
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IDENTIFY CRITICAL KV CACHE IN LLM INFERENCE
FROM AN OUTPUT PERTURBATION PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have revolutionized natural language processing but face
significant challenges of high storage and runtime costs, due to the transformer
architecture’s reliance on self-attention, particularly the large Key-Value (KV)
cache for long-sequence inference. Recent efforts to reduce KV cache size by
pruning less critical entries based on attention weights remain empirical and lack
formal grounding. This paper presents a formal study on identifying critical KV
cache entries by analyzing attention output perturbation. Our analysis reveals
that, beyond attention weights, the value states within KV entries and pretrained
parameter matrices are also crucial. Based on this, we propose a perturbation-
constrained selection algorithm that optimizes the worst-case output perturbation to
identify critical entries. We demonstrate that our algorithm is a universal, plug-and-
play enhancement that incurs negligible computational overhead. When integrated
with three state-of-the-art cache eviction methods on three distinct LLMs, our
algorithm significantly reduces the compression loss by more than half on average
across 29 datasets from the Ruler and LongBench benchmarks. Further perturbation
analysis, at both the head and layer levels, confirms the principles underlying our
effectiveness. This work offers a new, formally grounded perspective to the cache
eviction field, opening promising avenues for future research.

SnapKV AdaKV HeadKV
0%

10%

20%

30%

Lo
ss

 (
)

25.39%

13.92% 12.16%
15.55%

5.24%
1.93%

Llama-3.1-8B

base w/ Ours

SnapKV AdaKV HeadKV
0%

25%

50%

75%

Lo
ss

 (
) 58.92% 55.44% 49.42%46.90%

11.63%
26.42%

Mistral-7B-v0.3

base w/ Ours

SnapKV AdaKV HeadKV
0%

20%

40%

Lo
ss

 (
) 32.00%

24.30%

13.70%13.65% 10.69%
3.43%

Qwen2.5-32B

base w/ Ours

(a) Average loss on 13 Ruler datasets.

SnapKV AdaKV HeadKV
0%

2%

5%

8%

Lo
ss

 (
)

7.48%
6.02%

4.00%3.88%
2.44% 2.87%

Llama-3.1-8B

base w/ Ours

SnapKV AdaKV HeadKV
0%

2%

5%

8%

Lo
ss

 (
) 7.07%

4.88% 5.36%
4.28%

2.43% 2.70%

Mistral-7B-v0.3

base w/ Ours

SnapKV AdaKV HeadKV
0%

2%

5%

8%

Lo
ss

 (
) 6.40%

5.25%

1.59%
2.78% 3.19%

0.00%

Qwen2.5-32B

base w/ Ours

(b) Average loss on 16 Longbench datasets.
Figure 1: Our algorithm reduces the loss of three existing cache eviction methods by more than half
on average. (shown at 40% cache size; see experiments for other sizes).

1 INTRODUCTION

Large language models (LLMs) using transformer architecture have excelled in many tasks, likes
chatbots (Achiam et al., 2023)(Yi et al., 2024) and intelligent agents (Wang et al., 2024). However, the
quadratic computational cost inherent in the transformer’s self-attention mechanism poses significant
challenges for practical deployment. To mitigate this, LLMs often use a Key-Value (KV) cache, which
stores intermediate results from the self-attention mechanism. Each KV cache entry corresponds to
the KV states of a past token, thus allowing for the bypassing of recomputation of these tokens during
autoregressive generation. However, as sequence lengths increase, the number of KV cache entries
expands dramatically. This expansion not only leads to considerable GPU memory overhead but also
significantly increases I/O latency, hindering the real-world deployment (Sun et al., 2024a).

Recent research has identified that only a subset of KV cache entries substantially contribute to the
output of the self-attention mechanism (Zhang et al., 2024b; Liu et al., 2024b; Tang et al., 2024a). As

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a result, many methods, known as cache eviction, have been developed to reduce the KV cache size to
fit within a given budget by evicting non-critical entries during inference. These methods effectively
save GPU memory and improve subsequent decoding speed. Notably, H2O (Zhang et al., 2024b)
and Scissorhands (Liu et al., 2024b) observe a power-law distribution of attention weights: a small
fraction of KV cache entries consistently dominates the majority of attention weights, aligning closely
with the concept of cache entry criticality during inference. These methods introduce frameworks
that leverage accumulated attention weights to identify and preserve critical cache entries. Building
on this, subsequent works (Adnan et al., 2024; Li et al., 2024; Feng et al., 2024; Fu et al., 2024)
have refined attention weight accumulation and added operations like pooling and budget allocation
to better preserve key information. However, while these methods generally assume that entries
with higher attention weights—determined by the similarity between key states in the KV cache and
the target query state—are critical, the identification and characterization of “critical cache entries”
remain unformalized. This assumption raises two key questions:

1. What criteria determine the critical KV cache?
2. Is reliance on attention weights alone sufficient for identifying critical cache entries?

In this paper, we define the problem of critical cache identification from the perspective of output
perturbation. This approach is grounded in the key insight that KV cache eviction loss is driven by
changes in the attention output. Our primary objective, therefore, is to minimize this perturbation
when replacing the full KV cache with only its critical entries. To formalize this, we introduce
a theoretical framework that bounds the worst-case perturbation to guide practical optimization.
Specifically, to quantify this perturbation, we employ the simple L1 distance and derive its upper
bound1, corresponding to the worst-case perturbation. Our analysis reveals that this upper bound is
influenced by both the attention weights and the value states projected through the parameter matrix.
Based on these insights, we propose a perturbation-constrained selection algorithm designed to
minimize this derived upper bound. It goes beyond mere reliance on attention weights, underscoring
the significance of previously overlooked value states and the pretrained parameter matrix.

We integrate our algorithm into three state-of-the-art (SOTA) cache eviction methods, SnapKV (Li
et al., 2024), AdaKV (Feng et al., 2024) and HeadKV (Fu et al., 2024), replacing their reliance
on solely attention-weight-based strategies. Comprehensive evaluations on 29 datasets from Ruler
and LongBench, as summarized in Figure 1, demonstrate that our method serves as a universal
enhancement, substantially improving post-eviction generation quality. Further empirical analysis
confirms and elucidates the practical benefits of our algorithm: (1) It effectively reduces output
perturbation in over 92% of the Llama model’s attention heads. (2) Its advantages accumulate across
layers, significantly lowering the perturbation in final-layer hidden states. (3) It consistently performs
well across various cache sizes, robustly mitigating quality loss under different resource constraints
in practical applications. Our contributions can be summarized as follows:

1. We highlight that current cache eviction methods neglect the crucial problem of identifying
critical KV cache entries. To address this, we propose using output perturbation as a criterion
for determining criticality. Our analysis shows that attention weights alone are insufficient;
the value states projected by the parameter matrix are also essential.

2. Building on the constraint of worst-case output perturbation, we propose a novel critical entry
selection algorithm as a universal enhancement. When integrated with three SOTA eviction
techniques, it reduces compression loss by more than half on average, as validated across
three distinct LLMs on 29 datasets from Ruler and LongBench benchmarks (Figure 1).

3. Further empirical analysis examines and confirms the benefits of our perturbation-
constrained selection algorithm. This analysis also highlights the significant potential for
optimizing critical cache selection from the theoretical perspective of output perturbation.

2 RELATED WORKS

Perturbation-based analysis has achieved remarkable success in neural network interpretability and
pruning. For example, Catformer (Davis et al., 2021) and Admin (Liu et al., 2020) utilize output

1We choose the L1 distance for its simplicity and effectiveness, though more complex metrics are also
compatible with our framework. For example, employing the L2 distance yields similar gains (see Appendix H).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

perturbation analysis to create more stable network architectures and enhance training methods.
Similarly, pruning techniques (Han et al., 2015; Frantar & Alistarh, 2023), with Wanda (Sun et al.,
2024b) as a representative, aim to identify neurons whose removal minimally impacts output, thereby
reducing network parameters. In this paper, we present the first analysis of output perturbations
aimed at developing more effective selection metrics for cache eviction in efficient LLM inference.

KV cache eviction aims to retain only critical KV cache entries while evicting non-essential ones to
reduce cache size, facilitating efficient long-sequence inference in LLMs. Early methods (Xiao et al.,
2023), which preserved recent entries in a sliding window, risked losing important information in
long sequences. Techniques like H2O (Zhang et al., 2024b) and Scissorhands (Liu et al., 2024b) used
accumulated attention scores to identify key entries, aiming to retain crucial context. Subsequent
works refined these methods (Ge et al., 2024b; Adnan et al., 2024; Ge et al., 2024a; Li et al., 2024),
with SnapKV (Li et al., 2024) achieving the SOTA performance through introducing observation
window-based attention weight accumulation and pooling operations. However, these methods
are largely empirical, relying solely on attention weights to identify critical entries. Our paper
introduces a novel perturbation-constrained selection algorithm based on in-depth analysis from an
output perturbation perspective. This algorithm seamlessly integrates into existing cache eviction
methods without altering underlying accumulation processes. Additionally, recent advances in
budget allocation optimization (Yang et al., 2024a; Zhang et al., 2024a; Fu et al., 2024; Xiao et al.,
2024a; Zhang et al., 2025)—such as AdaKV [(Feng et al., 2024)], which adaptively allocating
budgets based on head characteristics, and HeadKV (Fu et al., 2024), which uses fine-grained offline
profiling to guide allocation—are fundamentally orthogonal to our approach. To comprehensively
demonstrate the effectiveness, we integrate our algorithm with these three representative cache-
eviction lines—SnapKV, AdaKV, and HeadKV—and observe substantial gains across all three.

