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Abstract

To enhance research on multimodal knowl-001
edge base and multimodal information pro-002
cessing, we propose a new task called mul-003
timodal entity tagging (MET) with a multi-004
modal knowledge base (MKB). We also de-005
velop a dataset for the problem using an exist-006
ing MKB. In an MKB, there are entities and007
their associated texts and images. In MET,008
given a text-image pair, one uses the informa-009
tion in the MKB to automatically identify the010
related entity in the text-image pair. We solve011
the task by using the information retrieval012
paradigm and implement several baselines us-013
ing state-of-the-art methods in NLP and CV.014
We conduct extensive experiments and make015
analyses on the experimental results. The re-016
sults show that the task is challenging, but cur-017
rent technologies can achieve relatively high018
performance. We will release the dataset, code,019
and models for future research.020

1 Introduction021

Multimodal knowledge base (MKB) or multimodal022

knowledge graph (MKG) is an important area for023

AI technologies because humans’ information pro-024

cessing is inherently multimodal. For example, it025

is believed that humans learn and utilize concepts026

such as “Eiffel Tower” through the processing of027

multimodal data (Bergen, 2012). Construction and028

utilization of MKB both need to be intensively in-029

vestigated. In this paper, we propose a new task030

named Multimodal Entity Tagging (MET) with an031

MKB and study the problem empirically.032

Suppose that we have an MKB containing a vast033

number of entities and each entity has a large num-034

ber of texts and images associated. Given a new035

pair of text and image, MET is to identify the en-036

tity described in the given text-image pair with an037

MKB as shown in Figure 1. The task is crucial, we038

believe, as a step in multimodal information pro-039

cessing. Note that recognizing whether an image040

consists of an entity is still a challenging problem041

in CV (Joseph et al., 2021), and here we assume 042

that in addition to an image, its paired text is also 043

used. This is the first work on the issue, as far as 044

we know. 045

MET is very challenging because of the diversity, 046

sparsity and ambiguity in MKB: 1) Texts and im- 047

ages are diverse. 2) Many entities contain limited 048

information. 3) An image (or a text) may asso- 049

ciate with multiple entities. We perform the task 050

by using the information retrieval paradigm. Given 051

a pair of text and image, candidates (entities in 052

MKB) are first retrieved using retrieval models. 053

Then we utilize intra-modality and inter-modality 054

matching models to rank the candidates. We cre- 055

ate a dataset of MET from a large MKB called 056

VisualSem (Alberts et al., 2020) and employ state- 057

of-the-art technologies in NLP and CV to conduct 058

extensive experiments on the dataset. We demon- 059

strate to what extent the existing methods work 060

and provide a foundation for future research on the 061

problem. 062

2 Task and Dataset 063

2.1 Task Definition 064

The task is to identify the entity described in a given 065

text-image pair with an MKB, where entities are 066

depicted in texts and images in the MKB. Formally, 067

suppose that there is a multimodal knowledge base 068

having k entities K = {e1, e2, · · · , ek}. Each en- 069

tity ei is associated with in texts and im images, 070

Ei = {{t(i)1 , t
(i)
2 , · · · , t(i)in

}, {v(i)1 , v
(i)
2 , · · · , v(i)im

}} 071

where t
(i)
∗ and v

(i)
∗ denote a text and an image 072

respectively. Further suppose that there is a pair 073

of text and image (t, v). MET aims to find the 074

corresponding entity ei ∈ K that is described by 075

(t, v). Here, we expect that a model is automatically 076

learned from the MKB, and the task is performed 077

with the model. 078

There are several challenges for the task regard- 079

ing learning and utilization of the model. First, the 080
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Multimodal Knowledge Base

An iron tower in 
Paris.

A city in France.

Paris bn:00015540n
• The capital and largest city of France.
• Paris is the capital and most populous city of France.
• The international center of culture and commerce of France.

Eiffel Tower bn:00029980n
• A wrought iron tower 300 meters high that was constructed in Paris in 1889.
• The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France.
• An iron tower beside the River Seine in Paris which was built on the occasion of the 

Exposition Universelle in 1889.

Paris
bn:00015540n

Eiffel Tower
bn:00029980n

Figure 1: Multimodal entity tagging with multimodal knowledge base. An input is the text "An iron tower in
Paris." and image pair. An MKB contains a vast number of entities which have various images and texts associated.
We decide whether the input text and image pair describes the entity “Eiffel Tower”, by taking it as query, and
retrieve relevant entities in the MKB, and ranking the candidate entities.

