators can be found in App. F. We also show trends with these estima-
tors (with error bars) on individual environments in App H. Increases in Kurtosis implies an increase
in heavy-tailedness. Dotted line represents the Kurtosis value for a Gaussian distribution. Note that
the analysis is done with gradients taken on a fixed batch of data within a single iteration. As off-
policyness increases, the actor gradients get substantially heavy-tailed. This trend is corroborated
by the increase of heavy-tailedness in ratios. Moreover, consistently we observe that the heavy-
tailedness in “actor/ratios” stays constant. While initially during training, the heavy-tailedness in
the ratio’s increases substantially, during later stages the increase tapers off. The overall increase
across training iterations is explained by the induced heavy-tailedness in the advantage estimates
(cf. Sec. 3.1).

at a similar magnitude, the heavy-tailed nature escalates at a higher rate in PPO1. This observation
may lead us to ask: What is the cause of heightened heavy-tailedness in PPO (when compared with
A2C)? Next, we demonstrate that off-policy training can exacerbate the heavy-tailed behavior.

3.2 OFFPOLICYNESS ESCALTE HEAVYTAILNESS IN GRADIENTS

To analyze the gradients at off-policy steps, we perform the following experiment: At various stages
of training (i.e., at initialization, 50% of maximum reward, and maximum reward), we fix the actor
and the critic network at each gradient step during off-policy training and analyze the collected gra-
dients (see App. D for details). First, in the early stages of training, as the off-policyness increases,
the heavy-tailedness in gradients (both actor and critic) increases. However, unlike with on-policy
steps, actor gradients are the major contributing factor to the overall heavy-tailedness of the gradient
distribution. In other words, the increase in heavy-tailedness for actor gradients due to off-policy
training is substantially greater than for critic gradients (Fig. 2). Furthermore, this increase lessens
in later stages of training as the agent approaches its maximum performance.

Now we turn our attention to explaining the possible causes for such a profound increase. The
strong increase in heavy-tailedness of the actor gradients during off-policy training coincides with a
increase of heavy-tailedness in the distribution of likelihood ratios ρ, given by πθ(at, st)/π0(at, st).
The corresponding increase in heavy-tailedness in ratios can be explained theoretically. In contin-
uous control RL tasks, the actor-network often implements the policy with a Gaussian distribution
where the policy parameters estimate the mean and the (diagonal) covariance. With a simple exam-
ple, we highlight the heavy-tailed behavior of such likelihood-ratios of Gaussian density function.
This example highlights how even a minor increase in the standard deviation of the distribution of
the current policy (as compared to behavior policy) can induce heavy-tails.

Example 1 (Wang et al., 2018). Assume π1(x) = N
(
x; 0, σ2

1

)
and π2(x) = N

(
x; 0, σ2

2

)
. Let

ρ = π1(x)/π2(x) at a sample x ∼ π2. If σ1 ≤ σ2, then likelihood ratio ρ is bounded and its
distribution is not heavy-tailed. However, when σ1 > σ2, then w has a heavy-tailed distribution
with the tail-index (Definition 1) α∗ = σ2

1/(σ
2
1 − σ2

2).

1In Appendix E.2, we show a corresponding trend in the heavy-tailedness of advantage estimates.
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Figure 3: Heavy-tailedness in PPO-NOCLIP with PPO-heuristics applied progressively during
off-policy steps, with kurtosis aggregated across 8 MuJoCo environments. For other estimators,
see App. F. Dotted line represents the Kurtosis value for a Gaussian distribution. “-clip” denotes
loss clipping on corresponding networks. “-gradclip” denotes both gradient clipping and loss clip-
ping. Increases in Kurtosis implies an increase in heavy-tailedness. As training progresses during
off-policy steps, the increased heavy-tailedness in actor and critic gradients is mitigated by PPO-
heuristics.

During off-policy training, to understand the heavy-tailedness of actor gradients beyond the contri-
butions from likelihood ratios, we inspect the actor gradients normalized by likelihood-ratios, i.e.,

∇θπθ(at, st)/π0(at, st)

πθ(at, st)/π0(at, st)
Âπ0

(st, at) = ∇θ log (πθ(at, st)) Âπ0
(st, at) . (5)

Note that the gradient expression in Eq. 5 is similar to on-policy actor gradients. Since we observe an
increasing trend in heavy-tailedness of the actor gradients even during on-policy training, one might
ask: does these gradients’ heavy-tailedness increase during off-policy gradient updates? Recall that
in PPO, we fix the value function at the beginning of off-policy training and pre-compute advantage
estimates that will later be used throughout the training. Since the advantages were the primary fac-
tor dictating the increase during on-policy training, ideally, we should not observe any increase in the
heavy-tailed behavior. Confirming this hypothesis, we show that the heavy-tailedness in this quan-
tity indeed stays constant during the off-policy training (Fig. 2), i.e.,∇θ log (πθ(at, st))Aπ0(st, at)
doesn’t cause the increased heavy-tailed nature as long as π0 is fixed.

Our findings from off-policy analysis strongly suggest that when the behavioral policy is held fixed,
heavy-tailedness in the importance ratios ρ is the fundamental cause. In addition, in Sec. 3.1, we
showed that when importance-ratio’s are 1 (i.e., the data on which the gradient step is taken is
on-policy) advantages induce heavy-tailedness. With these two observations, we conclude that the
scalars (either the likelihood-ratios or the advantage estimates) in the loss objective are the primary
causes to the underlying heavy-tailedness in the gradients. Having analyzed key components dic-
tating the heavy-tailed behavior, in App. J, we present two ablation experiments to test how heavy-
tailedness in likelihood-ratios and advantage estimates individually contribute to the optimization
issues in PPO leading to poor performance. Next, we illustrate how PPO clipping heuristics allevi-
ate heavy-tailedness issues.

