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ABSTRACT

Model-based reinforcement learning (MBRL) algorithms achieve high sample ef-
ficiency by leveraging imagined rollouts from a world model for policy optimiza-
tion. A crucial hyperparameter in MBRL is the rollout length, which represents
a trade-off between data quality and efficiency by limiting the imaginary horizon.
While longer rollout length offers enhanced efficiency, it introduces more unrealis-
tic data due to compounding error, potentially leading to catastrophic performance
deterioration. To prevent significant deviations between imagined rollouts and
real transitions, most model-based methods manually tune a fixed rollout length
for the entire training process. However, the fixed rollout length is not optimal
for all rollouts and does not effectively prevent the generation of unrealistic data.
To tackle this problem, we propose a novel method called Conservative Rollout
Length Adaptation (CRLA), which conservatively restricts the agent from select-
ing actions that are rarely taken in the current state. CRLA truncates the rollout
to preserve safety when there is a high probability of selecting infrequently taken
actions. We apply our method to DreamerV3 and evaluate it on the Atari 100k
benchmark. The results demonstrate that CRLA can effectively balance data qual-
ity and efficiency by adjusting rollout length and achieve significant performance
gains in most Atari games compared to DreamerV3 in the default setting.

1 INTRODUCTION

Reinforcement learning (RL) has recently achieved impressive success in a variety of complex
decision-making tasks, such as robotics (Yang et al., 2022; Wu et al., 2023) and gaming (Silver
et al., 2016; Wurman et al., 2022). However, it usually takes a huge amount of trial and error for
RL algorithms to learn an effective policy. This makes the application of reinforcement learning
challenging.

Recent research has introduced various methods to improve sample efficiency (Schwarzer et al.,
2021; 2023). Model-based methods are considered promising approaches to accelerate agent learn-
ing. Unlike model-free methods, they learn a dynamic model of the environment, also called world
model (Ha & Schmidhuber, 2018), and allow the agent to interact in the world model to acquire
more samples without touching the real environment, as one can learn in the imagination.

However, the use of a world model is not blind because the predictive accuracy and generalization
are not guaranteed in complex environments (Plaat et al., 2023). The rollout length, which is used to
limit the imaginary horizon of the agent in the world model, is a critical hyperparameter in model-
based approaches (Janner et al., 2019). Intuitively, a longer rollout length leads to greater sample
efficiency since more data are generated. However, as long trajectories are generated, the prediction
accuracy at each step decreases due to the compounding of model error, resulting in poor generation
quality. Thus, the rollout length plays a crucial role as a trade-off between data quality and efficiency,
which needs to be set carefully. Previous approaches tend to achieve better performance by manually
adjusting the rollout length. However, using a fixed rollout length is not optimal for all rollouts
during the training process (Nguyen et al., 2018). There are some approaches that try to utilize
metrics from the training process for automatic adaptation (Nguyen et al., 2018; Xiao et al., 2019)
but only slightly adjusted for simple environments.
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Figure 1: Overview of CRLA applied to Dreamerv3. The conservator predicts the practiced action
distribution with the current latent state zt. At each step of the rollout, CRLA calculates the distance
between the output distributions of the actor and conservator. Then the mask mt is computed based
on the distance with respect to the set threshold. If mt = 0, then the subsequent rollout needs to be
truncated.

Intuitively, a conservative strategy for a safe rollout is to prefer practiced actions that have already
been taken frequently in the current state when imagining, since humans usually avoid imagining
outside the box if they lack a comprehensive understanding of the dynamics. Based on this in-
spiration, we propose a novel Conservative Rollout Length Adaptation method called CRLA. Our
main idea is that the agent, when interacting with the world model, should try to choose practiced
actions in the current state for safe rollout and truncate the rollout when there is a high probability
of selecting unpracticed actions that are seldom taken. The overall framework of CRLA is shown
in Figure 1. We train a neural network called conservator to predict the distribution formed by the
take frequency of actions at each state. We determine whether it is safe to continue the rollout by
judging if the output distributions of the conservator and the actor are close enough to each other,
and truncate the rollout if it is not safe. Our approach is a conservative rollout strategy that prevents
the rollout from falling into regions with large prediction errors by truncating the rollout when there
is a high probability of selecting rarely taken actions. We evaluate CRLA applied to DreamerV3
(Hafner et al., 2023) on the Atari100k benchmark. Note that our method can be applied to most
model-based method that works in the discrete action space environment. CRLA demonstrates a
notable performance improvement over Dreamerv3 in most Atari games, indicating its ability to
effectively strike a balance between data quality and efficiency.