Data # of entities # of glosses # of images

MKB 46,081 146,681 1,473,574
Train 46,081 46,081 46,081
Dev 1,753 1,753 1,753
Test 1,769 1,769 1,769

Table 1: Statistics of the dataset.

scale of the MKB is large, and the content of the081

MKB is diverse. As shown in Figure 1, images as-082

sociated with entity “Paris” can be landmark build-083

ings, city flag, city emblem, and map. Diversity084

of the data poses challenges to multimodal infor-085

mation understanding and utilization. Second, the086

information might be insufficient for identifying087

the entities. For example, many entities in the MKB088

contain a few images and texts associated. Third,089

the data might also be ambiguous. For example, in090

Figure 1, the same input image contains multiple091

entities (e.g., “Eiffel Tower” and “Paris”) which092

may confuse the model. Section C in appendix093

provides more details.094

2.2 Dataset Creation095

We derive a new dataset from the multimodal096

knowledge base VisualSem (Alberts et al., 2020).097

VisualSem contains 101,244 entities, and each en-098

tity has on average 15.2 images and 2.9 glosses099

(texts) associated. There is no need to annotate100

data manually as MKB is naturally “labeled”101

data. We filter out entities that have less than102

three glosses or images. We split the data into103

knowledge-base, training, development, and test104

sets. We ensure that the entities in the knowledge- 105

base, training, development, and test sets do not 106

have common glosses or images, and thus there is 107

no “information leak”. Each instance in the train- 108

ing, development, and test sets consists of a ran- 109

domly combined pair of gloss and image of an 110

entity. Table 1 shows the statistics of the data. 111

3 Method 112

We view MET with MKB as an information re- 113

trieval problem. The input is a text-image pair 114

(t, v) as the query. 1) Retrieval We first separately 115

retrieve the most relevant N texts and their entities 116

with text t, and the most relevant M images and 117

their entities with image v. Thus, there are at most 118

N +M entities. Next, each retrieved text/image is 119

paired with some image/text of the same entity.1 2) 120

Ranking We then rank the entities based on the rel- 121

evance between the query (t, v) and the retrieved 122

texts and images. There are multiple matching 123

scores between the query and the retrieved texts 124

and images, and all of them are taken as features of 125

the ranking model. Finally, the top-ranked entities 126

are selected as output. 127

3.1 Retrieval 128

Text Retrieval We employ the elastic search 129

system (https://www.elastic.co/) to conduct term- 130

based text retrieval with the text t as query. 131

Once the most relevant N texts {t(i1)j1
, · · · , t(iN )

jN
} 132

are retrieved, the corresponding N entities 133

1We give details of this procedure in section B in appendix.
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{ei1 , · · · , eiN } are obtained and N images134

{v(i1)
ĵ1

, · · · , v(iN )

ĵN
} are selected to pair with re-135

trieved texts.2136

Image Retrieval We utilize a ResNet152137

model (He et al., 2016) to encode all images138

as real-valued vectors of dimension 2048. We139

employ the nearest neighbor search technique140

(https://github.com/nmslib/hnswlib) to perform141

vector-based image retrieval with the image v142

as query. Once the most relevant M images143

{v(l1)
k̂1

, · · · , v(lM )

k̂M
} are retrieved, the correspond-144

ing M entities {el1 , · · · , elM } are obtained and M145

texts {t(l1)k1
, · · · , t(lM )