3.3 EXPLAINING ROLES OF VARIOUS PPO OBJECTIVE OPTIMIZATIONS

Motivated from our results from the previous sections, we now take a deeper look at how the core
idea of likelihood-ratio clipping and auxiliary optimizations implemented in PPO and understand
how they affect the heavy-tailedness during training. First, we make a key observation. Note that the
PPO-clipping heuristics don’t get triggered for the first gradient step taken (when a new batch of data
is sampled). But rather these heuristics may alter the loss only when behavior policy is different from
the policy that is being optimized. Hence, in order to understand the effects of clipping heuristics,
we perform the following analysis on the off-policy gradients of the PPO-NOCLIP: At each update
step on the agent trained with PPO-NOCLIP, we compute the gradients with progressively including
optimizations from the standard PPO objective.
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Our results demonstrate that both the likelihood-ratio clipping and value-function clipping in loss
during training offset the enormous heavy-tailedness induced due to off-policy training (Fig. 3).
Recall that by clipping the likelihood ratios and the value function, the PPO objective is discarding
samples (i.e., replacing them with zero when) used for gradient aggregation. Since heavy-tailedness
in the distribution of likelihood ratios is the central contributing factor during off-policy training, by
truncating likelihood-ratios ρt which lie outside (1− ε, 1 + ε) interval, PPO is primarily mitigating
heavy-tailedness in actor gradients. Similarly, by rejecting samples from the value function loss
which lie outside an ε boundary of a fixed target estimate, the heuristics alleviate the slight heavy-
tailed nature induced with off-policy training in the critic network.

While these PPO heuristics alleviate the heavy-tailedness induced with off-policy training, the ef-
fects of PPO clipping optimizations on mitigating heavy-tailedness induced during on-policy up-
dates are far less clear. Since none of these heuristics directly target the outliers present in the
advantage-estimates (the primary cause of increasing heavy-tailedness throughout training), we be-
lieve that our findings can guide a development of fundamentally stable RL algorithms. In App. J.1,
we present a preliminary result in this direction demonstrate how fixing heavy-tailedness in advan-
tage estimates can improve an agent’s performance.

4 MITIGATING HEAVY-TAILEDNESS WITH ROBUST GRADIENT ESTIMATION

Motivated by our analysis showing that the gradients in PPO-NOCLIP exhibit heavy-tailedness that
increases during off-policy training, we propose an alternate method of gradient aggregation—using
the gradient estimation framework from Prasad et al. (2018)—that is better suited to the heavy-
tailed estimation paradigm than the sample mean. To support our hypothesis that addressing the
primary benefit of PPO’s various clipping heuristics lies in mitigating this heavy-tailedness, we aim
to show that equipped with our robust estimator, PPO-NOCLIP can achieve comparable results to
state-of-the-art PPO implementations, even with the clipping heuristics turned off.

We now consider robustifying PPO-NOCLIP (policy gradient with importance sampling but
without any trust-region enforcing steps or PPO clipping tricks). Informally, for gradi-
ent distributions which do not enjoy Gaussian-like concentration, the empirical-expectation-
based estimates of the gradient do not necessarily point in the right descent direction, lead-
ing to bad solutions. To this end, we leverage a robust mean aggregation technique called
Geometric Median-Of-Means (GMOM) due to Minsker et al. (2015). In short, we first
split the samples into non-overlapping subsamples and estimate the sample mean of each.

Algorithm 1 BLOCK-GMOM

input : Samples S = {x1, . . . , xn}, number of
blocks b, Model optimizer OG, b block opti-
mizers OB , network fθ, loss `

1: Partition S into b blocks B1, . . . Bb of equal
size.

2: for i in 1 . . . b do
3: µ̂i = O(i)

B

(∑
xj∈Bi ∇θ`(fθ, xj)/ |Bi|

)
4: end for
5: µ̂GMOM = OG (WEISZFELD(µ̂1, . . . , µ̂b)).

output : Gradient estimate µ̂GMOM

The GMOM estimator is then given by the ge-
ometric median-of-means of the subsamples.
Formally, let {x1, . . . , xn} ∈ R be n i.i.d.
random variables sampled from a distribution
D. Then the GMOM estimator for estimating
the mean can be described as follows: Parti-
tion the n samples into b blocks B1, . . . , Bb,
each of size bn/bc. Compute sample means
in each block, i.e., {µ̂1, . . . , µb}, where µ̂i =∑
xj∈Bi xj/ |Bi|. Then the GMOM estima-

tor µ̂GMOM is given by the geometric median
of {µ̂1, . . . , µb} defined as follows: µ̂GMOM =

argminµ
∑b
i=1 ||µ− µ̂i||2. Algorithm 2 in Ap-

pendix C presents the algorithm formally along
with the Weiszfeld’s algorithm used for computing the approximate geometric median.

GMOM has been shown to have several favorable properties when used for statistical estimation in
heavy-tailed settings. Intuitively, GMOM reduces the effect of outliers on a mean estimate by taking
a intermediate mean of blocks of samples and then computing the geometric median of those block
means. The robustness comes from the additional geometric median step where a small number of
samples with large norms would not affect a GMOM estimate as much as they would a sample mean.
More formally, given n samples from a heavy-tailed distribution, the GMOM estimate concentrates
better around the true mean than the sample mean which satisfies the following:
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Theorem 1 (Minsker et al. (2015)). Suppose we are given n samples {xi}ni=1 from a distribution
with mean µ and covariance Σ. Assume δ > 0. Choose the number of blocks b = 1+b3.5 log(1/δ)c.
Then, with probability at least 1− δ,

||µGMOM − µ||2 .

√
trace(Σ) log(1/δ)

n
and

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

xi − µ

∣∣∣∣∣
∣∣∣∣∣
2

&

√
trace(Σ)

nδ
.

When applying stochastic gradient descent or its variants in deep learning, one typically backprop-
agates the mean loss, avoiding computing per-sample gradients. However, computing GMOM re-
quires per-sample gradients. To this end, we propose a simple (but novel) variant of GMOM called
BLOCK-GMOM which avoids the extra sample-size dependent computational penalty of calculating
sample-wise gradients. Notice that in Theorem 1, the number of blocks required to obtain the guar-
antee with high probability is independent of the sample size, i.e., we just need a constant (dependent
on δ) number of blocks to compute GMOM. To achieve this, instead of calculating sample-wise gra-
dients, we compute block-wise gradients by backpropagating on sample-mean aggregated loss for
each block. Moreover, such an implementation not only increases efficiency but also allows incorpo-
rating adaptive optimizers for individual blocks. Algorithm 1 presents the overall BLOCK-GMOM.