Our contribution: The contributions of this work can be summarized as follows:

1. We introduce a conservative rollout strategy that stops unrolling when the agent selects an
action seldom chosen in the current state.

2. We propose a novel conservative rollout length adaptation method following this strategy,
aimed at discarding potentially unrealistic transitions for safety.

3. We evaluate CRLA applied to DreamerV3 on the Atari100k benchmark and achieves a
significant improvement and demonstrates that further performance gains can be achieved
by dynamically adjusting the rollout length.

2 BACKGROUND

We consider a partially observable Markov decision process (POMDP) with discrete time steps
t ∈ N, high-dimensional image observations xt ∈ Rh×w×c, discrete actions at ∈ {1, ...,m} and
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scalar rewards rt ∈ R. Episode ends are indicated by a boolean variable dt ∈ {0, 1}. The goal is
to find a policy π that maximizes the expected sum of discounted rewards Eπ

[∑∞
t=1γ

t−1rt
]
, where

γ ∈ [0, 1) is the discount factor.

To introduce our method more conveniently, we specify it based on the Dreamerv3 algorithm, a state-
of-the-art model-based reinforcement learning algorithm (Hafner et al., 2023), since our method is
a general approach which can be applied to most model-based method that works in the discrete
action space environment. We briefly describe the framework of Dreamerv3 below.

World model: One of the fundamental components of the model-based algorithm is the world
model, which learns compact representations of observations and predicts future representations and
rewards with potential actions. To process high-dimensional image inputs, the world model requires
an encoder that learns compact representations to encode image observations xt into hidden states
zt (Kingma & Welling, 2013). Then an RNN-based sequence model predicts the next recurrent
state ht based on past state zt−1 and action at−1. The dynamics predictor predicts the next latent
state ẑt based on the recurrent state. These three modules form the Recurrent State-Space Model
(RSSM) (Hafner et al., 2019), which is the core of the world model:

RSSM

{ Sequence model: ht = fϕ (ht−1, zt−1, at−1)
Encoder: zt ∼ qϕ (zt | ht, xt)
Dynamics predictor: ẑt ∼ pϕ (ẑt | ht)

(1)

The concatenation of the hidden state and the current state is used to predict the reward rt, the
episodic continuation flags ct ∈ {0, 1} and the next observation xt for learning compact representa-
tions:

Reward predictor: r̂t ∼ pϕ (r̂t | ht, zt)
Continue predictor: ĉt ∼ pϕ (ĉt | ht, zt)
Decoder: x̂t ∼ pϕ (x̂t | ht, zt)

(2)

Actor-Critic learning: Dreamer uses actor-critic framework for policy optimization. Both actor
πθ(at|st)and critic vψ(st) operate on model states st = {ht, zt} and are trained on-policy entirely
on trajectories imagined by world model. Real trajectories are sampled from the replay buffer and
used as starting points to generate imaginary trajectories in length T . We then compute bootstrapped
λ-returns (Sutton & Barto, 2018) on these trajectories and use this for optimization:

Rλt = rt + γct
(
(1− λ)vψ (st+1) + λRλt+1

)
RλT = vψ (sT ) (3)

3 METHOD

In this section, we first explain the idea of the conservative rollout strategy. Then, we introduce
our method inspired by this strategy and provide a practical implementation based on Dreamerv3.
Finally, we illustrate the theoretical support behind our method.

