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ABSTRACT

Disclosing private information via publication of a machine learning model is of-
ten a concern. Intuitively, publishing a learned model should be less risky than
publishing a dataset. But how much risk is there? In this paper, we present a prin-
cipled disclosure metric called gradient uniqueness that is derived from an upper
bound on the amount of information disclosure from publishing a learned model.
Gradient uniqueness provides an intuitive way to perform privacy auditing. The
mathematical derivation of gradient uniqueness is general, and does not make any
assumption on the model architecture, dataset type, or the strategy of an attacker.
We examine a simple defense based on monitoring gradient uniqueness, and find
that it achieves privacy comparable to classical methods such as DP-SGD, while
being substantially better in terms of (utility) testing accuracy.

1 INTRODUCTION

Data privacy is a crucial concern in data analytics and machine learning. The most commonly-
applied definition of privacy is “differential privacy” (DP) (Dwork et al., 2006; Dwork & Roth,
2014). Intuitively, for a randomized algorithm to be differentially private, it must be the case that,
whenever the algorithm is run on two input datasets A and B that are similar, the output of the
algorithm is likely to be the same. That is, it should not be possible to construct a set of outputs S
such that the output of the algorithm on A is much more (or less) likely to be in S than the output of
the algorithm on similar dataset B.

DP as a definition deals with what happens in the very worst case. It ensures that there exists no
way for an attacker to choose a set of possible outputs that can distinguish between any two sim-
ilar input datasets. One problematic implication of the pessimism is that methods to ensure DP
can be extremely disruptive. In this paper, we are concerned with mini-batch stochastic gradient de-
scent (SGD), which powers modern AI. The differentially-private version of SGD (DP-SGD) (Abadi
et al., 2016) requires adding noise to gradients as well as clipping gradients (limiting their magni-
tude) so that no datapoint can influence a gradient too much. Unfortunately, this is a very onerous
change to the algorithm. Training a large language model (LLM) like Gemini (Google, 2025) or
Llama (Grattafiori et al., 2024) can easily cost millions of dollars, and few organizations who will
spend such sums will accept adding noise and truncating each and every gradient, out of concern to
the quality of the resulting model. As a result, the state-of-the-art differentially private LLM (Vault-
Gemma, 2025) has performance on par with GPT2 (Radford et al., 2019), a full model generation
before GPT3’s capabilities captured widespread public attention (Brown et al., 2020).

Because of the impracticality of DP as a privacy metric in such situations, there has been some recent
interest in new definitions of privacy that do not make worst-case assumptions. For example, one
may assume a prior over datasets (in the Bayesian sense (Triastcyn & Faltings, 2020)), so that the
privacy definition need not be concerned with all possible inputs, only likely ones. Such definitions
may allow for less onerous privacy preservation algorithms.

However, having any definition of privacy that requires a user to modify SGD to match that definition
is a problem if the user is unwilling to accept a change to SGD. Thus, in this paper, we look at the
problem in a very different way. Specifically, we ask: Given a particular dataset being used to
power a mini-batch SGD algorithm, can we rigorously quantify the level of disclosure by the SGD
algorithm? Mini-batch SGD has some inherent, privacy-preserving characteristics, even without
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modifying the algorithm at all. It is a stochastic algorithm, where randomly selected per-point
gradients are summed together, and depending upon the exact scenario, an attacker will typically be
able to see only final model. This naturally limits disclosure. If it is determined that points are not
safe, they can then be protected by auditing the result of queries to the model (in a closed-source
model). For open-source models, methods such as machine unlearning (Bourtoule et al., 2021) can
be used. Or, one could simply monitor information disclosure during training and drop those points
with highest disclosure. Dropping a few percent of the input data may be more acceptable than
changing the training algorithm by adding noise. We explore this option experimentally.

Our Contributions. We present a mathematically derived privacy score called gradient uniqueness
or GNQ, that monotonically increases with an upper bound on the information disclosed to an at-
tacker by mini-batch gradient descent. Thus, GNQ provides a principled, well-justified analysis of
the risk of the disclosure of individual datapoints during SGD. Specific contributions are:

• The basis of GNQ in a mathematical analysis of SGD contrasts with other, heuristic privacy scores
used in empirical attack-based auditing (Sec. 2). The derivation of GNQ is general, and does not
make any assumption on the model architecture, dataset type, and the adversary strategy (Sec. A).

• We show empirically the ability of GNQ to explain/predict the success rate of various attacks, as
well as the impact of standard, algorithmic components of the SGD algorithm (batch size, learning
rate, etc.) on the vulnerability of a learned model. (Sec. 6.2)

• While the derivation of a suite of defenses based on GNQ is left to future work, we empirically test
a simple, GNQ-based defense: rank datapoints within a dataset from the highest risk to the lowest
risk using GNQ, and remove those at highest risk from training. We provide a compute/memory-
efficient implementation suitable for large models and datasets. (Sec. 5)

• Our experiments consider CNN-based models like the ResNet-family and Transformer-based mod-
els like the BERT-family. We find that a GNQ-based defense achieves comparable privacy level as
DP-SGD; nearly perfect protection from a membership inference attack (MIA), while being sub-
stantially better in terms of model utility. It also protects against reconstruction attacks like model
inversion while maintaining high model accuracy. (Sec. 6.1)