4.1 RESULTS ON MUJOCO ENVIRONMENT
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Figure 4: Normalized rewards for ROBUST-
PPO-NOCLIP and PPO-NOCLIP. Normal-
ized w.r.t. the max reward obtained with PPO
(with all heuristics enabled) and performance of
a random agent. (See App G for reward curves
on individual environment.)

We perform experiments on 8 MuJoCo (Todorov
et al., 2012) continuous control tasks. To use
BLOCK-GMOM aggregation with PPO-NOCLIP,
we extract actor-network and critic-network gra-
dients at each step and separately run the Al-
gorithm 1 on both the networks. For our ex-
periments, we use SGD as OB and Adam as
OG and refer to this variant of PPO-NOCLIP
as ROBUST-PPO-NOCLIP. We compare the
performances of PPO, PPO-NOCLIP, and RO-
BUST-PPO-NOCLIP, using hyperparameters that
are tuned individually for each method but held
fixed across all tasks (Table 1). For 7 tasks,
we observe significant improvements with RO-
BUST-PPO-NOCLIP over PPO-NOCLIP and per-
formance close to that achieved by PPO (with all
clipping heuristics enabled) (Fig. 4). Although
we do not observe improvements over PPO, we
believe that this result corroborates our conjec-
ture that PPO heuristics primarily aim to offset
the heavy-tailedness induced with training.

5 RELATED WORK

Studying the behavior of SGD, Simsekli et al. (2019) questioned the Gaussianity of SGD noise, high-
lighting its heavy-tailed nature. Subsequently, there has been a growing interest in understanding the
nature of SGD noise. More recently, other works (Şimşekli et al., 2020; Zhang et al., 2019b) explore
the heavy-tailed behavior of SGD noise, with emphasis on tasks that require adaptive methods. In
particular, Zhang et al. (2019b) studied the nature of gradients in natural language processing (e.g.,
BERT-pretraining). Later work (Panigrahi et al., 2019) studied results through Gaussianity tests on
random projections. They showed that at least early on in training, gradients remain near Gaussian
for larger batch sizes. Some recent work has also made progress towards understanding the effec-
tiveness of gradient clipping in convergence (Zhang et al., 2019b;a; Şimşekli et al., 2020). However,
its consequences modulo the bias- vs variance trade-off are not completely understood.

On the RL side, a large-scale study of PPO was presented in (Ilyas et al., 2018), examining the
extent that the PPO gradients align to the true underlying gradient. Likewise, Engstrom et al. (2019)
provide a thorough study of the code-level heuristics used in trust region methods and indicate the

8
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necessity of such heuristics in obtaining strong model performance. Chung et al. (2020) highlighted
the impacts of stochasticity on the optimization process in policy gradients. In simple MDPs, authors
showed that larger higher moments with fixed variance lead to improved exploration. This aligns
with one view of heavy-tailedness in supervised learning where Simsekli et al. (2019) conjectured
that heavy-tailedness in gradients can improve generalization.

However, we hypothesize that in deep RL where the optimization process is known to be brittle
(Henderson et al., 2018; 2017; Engstrom et al., 2019; Ilyas et al., 2018), heavy-tailedness can cause
heightened instability than help in efficient exploration. This perspective aligns with another line of
work (Zhang et al., 2019b;a) where authors demonstrate that heavy-tailedness can cause instability in
the learning process in deep models. Indeed with ablation experiments in Appendix J, we show that
increasing heavy-tailedness in likelihood ratios hurt the agent’s performance, and mitigating heavy-
tailedness in advantage estimates improves learning dynamics and hence the agent’s performance.
Chung et al. (2020) further pointed out the importance of a careful analysis of stochasticity in updates
to understand the optimization process of policy gradient algorithms. We consider that our work is
a stepping stone towards analyzing stochasticity beyond variance.

Bubeck et al. (2013) studied the stochastic multi-armed bandit problem when the reward distribution
is heavy-tailed. The authors designed a robust version of the classical Upper Confidence Bound
algorithm by replacing the empirical average of observed rewards with robust estimates obtained via
the univariate median-of-means estimator (Nemirovski & Yudin, 1983) on the observed sequence
of rewards. Medina & Yang (2016) extended this approach to the problem of linear bandits under
heavy-tailed noise.

6 CONCLUSION

In this paper, we empirically characterized PPO’s gradients, demonstrating that they become more
heavy-tailed as training proceeds. Our detailed analysis showed that at on-policy steps, the heavy-
tailed nature of the gradients is primarily attributable to the multiplicative advantage estimates. On
the other hand, we observed that during off-policy training, the heavy-tailedness of the likelihood
ratios of the surrogate reward function exacerbates the observed heavy-tailedness.

Subsequently, we examined PPO’s clipping heuristics, showing that they serve primarily to offset the
heavy-tailedness induced by off-policy training. Thus motivated, we showed that a robust estimation
technique could effectively replace all three of PPO’s clipping heuristics: likelihood-ratio clipping,
value loss clipping, and gradient clipping.

In future work, we plan to conduct similar analysis on gradients for other RL algorithms such as
deep Q-learning. We believe that progress in this direction can significantly impact algorithm devel-
opment for reinforcement learning.
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A DETAILED BACKGROUD

We define a Markov Decision Process (MDP) as a tuple (S,A, R, γ, P ), where S represent the set
of environments states, A represent the set of agent actions, R : S ×A → R is the reward function,
γ is the discount factor, and P : S ×A×S → R is the state transition probability distribution. The
goal in reinforcement learning is to learn a policy πθ : S × A → [0, 1], parameterized by θ, such
that the expected cumulative discounted reward (known as returns) is maximized. Formally,

π∗ = argmax
π

Eat∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
. (6)

Policy gradient methods directly optimize a paraterized policy function (also known as actor net-
work). The central idea behind policy gradient methods is to perform stochastic gradient ascent
on expected return (Eq. 6) to learn parameters θ. Under mild conditions (Sutton et al., 2000), the
gradient of the Eq. 6 can be written as

∇θJ(θ) = Eτ∼πθ

[ ∞∑
t=0

γtR(st, at)∇θ log(πθ(at|st))

]
,

where τ ∼ πθ are trajectories sampled according to πθ(τ) and J(θ) is the objective maximised
in Eq. 6. With the observation that action at only affects the reward from time t onwards, we
re-write the objective J(θ), replacing returns using the Q-function, i.e., the expected discounted
reward after taking an action a at state s and following πθ afterwards. Mathematically, Qπθ (s, a) =
Eτ∼πθ

[∑∞
k=0 γ

kR(st+k, at+k)|at = a, st = s
]
. Using the Q-function, we can write the gradient

of the objective function as

∇θJ(θ) = Eτ∼πθ

[ ∞∑
t=0

Qπθ (st, at)∇θ log(πθ(at|st))

]
.