3.1 IMAGINE WITHIN PRACTICE

Due to the limitation of interaction steps, it is difficult for the world model to fully and accurately
capture the dynamics of the environment. However, during the rollout process, it is essential for
the world model to possess the capability of generalization to produce novel transitions that have
not been previously observed. This generalization alone cannot ensure the quality of imagined
transitions, as the world model learns only from limited data. Since the model error cannot be
eliminated, and even minor errors can be compounded by multi-step rollout, this has a detrimental
effect on policy optimization.

Intuitively, since the world model is trained with practiced trajectories in the replay buffer, it can
predict future information more accurately when it encounters frequently seen transitions. When
the agent chooses an action that has not been practiced while interacting with the world model, the
world model tends to produce large generalization error. Figure 2 illustrates this situation. Selecting
unpracticed actions is unsafe as it can lead the rollout to deviate from the accurate prediction region
and introduce risk to subsequent rollouts due to the compounding of model error.
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Figure 2: Illustration of the con-
servative rollout. The blue cir-
cles and arrows in the figure rep-
resent real states and transitions,
respectively, and the orange ones
are imagined. If the agent chooses
practiced actions, this results in a
smaller prediction error. While, if
it chooses unpracticed actions, it
may deviate the state out of the re-
gion where the world model pre-
dicts accurately, leading to the gen-
eration of unrealistic trajectories.

To ensure the safety of the rollout, a conservative strategy is to
make the agent imagine within practice, since the world model
is trained with practiced trajectories. This means that we want
the agent to be able to determine whether the current action
choice has been practiced sufficiently to make confident pre-
dictions during the imagination process. If the chosen action
has rarely been practiced in the current state, the imagination
should be interrupted to avoid falling into unrealistic fantasies.
If the agent has a high probability of choosing an action that
has rarely been practiced in the current state, the imagination
should be interrupted so as not to fall into unrealistic fantasies.

3.2 CONSERVATIVE ROLLOUT LENGTH ADAPTATION

Based on this intuitive strategy, we propose a novel conser-
vative rollout length adaptation method called CRLA. Specif-
ically, we define πp(at | zt) to represent the practiced ac-
tion distribution, which is shaped by the frequency of each
action taken at each latent state. Note that πp does not use
st = {ht, zt} as input, since it does not need to consider the
context ht. With πp, we can identify which actions have been
taken in the current latent state and their frequency to deter-
mine whether the action is practiced enough or not. Our main
idea is to truncate the rollout when the agent has a higher prob-
ability of choosing actions that are not sufficiently practiced.
This means that the rollout will continue only when the dis-
tance between πp and πθ is sufficiently small. In this paper, we employ the Jensen–Shannon diver-
gence as our distance metric. For each rollout step, we calculate the distance between πp and πθ
respectively for each rollouts. We set a threshold α to determine whether to continue the rollout. If
the distance is less than α, the rollout will continue, otherwise subsequent rollouts will be masked
with mt, as shown in Equation 4. Note that our approach does not directly judge the final action se-
lection, but instead uses the action distribution as the basis for judgment, which means that the agent
still has the probability to sample the untaken actions when the constraint is satisfied, preserving the
exploration ability of the agent.

However, πp is not easy to acquire. An easily thought of method is to directly count the frequency
of practiced actions at each state in the replay buffer. But there are several problems with this. First,
directly counting the frequency of practiced actions under the original observation is convenient
but not reasonable, as the prediction of the world model is made in the latent space. Even if the
observations are not identical, they may map to the same point in the latent space. Second, counting
within the latent space would require re-counting after the update of the encoder, which significantly
increases the computational cost. Lastly, owing to the world model’s generalization capacity, it
generates latent states that do not truly exist but are close to the real one. These problems make it
infeasible to obtain πp by counting.

mt =

{
1, if DJS(πD(zt), πθ(st)) < α and mt−1 = 1

0, if DJS(πD(zt), πθ(st)) ≥ α or mt−1 = 1
(4)