2 RELATED WORK

Empirical Attack-based Privacy Auditing. Most auditing approaches probe a trained model with
explicit attacks, then interpret attack success as evidence of privacy risk (Murakonda & Shokri, 2020;
Nicolae et al., 2018; Trail of Bits, 2021; Kazmi et al., 2024). Common attack types and their decision
statistics (a.k.a privacy scores) include: (i) shadow-model MIA (Shokri et al., 2017), which feeds
the model’s posterior/confidence vector (often top-k probabilities) to an attack classifier; the per-
example score is the attack model’s membership probability; (ii) white-box MIAs (Nasr et al., 2019),
which use gradients, activations, and per-layer norms as features; the score is a classifier over these
white-box features; (iii) loss-based MIAs (Sablayrolles et al., 2019; Watson et al., 2022), which take
the (negative log-)loss on the candidate point as the score (lower loss ⇒ more likely member); (iv)
influence-function MIAs (Cohen & Giryes, 2024), which use self-influence magnitude as the score;
(v) LiRA (Carlini et al., 2022), which computes a per-example log-likelihood ratio between member
and non-member loss distributions estimated via shadow models; (vi) model inversion (ModInv) and
gradient inversion (GradInv) (Fredrikson et al., 2015; Zhu et al., 2019; Geiping et al., 2020), which
do not output a membership score but optimize a reconstruction objective and evaluate privacy via
reconstruction quality; and (vii) property inference (Ateniese et al., 2015; Ganju et al., 2018), which
trains a meta-classifier on model outputs. Comprehensive evaluations show that attack outcomes
depend on datasets, architectures, and attack strategy (Song & Mittal, 2021). Our framework does
not instantiate any attack; instead, GNQ quantifies the intrinsic privacy risks of the training algorithm
itself, yielding a theoretically-grounded, attack-agnostic auditing.

Theoretical Attack-based Privacy Auditing. Although, some efforts exist to make attack-based
auditing provide some theoretical guarantees, often these efforts are limited to specific model archi-
tectures. For instance, (Murakonda et al., 2021; Ye et al., 2022) provide theoretical analyses of MIA
and rely on specific models like Bayesian networks. Similarly, Wang et al. (2023) examines GradInv
restricting its scope to fully connected layers. The derivation of GNQ is general, and does not make
any assumption on the model architecture.
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Auditing Differential Privacy. Differential privacy formalizes (ε, δ)-style guarantees for random-
ized algorithms (Dwork et al., 2006; Dwork & Roth, 2014). In deep learning, these guarantees
are commonly obtained with DP-SGD (Abadi et al., 2016). Recent auditing methods empirically
check whether implementations achieve their claimed privacy levels (Jagielski et al., 2020; Steinke
et al., 2023; Nasr et al., 2023). Program-logical frameworks verify DP guarantees via proof sys-
tems (Barthe et al., 2012; Zhang & Kifer, 2017); software such as OpenDP operationalize DP mech-
anisms (OpenDP, 2025). By contrast, GNQ quantifies the privacy risks of trained models regardless
of whether DP was used, rather than proving DP guarantees for specific randomized mechanisms.

Machine Unlearning. Machine unlearning studies removing a point’s influence and verifying dele-
tion (Bourtoule et al., 2021; Sommer et al., 2022; Warnecke et al., 2023). GNQ is a per-iteration,
per-example risk score that encapsulates how the algorithmic components of the training algorithm
shape each datapoint’s risk. Hence, it can guide risk-aware, training-time unlearning and serves as a
built-in metric to audit the resulting change in risk.

3 GRADIENT UNIQUENESS

In this Section, we present the central result of the paper: that “gradient uniqueness” (or GNQ)—
which we define subsequently—can be used to determine the level of disclosure associated with any
datapoint during execution of a mini-batch gradient descent algorithm, regardless of the model. To
justify the use of GNQ, in the Appendix of the paper we argue mathematically that the amount of
information available to any attacker, regardless of the attack strategy, in the disclosure of a model
learned is bounded by a function that monotonically increases with GNQ. Thus, any defense that
reduces the maximum GNQ tends to reduce the success of any attack.

Assume a public dataset D = {dj}Nj=1 from which the private dataset Dt is sampled uniformly
at random without replacement. The sampling distribution serves as an empirical prior on random
variable Dt. While an adversary cannot see Dt, the adversary’s goal is to use observable information
to infer whether dj is in Dt; if done with high certainty, the adversary is successful. While determin-
ing whether dj is in Dt is just one type of attack (a so-called membership inference attack (Shokri
et al., 2017)), safety from membership inference under a public dataset serves as a proxy for safety
from other attacks, in the sense that if an attacker cannot determine if dj was used, the disclosure
regarding dj was limited.

Assume that Dt is used to train some arbitrary model using the classical, mini-batch gradient descent
(Alg. 1). The adversary uses some attack strategy F to analyze the learned parameters θNr to
determine whether some dj is in Dt. We consider a worst-case (white-box) setting in which the
model architecture and the released final parameters θNr are known to the adversary.

Algorithm 1 Mini-Batch Stochastic Gradient Descent (SGD)
Input: Full dataset D = {dj}Nj=1, parameterized model hθ with parameter vector θ ∈ RNp , point-wise loss

function ℓ[θ, d], learning rate η, batch size B, number of training iterations Nr

Output: Optimized (final) model parameters θNr

Initialize model parameters to θ0.
Sample a training set Dt from D according to sampling distribution Dt ∼ Train(D).

Sample mini-batches {Bi}Nr−1
i=0 from Dt according to sampling distribution {Bi} ∼ Batch(Dt).

for i = 0 to Nr − 1 do
ĝi =

1
B

∑
dj∈Bi

∇θ[ℓ[θi, dj ]]

θi+1 = θi − η · ĝi
end

We are now ready to define gradient uniqueness:

Definition 1. Consider training batch i. The gradient uniqueness of datapoint dj with respect to
batch i is given by:

GNQij = g⊤ijS
+gij (1)

where S =
∑N

k=1
k ̸=j

gikg
⊤
ik ∈ RNp×Np and S+ denotes the Moore–Penrose pseudoinverse of S and

gij = ∇θ[ℓ[θi, dj ]] ∈ RNp . Note that S+ = S−1 if S is invertible.