However, the variance in the above expectation can be large, which raises difficulties for estimating
the expectation empirically. To reduce the variance of this estimate, a baseline is subtracted from
the Q-function—often the value function or expected cumulative discounted reward starting at a
certain state and following a given policy i.e., Vπθ (s) = Eτ∼πθ

[∑∞
k=0 γ

kR(st+k, at+k)|st = s
]
.

The network that estimates the value function is often referred to as critic. Define Aπθ (st, at) =
Qπθ (st, at)− Vπθ (st) as the advantage of performing action at at state st. Incorporating an advan-
tage function, the gradient of the objective function can be written:

∇θJ(θ) = Eτ∼πθ

[ ∞∑
t=0

Aπθ (st, at)∇θ log(πθ(at|st))

]
. (7)

Eq. 7 is the näive actor-critic objective and is used by A2C.

Trust region methods and PPO. Since directly optimizing the cumulative rewards can be challeng-
ing, modern policy gradient optimization algorithms often optimize a surrogate reward function in
place of the true reward. Most commonly, the surrogate reward objective includes a likelihood ratio
to allow importance sampling from a behavior policy π0 while optimizing policy πθ, such as the
surrogate reward used by Schulman et al. (2015a):

max
θ

E(st,at)∼π0

[
πθ(at, st)

π0(at, st)
Âπ0(st, at)

]
, (8)

where Âπ = Aπ−µ(Aπ)
σ(Aπ)

(we refer to this as the normalized advantages). However, the surrogate is
indicative of the true reward function only when πθ and π0 are close in distribution. Different policy
gradient methods (Schulman et al., 2015a; 2017; Kakade, 2002) attempt to enforce the closeness in
different ways. In Natural Policy Gradients (Kakade, 2002) and Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015a), authors utilize a conservation policy iteration with an explicit
divergence constraint which provides provable lower bounds guarantee on the improvements of
the parameterized policy. On the other hand, PPO (Schulman et al., 2017) implements a clipping
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heuristic on the likelihood ratio of the surrogate reward function to avoid excessively large policy
updates. Specifically, PPO optimizes the following objective:

max
θ

E(st,at)∼π0

[
min

(
clip(ρt, 1− ε, 1 + ε)Âπ0

(st, at), ρtÂπ0
(st, at)

)]
, (9)

where ρt : =πθ(at,st)
π0(at,st)

. We refer to ρt as likelihood-ratios. Due to a minimum with the unclipped
surrogate reward, the PPO objective acts as a pessimistic bound on the true surrogate reward. As in
standard PPO implementation, we use Generalized Advantage Estimation (GAE) (Schulman et al.,
2015b). Moreover, instead of fitting the value network via regression to target values:

LV = (Vθt − Vtarg)2, (10)

standard implementations fit the value network with a PPO-like objective:

LV = max
[
(Vθt − Vtarg)

2
,
(
clip

(
Vθt , Vθt−1

− ε, Vθt−1
+ ε
)
− Vtarg

)2]
, (11)

where ε is the same value used to clip probability raitos in PPO’s loss function (Eq. ??). PPO uses
the following training procedure: At any iteration t, the agent creates a clone of the current policy
πθt which interacts with the environment to collects rollouts S (i.e., state-action pair {(si, ai)}Ni=1).
Then the algorithm optimizes the policy πθ and value function for a fixed K gradient steps on the
sampled data S. Since at every iteration the first gradient step is taken on the same policy from
which the data was sampled, we refer to these gradient updates as on-policy steps. And as for the
remaining K − 1 steps, the sampling policy differs from the current agent, we refer to these updates
as off-policy steps.

Throughout the paper, we consider a stripped-down variant of PPO (denoted PPO-NOCLIP) that
consists of policy gradient with importance weighting (Eq. 8), but has been simplified as follows:
i) no likelihood-ratio clipping, i.e., no objective function clipping; ii) value network optimized via
regression to target values (Eq. 10) without value function clipping; and iii) no gradient clipping.
Overall PPO-NOCLIP uses the following objective:

max
θ

E(st,at)∼π0

[
πθ(at, st)

π0(at, st)
Âπ0

(st, at)− c(Vθt − Vtarg)2
]
.

where c is a coefficient of the value function loss (tune as a hyperparameter). Moreover, no gradient
clipping is incorporated in PPO-NOCLIP. One may argue that since PPO-NOCLIP removes the
clipping heuristic from PPO, the unconstrained maximization of Eq. 1 may lead to excessively large
policy updates. In App. I, we empirically justify the use of Eq. 1 by showing that with the small
learning rate used in our experiments (optimal hyperparameters in Table 1), PPO-NOCLIP maintains
a KL based trust-region like PPO throughout the training. We elaborate this in App. I.

B DETAILS ON ESTIMATORS

We now formalize our setup for studying the distribution of gradients. Throughout the paper, we use
the following definition of the heavy-tailed property:

Definition 2 (Resnick (2007)). A non-negative random variable w is called heavy-tailed if its tail
probability Fw(t) : =P (w ≥ t) is asymptotically equivalent to t−α

∗
as t → ∞ for some positive

number α∗. Here α∗ determines the heavy-tailedness and α∗ is called tail index of w.

For a heavy-tailed distribution with index α∗, its α-th moment exist only if α < α∗, i.e., E[wα] <∞
iff α < α∗. A value of α∗ = 1.0 corresponds to a Cauchy distribution and α∗ =∞ (i.e., all moments
exist) corresponds to a Gaussian distribution. Intuitively, as α∗ decreases, the central peak of the
distribution gets higher, the valley before the central peak gets deeper, and the tails get heavier. In
other words, the lower the tail-index, the more heavy-tailed the distribution. However, in the finite
sample setting, estimating the tail index is notoriously challenging (Simsekli et al., 2019; Danielsson
et al., 2016; Hill, 1975).