3 CRITICAL KV CACHE ENTRY SELECTION

For critical cache entry selection, we aim to choose cache entries that represent the entire KV
cache during self-attention computation, producing an output that is a close approximation, if not
identical. Base on this insight, we formalize the problem of identifying critical cache entries from the
perspective of output perturbation (Definition 3.1) in Section 3.2. Subsequently, in Section 3.3, we
formalize the output perturbation and derive its upper bound. Then, we propose a two-stage greedy
algorithm in Section 3.4 that constrains worst-case perturbations for selecting critical entries, with
theoretical analysis provided in Section 3.5. Finally, in Section 3.6 we integrate the algorithm into
current SOTA cache eviction methods.

3.1 PRELIMINARIES

LLMs utilizing the multi-head self-attention mechanism operate with an autoregressive generation
approach. In this setup, each decoding step leverages the most recently generated token to predict the
next one. To illustrate this process, we focus on a single attention head as an example. Let X ∈ Rn×d

denote the embedding matrix for all tokens in the sequence, with x = X−1,: ∈ R1×d representing
the embedding vector of the most recent token, which serves as input at the current time step. The
parameter matrices, denoted by WQ, WK , and WV ∈ Rd×dh are used to map the token embeddings
into their respective Query, Key, and Value states with head dimension dh as follows:

q = xWQ;K = XWK ;V = XWV (1)
During the decoding phase, the Key and Value states of previously generated tokens (represented by
X) are stored in the KV cache, allowing for the elimination of redundant computation. Accordingly,
the query q, derived from the most recent token x, attends to the cached Key K to compute the
attention weights A. These weights are then applied to the cached Value V , producing an intermediate
output. This intermediate result is subsequently transformed into the final output o of the self-attention
mechanism by the output parameter matrix WO ∈ Rdh×d:

o = AVWO, where A = softmax
(
qKT /

√
d
)

(2)

3.2 WHAT CRITERIA DETERMINE THE CRITICAL KV CACHE?

Recent research has demonstrated only a small portion of critical KV cache entries do substantially
contribute to the attention output (Zhang et al., 2024b; Liu et al., 2024b). This insight presents

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

promising opportunities to reduce inference costs by evicting a large number of non-critical KV cache
entries (Li et al., 2024; Zhang et al., 2024a; Feng et al., 2024; Ge et al., 2024b; Adnan et al., 2024;
Ge et al., 2024a). However, the key challenge lies in accurately identifying the critical KV cache
entries. Ideally, from a high-level perspective, the set of critical KV cache entries should completely
represent the entire cache, ensuring for given query state, the selected entries yield the same attention
output as the full set of KV pairs. In practice, the number of selected critical cache entries will be
constrained by a predefined budget, which is closely tied to the computational resources available in
downstream deployments. Consequently, our goal shifts toward minimizing the output perturbation
introduced by the replacement. So, the problem can be reformulated as follows.

Definition 3.1 (Critical KV Cache Identification Problem). Given a critical cache budget b, the task
is to select b critical KV cache entries ⟨K̂, V̂ ⟩ from a total of n cache entries ⟨K,V ⟩, with the goal of
minimizing the perturbation in the attention output o. By using the L1 distance L for quantification,
the objective is formalized as: argmin⟨K̂,V̂ ⟩ L = ∥o− ô∥1 , where ô represents the attention output

produced by the selected ⟨K̂, V̂ ⟩.

3.3 ARE ATTENTION WEIGHTS SUFFICIENT FOR IDENTIFYING CRITICAL CACHE ENTRIES?

According to Definition 3.1, the goal of identifying critical KV cache entries is to minimize the
perturbation L = ∥o− ô∥1. To achieve this, we can employ an additive masking M to simulate the
removal of non-critical cache entries’ contributions to the final output ô, thereby altering ô.

ô = A′VWO, A′ = softmax
(
M+ qKT /

√
d
)

where Mi =

{
−∞ if Ki and Vi are non-critical
0 otherwise.

(3)

Thus, the perturbation L can be further expressed as: L = ∥(A−A′)VWO∥1
Theorem 3.2. By introducing a mask N ∈ Rn applied through element-wise multiplication denoted
by ⊙, we can establish the relation between A′ and A as follows:

A′ =
N ⊙A∑n
i=1 NiAi

where Ni =

{
0 if Ki, Vi is non-critical
1 otherwise.

and
∑n

i=1
Ni = b (4)

Proof. See Appendix I.1 for details.
Theorem 3.2 utilizes a multiplicative mask N to quantifies how their selection impacts the attention
weights. However, directly minimizing L for critical cache selection is challenging due to complex
matrix operations it requires. Thus we turn to establish an upper bound θ, as shown in Theorem 3.3.
Theorem 3.3. The output perturbation L can be bounded by θ:

L ≤ θ = C −
(
2− 1∑n

i=1 NiAi

)∑n

i=1
NiAi∥Vi,:∥1, (5)

where C denotes the
∑n

i=1 Ai∥Vi,:∥1 and V ∈ Rn×d = VWO denotes all projected values states
through parameter matrix WO.

Proof. See Appendix I.2 for details.
We can observe that θ encompasses not only the attention weights but also the projected value states.
This highlights that prior selection methods relying solely on attention weights are suboptimal.

3.4 IDENTIFY CRITICAL CACHE ENTRIES BY CONSTRAINING WORST-CASE PERTURBATION.

Drawing on optimization strategies in machine learning, we propose lowering the upper bound
of perturbation, effectively constraining the worst-case perturbation and thereby reducing actual
perturbations for identifying critical cache entries. However, directly minimizing the upper bound
θ remains non-trivial. To balance both the complexity and selection effectiveness, we introduce a
two-stage greedy perturbation-constrained selection Algorithm 1, specifically designed to lower the
perturbation upper bound for critical cache entry identification.

In this algorithm, the total budget b is divided into two portions based on a hyperparameter α. In the
first stage, a fraction of the budget, b′ = b× α, is allocated to prioritize KV cache entries with high
attention weights. In the second stage, the remaining budget, b′′ = b− b′, is used to consider both the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Perturbation-Constrained Selection
Input: Budgets b, Query State q, Cache Entries K,V ,
Parameter Matrix WO , Hyper Parameter α = 0.25
Output: Critical Cache Entries K̂, V̂
1: initialize empty cache K̂, V̂
2: A = softmax(qKT); V = VWO

3: A = (A+ ϵ)⊙ (L1 norm of each rows in V)
4: b′ = b× α; b′′ = b− b′

5: for all Ki, Vi ∈ K,V that Ai ∈ Topk(A, b′)

6: add Ki, Vi to K̂, V̂ Stage 1
7: remove Ai,Ki, Vi from A,K, V
8: for all Ki, Vi ∈ K,V that Ai ∈ Topk(A, b′′):
9: add Ki, Vi to K̂, V̂ Stage 2

10: return Critical Cache Entries K̂, V̂

Algorithm 2 Observation Win Based Eviction.
Input: All Query States Q ∈ Rn×dh , KV Cache
Entries K,V ∈ Rn×dh , Window Size n′

Output: Critical Cache Entries K̂, V̂
1: allocate budget b across heads #AdaKV,HeadKV
2: Q̂ = Q[−n′ :, :]

3: A = softmax(Q̂KT) ; Ā = A.mean(dim = 0)
4: Ā = maxpooling(Ā) # SnapKV
5: if using regular selection then
6: select b critical entries K̂, V̂ by Topk(Ā

′, b)
7: else if using our selection then
8: select b critical entries K̂, V̂ by Algorithm 1
9: end if

10: return Critical Cache Entries K̂, V̂

norms of the projected value states and the attention weights 2. This two-stage selection employs a
Top-K operation to effectively constrain the worst-case perturbation. To substantiate the effectiveness
of our proposed algorithm, we provide a theoretical analysis in the following section.