3
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Then, the central result of the paper states that this quantity bounds the amount of information that
any adversary can glean about dj’s membership in Dt by examining θNr

using F :

Gradient uniqueness as an upper bound on disclosure (informal). The amount of information
(measured in bits) extracted by an adversary attempting to determine whether dj ∈ Dt via ex-
amination of θNr using any attack mechanism F is upper-bounded by a function that increases
monotonically with

∑Nr−1
i=1 GNQij .

A formal version of these results is given in Appendix A.

4 WHAT DOES GRADIENT UNIQUENESS MEASURE?

To show how GNQ measures privacy risk during gradient descent and to give some intuition behind
the metric, we consider a simple example—a 2D linear regression model with the squared loss
function (Fig. 1 a). The goal is to quantitatively rank the datapoints from the highest risk to the
lowest risk.

The computation of GNQ can be geometrically represented as the construction of an ellipse summa-
rizing the gradients; GNQij is the extent to which the gradient associated with dj is an outlier with
respect to this elipse, as shown in Fig. 1 b. In this figure, we plot the gradients of each of the seven
training points, and the associated elipses. Note that in the definition of GNQij , the matrix S (and
the resulting elipse) is constructed using all the datapoints, except the point dj for which GNQij is
computed. Thus there are two ellipses in Fig. 1 b: the blue ellipse is for the case when point 7 is
excluded to compute GNQi7, while the red ellipse is for the case when point 7 is included while
excluding one of the other six points to compute GNQik where k ∈ {1, · · · , 6}. Datapoint 7 has
a very high GNQ value because it falls outside of the blue elipse, while all other datapoints have a
low GNQ value, as they fall inside of the red elipse.

Intuitively, as shown in Fig. 2, the gradients associated with points 1-6 want to rotate the regression
line counter-clockwise, centered roughly on datapoint 5—whereas datapoint 7 is doing exactly the
opposite, hence the high value for GNQi7.

GNQ-based auditing vs attack-based auditing. GNQ immediately suggests an auditing-based
privacy scheme: monitor GNQij for all training points, and if GNQij is large and dj is sensitive,
take action, such as dropping dj from the dataset, or unlearning dj .

There are other auditing-based methods, the most well-known of which is MIA, which is an at-
tack mechanism (see Sec. 2). MIA attempts to infer whether a given datapoint dj was part of the
training dataset. This goal is typically achieved by computing a membership score M[θNr

, dj ] and
comparing it against a decision threshold τ . Often the membership score is (or a function of) the
model’s loss on the target datapoint, while the decision threshold is a global threshold used for all
datapoints determined either based on a heuristic (members (dj ∈ Dt) tend to have lower loss, while
non-members (dj /∈ Dt) tend to incur higher loss) or obtained by training shadow models.

In general, heuristic-based methods such as MIA produce very different results from GNQ. Consider
Fig. 3. In gradient space, the global loss threshold ℓ = τ appears as a horizontal strip bounded by
the two lines ∂ℓ/∂b = ±

√
2τ . Points inside the strip

(
|∂ℓ/∂b| ≤

√
2τ
)

are classified as members in
the training set; points outside are non-members. We consider two possible thresholds τ1 and τ2. If
we use τ1, points 2, 3, and 5 are inside the τ1-strip, so they will be ranked as high risk points, which
does not match the GNQ ranking. Moreover, points 1, 4, 6 and 7 are outside the τ1-strip, so they
will be classified safe points; this matches the GNQ ranking regarding points 1, 4, and 6, however it
misranks point 7; the most crucial point in terms of privacy risk according to GNQ. Using τ2, points
2, 3, 5 and 7 are inside the τ2-strip, so they will be ranked as high risk points—which does not match
the GNQ ranking except for point 7. Moreover, points 1, 4 and 6 are outside the τ2-strip, so they
will be wrongly classified as low-disclosure points.

Further, any loss-based ranking depends solely on the residual (vertical distance to the fit), so points
2, 3, and 5—having smaller residuals (lower loss) than point 7—are necessarily ranked as higher
risk for any choice of threshold. By contrast, GNQij = g⊤ijS

−1gij , uses the full gradient geometry:
it accounts for (1) the residual r, (2) the feature vector (e.g., [x, 1] in our 2D example)—both via the
gradient formula g = −r[x, 1]—and (3) inter-example correlations via S−1.
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Figure 1: GNQ-based privacy auditing.
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Figure 2: Accuracy of GNQ-based auditing.
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Figure 3: GNQ vs. attack-based auditing.

5 A GNQ-BASED DEFENSE

While the central result of the paper is the definition and derivation of GNQ, we do wish to show
that GNQ can be used to develop a simple defense; we leave other GNQ-based defenses to future
work. The simple defense we consider consists of three steps: (i) train and rank datapoints within a
dataset from the highest risk to the lowest risk using GNQ, (ii) remove the highest-risk points, and
(iii) re-train using the filtered dataset.

For a smaller model with a limited number of parameters, the implementation is very straightfor-
ward. For a larger foundation model, implementing this simple GNQ-based defense requires some
care, for several reasons. Most critical is the fact that the size of the matrix S scales quadratically
with the number of model parameters, and inverting it is likely infeasible for a modern, large, model.

We can reduce the number of parameters that we have to consider by using a smaller, proxy model.
That is, if the goal is to filter points before pre-training a 500B parameter model over a sensitive
dataset, we can compute GNQ once at the end of a single training epoch using a 3B model in the
same family. If this is still too expensive—and it is probably not reasonable to invert a 3B × 3B
matrix—we can rely on approximations of S+. The simplest is to compute only the diagonal of S
and assume the off-diagonal elements are zero. It is this approximation we use in our experiments.

A final way to speed the computation is to only compute S using B gradients instead of N gradients.
That is, when we compute the gradients over Bi during gradient descent, for dj ∈ Bi, we compute
GNQij using S =

∑
dk∈Bi
k ̸=j

gikg
⊤
ik instead of S =

∑N
k=1
k ̸=j

gikg
⊤
ik. This significantly reduces the

number of gradient vectors that need to be memorized.