In this study, we explore three estimators as heuristic measures to understand heavy tails and non-
Gaussianity of gradients.
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Figure 5: Kurtosis plots. Analysis on norms of 100-dimensional vectors such that each coordinate
is sampled iid from Pareto distribution or normal distribution. (a) Variation in kurtosis (κ1/4) as the
sample size is varied for samples from normal distribution and Pareto with tail index 2 (i.e, α = 2).
(b) Variation in kurtosis (κ1/4) as the shape of Pareto is varied at fix sample size.

• Alpha-index estimator. This estimator was proposed in Mohammadi et al. (2015) for sym-
metericα-stable distributions and was used by Simsekli et al. (2019) to understand the noise
behavior of SGD. This estimator is derived under the (strong) assumption that the stochas-
tic Gradient Noise (GN) vectors are coordinate-wise independent and follow a symmetric
alpha-stable distribution. Formally, let {Xi}Ni=1 be a collection of N = mn (centered)
random variables. Define Yi =

∑m
j=1Xj+(i−1)m for i ∈ [n]. Then, the estimator is given

by

1

α
: =

1

logm

(
1

n

n∑
i=1

log |Yi| −
1

n

∑
i=1

N log |Xi|

)
.

Instead of treating each co-ordinate of gradient noise as an independent scalar, we use
these estimators on gradient norms. With alpha-index estimator, smaller alpha-index value
signify higher degree of heavy-tailedness.
• Anderson-Darling test (Anderson & Darling, 1954) on random projections of GN to per-

form Gaussianity testing. Panigrahi et al. (2019) proposed the Gaussianity test on the pro-
jections of GN along 1000 random directions. Their estimate is then the fraction of direc-
tions accepted by the Anderson Darling test. While this estimator is informative about the
Gaussian behavior, it is not useful to quantify and understand the trends of heavy-tailedness
if the predictor nature is non-Gaussian.
• To our knowledge, the deep learning literature has only exploredthese two estimators for

analyzing the heavy-tailed nature of gradients. (iii) Finally, in our work, we propose us-
ing kurtosis Kurtosis. To quantify the heavy-tailedness relative to a normal distribution,
we measure kurtosis (fourth standardized moment) of the gradient norms. Given samples
{Xi}Ni=1, the kurtosis κ is given by

κ =

∑N
i=1(Xi − X̄)4/N(∑N
i=1(Xi − X̄)2/N

)2 ,
where X̄ is the empirical mean of the samples.

B.1 SYNTHETIC STUDY

In Figure 5, we show the trends with varying tail index and sample sizes. Clearly as the tail-index
increases, i.e., the shape parameter increases, the kurtosis decreases (signifying its correlation to
capture tail-index). Although for tail-index smaller than 4 the kurtosis is not defined, we plot empir-
ical kurtosis and show its increasing trend sample size. We fix the tail index of Pareto at 2 and plot
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finite sample kurtosis and observe that it increases almost exponentially with the sample size. These
two observations together hint that kurtosis is a neat surrogate measure for heavy-tailedness.

C GMOM ALGORITHM

Algorithm 2 GMOM

input : Samples S = {x1, . . . , xn}, number of
blocks b

1: m = bn/bc.
2: for i in 1 . . . b do
3: µ̂i =

∑m
j=0 xj+i∗m/ m.

4: end for
5: µ̂GMOM = WEISZFELD(µ̂1, . . . , µ̂b).

output : Estimate µ̂GMOM

Algorithm 3 WEISZFELD

input : Samples S = {µ1, . . . , µb}, number of
blocks b

1: Initialize µ arbitrarily.
2: for iteration← 1, . . . , n do
3: dj : = 1

||µ−µj ||2
for j in 1, . . . , b.

4: µ : =
(∑b

j=1 µjdj

)
/
(∑b

j=1 dj

)
5: end for

output : Estimate µ

D EXPERIMENTAL SETUP FOR GRADIENT DISTRIBUTION STUDY

Recall that PPO uses the following training procedure: At any iteration t, the agent creates a clone of
the current policy πθt which interacts with the environment to collects rollouts S (i.e., state-action
pair {(si, ai)}Ni=1). Then the algorithm optimizes the policy πθ and value function for a fixed K
gradient steps on the sampled data S. Since at every iteration the first gradient step is taken on the
same policy from which the data was sampled, we refer to these gradient updates as on-policy steps.
And as for the remainingK−1 steps, the sampling policy differs from the current agent, we refer to
these updates as off-policy steps. For all experiments, we aggregate our estimators across 30 seeds
and 8 environments. We do this by first computing the estimators for individual experiments and
then taking the sample mean across all runs. We now describe the exact experimental details.

In all of our experiments, for each gradient update, we have a batch size of 64. Hence for an individ-
ual estimate, we aggregate over 64 samples (batch size in experiments) to compute our estimators.
For Anderson Darling test, we use 100 random directions to understand the behavior of stochastic
gradient noise.

On-policy heavy-tailed estimation. At every on-policy gradient step (i.e. first step on newly sam-
pled data), we freeze the policy and value network, and save the sample-wise gradients of the actor
and critic objective. The estimators are calculated at every tenth on-policy update throughout the
training.

Off-policy heavy-tailed estimation At every off-policy gradient step (i.e. the gradient updates
made on a fixed batch of data when the sampling policy differs from the policy being optimized),
we freeze the policy and value network, and save the sample-wise gradients of the actor and critic
objective. Then at various stages of training, i.e., initialization, 50% max reward and max reward
(which corresponds to different batches of sampled data), we fix the collected trajectories and collect
sample-wise gradients for the 320 steps taken. We now elaborate the exact setup with one instance,
at 50% of the maximum reward. First, we find the training iteration where the agent achieves
approximately 50% of the maximum reward individually for each environment. Then at this training
iteration, we freeze the policy and value network and save the sample-wise gradients of the actor
and critic objective for off-policy steps.