In order to efficiently acquire an approximation of πp, we parameterized it using a neural network.
We call it conservator and use π̂p(at | zt) to denote. The conservator takes latent states zt as
input and outputs the practiced action distribution under zt. We train it using practiced trajectories
from the replay buffer. Since one latent state can correspond to multiple actions, we refer to multi-
label learning approaches. However, in the multi-label classification task, each input necessitates
the provision of the complete label set for supervised training. This presents a challenge to our
task because it requires iterating through the entire replay buffer to find all actions corresponding to
each latent state, resulting in a significant increase in computational complexity. Therefore we use
sampling for training, where the state-action pairs are uniformly sampled from the replay buffer at
each training step. We then embed the original observations into latent states as input and use the
one-hot coding of the actions as labels. We utilize the binary cross entropy loss function that is often
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used in multi-label learning tasks to calculate the loss shown in Equation 5. We normalize the final
output logit of the conservator to obtain the predicted distributions of practiced actions. Because the
sampling is uniform, the conservator is able to capture the frequency of each action in each latent
state to approximate the πp. We validate this on the mnist dataset, referring to the Appendix A.2 for
detailed results.

LBCE(ŷ,y) = − 1

N

N∑
i=1

yi · log (ŷi) + (1− yi) · log (1− p (ŷi)) (5)

Lstatistic = E
s,a∈D

[LBCE(π̂D(encoder(z | s)), one hot(a)] (6)

After obtaining π̂p, we can calculate the Jensen–Shannon divergence between π̂p(at | zt) and current
policy πθ(at | st) at each rollout step in the world model, and determine whether to continue
unrolling. For computational convenience, we first compute the trajectory with the max rollout
length, and then apply the mask mt to mask out those states that do not satisfy the condition and
their successors. When calculating the bootstrapped λ-returns, it should be calculated respectively
for different rollout lengths according to the mask as shown in Equation 7. Ft ∈ {0, 1} is the flag
of the first invalid state which is equal to 1 only in this case to truncate the bootstrap returns of the
invalid state.

Rλt = mt

[
rt + γct

(
(1− λ)vψ(st+1) + λ(Rλt+1 · (1− Ft) + vψ(st+1) · Ft)

)]
(7)

The setting of the threshold α is crucial for our method. To simplify the design of the threshold, we
would like to set one threshold for all 26 Atari games. However, since the dimensions of action vary
across Atari games, it may not be appropriate to set only one threshold for them. The reason is that
for environments with small action dimensions, relatively low thresholds need to be set to provide
a sensitive truncation of the rollout. For environments with large action dimensions, however, rela-
tively high thresholds need to be set to avoid overly strict judgment conditions. Therefore, we use a
threshold adjustment approach that is adaptive to the dimensionality of the action. We define p, q as
two different n-dimensional one-hot vectors and u as an n-dimensional uniform distribution. We set
a hyperparameter β and compute the threshold α using the following equation:

α = DJS [(βp+ (1− β)u), (βq + (1− β)u)] (8)

In summary, our method has the following advantages: (1) Adaptation. Our method adapts the
rollout length for each rollout individually, thus utilizing the world model as much as possible while
still being safe. (2) flexibility. Since the Jensen–Shannon divergence between π̂p and πθ is used
as the judgment condition, there remains a possibility for the agent to explore unpracticed actions
while adhering to the constraints. Our method can be regarded as a form of soft rollout constraint.

3.3 THEORETICAL ANALYSIS

Previous researches have conducted theoretical analyses of the gap between returns under a branched
rollout scheme and real environment interactions, and derived a bound. The branched rollout scheme
is that we begin a rollout from a state under the previous policy’s state distribution dπD

(s) and run
k steps according to current π under the learned world model pθ. We analyze the validity of our
method based on this basis.