kM
} are selected to pair with re-146

trieved images.2147

3.2 Ranking148

The most relevant entities are ranked at the top149

based on the relevance between the query and150

the retrieved texts and images. The ranking151

model is a linear combination of matching scores152

where the weights are tuned using the develop-153

ment data. The matching scores are calculated154

with different matching models. Formally, eo =155

F ((t, v), (top, v
o
p̂)), eo donates the matching score156

and F denotes the matching model.157

Intra-modality Matching 1) Text Bi-encoder158

Matching (TBM). The bi-encoder model trans-159

forms the query text and a retrieved text into their160

representations with two encoders and calculates161

the similarity (relevance) between the representa-162

tions (Wu et al., 2020; Thakur et al., 2021). The bi-163

encoder model is usually more efficient. We train164

the two encoders by fine-tuning a BERT model (De-165

vlin et al., 2019). The two encoders share tied pa-166

rameters as in Reimers and Gurevych (2019). 2)167

Text Cross-encoder Matching (TCM). The cross-168

encoder transforms the concatenation of the query169

text and a retrieved text into a representation with170

only one encoder (Urbanek et al., 2019; Wu et al.,171

2020), and decides the matching degree (relevance)172

between the two texts. The cross-encoder model173

is more accurate, because interactions between the174

two texts are captured in the encoder. We train175

the encoder by fine-tuning the BERT model. 3)176

Image Bi-encoder Matching (IBM). The “image177

bi-encoder matching” model has two encoders (tied178

parameters), one for encoding the query image and179

the other for encoding a retrieved image. It uses180

cosine to represent the similarity (relevance) be-181

tween the representations from the two encoders.182

Stage Model Hits@1 Hits@3 Hits@10

Retrieval Text 41.4 51.3 62.5
Image 7.8 11.8 17.1

Ranking

TBM 41.5 52.9 66.8
TCM 58.4 69.4 78.0
IBM 9.3 12.5 17.1
CLIP 16.3 27.9 45.3

Full Model 61.2 71.4 79.4

Table 2: Experiment results (%). Full Model utilizes
all matching (TBM, TCM, IBM, CLIP) scores to rank
entities.

We implement each of the two encoders using 183

ResNet152 (He et al., 2016) pre-trained on Ima- 184

geNet (Deng et al., 2009). 185

Inter-modality Matching CLIP is an image- 186

text matching model proposed by Radford et al. 187

(2021). CLIP is pre-trained on 400 million image 188

text pairs and demonstrates strong performances on 189

downstream image classification tasks, especially 190

in few-shot or zero-shot settings. We adopt CLIP 191

(https://github.com/openai/CLIP) as a method for 192

inter-modality matching. 193

4 Experiments 194

4.1 Experimental Settings and Results 195

We conduct experiments to investigate the hardness 196

of the MET problem as well as the performance 197

of the methods described above. We use Hits@N 198

as evaluation measure, which is the percentage of 199

correct entities at the top N positions. In our exper- 200

iments, we set M = N = 100. We use grid search 201

to tune the weights of ranking model (Full Model) 202

with the development set. 203

Table 2 shows the experimental results. The 204

Hits@1 score of image retrieval is only of 7.8%, 205

indicating that using image data alone would not 206

achieve high performance in retrieval. This is due 207

to the diversity and ambiguity of images. In con- 208

trast, the Hits@1 of text retrieval is as high as 209

41.4%, which indicates that it is more effective 210

to use text data to carry out retrieval. 211

Table 2 also shows the results of ranking. We 212

make the following observations. 1) The results 213

indicate that the full model of using TCM, TBM, 214

IBM, and CLIP as matching models performs the 215

best in terms of Hits@1. 2) The text cross-encoder 216

matching model (TCM) makes a large performance 217

improvement after the retrieval. The result indi- 218

cates that the texts in the MKB contain more infor- 219

3



Model Hit@1 Hits@3 Hits@10

Full Model 61.2 71.4 79.4

w/o IBM 59.8 70.6 79.0
w/o CLIP 60.0 70.5 78.9

w/o TBM 60.0 70.8 79.1
w/o TCM 43.5 57.1 69.8

Table 3: Ablation study results (%).