Analysis of PPO-NOCLIP with progressively applying PPO heuristics. We compute the gra-
dients for the off-policy steps taken with the PPO-NOCLIP objective as explained above. Then at
each gradient step, we progressively add heuristics from PPO and re-compute the gradients for anal-
ysis. Note that we still always update the value and policy network with PPO-NOCLIP objective
gradients.
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E TRENDS WITH ADVANTAGES

E.1 KURTOSIS FOR RETURNS, VALUE ESTIMATE AND ADVANTAGES GROUPED WITH SIGN
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Figure 6: Heavy-tailedness in advantages grouped by their sign, rewards and value estimates.
Clearly, as the training progresses the negative advantages become heavy-tailed. For returns, we
observe an initial slight increase in the heavy-tailedness which quickly plateaus to a small magni-
tude of heavytailedness. The heavytailedness in the value estimates and positive advantages remain
almost constant throughout the training.

E.2 HEAVY-TAILEDNESS IN A2C AND PPO IN ONPOLICY ITERATIONS
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Figure 7: Heavy-tailedness in advantages for A2C and PPO during on-policy iterates. Clearly, as
the training progresses heavy-tailedness in PPO advantages increases rapidly when compared with
A2C advantages. The observed behavior arises to the off-policy training of the agent in PPO. This
explains why we observe heightened heavy-tailedness in PPO during onpolicy iterations in Fig 1(a).

16



Under review as a conference paper at ICLR 2021

E.3 HISTOGRAMS OF ADVANTAGES ON HALFCHEETAH OVER TRAINING ITERATIONS
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Figure 8: Distribution of log(|Aπθ |) over training grouped by sign of log(|Aπθ |) for HalfCheetah-
v2 . To elaborate, we collect the advantages and separately plot the grouped advantages with their
sign, i.e., we draw histograms separately for negative and positive advantages. As training proceeds,
we clearly observe the increasing heavy-tailed behavior in negative advatanges as captured by the
higher fraction of log(|Aπθ |) with large magnitude. Moreover, the histograms for positive advan-
tages (which resembel Gaussain pdf) stay almost the same throughout training. This highlights the
particular heavy-tailed (outlier-rich) nature of negative advantages corroborating our experiments
with kurtosis and tail-index estimators.
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F ANALYSIS WITH OTHER ESTIMATORS

F.1 ON-POLICY GRADIENT ANALYSIS
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Figure 9: Heavy-tailedness in PPO during on-policy iterations. All plots show mean alpha index
aggregated over 8 MuJoCo environments. A decrease in alpha-index implies an increase in heavy-
tailedness. (a) Alpha index vs on-policy iterations for A2C and PPO. Evidently, as training pro-
ceeds, the gradients become more heavy-tailed for both the methods. (b) Alpha index vs on-policy
iterations for actor networks in PPO. (c) Alpha index vs on-policy iterations for critic networks
in PPO. Both critic and actor gradients become more heavy-tailed on-policy steps as the agent is
trained. Note that as the gradients become more heavy-tailed, we observe a corresponding increase
of heavy-tailedness in the advantage estimates (Âπ0

) . However, “actor/Âπ0
” and “critic/Âπ0

” (i.e.,
actor or critic gradient norm divided by GAE estimates) remain light-tailed throughout the training.
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Figure 10: Heavy-tailedness in PPO during on-policy iterations. All plots show mean fraction of
directions accepted by Anderon-Darling test over 8 MuJoCo environments. A higher accepted frac-
tion indicates a Gaussian behavior. (b) Fraction accepted vs on-policy iterations for actor networks
in PPO. (c) Fraction accepted vs on-policy iterations for critic networks in PPO. Both critic and
actor gradients remain non-Gaussian as the agent is trained. However, “actor/Âπ0” and “critic/Âπ0”
(i.e., actor or critic gradient norm divided by GAE estimates) have fairly high fraction of directions
accepted, hinting their Gaussian nature.
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F.2 OFF-POLICY GRADIENT ANALYSIS
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Figure 11: Heavy-tailedness in PPO-NOCLIP during off-policy steps at various stages of train-
ing iterations in MuJoCo environments. All plots show mean alpha index aggregated over 8 Mujoco
environments. A decrease in alpha index implies an increase in heavy-tailedness. As off-policyness
increases, the actor gradients get substantially heavy-tailed. This trend is corroborated by the in-
crease of heavy-tailedness in ratios. Moreover, consistently we observe that the heavy-tailedness in
“actor/ratios” stays constant. While initially during training, the heavy-tailedness in the ratio’s in-
creases substantially, during later stages the increase tapers off. The overall increase across training
iterations is explained by the induced heavy-tailedness in the advantage estimates (cf. Sec. 3.1).
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G HYPERPARAMETER SETTINGS AND REWARDS CURVES ON INDIVIDUAL
ENVIORNMENTS

Hyperparameter Values

Steps per PPO iteration 2048
Number of minibatches 32
PPO learning rate 0.0003
ROBUST-PPO-NOCLIP learning rate 0.00008
PPO-NOCLIP learning rate 0.00008
Discount factor γ 0.99
GAE parameter λ 0.95
Entropy loss coefficient 0.0
PPO value loss coefficient 2.0
ROBUST-PPO-NOCLIP value loss coefficient 2.0
PPO-NOCLIP value loss coefficient 2.0
Max global L2 gradient norm (only for PPO) 0.5
Clipping coefficient (only for PPO) 0.2
Policy epochs 10
Value epochs 10
GMOM number of blocks 8
GMOM Weiszfeld iterations 100

Table 1: Hyperparameter settings. Sweeps were run over learning rates { 0.000025, 0.00005,
0.000075, 0.00008, 0.00009 , 0.0001, 0.0003, 0.0004 } and value loss coefficient { 0.1, 0.5, 1.0,
2.0, 10.0} with 30 random seeds per learning rate.
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Figure 12: Reward curves as training progresses in 8 different Mujoco Environments aggre-
gated across 30 random seeds and for hyperparameter setting tabulated in Table 1. The shaded
region denotes the one standard deviation across seeds. We observe that except in Hopper-v2 en-
vironment, the mean reward with ROBUST-PPO-NOCLIP is significantly better than PPO-NOCLIP
and close to that achieved by PPO with optimal hyperparameters. Aggregated results shown in
Fig. 4.
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H ANALYSIS ON INDIVIDUAL ENVIORNMENTS.