5
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6 EXPERIMENTS

We evaluate on six datasets—MNIST (LeCun et al., 1998), CIFAR-10/100 (Krizhevsky, 2009), the
AT&T Database of Faces (Samaria & Harter, 1994), Tiny ImageNet (Le & Yang, 2015; Deng et al.,
2009), and IMDB (Maas et al., 2011)—using four model families: an MLP classifier, a basic CNN,
ResNet (He et al., 2016) for vision, and a BERT-based classifier for text (Devlin et al., 2019). Models
trained with Adam optimizer (Kingma & Ba, 2015).

6.1 GNQ-BASED DEFENSE

We begin by evaluating the utility of the simple, GNQ-based defense in the previous section.

MIA Experiment. We begin with a series of experiments that use a GNQ calculation—using the
diagonalized S approximation—on a small version of a model in the same family (as described
in Sec. 5), to filter out high-risk points. Our goal is to examine the privacy/model utility tradeoff
obtained using this defense. Privacy is measured using the success of an MIA attack on the resulting
model, to identify the points that were left out of the training set.

Specifically, we compute GNQ using a tiny CNN on CIFAR10, a tiny CNN on CIFAR100, a tiny
ResNet on Tiny ImageNet, and a tiny BERT-based classifier on IMDB. Each tiny model is trained
for a single epoch; we compute GNQ once at the end of that epochs. For each model-dataset pair,
we remove the top-p% highest-risk points according to GNQ and retrain using the larger model. We
also consider a non-private model (“Baseline”) and models trained with DP-SGD at ϵ ∈ {2, 8, 512}.

Results. Table 1 shows both the AUC ROC obtained using a MIA (Salem et al., 2018), and the test
accuracy obtained when using the learned model, after private training (or non-private training in
the case of the baseline). For example, for CFAR100, we report how accurate is the resulting model
in classifying test images.

These results show that it is possible to use the GNQ-based defense to push the attack AUC ROC
roughly down to the level of random guessing, while obtaining significantly higher accuracy than
what is obtained using DP-SGD.

ModInv Experiment. We train an MLP on AT&T Database of Faces. We rank examples by GNQ,
and remove the single highest-GNQ-scored example (from class 6, the most vulnerable class by
mean score), and retrain. We then apply the class-level ModInv attack of (Fredrikson et al., 2015) to
class 6 before and after filtering.

Results. On the original dataset (95.31% validation accuracy), high-GNQ content is clearly recon-
structed; after removing just one example, the filtered model (94.15% validation accuracy) substan-
tially degrades reconstruction for the same class (Fig. 4).

6.2 CAN GRADIENT UNIQUENESS EXPLAIN WHAT’S OBSERVED IN PRACTICE?

In this section, we empirically validate the ability of GNQ to explain/predict empirical observations
regarding the success rate of attacks, in terms of recovering a point or determining whether it was
used in training, as well as observations regarding the impact of standard, algorithmic components
of the SGD algorithm (batch size, learning rate, etc.) on the vulnerability of a learned model.

GNQ as an explanation for MIA success. We train four model–dataset pairs: a CNN on CIFAR10,
a CNN on CIFAR100, a ResNet on Tiny ImageNet, and a BERT-based classifier on IMDB. For each
trained model, we compute GNQ at the end of every epoch and summarize each example using the
total GNQ. We then attack the learned model with the MIA of Salem et al. (2018) and record, per
example, whether the attack succeeded. The goal is to see if there is a strong relationship between
attack success and GNQ. To visualize the relation between our score and attack outcomes, we bin
examples by GNQ on a logarithmic grid; the grey bars in Fig. 5 show the number of examples per
bin. For each bin we compute the mean MIA success rate (blue curve).

Results. We find that across all models and datasets, the success rate increases with GNQ; examples
with larger GNQ values are precisely those on which the attack is more likely to succeed.

GNQ as an explanation for ModInv success. We train two model-dataset pairs: an MLP on
AT&T Database of Faces and a ResNet on MNIST. We then apply the class-level ModInv attack of

6
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Table 1: Comparing GNQ-filtered SGD to DP-SGD for membership inference defense.

Dataset Model Setting AUC ROC Test Accuracy

CIFAR10 ResNet

Baseline 0.7294 80.80%
Top-1% GNQ Removed 0.6896 77.98%
Top-5% GNQ Removed 0.6002 73.66%
Top-10% GNQ Removed 0.5122 71.33%

DP-SGD (ϵ = 2) 0.5008 41.83%
DP-SGD (ϵ = 8) 0.4998 47.18%

DP-SGD (ϵ = 512) 0.5030 55.99%

CIFAR100 ResNet

Baseline 0.8752 49.58%
Top-1% GNQ Removed 0.8213 46.19%
Top-5% GNQ Removed 0.8010 43.00%
Top-10% GNQ Removed 0.6959 41.17%
Top-15% GNQ Removed 0.6589 37.39%
Top-20% GNQ Removed 0.5137 34.92%

DP-SGD (ϵ = 2) 0.5015 6.83%
DP-SGD (ϵ = 8) 0.5008 9.14%

DP-SGD (ϵ = 512) 0.5000 18.39%

Tiny ImageNet ResNet

Baseline 0.9542 38.67%
Top-1% GNQ Removed 0.9042 35.24%
Top-5% GNQ Removed 0.8152 32.14%
Top-10% GNQ Removed 0.7387 32.39%
Top-15% GNQ Removed 0.6229 29.18%
Top-20% GNQ Removed 0.5159 25.84%

DP-SGD (ϵ = 2) 0.4961 2.15%
DP-SGD (ϵ = 8) 0.4981 3.73%

DP-SGD (ϵ = 512) 0.5044 9.87%

IMDB BERT

Baseline 0.7444 81.98%
Top-0.5% GNQ Removed 0.5852 79.30%
Top-1% GNQ Removed 0.6908 83.07%
Top-5% GNQ Removed 0.4972 80.48%

DP-SGD (ϵ = 2) 0.4940 50.58%
DP-SGD (ϵ = 8) 0.4966 51.23%

(a) Before Filtration (b) After Filtration

Figure 4: Image reconstruction after removing the highest-ranked image by GNQ.