mation and the use of text data is essential for MET.220

3) The image bi-encoder matching model (IBM)221

makes a small improvement after the retrieval, be-222

cause of the diversity and ambiguity of images. It223

appears that the training of IBM is challenging,224

and the model is confused by the training data. 4)225

CLIP achieves a relatively low performance. Al-226

though CLIP works remarkably well in zero-shot227

image classification (Radford et al., 2021), it still228

under-performs a text matching method. The result229

indicates that we still need to enhance the capability230

of the CLIP model.231

4.2 Ablation Study232

We conduct an ablation study and examine the233

contributions from different matching models. As234

shown in Table 3, all models make contributions235

and the performance will drop if any of them is236

removed. Text information is essential, as exclud-237

ing it (w/o TBM or w/o TCM) brings a significant238

performance decrease. Though identifying entities239

in images is challenging (9.3% Hits@1 for IBM),240

images still provide helpful information in multi-241

modal entity tagging, because excluding image in-242

formation (w/o IBM or w/o CLIP) hurts the perfor-243

mance. In conclusion, the task needs multimodal244

information and powerful multimodal models.245

4.3 Error Analysis246

We randomly sample 100 text-image pairs that are247

incorrectly tagged. We find three types of errors:248

“Noisy”, “Hard” and “Wrong”. “Noisy” means249

that noise in the dataset misleads models. “Hard”250

means that it is not easy for the models to resolve251

the ambiguity of texts (e.g., texts are general and252

simple) and images (e.g., entities in images are253

rare). “Wrong” means that the multimodal informa-254

tion in the input pair and MKB is clear but models255

fail to utilize the information to recognize entities.256

It turns out that 46% of the errors are Hard cases,257

42% are Wrong cases, and 12% are Noisy cases.258

This indicates that the state-of-the-art models still259

cannot accomplish the task satisfactorily. 260

5 Related Work 261

There are several multimodal knowledge bases. 262

Xie et al. (2016) create WN9-IMG, which con- 263

sists of a subset entities of WordNet (Miller, 1995) 264

and images from ImageNet (Deng et al., 2009). 265

Mousselly-Sergieh et al. (2018) develop FB-IMG, 266

which consists of entities from Freebase (Bollacker 267

et al., 2008) and images from the web. Liu et al. 268

(2019) construct MMKG, containing three knowl- 269

edge bases DBpedia15K, YAGO15K and Free- 270

base15K. Wang et al. (2020) build Richpedia, a 271

large-scale multimodal knowledge base, which con- 272

sists of “KG entities” and “image entities” on three 273

topics. Recently, Alberts et al. (2020) develop 274

a multimodal and multilingual knowledge base 275

named VisualSem. VisualSem consists of 101,244 276

entities, 1,539,244 images and multilingual texts. 277

We derive the new dataset from VisualSem because 278

it is the largest MKB publically available. 279

There is also existing work on multimodal entity 280

linking (Moon et al., 2018; Adjali et al., 2020a,b; 281

Zhang et al., 2021), which manages to link entities 282

mentioned in texts using image data. For example, 283

Moon et al. (2018) introduce multimodal named 284

entity disambiguation (MNED), which leverages vi- 285

sual contexts for entity linking in texts in social me- 286

dia. Adjali et al. (2020a,b) publish a multimodal en- 287

tity linking dataset and utilize a combination of text, 288

BM25, popularity, visual features to link entities 289

in tweet data. Zhang et al. (2021) propose a new 290

attention-based multimodal entity linking method 291

and construct a new Chinese multimodal entity link- 292

ing data set based on Weibo (https://weibo.com/). 293

6 Conclusion 294

We propose multimodal entity tagging (MET) with 295

multimodal knowledge base (MKB), which is to 296

identify the most related entity in a given text and 297

image pair, using the information in an MKB. The 298

new task is important for enhancing research on 299

construction and utilization of MKB. We solve 300

the problem by using the information retrieval 301

paradigm. We construct a new large-scale dataset 302

for the task and conduct intensive experiments. Ex- 303

perimental results indicate that the task is still chal- 304

lenging, and more powerful models for multimodal 305

representation learning are needed. 306
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A Training Details436

We implement the text matching methods us-437

ing HuggingFace transformers library (Wolf438

et al., 2020) and the image matching meth-439

ods using torchvision2. We utilize BERT-Base440

(bert-base-uncased) as text encoder and441

ResNet152 as image encoder. For CLIP, we use442

ViT-B/16 as the backbone. We take the new task443

as an information retrieval problem. First, two re-444

trievers separately retrieve 100 entities.3 Due to445

the Cuda memory limits, we next sample 64 out of446

200 candidates. The batch size is one that contains447

only one input text-image pair and 64 retrieved448

candidates. The number of positive and negative449

candidates is unbalanced, and thus we ensure that450

at least one positive candidate is sampled in each451

batch and utilize the focal loss (Lin et al., 2017) as452

training objective. We utilize AdamW to optimize453

the text encoder and SGD to optimize the image en-454

coder for efficient training. The learning rates are455

3e-5 and 1e-2, respectively. All models are trained456

in 20 epochs on eight NVIDIA Tesla V100 GPUs.457

We conduct grid search (in {0, 0.1, · · · , 0.9}) to458

tune the weights of ranking model (Full Model)459

with the development set. The weights of TCM,460

TBM, IBM, CLIP matching scores are 0.2, 0.1, 0.3,461

0.9 respectively.462

B Retrieval Details463

We use text retrieval model to retrieve N entities464

{ei1 , ei2 , · · · , eiN } with {t(i1)j1
, t

(i2)
j2

, · · · , t(iN )
jN
}465

2https://github.com/pytorch/vision
3The parameters of retrievers are not tuned on the training

data.