Theorem 3.1 (Janner et al., 2019) Let the expected total variation between two
the learned model is bounded at each timestep under the expectation of π by
maxtEs∼πt

[DTV (p (s′ | s, a) ∥p̂ (s′ | s, a))] ≤ ϵm′ , and the policy divergences are bounded as
maxsDTV (πD(a | s)∥π(a | s)) ≤ ϵπ , where the πD(a | s) denote the data-collecting policy. Let
the η[π] denotes the returns of the policy in the true MDP. Then under a branched rollouts scheme
with a branch length of k, the returns ηbranch[π] are bounded as:

η[π] ≥ ηbranch[π]− 2rmax

[
γk+1ϵπ
(1− γ)2

+
γkϵπ

(1− γ)
+

k

1− γ
(ϵm′)

]
(9)

To reduce the gap between ηbranch[π] and η[π], we need to reduce the second term on the right-hand
side of Equation 9 as much as possible. In this item, there are three key factors: the model error
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Figure 3: Improvement in percentage of Dreamerv3-CRLA over default Dreamerv3. We perform
10 runs per game and compute the average over 100 episodes at the end of training for each run.

ϵm′ under the current policy, the policy distribution shift ϵπ between the current policy π and the
data-collecting policy πD and the rollout length k. For the model error ϵm′ , since the world model is
trained by supervised learning to fit the data in the replay buffer rather than the full dynamics of the
real environment, this leads to the generalization error. The error can be substantial for transitions
that are seldom observed. Our method expects the agent to try to select practiced actions that have
been taken before in the current state when interacting with the world model. We truncate the
rollout when the agent chooses an unpracticed action, as this can cause large model errors. This
avoids a further increase in the term k

1−γ (ϵm′), which increases with rollout length k. For the policy
distribution shift ϵπ , since the conservator is the approximation of πD(a | s), our method actually
constrains ϵπ explicitly. We add constraints to the rollout so that it continues when the policy’s
action distribution πθ(a | s) is similar to πD(a | s). This allows policy distribution shifts ϵπ to be
restrained during rollout thus protecting the quality of the generated trajectories. By dynamically
adjusting the rollout length k with our method, the model error and the policy distribution shift can
be effectively constrained. This theoretically supports our method.

4 EXPERIMENT

In this section, we aim to answer the following questions: (1) Whether CRLA can improve per-
formance by adjusting only the rollout length? (2) Whether CRLA can balance data quality and
efficiency? (3) Whether CRLA can truncate the rollout at the appropriate step? (4) For what kind of
environments CRLA causes performance degradation?

To answer these questions, We evaluate CRLA applied to DreamerV3 on the Atari100k benchmark.
The Atari 100k benchmark (Kaiser et al., 2020) includes 26 games from the Arcade Learning En-
vironment (Bellemare et al., 2013) and the agent is only allowed 100,000 steps of environment
interaction per game, which are 400,000 frames with a frame-skip of 4 and corresponds to roughly
two hours of real-time gameplay. It can effectively test the sample efficiency of the method in case
of limited interactions. We want to test whether CRLA can effectively truncate those harmful gener-
ated trajectories when the interaction steps are limited. To avoid tedious hyperparameter tuning, we
set β = 0.78 to automatically calculate thresholds α for all 26 games in the Atari 100k benchmark.
All hyperparameters are identical to the Dreamerv3 default settings, except for the rollout length.
We restrict the adjustment range of the rollout length to [5, 16] to avoid too long or too short rollout
length, while the default setting is a fixed one T = 15. Due to the lack of data in the replay buffer
and the instability of the encoder at the early stage, we train and apply the conservator after 10k
steps to avoid overfitting. We perform 10 runs per game and compute the average score over 100
episodes at the end of training for each run.
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Figure 4: The rollout length adaptation by CRLA in six games is shown in the first line and the
comparison of the different rollout length in each game is shown in the second line. The solid line
is the mean over 10 seeds for our method and 5 seeds for Dreamerv3 with T = 8 and T = 15, while
the shaded area represents one pointwise standard deviation.