3.5 THEORETICAL ANALYSIS OF ALGORITHM 1

Our proposed algorithm consists of two stages, referred to as stage 1 and stage 2, which work
collaboratively to select critical cache entries. Under the guarantee provided by Assumption 3.4, the
selection in stage 1 ensures that stage 2 adheres to the constraints on perturbations, as formalized in
Theorem 3.5. Let N ′ and N ′′ represent the selections from the stage 1 and 2, respectively, satisfying:∑n

i=1 N ′
i = b′ and

∑n
i=1 N ′′

i = b′′.Thus, the overall selection is N = N ′ +N ′′.
Assumption 3.4. In the first stage, a portion of the overall budget b′ = b× α is sufficient to collect
the cache entries corresponding to the highest attention weights, ensuring their cumulative attention
weights σ exceed half of the total, i.e., σ =

∑n
i=1 N ′

iAi =
∑

Topk(A, b′) > 0.5.

In this paper, we set α in Assumption 3.4 to a fixed value 0.5 based on two key considerations. First,
as verified in Appendix A, allocating 50% of the total budget is sufficient to capture enough attention
weight in over 99% of attention heads, thereby satisfying Assumption 3.4 across various settings.
This is attributed to the power-law distribution of attention weights (Zhang et al., 2024b), where
a small fraction of cache entries accounts for the majority. Second, this choice is both robust and
easy to apply across different cache budgets and models. While using different α values for specific
models, budgets, or attention heads could yield finer optimization, it would also introduce significant
search overhead and complicate deployment. Thus, we defer such granular adjustments to future
work. Subsequent experiments and visual analyses further confirm that setting α to 0.5 is a simple
yet effective choice. 3

Theorem 3.5. Given the stage 1 selection N ′
i , the objective N ′′

i of stage 2 is to minimize an upper
bound θ̂ of the output perturbation L, using the remaining budget b′′ = b− b′.

argmin
N ′′

i

θ̂ where θ̂ = C′ −
(
2− 1

σ

)∑n

i=1
N ′′

i Ai∥Vi,:∥1

subject to
∑n

i=1
N ′′

i = b′′, C′ = C−
(
2− 1

σ

)∑n

i=1
N ′

iAi∥Vi,:∥1. (6)

Proof. See Appendix I.3 for details.
Theorem 3.5 demonstrates that our second stage selection directly minimizes an upper bound of
output perturbation for identifying critical cache entries. Unlike traditional strategies that rely solely
on high attention weights for entry selection, the second stage of our algorithm jointly leverages
both the attention weights and the value states projected through the parameter matrix, to directly
constrain the worst-case output perturbation.

2A small ϵ (1E-4) is added to mitigate information loss from sparse attention weights during multiplication.
3As shown in Appendix B, our algorithm’s performance is robust to the choice of hyperparameter α.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.6 INTEGRATING INTO SOTA CACHE EVICTION METHODS

We showcase the effectiveness of our algorithm by integrating it into existing cache eviction methods
that rely on accumulated attention weights for selecting critical entries. Current SOTA plug-and-play
cache eviction workflow is established by SnapKV (Li et al., 2024), which introduces an observation
window mechanism to stably accumulate attention weights and employs the max pooling operations to
avoid missing key information. Subsequent research (Zhang et al., 2024a; Feng et al., 2024) highlights
the uneven distribution of critical cache entries across different heads, prompting the development of
budget allocation strategies. For example, AdaKV (Feng et al., 2024) improves upon SnapKV by
dynamically detecting variations in critical KV cache entries at runtime, enabling flexible budget
scheduling and enhancing output quality. Other methods, such as HeadKV (Fu et al., 2024), further
refine budget scheduling, albeit at the cost of offline training. Despite their differences in budget
allocation, these SOTA methods—SnapKV, AdaKV, and HeadKV—all use the same underlying
mechanism for KV cache selection. Consequently, they can be unified under the framework of
Algorithm 2, which consists of two main components: budget allocation across heads (line 1) and
an observation window with a pooling mechanism for attention weight accumulation (lines 2–5).
Our algorithm integrates seamlessly into this framework by replacing the original selection process,
which is based solely on attention weights (lines 5–9).

4 EXPERIMENTS

4.1 SETTINGS

Models. We select three advanced open-source LLMs for evaluation: Llama-3.1-8B-Instruct (Llama-
3.1-8B) (Dubey et al., 2024), Mistral-7B-Instruct-v0.3 (Mistral-7B) (Jiang et al., 2023), and Qwen-2.5-
32B (Team, 2024). These models span different model families and parameter scales, demonstrating
the broad applicability of our algorithm.

Compression scenario. Following (Feng et al., 2024; NVIDIA, 2024), the context is compressed
independently before question is introduced. This setting better simulates practical scenarios (e.g.,
multi-turn QA or prefixed contexts) where multiple questions often pertain to the same context, or the
question is unavailable during context compression. It therefore provides a more realistic evaluation
of cache eviction methods. For the simple compression setting, where the context and question are
compressed together, please refer to Appendix D

Baselines. We integrated our algorithm with three cache eviction methods—SnapKV (Li et al.,
2024), AdaKV (Feng et al., 2024) and HeadKV (Fu et al., 2024). These respectively represent
the SOTA cache eviction in non–budget-allocation, adaptive budget allocation, and offline budget
allocation. By comparing the quality before and after integration, we demonstrate the improvements
our algorithm brings to these methods. We set α = 0.5 in Algorithm 1 for all experiments; see
Appendix B for robustness analysis. SnapKV and AdaKV used their original settings: max-pooling
kernel size 7 and observation window 32 (Feng et al., 2024). All methods were implemented with
FlashAttention-2 for faster inference. We also include the performance of H2O (Zhang et al., 2024b)
for reference, a foundational work in this area. Since it requires global attention weights—unsupported
by FlashAttention-2—it triggers OOM. Following (Xiao et al., 2024b), we simulate H2O by observing
the last 256 tokens’ attention weights.

4.2 RULER BENCHMARK

The Ruler benchmark (Hsieh et al., 2024) comprises 13 synthetic tasks for evaluating long-context
capabilities—a challenging testbed for cache eviction. It includes two Word Extraction variants (CWE
and FWE)—eight Needle-In-A-Haystack variations (NIAH), as well as Question Answering(QA)
and Variable Tracking (VT), with each scored out of 100. To match the Mistral model’s 32K context
window and control cost, we set the ruler length to 32K and sampled 100 instances per task.

Table 1 reports task-wise scores at a 40% cache size. SnapKV, AdaKV, and HeadKV all degrade
under cache eviction, but each sees substantial gains when augmented with our algorithm. For
instance, on Qwen2.5-32B, our algorithm yields consistent gains across all 13 tasks for all three
eviction method. Quantitatively, our algorithm increases the average score of SnapKV from 63.86 to
81.09 and AdaKV from 71.09 to 83.87. When applied to HeadKV, the average score climbs from

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Detail Results on Ruler Benchmark with 40% Cache Size
CWE FWE NIAH

Multikey1

NIAH
Multikey2

NIAH
Multikey3

NIAH
Multiquery

NIAH
Multivalue

NIAH
Single1

NIAH
Single2

NIAH
Single3

QA1 QA2 VT Avg. Score ↓ loss

L
la

m
a-

3.
1-

8B
Full Cache 44.90 95.33 100.00 100.00 100.00 98.25 99.75 100.00 100.00 100.00 84.00 62.00 99.40 91.05 ↓ 00.0%

SnapKV 20.30 90.00 93.00 36.00 31.00 92.75 87.50 100.00 97.00 46.00 41.00 52.00 96.60 67.93 ↓ 25.4%

w/ ours 33.90 92.67 100.00 50.00 32.00 99.00 99.00 100.00 100.00 80.00 63.00 53.00 97.00 76.89 ↓ 15.6%

AdaKV 26.60 92.00 98.00 66.00 71.00 97.50 98.25 99.00 100.00 75.00 43.00 54.00 98.60 78.38 ↓ 13.9%

w/ ours 52.40 94.67 100.00 93.00 65.00 99.25 98.75 100.00 100.00 97.00 64.00 58.00 99.60 86.28 ↓ 5.2%

HeadKV 17.10 92.67 99.00 66.00 75.00 97.00 93.00 100.00 98.00 94.00 56.00 54.00 98.00 79.98 ↓ 12.2%

w/ ours 56.50 93.33 100.00 93.00 90.00 99.50 99.00 100.00 100.00 99.00 72.00 59.00 99.40 89.29 ↓ 1.9%

M
is

tr
al

-7
B

Full Cache 30.00 95.67 94.00 69.00 31.00 94.25 95.00 99.00 100.00 100.00 60.00 59.00 90.60 78.27 ↓ 00.0%

SnapKV 32.20 91.67 16.00 11.00 4.00 11.25 8.00 65.00 17.00 2.00 34.00 51.00 74.80 32.15 ↓ 58.9%

w/ ours 48.50 94.67 31.00 7.00 5.00 26.00 24.25 74.00 48.00 2.00 45.00 53.00 81.80 41.56 ↓ 46.9%

AdaKV 25.30 92.33 25.00 14.00 8.00 20.00 14.25 44.00 34.00 6.00 44.00 55.00 71.60 34.88 ↓ 55.4%

w/ ours 40.50 95.33 89.00 27.00 8.00 85.00 95.00 99.00 100.00 54.00 60.00 57.00 89.40 69.17 ↓ 11.6%

HeadKV 30.60 92.67 24.00 27.00 17.00 16.25 16.50 70.00 36.00 4.00 45.00 53.00 82.60 39.59 ↓ 49.4%

w/ ours 49.50 95.00 53.00 31.00 17.00 60.50 62.25 84.00 82.00 25.00 53.00 55.00 81.40 57.59 ↓ 26.4%

Q
w

en
2.