associated. And we use image retrieval model 466

to retrieve M entities {el1 , el2 , · · · , elM } with 467

{v(l1)
k̂1

, v
(l2)

k̂2
, · · · , v(lM )

k̂M
} associated. After retrieval, 468

N + M entities {ei1 , · · · , eiN , el1 , · · · , elM } are 469

retrieved. However, images are not retrieved in 470

text retrieval procedure and vice versa. We select 471

an image v
(i)

ĵ
of the same entity for each t

(i)
j in N 472

retrieved texts randomly at training time and select 473

an image v
(i)
0 (i.e., the first image of the entity)4 474

at inference time. The same procedure is used to 475

select texts for retrieved images. The final retrieval 476

results are {ei1 , · · · , eiN , el1 , · · · , elM } with 477

{(t(i1)j1
, v

(i1)

ĵ1
), · · · , (t(iN )

jN
, v

(iN )

ĵN
), · · · , (t(lM )

kM
, v

(lM )

k̂M
)} 478

associated. 479

C Challenges 480

We show the challenges of MET in diversity, spar- 481

sity, ambiguity of the data in MKB. 482

C.1 Diversity 483

Entities usually have various texts and images as- 484

sociated. The diversity of data brings challenges 485

to multimodal information understanding. Table 9 486

shows three entities with diverse texts and images. 487

“Romanesque Architecture” is a concept and con- 488

tains various images, including different architec- 489

tures and graphics. “Paris” is an entity that also has 490

various images associated. The images of “Paris” 491

can be landmark buildings (e.g., “Eiffel Tower”, 492

“Louvre”, “Arc de Triomphe”), city flag, city em- 493

blem, and map. Usually, These types of entities 494

(place and organization) have various images as- 495

sociated, which poses challenges. “Francisco de 496

Goya” belongs to another type. “Francisco de 497

Goya” is a painter and thus has many images of 498

artworks associated. 499

C.2 Data Sparsity 500

Many entities in the multimodal knowledge base 501

do not have sufficient information. About 9.7% of 502

the entities contain no more than three images in 503

the dataset and 12.2% of the entities contain only 504

one text. We conduct experiments on sparse text 505

and sparse image data. We can observe from the 506

results in Table 6. 1) On sparse text data, the perfor- 507

mance of text matching models (TBM and TCM) 508

drops significantly. 2) On sparse image data, the 509

performance of image matching model (IBM) also 510

4We find the first image (or text) of an entity contains no
noise.
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drops significantly. Hits@10 (6.5%) is even lower511