(Fredrikson et al., 2015) on these trained models, to reconstruct the examples used during training.
For each reconstructed image from a target class, we computed the minimum feature distance to any
training example from that class. Feature distances were measured as the squared ℓ2 norm between
activations in the penultimate layer. A small feature distance corresponds to a successful attack, as
the recovered image matches others in the class. Fig. 6 shows the relationship between GNQ and
feature distance for each class (blue) across different models and datasets. The reported GNQ for a
class is the sum of GNQ values of the individual examples, accumulated over all training iterations.

Results. The observed downward trend indicates a strong negative correlation between GNQ and
feature distance, with Pearson correlation coefficients of r = −0.90 and r = −0.96. This trend
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(a) CIFAR10 & CNN (b) CIFAR100 & CNN

(c) Tiny ImageNet & ResNet (d) IMDB & BERT

Figure 5: Attack success rate vs. GNQ.

(a) Database of Faces & MLP (b) MNIST & ResNet

Figure 6: Feature distance vs. GNQ. Each blue circle represents a class.

suggests that classes with higher GNQ values tend to have smaller feature distances, meaning that
reconstructed images are closer to real training samples. In Appendix B, we identified two classes
of interest from the Database of Faces dataset: the class with the lowest GNQ (class 28) and the
class with the highest GNQ (class 6).

GNQ as an explanation for SGD parameters and privacy. Finally, we demonstrate how GNQ
can explain/predict the relationship between the privacy inherent to an SGD-style algorithm and
the parameters used or chosen during training (dataset size, number of iterations, etc.) using the
CIFAR-10 dataset with a CNN-based classifier. We consider one parameter setting at a time. For
each setting, GNQ is computed for each training point at the end of each epoch, and we consider the
maximum observed during training. The mean of the maximum values is used as a metric for the
vulnerability of a particular parameter setting.

Results. We consider five parameters: the number of iterations (Fig. 7 a), the dataset size (Fig. 7 b),
the model size (Fig. 7 c), the batch size (Fig. 7 d), and learning rate (Fig. 7 e). In each case, we
plot the average-max GNQ value, as well as the MIA attack success rate (Salem et al., 2018) (MIA
attack success is measured via AUC ROC). The results show that GNQ predicts, almost perfectly,
how attack success will vary with various training parameters. However, it is important to note
that these trends do not necessarily hold over all datasets and all attacks. While Fig. 7 a shows that
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(a) Number of training iterations. (b) Dataset size.

(c) Model size. (d) Batch size. (e) Learning rate.

Figure 7: Relationship between various learning/dataset parameters, mean GNQ, and attack success
(MIA attack, measured using AUC ROC) in the CFAR-10 dataset. Plots show mean GNQ (right
axis, red) and attack AUC ROC (left axis, blue).

(a) 30 epochs (b) 1 epoch

Figure 8: ModInv applied to the highest GNQ class in the Faces dataset. Reducing the number of
epochs down to one fails to protect this class.

reducing the number of epochs affords some protection, it does not always afford this protection, and
GNQ is able to determine vulnerable training points in an attack-agnostic way. We show, in Fig. 8,
that even training for only a single epoch on the Faces dataset fails to protect high-GNQ classes from
a reconstruction attack. Importantly, GNQ captures this vulnerability while being attack-agnostic.

7 CONCLUSION

We have derived a quantity called gradient uniqueness (GNQ) that increases monotonically with
a bound on the information disclosure during mini-batch gradient descent. We have showed that
indeed, GNQ strongly correlates with attack success. Future work should explore more sophisticated
defenses based on GNQ. For example, one need not simply censor an entire datapoint with high
GNQ, but could add a bit of noise to the gradient of a high-risk point, even adding noise only to
certain dimensions of the gradient. GNQ may also serve emerging areas such as machine unlearning.
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A GRADIENT UNIQUENESS AS A MEASURE OF DATA PRIVACY

A.1 OVERVIEW

In this section, we argue that gradient uniqueness is a practical and effective measure for quantifying
data privacy. It is straightforward to construct adversarial scenarios where the inclusion of a single
datapoint in a training set can be inferred from a trained model. Consequently, it is impossible to
formulate a general theorem that guarantees protection against such membership inference attacks
in all cases.

However, there is a consensus among practitioners that such worst-case scenarios are unlikely to
occur in practice. Our objective is to bridge the gap between this practical intuition and theoretical
guarantees. We show that under common practical assumptions, the gradient uniqueness measure
rigorously quantifies the risk of an adversary successfully inferring the membership of a specific
datapoint.

Our argument is grounded in information theory (Cover & Thomas, 2006). Our result shows that
under some practical assumptions, the randomness in the mini-batch SGD (Algorithm 1) provides
some level of protection for the membership of the datapoint dj in the training dataset Dt denoted by
Tj . It is well-known that if the mutual information between a target variable, say Tj , and an observ-
able variable is small, then no algorithm can predict Tj with a success probability significantly better
than a random guess (i.e., 50%). We formally demonstrate that the mutual information between the
membership variable Tj and the released model is upper-bounded by an increasing function of gra-
dient uniqueness. This result provides a firm theoretical justification for using gradient uniqueness
as a proxy for the information leakage associated with a particular datapoint.