5-
32

B

Full Cache 90.60 96.00 99.00 90.00 90.00 100.00 99.25 100.00 100.00 100.00 82.00 74.00 100.00 93.91 ↓ 00.0%

SnapKV 87.90 92.00 63.00 23.00 9.00 71.75 61.75 100.00 94.00 14.00 50.00 64.00 99.80 63.86 ↓ 32.0%

w/ ours 88.60 93.33 98.00 35.00 16.00 99.75 99.50 100.00 100.00 88.00 67.00 69.00 100.00 81.09 ↓ 13.7%

AdaKV 88.90 93.33 81.00 34.00 21.00 87.50 83.50 100.00 97.00 19.00 55.00 64.00 100.00 71.09 ↓ 24.3%

w/ ours 89.50 94.33 98.00 54.00 34.00 100.00 99.50 100.00 100.00 91.00 64.00 66.00 100.00 83.87 ↓ 10.7%

HeadKV 89.30 94.67 92.00 46.00 45.00 97.25 96.25 100.00 100.00 59.00 68.00 66.00 100.00 81.04 ↓ 13.7%

w/ ours 89.90 95.33 99.00 85.00 71.00 100.00 98.75 100.00 100.00 99.00 72.00 69.00 100.00 90.69 ↓ 3.4%

AdaKV AdaKV w/ ours HeadKV HeadKV w/ ours SnapKV SnapKV w/ ours H2O

100% 60% 40% 20%
Cache Size

50

60

70

80

90

Sc
or

e

Llama-3.1-8B - Average

100% 60% 40% 20%
Cache Size

30

40

50

60

70

80

Sc
or

e

Mistral-7B-v0.3 - Average

100% 60% 40% 20%
Cache Size

10

20

30

40

50

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - cwe

100% 60% 40% 20%
Cache Size

84

86

88

90

92

94

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - fwe

100% 60% 40% 20%
Cache Size

60

70

80

90

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multikey_1

100% 60% 40% 20%
Cache Size

20

40

60

80

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multikey_2

100% 60% 40% 20%
Cache Size

20

40

60

80

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multikey_3

100% 60% 40% 20%
Cache Size

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multiquery

100% 60% 40% 20%
Cache Size

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multivalue

100% 60% 40% 20%
Cache Size

96

97

98

99

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_single_1

100% 60% 40% 20%
Cache Size

75

80

85

90

95

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_single_2

100% 60% 40% 20%
Cache Size

20

40

60

80

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_single_3

100% 60% 40% 20%
Cache Size

40

50

60

70

80

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - qa_1

100% 60% 40% 20%
Cache Size

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - qa_2

100% 60% 40% 20%
Cache Size

80

85

90

95

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - vt

Figure 2: Performance on Ruler Tasks with Varying Cache Sizes

81.04 to 90.69, mitigating the loss relative to the full cache from 13.7% to just 3.4%. Similar trends
hold for the Llama and Mistral models, with an average improvement of 14.6 points across all cases.

Figure 2 further offers a comprehensive view across different cache sizes for both the Llama and
Mistral models. Results for Qwen2.5-32B are omitted due to the prohibitive cost of evaluating a
32B-scale model across multiple cache sizes. More results for the Mistral are provided in Appendix E.
On both the Llama and Mistral models, our method consistently and significantly improves all base
methods. For instance, with Llama model at a 60% cache size, AdaKV achieves an average score
of 87.92. When enhanced with our algorithm, this score increases to 90.94—almost matching the
full-cache performance of 91.04. The benefits of our algorithm are even more pronounced at small
cache sizes. at 40% and 20%, our algorithm increases AdaKV’s average scores from 78.38 to 86.28
and from 57.48 to 68.94, respectively. Similarly, on Mistral, our algorithm boosts AdaKV from 48.80
to 75.85 at 60% size, and from 34.88 to 69.17 at 40% size. These results highlight the effectiveness
of our algorithm as a universal enhancement to a wide range of existing KV cache eviction methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Task Domain Scores on LongBench.

Domain Full
Cache

SnapKV 20%b SnapKV 40%b AdaKV 20%b AdaKV 40%b HeadKV 20%b HeadKV 40%b

base w/ ours base w/ ours base w/ ours base w/ ours base w/ ours base w/ ours
L

la
m

a-
3.

1-
8B

SingleDoc. QA 43.10 28.78 30.43 35.27 38.27 31.39 32.74 36.63 39.24 31.53 33.60 39.96 40.61
MultiDoc. QA 46.49 33.51 35.87 40.50 43.17 34.90 35.31 41.36 45.11 34.97 36.33 43.10 44.33
Summarization 28.97 23.82 24.64 26.11 27.15 24.29 24.98 26.66 27.31 24.49 25.28 27.06 27.24
Fewshot 69.45 61.95 63.04 65.10 66.87 63.70 64.74 66.43 68.19 62.79 65.41 65.64 68.06
Synthetic 53.73 48.19 52.16 53.17 54.22 50.39 52.30 53.00 53.60 49.32 52.18 52.89 54.04
Code 57.86 60.05 60.75 60.49 60.91 61.14 61.16 60.30 60.60 61.14 58.85 61.34 57.89
Avg. Score 49.20 41.29 42.99 45.52 47.29 42.87 43.77 46.24 48.00 42.64 43.99 47.23 47.79
Avg. Loss ↓ 0.00 % 16.1 % 12.6 % 7.5 % 3.9 % 12.9 % 11.0 % 6.0 % 2.4 % 13.3 % 10.6 % 4.0 % 2.9 %

M
is

tr
al

-7
B

Single-Doc. QA38.37 25.13 28.24 31.64 34.33 27.25 29.06 33.42 36.06 27.94 30.95 33.90 36.21
Multi-Doc. QA 39.40 29.64 32.07 33.57 36.61 31.71 33.04 35.97 38.00 31.58 34.47 35.28 37.66
Summarization 28.76 24.18 24.61 26.24 26.94 24.18 24.83 26.24 27.06 24.49 25.63 26.76 27.72
Few-shot 70.33 63.89 65.54 67.95 68.57 66.00 67.08 68.67 69.79 64.73 67.58 67.46 69.78
Synthetic 52.50 45.25 46.53 49.75 51.05 48.00 49.25 50.75 50.84 47.79 48.02 50.50 50.20
Code 61.25 61.40 61.94 63.41 62.06 62.55 62.56 63.35 62.68 61.96 61.76 63.16 61.56
Avg. Score 47.38 40.11 41.77 44.03 45.35 41.78 42.85 45.07 46.23 41.61 43.46 44.84 46.10
Avg. Loss ↓ 0.0 % 15.3 % 11.8 % 7.1 % 4.3 % 11.8 % 9.6 % 4.9 % 2.4 % 12.2 % 8.3 % 5.4 % 2.7 %

Q
w

en
2.

5-
32

B Single-Doc. QA43.23 26.65 28.12 32.22 37.18 26.62 29.00 32.37 35.70 29.9 32.07 38.74 40.49
Multi-Doc. QA 54.03 42.00 46.88 50.90 54.55 42.36 47.40 52.75 53.75 46.35 50.60 55.13 55.33
Summarization 27.40 23.22 24.23 25.19 26.03 23.21 24.06 24.95 25.97 23.88 24.34 26.10 26.36
Few-shot 68.97 65.43 66.86 67.43 67.80 66.56 67.44 68.18 68.65 65.96 68.53 68.37 69.27
Synthetic 56.25 44.21 53.00 55.25 55.75 46.63 52.75 54.63 55.25 50.88 53.88 55.09 55.04
Code 41.93 45.04 44.72 44.89 43.75 46.30 45.43 46.21 44.88 44.83 46.27 44.88 46.54
Avg. Score 48.58 40.65 43.36 45.47 47.23 41.38 43.75 46.03 47.03 43.11 45.43 47.81 48.59
Avg. Loss ↓ 0.0 % 16.3 % 10.8 % 6.4 % 2.8 % 14.8 % 9.9 % 5.3 % 3.2 % 11.3 % 6.5 % 1.6 % 0.0 %

4.3 LONGBENCH EVALUATION

We also incorperate the real-world benchmark LongBench, consisting of 16 datasets across six task
domains: single-document QA, multi-document QA , summarization, few-shot learning, synthetic,
and code. For each dataset, we use the recommended evaluation metrics and report the average score
within each task domain. Detailed information can be found in Appendix F.