than Hits@1 (9.3%). 3) The performance of the512

inter-modality matching model CLIP deteriorates513

on sparse data as well, especially on sparse image514

data. In conclusion, sparsity is a challenge in the515

dataset and more data-efficient models are needed.516

C.3 Ambiguity517

An image may contain several entities. About518

21.6% of the images in the dataset are associated519

with two or more entities. Furthermore, entities in520

images may be rare. Therefore, recognizing enti-521

ties from the images using visual information alone522

is challenging. Table 10 shows examples indicat-523

ing the ambiguity of images. The animal in the524

first image is “Genet”. However, considering more525

general species categories, it can be “Viverrine” or526

“Chordate” (“Procyon” is a mistakenly associated527

entity). There are several entities in the second528

and third images. Depending on the texts, the rec-529

ognized entities might be different. The entities530

in the third image are rare. Therefore, the utiliza-531

tion of texts is essential to recognize the entities532

in query. In the meantime, texts are also ambigu-533

ous. For example, the descriptions are general and534

simple. Table 4 gives the top ten frequent texts,535

and the texts are ambiguities. Although ambigu-536

ous texts are not common (1.7% of the texts in the537

MKB have two and more entities associated), it538

still brings challenges to the task.539

D Experimental Results540

D.1 Assemble of Ranking Model541

After retrieval, each retrieved text/image is paired542

with the first image/text of the same entity at in-543

ference time as mentioned in Section B. How-544

ever, considering the diversity of MKB, assembling545

more instances (an instance is a text or an image)546

when computing matching scores for entities is a547

straightforward idea to enhance the performance.548

We conduct additional experiments to assemble549

multiple instances in ranking procedure at infer-550

ence time. Specifically, for each candidate eo in551

retrieved entities {ei1 , · · · , eiN , el1 , · · · , elM }, we552

select K instances including the retrieved instance553

(v(o)p̂ or t(o)p ) to compute matching scores with in-554

put instance (image v or text t considering differ-555

ent matching models) and then average them as556

the final score. The assemble of Full Model is lin-557

ear combination of separate assemble models and558

the weights of TCM, TBM, IBM, CLIP matching559

Text # of Entities

A province of Indonesia 25
One of the moons of Jupiter 20
State of Mexico 19
Disease 19
Genus of reptiles (fossil) 19
A city of Japan 14
American musician 14
Year 13
ISO 3166-1 country code 13
Medical specialty 13
Male given name 13

Table 4: Ambiguity of texts. The texts are general, sim-
ple and thus ambiguous.

scores are 0.1, 0.3, 0.1, 0.9 respectively.5 We set 560

K = 3 in our experiments and larger K may bring 561

further improvement which we leave as future work. 562

Table 5 illustrates the results. We can observe 563

that: 1) Hits@1 of assembled ranking model (Full 564

Model) improves significantly, indicating more im- 565

ages (or texts) bring more information to distin- 566

guish and recognize the corresponding entities. 2) 567

Hits@1 of CLIP improves a lot, indicating inter- 568

modality matching models benefit more from the 569

diversity of MKB. 3) The assemble performance 570

of IBM and TBM drops and Hits@1 of IBM drops 571

about 50% compared to original Hits@1. The main 572

reason is that the additional instances (images or 573

texts) may not be retrieved by retrieval models 574

which means the relevance between instances and 575

entities can not be learned easily, especially for bi- 576

encoder models which are less powerful and more 577

difficult to train. 578

In conclusion, utilization of more instances (im- 579

ages or texts) may bring performance improvement 580

to models especially inter-modality matching mod- 581

els due to the diversity of MKB. Meanwhile, more 582

instances may confuse models and hurt the per- 583

formance, especially for less powerful bi-encoder 584

matching models. 585

D.2 More Experimental Results 586

Table 7 reports the results on both development 587

and test sets. One can see that the results on de- 588

velopment and test sets are generally consistent. 589

Hits@100 achieves 86%, about 20% higher than 590

Hits@1, indicating that there is still room for per- 591

formance improvement and more powerful models 592

for multimodal representation are needed. 593

5We conduct grid search with development set.
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Model Hits@1 Hits@3 Hits@10

TBM 41.5 52.9 66.8
w/ assemble 41.0 49.5 64.2

TCM 58.4 69.4 78.0
w/ assemble 59.4 67.2 78.3

IBM 9.3 12.5 17.1
w/ assemble 4.6 7.1 12.7

CLIP 16.3 27.9 45.3
w/ assemble 20.6 31.0 48.2

Full Model 61.2 71.4 79.4
w/ assemble 63.9 70.9 79.5

Table 5: Assemble results (%). Underlines indicate as-
semble brings performance improvement.
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Model Sparse Text Data Sparse Image Data
Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

TBM 30.5-11.0 40.3-12.6 54.5-12.3 41.1-0.4 51.2-1.7 61.7-5.10

TCM 46.2-12.2 57.3-12.1 67.5-10.5 55.2-3.2 66.1-3.3 74.2-3.80

IBM 8.3-1.00 12.3-0.20 17.2+0.10 4.4-4.9 5.2-7.3 6.5-10.6

CLIP 15.3-1.00 25.0-2.90 39.7-5.60 11.7-4.6 19.8-8.1 32.7-12.6

Full Model 50.3-10.9 60.6-10.8 69.4-10.0 58.1-3.1 66.5-4.9 75.0-4.40

Table 6: Results on sparse data (%). All models perform worse on sparse data, especially on sparse text data. This
shows sparsity is still a challenge to the new task MET.

Stage Model Dev Test
Hits@1 Hits@3 Hits@10 Hits@100 Hits@1 Hits@3 Hits@10 Hits@100

Retrieval Text 38.8 50.4 63.1 79.6 41.4 51.3 62.5 78.9
Image 7.9 12.7 19.1 32.6 7.8 11.8 17.1 31.3

Ranking

TBM 41.0 52.3 65.0 82.1 41.5 52.9 66.8 81.7
TCM 59.0 70.2 78.5 85.9 58.4 69.4 78.0 85.4
IBM 10.5 14.0 18.9 34.0 9.3 12.5 17.1 34.1
CLIP 18.5 29.9 46.6 82.9 16.3 27.9 45.3 82.3

Full Model 61.6 71.7 79.6 86.1 61.2 71.4 79.4 85.5

Table 7: All experiment results (%). The results on development and test sets are generally consistent which
indicates that development set is suitable for model selection.