Problem setup: Before stating our core argument, we recall the setup of our problem and Algo-
rithm 1. To simplify our analysis, we define the sampling distributions Train() and Batch() as
follows. For each datapoint dj , let Tj ∼ Ber(Nt/N) control whether dj is included in Dt. Assume
Nt = N/2. For training batch i, let Mi,j ∼ Ber(B/Nt) be a random variable contorlling whether
dj is included in the mini-batch. In particular, we include the datapoint dj in the batch if and only if
Tj ·Mi,j = 1. All these Bernoulli random variables are drawn independently.

We denote the gradient of the loss function at iteration i, evaluated at datapoint dj , by

gi,j := ∇θℓ(θi, dj).

The mini-batch gradient is defined as the average of these gradients, normalized by B (the expected
batch size) rather than the realized batch size:

ĝi :=
1

B

N∑
j=1

Tj ·Mi,j · gi,j =
1

B

N∑
j=1

Tj ·Mi,j · ∇θℓ(θi, dj).

The SGD algorithm runs in Nr iterations with the following update rule:

θi+1 = θi − η · ĝi,

where η is a fixed step size. The initial model θ0 is chosen independently of the dataset; equivalently,
for all Tj , we have I[Tj ; θ0] = 0.

We emphasize that there is no randomness in the overall dataset D; that is the set of all possible
datapoints is known to everyone. The training set, however, is a random subset of D. The fact that a
particular datapoint is used or not is a quantity that we would like to protect.

Our assumptions: Our subsequent theoretical development hinges on two main assumptions that
do not hold in general. However, these assumptions are motivated by empirical observations about
the SGD algorithm.

• Gradients are often empirically observed to resemble Gaussian distributions (Panigrahi
et al., 2019; Millidge & Winsor, 2023). Motivated by this observation, we assume that
the entropy of the batch gradients can be approximated by that of a multivariate normal
distribution with the same covariance structure. For a formal statement, see Equation 3.
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• We assume that in each iteration the gradients measured at individual datapoints gi,j reside
within the same subspace spanned by the rest of the data {gi,j′}j ̸=j′ . In other words, there
are no outlier points whose gradients drive the model in directions unique to themselves.

A.2 GRADIENT UNIQUENESS AS AN UPPER BOUND ON DISCLOSURE

In this section, we utilize the assumptions of the prior section to argue that gradient uniqueness is a
practical bound on information disclosure. Various theorems and lemmas used in our argument are
given in Sec. A.3.

As stated, our goal is to define a proxy that captures an attacker’s ability to infer Tj from the final
model θNr

. Prior to training, an adversary only knows that Tj ∼ Ber(B/Nt), yielding a trivial
baseline guess. The mutual information then quantifies how much this baseline can be improved
when the adversary observes θNr

.

We begin by decomposing the mutual information between Tj and the final model θNr and relate it
to the entropy of the mini-batch gradients using information-theoretic tools. In particular, we will
rely on the following theorem. The proof of this theorem is provided in Sec. A.3.
Theorem A.1. In mini-batch SGD (Algorithm 1), for any j ∈ [N ] and corresponding datapoint
dj ∈ D, the mutual information between its training membership indicator Tj ∈ {0, 1} and the
estimate T̂j := F(θNr , j) produced by an attacker F is bounded by:

I [Tj ;F(θNr
, j)]

≤
Nr−1∑
i=1

H[ĝi | θi]−H[ĝi | θi, Tj = 0]− Nt

N
·
(
H[ĝi | θi, Tj = 1]−H[ĝi | θi, Tj = 0]

)
.

(2)

Given this theorem, we now use our assumption that the distribution of ĝi resembles a (possibly
degenerate) multivariate normal distribution to approximate its entropy as:

H[ĝi | θi] ≈ 1
2 log

(
(2πe)r pdet(Σ)

)
, (3)

where Σ denotes the covariance matrix of ĝi conditioned on θi, pdet(Σ) is the pseudo-determinant
of Σ (the product of its nonzero eigenvalues), and r = rank(Σ). Similarly, we define Σ(j,0) (resp.
Σ(j,1)) as the covariance matrix of ĝi conditioned on θi and Tj = 0 (resp. Tj = 1). We derive these
covariance matrices explicitly in Sec. A.4. As we show, the matrices are given by:

Σ =
1

BN
·
(
1− B

N

) N∑
j=1

gi,j g
⊤
i,j

Σ(j,0) =
1

BN
·
(
1− B

N

) ∑
j′ ̸=j

gi,j′ g
⊤
i,j′

Σ(j,1) =
1

BNt
·
(
1− B

Nt

)
· gi,j g⊤i,j +

1

BN
·
(
1− B

N

) ∑
j′ ̸=j

gi,j′ g
⊤
i,j′ .

It is not hard to see that Σ and Σ(j,1) are rank-one perturbation of Σ(j,0). In particular, we have:

Σ = Σ(j,0) +
1

BN
·
(
1− B

N

)
︸ ︷︷ ︸

c21:=

·gi,j g⊤i,j

Σ(j,1) = Σ(j,0) +
1

BNt
·
(
1− B

Nt

)
︸ ︷︷ ︸

c22:=

·gi,j g⊤i,j .
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Let us define q = c1gi,j and q′ = c2gi,j where c1 and c2 are the constant we have above. Note that
earlier we assumed that gi,j belongs to the span of {gi,j′}j ̸=j′ . In Lemma A.2, we show that q and q′

must have belong to the range of Σ(j,0). Furthermore, in Lemma A.3 we show that adding qq⊤ (or
q′q′⊤) does not change rank of Σ(j,0). Our assumptions lead to a clean approximation of the right
hand side of Equation 2. In particular, we have the following bound via Theorem A.1:

I [Tj ;F(θNr , j)]

≤
Nr−1∑
i=1

H[ĝi | θi]−H[ĝi | θi, Tj = 0]− Nt

N
·
(
H[ĝi | θi, Tj = 1]−H[ĝi | θi, Tj = 0]

)
≈

Nr−1∑
i=1

1

2

(
log

(
pdet (Σ)

pdet
(
Σ(j,0)

))− Nt

N
log

(
pdet

(
Σ(j,1)

)
pdet

(
Σ(j,0)

)))

=

Nr−1∑
i=1

1

2

(
log

(
1 + c21g

⊤
i,j

(
Σ(j,0)

)+
gi,j

)
− Nt

N
log

(
1 + c22g

⊤
i,j

(
Σ(j,0)

)+
gi,j

))

=

Nr−1∑
i=1

1

2

log

 1 + c21g
⊤
i,j

(
Σ(j,0)

)+
gi,j(

1 + c22g
⊤
i,j

(
Σ(j,0)

)+
gi,j

)Nt/N


 .