As shown in Table 2, our algorithm achieves improvements across most evaluation cases. In the
five widely used long-dependency task domains (single-document QA, multi-document QA , sum-
marization, few-shot learning, synthetic), cache eviction degrades the performance by disrupting
historical information. Our algorithm markedly mitigates this loss: across 90 test cases—covering
five long-dependency domains, three models (Llama-3.1-8B, Mistral-7B, Qwen2.5-32B), and three
compression methods (SnapKV, AdaKV, HeadKV) at two cache sizes—we observe improvements
in 88 cases. This 97.8% success rate highlights the breadth and robustness of our method. Nu-
merically, the effect is clear: for instance in Multi-Doc QA with Llama-3.1-8B, applying AdaKV
at 40% cache reduces the score from 46.49 to 41.36; adding our algorithm raises it to 45.11. On
Mistral-7B, compression lowers the score from 39.40 to 35.97, while our algorithm restores it to
38.00. By contrast, the code domain is naturally insensitive to cache eviction. At a 20% cache size,
performance can even surpass that of the full cache—a phenomenon reported in prior work Feng et al.
(2024); Li et al. (2024); Zhang et al. (2024a). This arises because code-related tend to rely less on
long-range dependencies; compressing the KV cache can paradoxically improve accuracy by filtering
out historical context. Consequently, the code domain is generally not considered a suitable indicator.

With respect to the average performance loss compared to full cache case, our method substantially
reduces this degradation from previous cache eviction methods. For instance, under a 40% cache size
on the Llama model, integrating our algorithm with AdaKV reduces the average loss from 6.0% to
2.4%. Similar gains are observed for the Mistral and Qwen models, where our algorithm decreases
the losses from 4.9% to 2.4% and from 5.3% to 3.2%, respectively. These results affirm that our
algorithm provides a robust and general solution for mitigating the quality loss caused by KV cache
eviction across diverse real-world applications.

4.4 EFFICIENCY EVALUATION

Cache eviction methods are typically applied after the prefill phase to significantly save cache memory
footprint and accelerate decoding. We evaluate efficiency using time-to-first-token (TTFT) for the
prefill phase (including eviction process) and single-step latency for decoding, measured on a single

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Prefilling (b) Decoding
Figure 3: Efficiency. (all use FlashAttention-2).

1 5 9 13 17 21 25 29
Head Index

1
5

9
13

17
21

25
29

La
ye

r I
nd

ex

llama snap 0.80

1 5 9 13 17 21 25 29
Head Index

1
5

9
13

17
21

25
29

La
ye

r I
nd

ex

llama ada 0.73

1 5 9 13 17 21 25 29
Head Index

1
5

9
13

17
21

25
29

La
ye

r I
nd

ex

mistral snap 0.73

1 5 9 13 17 21 25 29
Head Index

1
5

9
13

17
21

25
29

La
ye

r I
nd

ex

mistral ada 0.71

Our perturbation is lower Our perturbation is higher

(a) Llama-3.1-8B (b) Mistral-7B
Figure 4: Perturbation reduction across heads.

0 10 20 30
Layer Index

0

10

20

30

Pe
rtu

rb
at

io
ns

 R
ed

uc
tio

n

Llama-3.1-8B
Mistral-7B

(a) SnapKV
0 10 20 30

Layer Index

0

10

20

30
Pe

rtu
rb

at
io

ns
 R

ed
uc

tio
n

Llama-3.1-8B
Mistral-7B

(b) AdaKV
Figure 5: Perturbation reduction across layers.

2.5% 5% 10% 20% 40%
Cache Size

0

10

20

30

40

Pe
rtu

rb
at

io
ns

 R
ed

uc
tio

n

Llama-3.1-8B
Mistral-7B

(a) SnapKV
2.5% 5% 10% 20% 40%

Cache Size

0

10

20

30

Pe
rtu

rb
at

io
ns

 R
ed

uc
tio

n

Llama-3.1-8B
Mistral-7B

(b) AdaKV
Figure 6: Perturbation reduction across budgets.

80GB A100 GPU with Llama-3.1-8B and a 40% cache size. The additional overhead introduced by
our method is a minor increase in TTFT from the perturbation constraints algorithm, primarily due to
the computation of |VWO|. This operation is linear in complexity and has negligible impact. As
shown in Figure 3a, at a 32K context length, TTFT increases by only 0.06s for batch size 1 (3.54
→ 3.60) and 0.16s for batch size 4 (14.20 → 14.36, or 0.04s per request). For decoding, all cache
eviction methods demonstrate same efficiency and outperform the full cache baseline. For batch size
4 and 32K context, SnapKV (with or without our algorithm) achieves 0.0332s, representing a 2.49×
speedup over the full cache time of 0.0828s. Thus, our algorithm substantially improves the quality
of existing cache eviction methods while maintaining almost identical computational efficiency.

4.5 ANALYSIS OF PRACTICAL OUTPUT PERTURBATION

We further investigate whether our algorithm of constraining the theoretical perturbation upper bound
effectively reduces the practical output perturbation. We visualize the perturbations on attention
output of the first decoding token, using 200 samples from the MultiNews summarization dataset
with the KV cache compressed to 20% size. a. Head-wise Analysis: Our algorithm significantly
reduces head-wise average output perturbation across all samples in the Llama model, achieving lower
perturbations in 92% and 86% of attention heads for Llama-3.1-8B and Mistral-7B, respectively
(Figure 4). b. Layer-wise Analysis: Figure 5 shows how our algorithm progressively reduces
perturbation across layers, leading to substantial decreases in the final layer, which directly impacts
the generated token vocabulary distribution. c. Budget-wise Analysis: Figure 6 illustrates that
our method effectively lowers output perturbation across different cache sizes from 2.5% to 40%,
underscoring its robustness of varying budget constrains. These analyses demonstrate that our method
robustly reduces practical output perturbation by theoretically constraining worst-case perturbation
by Algorithm 1. This results in the post-eviction output hidden states that are more consistent with
those from the full KV cache, thereby enhancing generation consistency and reducing quality loss.

5 CONCLUSION

In this paper, we pinpoint a key limitation in current cache eviction methods: the reliance on intuitive
heuristics of using attention weights to select critical cache entries. For the first time, we formalize
the problem of critical cache entry selection from the perspective of output perturbation and provide
a theoretical analysis. Furthermore, we propose a novel algorithm based on constraining output
perturbation in the worst-case for critical cache selection, which is then integrated into existing SOTA
cache eviction methods. Comprehensive evaluations using 29 datasets from Ruler and Longbench
demonstrate that our algorithm improves the performance of existing cache eviction methods. Further
empirical analysis also confirms and explains this benefit from the perspective of practical output
perturbation: our algorithm consistently yields lower perturbation compared to previous methods that
rely solely on attention weights in various settings. Our work offers a new perspective for advancing
cache eviction area, highlighting its significant benefits and future potential.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Jared Q Davis, Albert Gu, Krzysztof Choromanski, Tri Dao, Christopher Re, Chelsea Finn, and
Percy Liang. Catformer: Designing stable transformers via sensitivity analysis. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 2489–2499. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/davis21a.html.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749, 2019.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2024. URL https://arxiv.
org/abs/2407.11550.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024a. URL https://openreview.net/forum?
id=uNrFpDPMyo.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms, 2024b. URL https://arxiv.org/
abs/2310.01801.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion, 2023. URL https://arxiv.org/abs/2306.
14893.

10

https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://proceedings.mlr.press/v139/davis21a.html
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2306.14893

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computa-
tional Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International
Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL
https://aclanthology.org/2020.coling-main.580.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. arXiv preprint arXiv:2104.02112, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention, 2024. URL
https://arxiv.org/abs/2407.02490.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension, 2017. URL https://arxiv.org/
abs/1705.03551.

Gregory Kamradt. Needle In A Haystack - pressure testing LLMs. Github, 2023. URL https:
//github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37:139997–140031, 2024a.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the difficulty
of training transformers. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
5747–5763, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.463. URL https://aclanthology.org/2020.emnlp-main.463.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023. URL https://arxiv.org/abs/2306.03091.

11

https://aclanthology.org/2020.coling-main.580
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://aclanthology.org/2020.emnlp-main.463
https://arxiv.org/abs/2306.03091

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

Junlin Lv, Yuan Feng, Xike Xie, Xin Jia, Qirong Peng, and Guiming Xie. Critiprefill: A segment-
wise criticality-based approach for prefilling acceleration in llms, 2024. URL https://arxiv.
org/abs/2409.12490.

NVIDIA. Kvpress, 2024. URL https://github.com/NVIDIA/kvpress.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024a.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=PxoFut3dWW.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024a.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference, 2024b. URL https://arxiv.
org/abs/2406.10774.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/10.
1007/s11704-024-40231-1.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads,
2024a. URL https://arxiv.org/abs/2410.10819.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024b.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer:
Pyramid kv cache compression for high-throughput llm inference. Association for Computational
Linguistics, 2024a.