4.1 PERFORMANCE IMPROVEMENT

We aim to assess whether CRLA could improve the performance of Dreamerv3 by adjusting the roll-
out length. Figure 3 illustrates the percentage performance improvements across all 26 Atari games
compared to default Dreamerv3 with a fixed rollout length T = 15. It shows that CRLA signifi-
cantly improves the performance of Dreamerv3 in most games. See the Appendix A.1 for detailed
training curves. The results sufficiently demonstrate the effectiveness of CRLA. It’s noteworthy
that we did not individually tune the threshold α for each game, emphasizing the user-friendliness
of CRLA. And we believe that positive performance improvements can be achieved by fine-tuning
the threshold and the adjustment range for each game respectively, since we only adjust the rollout
length and do not modify the other hyperparameters.

N

actor
conservator

N N N

N N N N

N N N N

N N N N

t=0  action=   reward=10.00  mask=1.0 t=1  action=   reward=0.00  mask=1.0 t=2  action=   reward=0.00  mask=1.0 t=3  action=   reward=0.00  mask=1.0

t=4  action=   reward=9.99  mask=1.0 t=5  action=   reward=0.00  mask=1.0 t=6  action=   reward=0.00  mask=1.0 t=7  action=   reward=9.99  mask=1.0
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Figure 5: Full rollout trajectory on Ms Pacman. The image at t = 0 is the real observation as a
starting point. The player controls the yellow Pac-Man in the upper right corner of the image at
t = 0. The green border of the image represents mt = 1 and the red border represents mt = 0. The
bars on the right side of each image show the action distribution output by the policy with blue bars
and the practiced action distribution output by the conservator with yellow bars ranging from 0 to 1.
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Figure 6: Partial rollout trajectory on Seaquest game. The bars below each image correspond to the
output distributions of the policy with blue bars and the conservator with yellow bars at each step.

4.2 BALANCING DATA QUALITY AND EFFICIENCY

As each rollout varies in length, we record the mean and variance of the rollout length in the batch
data at each training step, as shown in the first row of Figure 4. We aim to investigate whether
our approach can achieve greater efficiency compared to the fixed rollout length setup when using
a similar number of imagined rollout transitions. For convenience, we set the fixed rollout length
T = 8, which closely approximates the average rollout length in our method. The results of this
comparison are presented in the second row of Figure 4. As T varies from 15 to 8, it results in a
performance degradation at the fixed rollout length setup in some games. However, Our method is
more sample efficient than both of them while using a smaller number of imagined rollout transitions
but achieving better performance. It can be seen that the average rollout length stays in the middle
region of the set range with a large variance to cover the entire range in our method. This suggests
that CRLA has the ability to safely and flexibly adjust the rollout length to balance data quality and
efficiency.

4.3 ANALYZING THE VALIDITY OF TRUNCATION

We want to observe where CRLA would choose to truncate the rollout. For illustration, We visualize
the rollout trajectory of the Atari game Ms-Pacman. To demonstrate the validity of the conservator,
we visualize the actor’s output distribution and the conservator’s output distribution at each step in
the rollout trajectory. Figure 5 presents comprehensive information about the entire rollout trajec-
tory. We can see that CLRA chooses to terminate the rollout at t = 10 when the action distribution
significantly deviates from the output of the conservator. At this step, the agent selected the action
UPLEFT, predicted by the conservator to be a rarely practiced action, while the action DOWN was
considered a frequently practiced action. From t = 11 to 14, the agent selected the action UPLEFT,
but the reconstructed observations reveal that the agent actually moved down. This illustrates that
the world model is overfitted to the action DOWN at this latent states, resulting in an incorrect rollout
trajectory. This addresses the third question and demonstrates that CRLA can effectively truncate
rollouts at critical points. Appendix A.3 shows the more rollout trajectories of some other games.