Assuming that Nt = N/2, what we have in the last line is an increasing function of x :=

g⊤i,j
(
Σ(j,0)

)+
gi,j . We prove this by showing that

f(x) :=
1 + c21 x√
1 + c22x

is an increasing function of x in Lemma A.4 for our desired range of parameters. This completes the
argument that gradient uniqueness serves as a practical upper bound on the information available to
an attacker on whether Tj = 1.

A.3 PROOFS OF THEOREMS AND LEMMAS

Theorem A.1. In mini-batch SGD (Algorithm 1), for any j ∈ [N ] and corresponding datapoint
dj ∈ D, the mutual information between its training membership indicator Tj ∈ {0, 1} and the
estimate T̂j := F(θNr , j) produced by an attacker F is bounded by:

I [Tj ;F(θNr , j)]

≤
Nr−1∑
i=1

H[ĝi | θi]−H[ĝi | θi, Tj = 0]− Nt

N
·
(
H[ĝi | θi, Tj = 1]−H[ĝi | θi, Tj = 0]

)
.

(2)

Proof. Fix j ∈ [N ] for the rest of the proof. Note that using the SGD update rule, the final model
θNr

is obtained from the second to last model θNr−1 together with the gradient in the last batch
ĝNr−1. By the data processing inequality, we obtain:

I [Tj ;F(θNr
, j)] ≤ I[Tj ; θNr

] ≤ I[Tj ; θNr−1, ĝNr−1]

= I[Tj ; θNr−1] + I[Tj ; ĝNr−1 | θNr−1] (via chain rule)

By recursively applying this decomposition from step Nr down to step 0, we obtain:

I [Tj ;F(θNr
, j)] ≤ I[Tj ; θ0] +

Nr−1∑
i=1

I[Tj ; ĝi | θi] .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since the initial model θ0 is chosen independently of the training data, we have I[Tj ; θ0] = 0.
Hence, we obtain:

I [Tj ;F(θNr
, j)] ≤

Nr−1∑
i=1

I[Tj ; ĝi | θi] . (4)

We now analyze each term in the above summation. By definition of mutual information and the
conditional entropy, we have

I[Tj ; ĝi | θi] = H[ĝi | θi]−H[ĝi | θi, Tj ]

= H[ĝi | θi]− P[Tj = 0] ·H[ĝi | θi, Tj = 0]− P[Tj = 1] ·H[ĝi | θi, Tj = 1]

= H[ĝi | θi]−
[
1− Nt

N

]
·H[ĝi | θi, Tj = 0]−

[
Nt

N

]
·H[ĝi | θi, Tj = 1]

= H[ĝi | θi]−H[ĝi | θi, Tj = 0]− Nt

N
·
(
H[ĝi | θi, Tj = 1]−H[ĝi | θi, Tj = 0]

)
(5)

Here we used that Tj is a Bernoulli random variable with parameter Nt/N . Substituting Equa-
tion equation 5 into Equation equation 4 yields the stated bound, completing the proof.

Lemma A.2. Let x1, . . . , xn ∈ Rd (not necessarily linearly independent) and define

A =

n∑
i=1

xix
⊤
i ∈ Rd×d.

Then Range(A) = span{x1, . . . , xn}. In particular, each xi lies in Range(A).

Proof. First, for any y ∈ Rd we have

Ay =

n∑
i=1

xi(x
⊤
i y) ∈ span{x1, . . . , xn},

so Range(A) ⊆ span{x1, . . . , xn}.

For the reverse inclusion, observe that A is symmetric positive semidefinite, and its nullspace is

N (A) = { y ∈ Rd : Ay = 0 } = { y ∈ Rd : x⊤
i y = 0 for all i },

since y⊤Ay =
∑n

i=1(x
⊤
i y)

2 = 0 iff x⊤
i y = 0 for all i. Therefore N (A) = span{x1, . . . , xn}⊥.

By the Fundamental Theorem of Linear Algebra,

Range(A) = N (A)⊥ =
(
span{x1, . . . , xn}⊥

)⊥
= span{x1, . . . , xn}.

Hence each xi ∈ Range(A).

Lemma A.3. Let A ∈ Rn×n be a symmetric matrix (not necessarily full-rank), and let q ∈
range(A). Then

pdet(A+ qq⊤) = pdet(A)
(
1 + q⊤A+q

)
,

where pdet(·) denotes the pseudo-determinant (the product of the nonzero eigenvalues) and A+ is
the Moore–Penrose pseudoinverse. Moreover, the rank of A and A+ qq⊤ are the same.

Proof. Since A is symmetric, by the spectral theorem we may write

A =

r∑
i=1

λiuiu
⊤
i ,

where λ1, . . . , λr ̸= 0 are the nonzero eigenvalues of A, u1, . . . , ur are the corresponding orthonor-
mal eigenvectors, and the remaining eigenvalues are zero. Equivalently,

A = U

[
Λr 0
0 0

]
U⊤,
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where U = [Ur U0] is orthogonal, Λr = diag(λ1, . . . , λr), and range(A) = span(Ur).

Since q ∈ range(A), we can write q = Ury for some y ∈ Rr. Then

A+ qq⊤ = U

[
Λr + yy⊤ 0

0 0

]
U⊤.