12

https://arxiv.org/abs/2409.12490
https://arxiv.org/abs/2409.12490
https://github.com/NVIDIA/kvpress
https://openreview.net/forum?id=PxoFut3dWW
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2406.10774
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2410.10819

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yifei Yang, Zouying Cao, Qiguang Chen, Libo Qin, Dongjie Yang, Hai Zhao, and Zhi Chen. Kvsharer:
Efficient inference via layer-wise dissimilar kv cache sharing. arXiv preprint arXiv:2410.18517,
2024b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013, 2024.

Xuan Zhang, Fengzhuo Zhang, Cunxiao Du, Chao Du, Tianyu Pang, Wei Gao, and Min Lin.
Lighttransfer: Your long-context llm is secretly a hybrid model with effortless adaptation. In
Workshop on Reasoning and Planning for Large Language Models, 2025.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah,
Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based multi-
domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) Llama Cache 10% (b) Llama Cache 20% (c) Mistral Cache 10% (d) Mistral Cache 20%

1
5

9
13

17
21

25
29

Head Index

1591317212529
Layer Index

1
5

9
13

17
21

25
29

Head Index

1591317212529
Layer Index

1
5

9
13

17
21

25
29

Head Index

1591317212529
Layer Index

1
5

9
13

17
21

25
29

Head Index

1591317212529
Layer Index

0.0
0.2

0.4
0.6

0.8
1.0

Accum
ulated Attention W

eights

Figure 7: Assumption 3.4 validates in over 99% of heads across various cache sizes.

A ANALYSIS OF α IN ASSUMPTION 3.4

We ensure the reliability of Assumption 3.4 by analyzing the cumulative attention weights of critical
KV Cache entries

∑n
i=1 N iAi in individual heads. As shown in Figure 7, across different models

and cache sizes, almost all attention heads can accumulate over half of the attention weights as
said in Assumption 3.4. The only exceptions are a few attention heads in the first layer. This is
primarily due to the low sparsity of attention weights in certain heads of the first layer, a phenomenon
that has been noted in many related studies (Tang et al., 2024a; Zhang et al., 2024b;a). However,
this effect is negligible, as these heads constitute less than 1% of the total and their minor negative
impact is far outweighed by the substantial gains from the compliant heads. A potential solution is
to set the algorithm’s threshold α based on the head-wise characteristics to achieve greater benefits.
However, considering the additional complexity that might introduce, we retain a fixed α = 0.5 for
its simplicity and strong empirical performance, leaving fine-grained tuning for future work.

Table 3: Impact of safeguard α on algorithm performance based on Ada-KV.
Model Ada-KV α = 0 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7
Llama-3.1-8B 42.87 44.35 43.67 43.86 43.88 43.31 43.29
Mistral-7B-v0.3 41.78 31.94 42.54 42.76 42.88 42.98 42.80

B SENSITIVITY ANALYSIS OF α

As demonstrated previously, a simple choice of α = 0.5 is sufficient to ensure that Assumption 3.4
holds for nearly all attention heads. To further investigate the sensitivity of this safeguard parameter,
we evaluate its impact by varying its value and observing the average scores across all tasks in the
Longbench dataset. As shown in Table 3, our method, when integrated with Ada-KV, consistently
outperforms the base method Ada-KV across a range of α values (0.3, 0.4, 0.5, 0.6, and 0.7). For
instance, on the Mistral-7B-v0.3 model, our approach achieves scores between 42.54 and 42.98,
all of which are notably higher than the base score of 41.78. Nevertheless, the inclusion of α is a
necessary safeguard. Removing it entirely (i.e., setting α = 0) may lead to a violation of Assumption
3.4, resulting in a significant performance degradation. This is evidenced by the sharp drop to a score
of 31.94 on Mistral-7B-v0.3 when α is omitted.

C LIMITATIONS

Our work demonstrates that L1 distance-based perturbation-constrained selection algorithms can
effectively enhance the retrieval scores of the original SnapKV and AdaKV. We also evaluated the
L2 distance metric and found its performance to be similar to the L1 distance. Future work may
explore more sophisticated distance metrics within this framework. In addition, our current approach
assumes that the α = 50% most important KV cache entries are retained in the first stage to ensure the
assumption hold (Appendix A). Nonetheless, exploring more fine-grained strategies can be explored
for further improvement.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

AdaKV AdaKV w/ ours HeadKV HeadKV w/ ours SnapKV SnapKV w/ ours H2O

100% 60% 40% 20%
Cache Size

30

40

50

60

70

80

Sc
or

e

Mistral-7B-v0.3 - Average

100% 60% 40% 20%
Cache Size

25

30

35

40

45

50

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - cwe

100% 60% 40% 20%
Cache Size

88

90

92

94

96

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - fwe

100% 60% 40% 20%
Cache Size

20

40

60

80

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - niah_multikey_1

100% 60% 40% 20%
Cache Size

10

20

30

40

50

60

70

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - niah_multikey_2

100% 60% 40% 20%
Cache Size

5

10

15

20

25

30

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - niah_multikey_3

100% 60% 40% 20%
Cache Size

20

40

60

80

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - niah_multiquery

100% 60% 40% 20%
Cache Size

20

40

60

80

100

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - niah_multivalue

100% 60% 40% 20%
Cache Size

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - niah_single_1

100% 60% 40% 20%
Cache Size

20

40

60

80

100

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - niah_single_2

100% 60% 40% 20%
Cache Size

20

40

60

80

100

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - niah_single_3

100% 60% 40% 20%
Cache Size

35

40

45

50

55

60
Pe

rfo
rm

an
ce

 S
co

re

Mistral-7B-v0.3 - qa_1

100% 60% 40% 20%
Cache Size

48

50

52

54

56

58

60

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - qa_2

100% 60% 40% 20%
Cache Size

20

40

60

80

Pe
rfo

rm
an

ce
 S

co
re

Mistral-7B-v0.3 - vt

Figure 8: Performance on Ruler Tasks of Mistral-7B-v0.3 with Varying Cache Sizes

D TASK DOMAIN ANALYSIS OF LONGBENCH RESULTS WITH AN EASY
COMPRESSION SETTING

Table 4 reports domain scores on the LongBench benchmark under an easy compression setting,
where both the context and question are simultaneously provided for compression . Because this
setup allows cache compression targeted to specific questions, it is considered simple and results
in minimal quality degradation, with scores nearly matching the full cache case even in 20% cache
size. Nevertheless, our enhanced cache eviction method also improves quality across most domains.
However, this scenario is not widely applicable in practice, as it fails in multi-turn question answering
or real-world contexts where future questions cannot be anticipated. Therefore, we recommend
evaluating methods under more challenging compression settings as adopted in our main experiments
that better reflect practical use cases.

E DETAIL RESULTS OF MISTRAL-7B-V0.3 ON RULER BENCHMARK

Figure 8 presents the detailed results of the Mistral model on the Ruler benchmark with varying cache
sizes. Overall, our algorithm significantly improves the performance of all three baseline methods.

F DETAILS OF 16 DATASETS IN LONGBENCH

As a widely used long-context benchmark (Feng et al., 2024; Li et al., 2024; Zhang et al., 2024a),
LongBench consists of 16 datasets across six task domains: single-document question answering
(QA) (Kočiskỳ et al., 2018; Dasigi et al., 2021), multi-document QA (Yang et al., 2018; Ho et al.,
2020; Trivedi et al., 2022), summarization (Huang et al., 2021; Zhong et al., 2021; Fabbri et al.,
2019), few-shot learning (Joshi et al., 2017; Gliwa et al., 2019; Li & Roth, 2002), synthetic tasks (Bai
et al., 2023), and code generation (Guo et al., 2023; Liu et al., 2023). The average token length across
all 16 datasets is 6,711. Table 5 provides detailed information on the 16 datasets in LongBench.

G ANALYSIS OF PREVIOUS SOLELY ATTENTION WEIGHTS-BASED
SELECTION FROM A PERTURBATION PERSPECTIVE

Our algorithm differs from the previous solely attention weights-based selection method primarily in
Stage 2. Specifically, by modifying stage 2 of our algorithm to perform the same attention weights-
based selection operation as in stage 1, our approach will degrade into the previous method. This

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Domain Scores on LongBench under Easy Compression Setting.

Domain Full
Cache

AdaKV b = 5% AdaKV b = 10% AdaKV b = 20% AdaKV b = 40%

base w/ ours base w/ ours base w/ ours base w/ ours
L

la
m

a-
3.