Type Example

Input Entity Prediction

Noisy Type of power plugs standardized by the National bn:03357573n bn:00030158n
12% Electrical Manufacturers Association Nema Connector Electric Outlet

Hard A town, and associated province bn:00665773n bn:00665687n
46% in Sardinia, Italy. Province of Sassari Province of Cagliari

Wrong A former aircraft maker, now PART bn:01455566n bn:01359190n
42% of Northrop Grumman Grumman Ingalls Shipbuilding

Table 8: Error analysis. 1) “Noisy”. “Electric Outlet” has power plugs images associated which misleads models.
2) “Hard”. The input image of “Province of Sassari” is ambiguous and hard to recognize the corresponding city.
3) “Wrong”. The input text of “Grumman” is similar to “Ingalls Shipbuilding” and text matching models fail to
recognize the correct entity “Grumman” which indicates more powerful models for multimodal representation are
needed. One can click entity ids to see details of the entities.
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bn:00068195n • A style of architecture developed in Italy and western Europe between the Roman and
Romanesque Architecture the Gothic styles after 1000 AD;

• Characterized by round arches and vaults and by the substitution of piers for columns
and profuse ornament and arcades.
• Romanesque architecture is an architectural style of medieval Europe characterized
by semi-circular arches.
• Architecture of Europe which emerged in the late 10th century and lasted to the
13th century.

bn:00015540n • The capital and largest city of France; and international center of culture and commerce.
Paris • Paris is the capital and most populous city of France, with an estimated population of

2,148,271 residents as of 2020, in an area of more than 105 square kilometres.
• Designated nouvelle Rome at various stages of history between the reigns of Philip IV
and Louis XIV.
• The capital and largest city of France.
• Capital of France.

bn:00036225n • Francisco José de Goya y Lucientes was a Spanish romantic painter and printmaker.
Francisco de Goya • Spanish painter well known for his portraits and for his satires (1746-1828).

• 18th and 19th-century Spanish painter and printmaker.
• Francisco Goya, a Spanish painter.

Table 9: Examples showing the diversity of data. The examples show typical entity categories: 1) Conceptual
entities containing various instances and images. 2) Location entities containing diverse images related to the
location (e.g., landmarks, maps, symbols). 3) Person entities containing diverse images related to the person (e.g.,
portraits, works).
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Image Text Entity

The type genus of the family Procyonidae: raccoons. bn:00039337n (Procyon)

Small cat-like predatory mammals of warmer parts of the Old World. bn:00080161n (Viverrine)

Any animal of the phylum Chordata having a notochord or spinal column. bn:00018748n (Chordate)

Agile Old World viverrine having a spotted coat and long ringed tail. bn:00037694n (Genet)

Large black-and-white herbivorous mammal of bamboo forests of China. bn:00002174n (Giant Panda)

Woody tropical grass having hollow woody stems; mature canes used
for construction and furniture. bn:00008254n (Bamboo)

A situation or topic as if viewed from an altitude or distance. bn:00010616n (Bird’s Eye View)

A wrought iron tower 300 meters high that was constructed in Paris
in 1889; for many years it was the tallest man-made structure. bn:00029980n (Eiffel Tower)

The capital and largest city of France; and international center
of culture and commerce. bn:00015540n (Paris)

An art movement launched in 1905 whose work was characterized
by bright and nonnatural colors and simple forms; influenced the
expressionists bn:00033829n (Fauvism)

Table 10: Examples showing the ambiguity in the data. One image may contain 1) various entities. The second
image contains entities “Giant Panda”, “Bamboo”. The third image contains entities “Eiffel Tower”, “Paris”,
“Fauvism”. If not specified, it is hard to recognize the corresponding entity. 2) an object corresponding to various
entities. The first image contains an animal object. If considering different species categories level, the entity can
be “Viverrine”, “Chordate”, “Genet”. 3) rare entities. The third image contains entity “Bird’s Eye View” which is
obscure and rare.
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