Overall, in the figures below, we show that the trends observed in aggregated plots in Section 3
with Kurtosis hold true on individual environments. While the degree of heavy-tailedness varies in
different environments, the trend of increase in heavy-tailedness remains the same.
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Figure 13: Heavy-tailedness in actor gradients for PPO during on-policy steps for 8 MuJoCo
environments. All plots show mean and std of kurtosis aggregated over 30 random seeds. As the
agent is trained, actor gradients become more heavy-tailed. Note that as the gradients become more
heavy-tailed, we observe a corresponding increase of heavy-tailedness in the advantage estimates
(Âπ0

). However, “actor/Âπ0
” (i.e., actor gradient norm divided by advantage) remain light-tailed

throughout the training.
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Figure 14: Heavy-tailedness in critic gradients for PPO during on-policy steps for 8 MuJoCo
environments. All plots show mean and std of kurtosis aggregated over 30 random seeds. As the
agent is trained, critic gradients become more heavy-tailed. Note that as the gradients become more
heavy-tailed, we observe a corresponding increase of heavy-tailedness in the advantage estimates
(Âπ0

). However, “critic/Âπ0
” (i.e., critic gradient norm divided by advantage) remain light-tailed

throughout the training.
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Figure 15: Heavy-tailedness in PPO-NOCLIP during off-policy steps at Initialization for 8 Mu-
JoCo environments. All plots show mean and std of kurtosis aggregated over 30 random seeds.
As off-policyness increases, the actor gradients get substantially heavy-tailed. This trend is cor-
roborated by the increase of heavy-tailedness in ratios. Moreover, consistently we observe that the
heavy-tailedness in “actor/ratios” stays constant. The trend in heavy-tailedness at later training it-
eration follow similar trends but the increase in heavy-tailedness tapers off. The overall increase
across training iterations is explained by the induced heavy-tailedness in the advantage estimates
(cf. Sec. 3.1).
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Figure 16: KL divergence between current and previous policies with the optimal hyperparam-
eters (parameters in Table 1). We measure the mean empirical KL divergence between the policy
obtained at the end of off-policy training (after every 320 gradient steps) and the sampling policy
at the beginning of every training iteration. The quantities are measured over the state-action pairs
collected in the training step (Engstrom et al. (2019) observed similar results with both unseen data
and training data). We observe that both the algorithms maintain a KL based trust region. The trend
with KL divergence in PPO matches with the observations made in Engstrom et al. (2019) where
they also observed that it peeks in halfway in training.

I MEAN KL DIVERGENCE BETWEEN CURRENT AND PREVIOUS POLICY

Enforcing a trust region is a core algorithmic property of PPO and TRPO. While the trust-region
enforcement is not directly clear from the reward curves or heavy-tailed analysis, inspired by En-
gstrom et al. (2019), we perform an additional experiment to understand how this algorithmic prop-
erty varies with PPO and our variant PPO-NOCLIP with optimal hyperparameters. In Fig 16, we
measure mean KL divergence between successive policies of the agent while training with PPO

22



Under review as a conference paper at ICLR 2021

0 200000 400000 600000 800000 1000000
Number of Timesteps

1000

0

1000

2000

3000

4000

Re
wa

rd
s

HalfCheetah-v2
PPO-Adv_clip
PPO

0 200000 400000 600000 800000 1000000
Number of Timesteps

0

500

1000

1500

2000

2500

3000

Re
wa

rd
s

Hopper-v2
PPO-Adv_clip
PPO

0 200000 400000 600000 800000 1000000
Number of Timesteps

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd
s

Walker2d-v2
PPO-Adv_clip
PPO

0 200000 400000 600000 800000 1000000
Number of Timesteps

2000

1500

1000

500

0

Re
wa

rd
s

Ant-v2

PPO-Adv_clip
PPO

0 200000 400000 600000 800000 1000000
Number of Timesteps

0

100

200

300

400

500

Re
wa

rd
s

CartPole-v1

PPO-Adv_clip
PPO

0 200000 400000 600000 800000 1000000
Number of Timesteps

0

200

400

600

800

1000

Re
wa

rd
s

InvertedPendulum-v2

PPO-Adv_clip
PPO

0 200000 400000 600000 800000 1000000
Number of Timesteps

100

200

300

400

500

600

Re
wa

rd
s

Humanoid-v2
PPO-Adv_clip
PPO

0 200000 400000 600000 800000 1000000
Number of Timesteps

140

120

100

80

60

40

20

0

Re
wa

rd
s

Reacher-v2

PPO-Adv_clip
PPO

Figure 17: Reward curves with advantage clipping in 8 different Mujoco Environments aggre-
gated across 30 random seeds. The shaded region denotes the one standard deviation across seeds.
The clipping threshold is tuned per environment. We observe that by clipping outlier advantages,
we substantially improve the mean rewards for 5 environments. While for the remaining three envi-
ronments, we didn’t observe any differences in the agent performance.

and PPO-NOCLIP. Recall that while PPO implements a clipping heuristics in the likelihood ratios
(as a surrogate to approximate the KL constraint of TRPO), we remove that clipping heuristics in
PPO-NOCLIP.

Engstrom et al. (2019) pointed out that trust-region enforced in PPO is heavily dependent on the
method with which the clipped PPO objective is optimized, rather than on the objective itself. Cor-
roborating their findings, we indeed observe that with optimal parameters (namely small learning
rate used in our experiments), PPO-NOCLIP indeed manages to maintain a trust region with mean
KL metric (Fig 16) on all 8 MuJoCo environments. This highlights that instead of the core algo-
rithmic objective used for training, the size of the step taken determines the underlying objective
landscape, and its constraints. On a related note, Ilyas et al. (2018) also highlighted that the ob-
jective landscape of PPO algorithm in the typical sample-regime in which they operate can be very
different from the true reward landscape.

J HOW HEAVY-TAILEDNESS AFFECT TRAINING?

To understand the effects of heavy-tailedness, we perform two ablation experiments: First, we study
the effects of heavy-tailedness in negative advantages. By clipping the outlier negative advantages
used in the PPO loss, we show that the induced heavy-tailedness in advantages gets reduced and the
performance of the agent improves. Second, we seek to understand the effects of heavy-tailedness
induced in the likelihood ratios during off-policy training. We vary the number of off-policy gra-
dient steps (a hyperparameter otherwise fixed to 10) taken by an agent trained with PPO-NOCLIP2

and show that the additional off-policy learning exacerbates heavy-tailedness in ratios and directly
affects the agent performance even while maintaining trust-region with mean KL metric.