1-
8B

E
as

y
Se

tti
ng

SingleDoc. QA 43.10 38.57 38.79 41.36 41.07 42.73 43.05 43.31 43.59
MultiDoc. QA 46.49 44.61 45.28 46.03 46.08 46.64 46.42 47.02 46.97
Summarization 28.97 22.85 22.97 24.17 24.63 25.49 26.05 27.24 27.79
Fewshot 69.45 67.06 67.49 68.65 68.72 69.19 69.03 69.36 69.40
Synthetic 53.73 53.49 53.36 53.25 53.56 53.57 54.45 53.96 54.59
Code 57.86 56.72 57.26 57.63 58.24 58.43 58.57 58.27 58.46
Ave. Score 49.20 46.23 46.55 47.65 47.82 48.51 48.73 49.08 49.33
Avg. Loss ↓ 0.0 % 6.0 % 5.4 % 3.2 % 2.8 % 1.4 % 1.0 % 0.2 % -0.3 %

Table 5: Details of 16 datasets in LongBench.

Task Task Type Eval metric Avg len Language Sample Num

NarrativeQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MultiFieldQA-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMultihopQA Multi-Doc. QA F1 4,887 EN 200
MuSiQue Multi-Doc. QA F1 11,214 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PassageCount Synthetic Accuracy 11,141 EN 200
PassageRetrieval-en Synthetic Accuracy 9,289 EN 200
LCC Code Edit Sim 1,235 Python/C#/Java 500
RepoBench-P Code Edit Sim 4,206 Python/Java 500

modification allows us to conveniently apply perturbation-constrained theory to analyze the earlier
attention weights-based selection strategy.
Theorem G.1. Previous solely attention weights-based selection is equivalent to minimizing another
upper bound θ̂relax, a relaxed form of θ̂, with remaining budget b′′ based on stage 1 selection.

θ̂relax = C ′ −M

(
2− 1

σ

)∑n

i=1
N ′′

i Ai where M = MIN(∥Vi,:∥1) (7)

Proof. We relax the upper bound θ̂ by utilizing M = MIN(∥Vi,:∥1):

θ̂ = C ′ −
(
2− 1

σ

)∑n

i=1
N ′′

i Ai∥Vi,:∥1 ≤ C ′ −M

(
2− 1

σ

)∑n

i=1
N ′′

i Ai = θ̂relax (8)

In the solely attention weights-based selection strategy, the N ′′ selection is performed using Top−
K(Ai, b

′′) to maximize
∑n

i=1 N ′′
i Ai. This is therefore equivalent to minimizing the relaxed upper

bound, θ̂relax.

Theorem G.1 demonstrates that the solely attention weights-based selection strategy is equivalent to
minimizing the relaxed upper bound θ̂relax. In contrast, our algorithm optimizes a tighter upper bound,
θ̂. While this does not guarantee that our approach will yield a strictly better solution, intuitively,
an algorithm designed to optimize a tighter bound often achieves better results. Theorem G.1 also
provides some insight into why a critical KV Cache subset can replace the entire KV Cache in cache
eviction methods. Due to the power-law distribution of attention weights (Zhang et al., 2024b),
removing most cache entries with near-zero attention weights has a negligible impact on this upper
bound. Consequently, the perturbation to the actual output is also bounded by this upper bound.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

AdaKV w/ ours(L2) AdaKV w/ ours(L1) HeadKV w/ ours(L2) HeadKV w/ ours(L1)

100% 60% 40% 20%
Cache Size

65

70

75

80

85

90

95

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - Average

100% 60% 40% 20%
Cache Size

93

94

95

96

97

98

99

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - cwe

100% 60% 40% 20%
Cache Size

86

88

90

92

94

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - fwe

100% 60% 40% 20%
Cache Size

70

75

80

85

90

95

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multikey_1

100% 60% 40% 20%
Cache Size

30

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multikey_2

100% 60% 40% 20%
Cache Size

30

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multikey_3

100% 60% 40% 20%
Cache Size

75

80

85

90

95

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multiquery

100% 60% 40% 20%
Cache Size

80

85

90

95

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_multivalue

100% 60% 40% 20%
Cache Size

92

94

96

98

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_single_1

100% 60% 40% 20%
Cache Size

93

94

95

96

97

98

99

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_single_2

100% 60% 40% 20%
Cache Size

20

40

60

80

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - niah_single_3

100% 60% 40% 20%
Cache Size

60

65

70

75

80

85
Pe

rfo
rm

an
ce

 S
co

re
Llama-3.1-8B - qa_1

100% 60% 40% 20%
Cache Size

45

50

55

60

65

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - qa_2

100% 60% 40% 20%
Cache Size

90

92

94

96

98

100

Pe
rfo

rm
an

ce
 S

co
re

Llama-3.1-8B - vt

Figure 9: Choice of Distance Metric: L1 distance and L2 distance.

H CHOICE OF DISTANCE METRIC

To evaluate the impact of different distance metrics on our algorithm, we compared the commonly
used L1 and L2 distances on the 4K Ruler Benchmark. As shown in Figure 9, we observed no
significant improvement in quality when using the more complex L2 distance compared to the
simpler L1 distance. For its simplicity, we adopt the L1 distance metric in our analysis. Exploring
more advanced distance metrics within our framework remains a promising direction for future work.

I PROOFS FOR THEOREMS

I.1 PROOF FOR THEOREM 3.2

Theorem. By introducing a mask N ∈ Rn applied through element-wise multiplication denoted by
⊙, we can establish the relation between A′ and A as follows:

A′ =
N ⊙A∑n
i=1 NiAi

where Ni =

{
0 if Ki, Vi is non-critical
1 otherwise.

and
∑n

i=1
Ni = b

Proof. Let a = qKT /
√
d, we can express the attention weights A′ under critical cache entries as:

A′ =
exp(M+ a)∑n

i=1 exp(M+ a)i
(9)

=
N ⊙ exp(a)∑n
i=1 Niexp(a)i

= N ⊙ exp(a)∑n
i=1 exp(a)i

∑n
i=1 exp(a)i∑n

i=1 Niexp(a)i

Considering A = exp(a)∑n
i=1 exp(a)i

, thus
∑n

i=1 NiAi =
∑n

i=1 Niexp(a)i∑n
i=1 exp(a)i

. Therefore, A′ = N⊙A∑n
i=1 NiAi

.

I.2 PROOF FOR THEOREM 3.3

Theorem. The output perturbation L can be bounded by θ:

L ≤ θ = C −
(
2− 1∑n

i=1 NiAi

)∑n

i=1
NiAi∥Vi,:∥1, (10)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where C denotes the
∑n

i=1 Ai∥Vi,:∥1 and V ∈ Rn×d = VWO denotes all projected values states
through parameter matrix WO.

Proof. Let V ∈ Rn×d = VWO denote all projected value states, thus:

L = ∥
(
A− N ⊙A∑n

i=1 NiAi

)
V∥1 (11)

= ∥
∑n

i=1

(
Ai −

NiAi∑n
i=1 NiAi

)
Vi,:∥1

≤ θ =
∑n

i=1
∥
(
Ai −

NiAi∑n
i=1 NiAi

)
Vi,:∥1 (12)

=
∑n

i=1
|Ai −

NiAi∑n
i=1 NiAi

| × ∥Vi,:∥1

Given that the multiplicative mask N is either 0 or 1, the index set i ∈ [1, n] can be split into I0 and
I1, according to its value. Thus:

θ =
∑

i∈I0
Ai∥Vi,:∥1 +

∑
i∈I1

(
Ai∑n

i=1 NiAi
−Ai

)
∥Vi,:∥1 (13)

Let C represent
∑n

i=1 Ai∥Vi,:∥1, a constant independent of the selection of critical entries. We can
express

∑
i∈I0

Ai∥Vi,:∥1 as C −
∑

i∈I1
Ai∥Vi,:∥1. Thus:

L ≤ θ = C +
∑

i∈I1

(
Ai∑n

i=1 NiAi
− 2Ai

)
∥Vi,:∥1 (14)

= C −
(
2− 1∑n

i=1 NiAi

)∑n

i=1
NiAi∥Vi,:∥1

I.3 PROOF FOR THEOREM 3.5

Theorem. Given the stage 1 selection N ′
i , the objective N ′′

i of stage 2 is to minimize an upper bound
θ̂ of the output perturbation L, using the remaining budget b′′ = b− b′.

argmin
N ′′

i

θ̂ where θ̂ = C ′ −
(
2− 1

σ

)∑n

i=1
N ′′

i Ai∥Vi,:∥1

subject to
∑n

i=1
N ′′

i = b′′, C ′ = C −
(
2− 1

σ

)∑n

i=1
N ′

iAi∥Vi,:∥1. (15)

Proof. From Assumption 3.4, the first stage selection ensures:
∑n

i=1 NiAi >
∑n

i=1 N ′
iAi = σ >

0.5, leading to the inequality: 2− 1∑n
i=1 NiAi

> 2− 1
σ > 0.