The nonzero spectrum of A + qq⊤ is the nonzero spectrum of Λr + yy⊤.1 Note that since Λr is
positive definite and yy⊤ is positive semi-definite, their sum Λr + yy⊤ is also positive definite. It is
therefore full rank and has a non-zero determinant. This representation also implies that the number
of orthonormal eigenvectors with nonzero eigenvalues does not change after perturbation, meaning
that the ranks of A and A+ qq⊤ are the same. Moreover, we have:

pdet(A+ qq⊤) = det(Λr + yy⊤).

Applying the matrix determinant lemma implies

det(Λr + yy⊤) = det(Λr)
(
1 + y⊤Λ−1

r y
)
.

Now note that
det(Λr) = pdet(A), y⊤Λ−1

r y = q⊤A+q,

where A+ = UrΛ
−1
r U⊤

r is the Moore–Penrose pseudoinverse of A.

Therefore,
pdet(A+ qq⊤) = pdet(A)

(
1 + q⊤A+q

)
,

as claimed.

Lemma A.4. Let c1, c2 > 0 and, for x ≥ 0, define

f(x) :=
1 + c21x√
1 + c22x

.

If 2c21 > c22, then f is an increasing function of x on [0,∞).

Proof. For x ≥ 0,
f(x) = (1 + c21x) (1 + c22x)

−1/2,

so by the product/chain rules,

f ′(x) = c21(1 + c22x)
−1/2 − 1

2 (1 + c21x)c
2
2(1 + c22x)

−3/2 =

(
2c21 − c22

)
+ c21c

2
2 x

2(1 + c22x)
3/2

.

The denominator is positive for all x ≥ 0. Under 2c21 > c22 the numerator is positive for all x ≥ 0.
Hence f ′(x) > 0 on [0,∞), so f is an increasing function of x on this interval.

A.4 DERIVATION OF COVARIANCE MATRICES

Recall that we define Σ to be the covariance matrix of ĝi conditioned on θi. Our derivation begins
by calculating the (a, b) entry of the Σ, and expanding it. In the following, we use g(a)i,j to denote the
ath coordinate of the vector gi,j .

Σab =
1

B2
· cov

 N∑
j=1

Tj Mi,j g
(a)
i,j ,

N∑
j′=1

Tj′ Mi,j′ g
(b)
i,j′


By the definition of covariance, this can be written as:

Σab =
1

B2
·

E

 N∑
j=1

Tj Mi,j g
(a)
i,j

 N∑
j′=1

Tj′ Mi,j′g
(b)
i,j′

− E

 N∑
j=1

Tj Mi,j g
(a)
i,j

E

 N∑
j′=1

Tj′ Mi,j′g
(b)
i,j′

 .

1If A = UBU−1 with U invertible, then w is an eigenvector of B with eigenvalue λ iff U−1w is an
eigenvector of A with the same eigenvalue λ.
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Rearranging the sums and expectations gives:

Σab =
1

B2
·

N∑
j,j′=1

(E[Tj Mi,jTj′ Mi,j′ ]− E[Tj Mi,j ]E[Tj′ Mi,j′ ]) g
(a)
i,j g

(b)
i,j

This simplifies to a sum of covariances:

Σab =
1

B2
·

N∑
j,j′=1

cov(Tj Mi,j , Tj′ Mi,j′)g
(a)
i,j g

(b)
i,j′

Given that for j ̸= j′, the terms Tj Mi,j and Tj′ Mi,j′ are independent, their covariance is zero. This
eliminates the terms where j ̸= j′, leaving only the terms where j = j′:

Σab =
1

B2
·

N∑
j=1

cov(Tj Mi,j , Tj Mi,j)g
(a)
i,j g

(b)
i,j

=
1

B2
·

N∑
j=1

var(Tj Mi,j)g
(a)
i,j g

(b)
i,j

=
1

B2
·

N∑
j=1

B

N
·
(
1− B

N

)
g
(a)
i,j g

(b)
i,j

=
1

BN
·
(
1− B

N

) N∑
j=1

g
(a)
i,j g

(b)
i,j .

In the above calculation, we use that Tj Mi,j can be viewed as a Bernoulli random variable with
parameter Nt

N · B
Nt

= B
N . Writing Σ in the matrix form give us:

Σ =
1

BN
·
(
1− B

N

) N∑
j=1

gi,j g
⊤
i,j . (6)

Next, we compute Σ(j,0) and Σ(j,1) similarly for a fixed j. Condition on Tj = 0, Tj ·Mi,j is always
zero, so the variance is zero. Thus, we have:

Σ(j,0) =
1

BN
·
(
1− B

N

) ∑
j′ ̸=j

gi,j′ g
⊤
i,j′ . (7)

Condition on Tj being one, Tj · Mi,j is equal to Mi,j , a Bernoulli random variable with variance
(B/Nt) · (1−B/Nt). Thus, we have:

Σ(j,1) =
1

BNt
·
(
1− B

Nt

)
· gi,j g⊤i,j +

1

BN
·
(
1− B

N

) ∑
j′ ̸=j

gi,j′ g
⊤
i,j′ . (8)
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B GNQ AS AN EXPLANATION FOR MODINV SUCCESS

We identified two classes of interest from the Database of Faces dataset: the class with the lowest
GNQ (class 28) and the class with the highest GNQ (class 6). As shown in Fig. 9, the left image
depicts poor reconstruction for the lowest GNQ class, while the right image demonstrates successful
recovery for the highest GNQ class, showing increased vulnerability. Importantly, we noticed that
high-GNQ examples are more likely to be memorized, which is validated as the reconstructed image
(Fig. 9 b right) corresponds to the example (not class) with the highest GNQ in the entire dataset
(Fig. 9 b left).

(a) Lowest-GNQ Class (b) Highest-GNQ Class

Figure 9: Reconstructed images for the lowest-GNQ class and the highest-GNQ class.
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