4.4 ANALYSIS OF PERFORMANCE DEGRADATION

Based on our experimental results, we would like to explore under which scenarios CRLA may lead
to performance degradation. We select the Seaquest game as an illustrative example, since it shows
performance degradation after using CRLA. In Figure 7, we present a partial rollout trajectory of
the Seaquest game. A notable difference compared to the Ms-Pacman game is that the conservator’s
output is more uniform in Seaquest, indicating that it predicts many actions in the current state with
similar frequencies. In contrast, the actor is more explicit in its decisions, with a high probability to
select a certain action. There are two possible reasons for the more uniform output of the conservator,
one is that the action selection is more uniform when interacting with the environment for sampling,
and the other is that the encoding of the observation in the latent space is not well learned, leading
to latent state confusions. In this case, it may be difficult for the conservator to capture the real
practiced action distribution. This causes conservator’s judgment becomes very sensitive to the
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threshold α. The larger action space can cause this problem as well. In this case, the threshold need
to be set carefully.

5 RELATED WORK

Model-based reinforcement learning methods improve sample efficiency by interacting with the
learned world model. However, the model errors prevent model-based approaches from acquiring
high-quality data from the world model. Previous works have found that even small model errors
can be compounded by multi-step rollout and deviate the predicted state from the region where the
model has high accuracy.

To mitigate the effects of compounding error, previous work has proposed many improvements.
Some methods improve the model to achieve more accurate predictions. Kaiser et al. (2020) re-
duced prediction complexity by embedding complex high-dimensional image observations into low-
dimensional hidden spaces using deep convolutional neural networks. Hafner et al. (2019) proposed
the Recurrent State Space Model (RSSM) and achieved outstanding prediction accuracy. Micheli
et al. (2022) and Robine et al. (2023) utilized the powerful sequence modeling capabilities of trans-
former to accurately learn the dynamics of the environment. Other approaches reduce the model
error by improving the training scheme. Yu et al. (2021) introduced the cycle-consistency constraint
for representation and model learning to improve the sample efficiency. Eysenbach et al. (2022)
proposed a single objective for jointly training the model and the policy to tackle the objective mis-
match problem. Ghugare et al. (2022) designed aligned latent models to simplify the training of the
latent-space model and policy and remain self-consistent.

However, since it is difficult to fully explore the whole state space in complex environments, the
error of the world model cannot be completely eliminated. One idea is to mitigate the effects of
model error by limiting the rollout length. Nguyen et al. (2018) argued that the fixed rollout length
was problematic and proposed an adaptive rollout method using uncertainty estimation but only
for simple deterministic environments. Xiao et al. (2019) introduce adaptive model-based value
expansion method that adaptively selects planning horizons for each state according to the estimated
compounding error but still can only plan horizons in a small range. Lai et al. (2020) develop
bidirectional models to generate trajectories in the forward and backward directions at the starting
point to reduce the compounding error without decreasing the rollout length. However, it still used
a fixed rollout length. Lai et al. (2021) utilized metrics from the training process to guide rollout
length adjustment but required additional training data to train the hyper-controller.

Our approach differs from previous methods in that we introduce a conservative strategy to adjust
the rollout length rather than utilizing metrics from the training process such as training loss. Our
method is computationally simpler compared to previous methods and can safely and efficiently
adjust the rollout length to balance data quality and efficiency.

6 CONCLUSION AND DISCUSSION

In this paper, we propose a novel conservative rollout length adaptation method called CRLA, which
prevents the rollout from falling into regions with large prediction errors by truncating the rollout
when there is a high probability of selecting rarely taken action. CRLA avoids the rollout trajectory
that deviate too far from the true transition by conservatively truncating the rollouts. We validate
the effectiveness of our method through experimental results and theoretical analysis. We evaluate
CRLA applied to DreamerV3 on the Atari100k benchmark and achieve significant performance
gains in most environments. We believe that our work is an important step towards further improving
the performance of model-based reinforcement learning methods. The limitations of our work are
that it is only applicable to the discrete action space and the generalization of the conservator may
not be sufficient since it is trained only on real samples but needs to be evaluated on imaginary
trajectories. We will look into this further in our future work.
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A APPENDIX

A.1 DETAILED TRAINING CURVE

Figure 1 shows the full training curve of our method compared to the original Dreamerv3. Dream-
erv3’s training data is obtained from the official code https://github.com/danijar/
dreamerv3.