θ =C −
(
2− 1∑n

i=1 NiAi

)∑n

i=1
(N ′

i +N ′′
i)Ai∥Vi,:∥1

<C −
(
2− 1

σ

)∑n

i=1
N ′

iAi∥Vi,:∥1

−
(
2− 1

σ

)∑n

i=1
N ′′

i Ai∥Vi,:∥1 (16)

Let C ′ = C−
(
2− 1

σ

)∑n
i=1 N ′

iAi∥Vi,:∥1, then we can derive a new upper bound θ̂ for L factoring
by second stage selection N ′′

i : θ < C ′ −
(
2− 1

σ

)∑n
i=1 N ′′

i Ai∥Vi,:∥1 = θ̂ Thus, minimizing θ̂
corresponds to selecting the b′′ entries with the highest values of Ai = Ai∥Vi, :∥1, as implemented
in the stage 2 selection (Algorithm 1).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

J ADDITIONAL RELATED WORKS

Some adaptive methods in KV cache eviction or sparse attention, such as (Ge et al., 2024b; Jiang et al.,
2024), employ varying critical cache selection strategies tailored to the characteristics of different
attention heads. For example, some heads use attention weights based selection, while others utilize
fixed patterns, such as recent window-based or special token-based approaches. Our method can also
be applied to enhance performance in the head which according to attention weights-based selection
strategies, providing a boost to adaptive methods.

A range of techniques beyond cache eviction have also been explored to reduce the KV cache footprint.
Think (Xu et al., 2024) compresses the cache by decreasing the number of channels in key states.
Methods like MiniCache exploit similarities between layers to achieve compact representations (Liu
et al., 2024a; Yang et al., 2024b). KV cache quantization (Liu et al., 2024c; Hooper et al., 2024) also
contributes by lowering the precision of individual entries. All of these methods are orthogonal to
cache eviction and offer potential for further enhancement.

Sparse attention methods (Jiang et al., 2024; Tang et al., 2024b; Lv et al., 2024) are conceptually
related to the KV cache eviction methods discussed in this paper. While KV cache eviction retains
only a small subset of essential KV cache entries, sparse attention methods maintain all entries during
inference. However, during computation, only the most critical entries are selectively utilized in
the sparse attention mechanism. Consequently, sparse attention methods do not reduce the memory
footprint of the KV cache but enhance inference speed and often offer better output quality than cache
eviction methods (Tang et al., 2024b). Existing sparse attention methods typically rely on approximate
estimations of attention weights to identify critical entries (Tang et al., 2024b; Lv et al., 2024). Future
works could explore integrating our proposed perturbation-constrained selection algorithm to refine
these methods by achieving more accurate critical cache entry identification.

K PROMPT TEMPLATES FOR RULER AND LONGBENCH IN REGULAR AND
CONTEXT-ONLY COMPRESSION SCENARIOS

Below are prompt templates for various tasks. We assess performance under two scenarios: regular
compression and context-only compression. We adhere to the input prompt format from KVPress
(NVIDIA, 2024), dividing the input into context and question segments. The question segment
is highlighted in green, while other colors represent the context segment. In regular compression,
both the context and question segments are input into the model and compressed. For context-
only compression, where future questions are unpredictable, only the context segment is input for
compression. After compression, the question segment is input for answer generation.

K.1 NIAH TEMPLATE

In the Needle-in-A-Haystack task, a keyword, referred to as the "needle", is embedded within a
lengthy context known as the "haystack". The objective of this task is to extract the "needle" from the
"haystack", which is composed of essays by Paul Graham (Kamradt, 2023).

For the Single Needle-in-A-Haystack(S-NIAH) task, the goal is to retrieve a single "needle". Similarly,
the Multi-Value Needle-in-A-Haystack(MV-NIAH) task requires the extraction of multiple inserted
"needles". To prevent models from refusing to answer our questions, we append the answer prefix to
the input, prompting the models to generate answers.

K.2 LONGBENCH TEMPLATE

The construction of the LongBench template follows the official formats (Bai et al., 2024) to evaluate
performance under regular compression and context-only compression.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Single retrieval and multi retrieval templates in Needle-in-A-Haystack tests.

Single retrieval

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will
quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number}.
What is the special magic number for {word} mentioned in the provided text?

The special magic number for {word} mentioned in the provided text is

Multi retrieval

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will
quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number-1}.
...... One of the special magic numbers for {word} is: {number-2}.
...... One of the special magic numbers for {word} is: {number-3}.
...... One of the special magic numbers for {word} is: {number-4}.
What are all the special magic numbers for {word} mentioned in the provided text?

The special magic numbers for {word} mentioned in the provided text are

Table 7: LongBench templates. Single-Doc. QA Tasks.

NarrativeQA

Task Template:
You are given a story, which can be either a novel or a movie script, and a question. Answer the
question asconcisely as you can, using a single phrase if possible. Do not provide any explanation.

Story: {context}

Now, answer the question based on the story asconcisely as you can, using a single phrase if possible.
Do not provide any explanation.

Question: {question}

Qasper

Task Template:
You are given a scientific article and a question. Answer the question as concisely as you can, using a
single phrase or sentence if possible. If the question cannot be answered based on the information
in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or
"unanswerable". Do not provide any explanation.

Article: {context}

Answer the question based on the above article as concisely as you can, using a single phrase or
sentence if possible. If the question cannot be answered based on the information in the article, write
"unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not
provide any explanation.

Question: {question}

MultifieldQA EN

Task Template:
Read the following text and answer briefly.

{context}

Now, answer the following question based on the above text, only give me the answer and do not
output any other words.

Question: {question}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: LongBench templates. Multi-Doc. QA Tasks.

HotpotQA

Task Template:
Answer the question based on the given passages. Only give me the answer and do not output any
other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the answer and do not output any
other words.

Question: {question}

2WikimQA

Task Template:
Answer the question based on the given passages. Only give me the answer and do not output any
other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the answer and do not output any
other words.

Question: {question}

Musique

Task Template:
Answer the question based on the given passages. Only give me the answer and do not output any
other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the answer and do not output any
other words.

Question: {question}

Table 9: LongBench templates. Summarization Tasks.

Gov Report

Task Template:
You are given a report by a government agency. Write a one-page summary of the report.

Report:
{context}

Now, write a one-page summary of the report.

QMSum

Task Template:
You are given a meeting transcript and a query containing a question or instruction. Answer the query
in one or more sentences.

Transcript:
{context}

Now, answer the query based on the above meeting transcript in one or more sentences.

Query: {question}

Multi News

Task Template:
You are given several news passages. Write a one-page summary of all news.

News:
{context}

Now, write a one-page summary of all the news.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: LongBench templates. Few-shot Learning Tasks.

TREC

Task Template:
Please determine the type of the question below. Here are some examples of questions.

{context}
{question}

TriviaQA

Task Template:
Answer the question based on the given passage. Only give me the answer and do not output any
other words. The following are some examples.

{context}

{question}

SAMSum

Task Template:
Summarize the dialogue into a few short sentences. The following are some examples.

{context}

{question}

Table 11: LongBench templates. Synthetic Tasks.

Passage Count

Task Template:
There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please
carefully read these paragraphs and determine how many unique paragraphs there are after removing
duplicates. In other words, how many non-repeating paragraphs are there in total?

{context}

Please enter the final count of unique paragraphs after removing duplicates. The output format should
only contain the number, such as 1, 2, 3, and so on.

Passage Retrieval EN

Task Template:
Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph
the abstract is from.

{context}

The following is an abstract.

{question}

Please enter the number of the paragraph that the abstract is from. The answer format must be like
"Paragraph 1", "Paragraph 2", etc.

Table 12: LongBench templates. Code Tasks.

Lcc

Task Template:
Please complete the code given below.
{context}
Next line of code:

Repobench-P

Task Template:
Please complete the code given below.
{context}
{question}
Next line of code:

22

	Introduction
	Related Works
	Critical KV Cache Entry Selection
	Preliminaries
	What criteria determine the critical KV cache?
	Are attention weights sufficient for identifying critical cache entries?
	Identify critical cache entries by constraining worst-case perturbation.
	Theoretical analysis of Algorithm 1
	Integrating into SOTA cache eviction methods

	Experiments
	Settings
	Ruler Benchmark
	LongBench Evaluation
	Efficiency Evaluation
	Analysis of Practical Output Perturbation

	Conclusion
	Analysis of in Assumption 3.4
	Sensitivity Analysis of
	Limitations
	Task Domain Analysis of Longbench Results with an easy compression setting
	Detail Results of Mistral-7b-v0.3 on Ruler Benchmark
	Details of 16 Datasets in Longbench
	Analysis of Previous Solely Attention Weights-Based Selection from a Perturbation Perspective
	Choice of Distance Metric
	Proofs for Theorems
	Proof for Theorem 3.2
	Proof for Theorem 3.3
	Proof for Theorem 3.5

	Additional Related Works
	Prompt Templates for Ruler and Longbench in Regular and Context-only Compression Scenarios
	NIAH Template
	LongBench Template