Next, we detail these experiments and highlight how the heavy-tailedness induced hurts the learning
of agent with the mean reward metric.

J.1 EFFECT OF HEAVY-TAILEDNESS IN ADVANTAGES

Recall that analysis in Section 3.1 shows that multiplicative advantage estimate in the PPO loss
is a significant contributing factor to the observed heavy-tailedness. While PPO clipping mech-
anisms ameliorate the observed heavy-tailedness to some extent, the heuristics majorly offset the

2We tried using PPO loss for this experiment. However, while training with PPO, the successive policies
diverge in mean KL metric when we increase the number of offline epochs used for training.
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heavy-tailedness induced during off-policy gradient steps and doesn’t seem to handle the induced
heavy-tailedness in advantages. Motivated by this connection, we aim to study the effects of clip-
ping advantages to understand its impact on the agent’s behavior. In particular, we clip negative
advantages which are the primary contributors to the induced heavy-tailedness.
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Figure 18: Heavy-tailedness in PPO
advantages with per-environment
tuned clipping threshold in MuJoCo
environments. All plots show mean
kurtosis aggregated over 8 Mujoco
environments. With clipping advan-
tages at appropriate thresholds (tuned
per environment), we observe that the
heavy-tailedness in advantages remains
almost constant with training.

Depending on the individual environment and the ob-
served heavy-tailedness, we tune an environment depen-
dent clipping threshold for advantages to maximize the
performance of the agent trained with PPO. Intuitively,
we expect that clipping should improve optimization and
hence should lead to improved agents’ performance. Cor-
roborating the intuition, we observe significant improve-
ments (Figure 17). Moreover, to understand the nature of
clipped advantages, we plot the trend of heavy-tailedness
in advantage estimates during training. Confirming our
hypothesis, as we clip negative advantages below the
obtained threshold, we observe that the induced heavy-
tailedness stays constant throughout training (Figure 18).

Our experiment unearths a previously unknown fact.
Since the advantage estimates significantly contribute to
the observed heavy-tailed behavior, we show that clipping
outlier advantages stabilizes the training and improves
agents’ performance on 5 out of 8 MuJoCo tasks. While
tuning a clipping threshold per environment may not be
practical, the primary purpose of this study is to illustrate
that heavy-tailedness in advantages can actually hurt the optimization process, and clipping advan-
tages lead to improvements in the performance of agent. We believe that this opens a door for future
research to develop more principled (and environment agnostic) methods to handle the induced
heavy-tailedness in advantages which is not handled by PPO.

J.2 EFFECT OF HEAVY-TAILEDNESS IN LIKELIHOOD-RATIOS

Recall, in Section 3.2, we demonstrated the heavy-tailed behavior of gradients during off-policy
training which increases with off-policy gradient steps in PPO-NOCLIP. Moreover, we observe a
corresponding increase in the heavy-tailedness of likelihood ratios. Motivated by this connection, we
train agents with increased off-policy gradient steps to understand the effect of the likelihood-ratios
induced heavy-tailedness on the performance of the agent. With PPO-NOCLIP, we train agents for
20 and 30 offline epochs (instead of 10 in Table 1) and analyse its performance in terms of mean
reward. Note that even with 20 and 30 offline epochs the agent maintains a KL based trust-region
throughout training (Bottom row in Figure 21)3.

First, as expected, we observe an increase in heavy-tailedness in the likelihood ratios with escalated
offline training (Figure 20). Moreover, the heavy-tailedness in advantages remains unaffected with
an increase in the number of offline epochs (Figure 19) confirming that the observed behavior is pri-
marily due to heightened heavy-tailedness in likelihood ratios. We hypothesize that induced heavy-
tailedness can make the optimization process harder. Corroborating this hypothesis, we observe
that as the number of offline epochs increases, the performance of agent trained with PPO-NOCLIP
deteriorates, and the training becomes unstable (Top row in Figure 21).

The findings from this experiment clearly highlight the issues due to induced heavy-tailedness in
likelihood ratios hindering efficient policy optimization. While offline training enables sample effi-
cient training, restricting the number of off-policy epochs allows effective tackling of optimization
issues induced due to the heavy-tailed nature (which are beyond just trust-region enforcement). In
the future, we believe that these insights can be used to develop better algorithms for efficient offline
training.

3Beyond 30 offline steps, successive policies often diverge—failing to maintain a KL based trust region.
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Figure 19: Heavy-tailedness in PPO-NOCLIP
advantages throughout the training as the de-
gree of off-policyness is varied in MuJoCo en-
vironments. Kurtosis is aggregated over 8 Mu-
joco environments. We plot kurtosis vs on-
policy iterates. As the number of off-policy
epochs increases, the heavy-tailedness in advan-
tages remains the same showing an increase in
the number of offline epochs has a minor effect
on the induced heavy-tailedness in the advan-
tage estimates.
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Figure 20: Heavy-tailedness in PPO-NOCLIP
likelihood-ratios as the degree of off-
policyness is varied. at initialization in
MuJoCo environments. Kurtosis is aggregated
over 8 Mujoco environments. We plot kurtosis
vs the fraction of off-policy steps (i.e. number
of steps taken normalized by the total number of
gradients steps in one epoch). As the number of
off-policy epochs increase, the heavy-tailedness
in ratios increases substantially. The same trend
holds at other training iterations, however, the
degree of increase tappers off.
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Figure 21: (Top two rows) Reward curves with the varying number of offline epochs in 8 different
Mujoco Environments aggregated across 10 random seeds. Bracketed quantity in the legend denotes
the number of offline epochs used for PPO-NOCLIP training. Clearly, as the number of offline
epochs increases, the performance of the agent drops (consistent behavior across all environments).
Furthermore, at 30 epochs the training also gets unstable. We also show the PPO performance curve
for comparison. (Bottom two rows) KL divergence between current and previous policies with the
optimal hyperparameters (parameters in Table 1) for PPO and PPO-NOCLIP with varying number
of offline epochs. We measure mean empirical KL divergence between the policy obtained at the
end of off-policy training and the sampling policy at the beginning of every training iteration. The
quantities are measured over the state-action pairs collected in the training step. We observe that till
30 offline epochs PPO-NOCLIP maintains a trust-region with mean KL metric.
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