0.0 1.5 3.0
1e5

0

400

800

1200

Alien

0.0 1.5 3.0
1e5

0

50

100

150

200
Amidar

0.0 1.5 3.0
1e5

250

500

750

1000

Assault

0.0 1.5 3.0
1e5

300

600

900

1200

Asterix

0.0 1.5 3.0
1e5

0

400

800

1200

Bank Heist

0.0 1.5 3.0
1e5

0
4000
8000

12000
16000

Battle Zone

0.0 1.5 3.0
1e5

0

30

60

90
Boxing

0.0 1.5 3.0
1e5

0
20
40
60
80

Breakout

0.0 1.5 3.0
1e5

250

500

750

1000

Chopper Command

0.0 1.5 3.0
1e5

0

30000

60000

90000

120000
Crazy Climber

0.0 1.5 3.0
1e5

0

200

400

600

Demon Attack

0.0 1.5 3.0
1e5

2.5

0.0

2.5

5.0

Freeway

0.0 1.5 3.0
1e5

0

800

1600

2400

3200
Frostbite

0.0 1.5 3.0
1e5

0

4000

8000

12000

16000
Gopher

0.0 1.5 3.0
1e5

0

4000

8000

12000

Hero

0.0 1.5 3.0
1e5

0
150
300
450
600

Jamesbond

0.0 1.5 3.0
1e5

0

2500

5000

7500

Kangaroo

0.0 1.5 3.0
1e5

0

2500

5000

7500

10000
Krull

0.0 1.5 3.0
1e5

0

10000

20000

30000

Kung Fu Master

0.0 1.5 3.0
1e5

0

800

1600

2400

Ms Pacman

0.0 1.5 3.0
1e5

20

10

0

10

20
Pong

0.0 1.5 3.0
1e5

1500

0

1500

3000

4500
Private Eye

0.0 1.5 3.0
1e5

0

4000

8000

12000
Qbert

0.0 1.5 3.0
1e5

0

6000

12000

18000

Road Runner

0.0 1.5 3.0
1e5

0

200

400

600

800
Seaquest

0.0 1.5 3.0
1e5

0

8000

16000

24000

Up N Down

Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3Dreamerv3-CRLA Dreamerv3

Figure 7: Learning curves for DreamerV3 with and without CRLA on the 26 environments of the
Atari 100k benchmark.The solid line is the mean over 10 seeds for our method and 5 seeds for
Dreamerv3, while the shaded area represents one pointwise standard deviation.

A.2 THE VALIDITY OF CONSERVATOR’S TRAINING

To verify that the training of the conservator is effective, we conduct validation experiments on the
mnist dataset. To simulate the case where one state corresponds to multiple actions, we randomly
modify the labels of each image. We specify a label distribution for each class of images and
randomly sample labels from this distribution to override the original labels. We want to investigate
whether the sampling-based training approach allows the conservator to capture the corresponding
label distribution under each class of images. We simulate the computational flow in training by
using an autoencoder to compress the image into the latent space and learn the predicted label
distribution in the latent space. Figure 8 shows that the real label distribution can be captured by
sampling, which proves the validity of our method.
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Figure 8: The fitting results of the label distribution. We design specific label distributions for each
class of images and randomly sampled from them to replace the original labels. We train 10 epochs
with sampling and show the evaluation of the predictive distribution to the label distribution.
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Figure 9: Full rollout trajectory on Kangaroo game. The player controls the action of the yellow
villain at the bottom.

A.3 EXTENDED EXPERIMENTS

We provide more example trajectories in Figure 9 and Figure 10. On both games, our approach
achieves performance improvement. As can be seen from the rollout trajectory, the conservator
is able to accurately determine which actions are frequently practiced and truncate the rollout at
critical moments when the agent selects an unpracticed action. It can be seen from the reconstructed
observations and action choices that although the world model can predict accurately on certain
unpracticed actions due to its generalization ability, this can be risky, which is why our approach is
a conservative strategy.
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Figure 10: Full rollout trajectory on Frostbite game. The player controls the action of the villain on
the white platform.
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