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ABSTRACT

Large language models have revolutionized natural language processing but face
significant challenges of high storage and runtime costs, due to the transformer
architecture’s reliance on self-attention, particularly the large Key-Value (KV)
cache for long-sequence inference. Recent efforts to reduce KV cache size by
pruning less critical entries based on attention weights remain empirical and lack
formal grounding. This paper presents a formal study on identifying critical KV
cache entries by analyzing attention output perturbation. Our analysis reveals
that, beyond attention weights, the value states within KV entries and pretrained
parameter matrices are also crucial. Based on this, we propose a perturbation-
constrained selection algorithm that optimizes the worst-case output perturbation to
identify critical entries. We demonstrate that our algorithm is a universal, plug-and-
play enhancement that incurs negligible computational overhead. When integrated
with three state-of-the-art cache eviction methods on three distinct LLMs, our
algorithm significantly reduces the compression loss by more than half on average
across 29 datasets from the Ruler and LongBench benchmarks. Further perturbation
analysis, at both the head and layer levels, confirms the principles underlying our
effectiveness. This work offers a new, formally grounded perspective to the cache
eviction field, opening promising avenues for future research.
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(a) Average loss on 13 Ruler datasets.
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Figure 1: Our algorithm reduces the loss of three existing cache eviction methods by more than half
on average. (shown at 40% cache size; see experiments for other sizes).

1 INTRODUCTION

Large language models (LLMs) using transformer architecture have excelled in many tasks, likes
chatbots (Achiam et al., 2023)(Yi et al., 2024) and intelligent agents (Wang et al., 2024). However, the
quadratic computational cost inherent in the transformer’s self-attention mechanism poses significant
challenges for practical deployment. To mitigate this, LLMs often use a Key-Value (KV) cache, which
stores intermediate results from the self-attention mechanism. Each KV cache entry corresponds to
the KV states of a past token, thus allowing for the bypassing of recomputation of these tokens during
autoregressive generation. However, as sequence lengths increase, the number of KV cache entries
expands dramatically. This expansion not only leads to considerable GPU memory overhead but also
significantly increases I/O latency, hindering the real-world deployment (Sun et al., 2024a).

Recent research has identified that only a subset of KV cache entries substantially contribute to the
output of the self-attention mechanism (Zhang et al., 2024b; Liu et al., 2024b; Tang et al., 2024a). As
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a result, many methods, known as cache eviction, have been developed to reduce the KV cache size to
fit within a given budget by evicting non-critical entries during inference. These methods effectively
save GPU memory and improve subsequent decoding speed. Notably, H2O (Zhang et al., 2024b)
and Scissorhands (Liu et al., 2024b) observe a power-law distribution of attention weights: a small
fraction of KV cache entries consistently dominates the majority of attention weights, aligning closely
with the concept of cache entry criticality during inference. These methods introduce frameworks
that leverage accumulated attention weights to identify and preserve critical cache entries. Building
on this, subsequent works (Adnan et al., 2024; Li et al., 2024; Feng et al., 2024; Fu et al., 2024)
have refined attention weight accumulation and added operations like pooling and budget allocation
to better preserve key information. However, while these methods generally assume that entries
with higher attention weights—determined by the similarity between key states in the KV cache and
the target query state—are critical, the identification and characterization of “critical cache entries”
remain unformalized. This assumption raises two key questions:

1. What criteria determine the critical KV cache?
2. Is reliance on attention weights alone sufficient for identifying critical cache entries?

In this paper, we define the problem of critical cache identification from the perspective of output
perturbation. This approach is grounded in the key insight that KV cache eviction loss is driven by
changes in the attention output. Our primary objective, therefore, is to minimize this perturbation
when replacing the full KV cache with only its critical entries. To formalize this, we introduce
a theoretical framework that bounds the worst-case perturbation to guide practical optimization.
Specifically, to quantify this perturbation, we employ the simple L1 distance and derive its upper
bound1, corresponding to the worst-case perturbation. Our analysis reveals that this upper bound is
influenced by both the attention weights and the value states projected through the parameter matrix.
Based on these insights, we propose a perturbation-constrained selection algorithm designed to
minimize this derived upper bound. It goes beyond mere reliance on attention weights, underscoring
the significance of previously overlooked value states and the pretrained parameter matrix.

We integrate our algorithm into three state-of-the-art (SOTA) cache eviction methods, SnapKV (Li
et al., 2024), AdaKV (Feng et al., 2024) and HeadKV (Fu et al., 2024), replacing their reliance
on solely attention-weight-based strategies. Comprehensive evaluations on 29 datasets from Ruler
and LongBench, as summarized in Figure 1, demonstrate that our method serves as a universal
enhancement, substantially improving post-eviction generation quality. Further empirical analysis
confirms and elucidates the practical benefits of our algorithm: (1) It effectively reduces output
perturbation in over 92% of the Llama model’s attention heads. (2) Its advantages accumulate across
layers, significantly lowering the perturbation in final-layer hidden states. (3) It consistently performs
well across various cache sizes, robustly mitigating quality loss under different resource constraints
in practical applications. Our contributions can be summarized as follows:

1. We highlight that current cache eviction methods neglect the crucial problem of identifying
critical KV cache entries. To address this, we propose using output perturbation as a criterion
for determining criticality. Our analysis shows that attention weights alone are insufficient;
the value states projected by the parameter matrix are also essential.

2. Building on the constraint of worst-case output perturbation, we propose a novel critical entry
selection algorithm as a universal enhancement. When integrated with three SOTA eviction
techniques, it reduces compression loss by more than half on average, as validated across
three distinct LLMs on 29 datasets from Ruler and LongBench benchmarks (Figure 1).

3. Further empirical analysis examines and confirms the benefits of our perturbation-
constrained selection algorithm. This analysis also highlights the significant potential for
optimizing critical cache selection from the theoretical perspective of output perturbation.

2 RELATED WORKS

Perturbation-based analysis has achieved remarkable success in neural network interpretability and
pruning. For example, Catformer (Davis et al., 2021) and Admin (Liu et al., 2020) utilize output

1We choose the L1 distance for its simplicity and effectiveness, though more complex metrics are also
compatible with our framework. For example, employing the L2 distance yields similar gains (see Appendix H).
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perturbation analysis to create more stable network architectures and enhance training methods.
Similarly, pruning techniques (Han et al., 2015; Frantar & Alistarh, 2023), with Wanda (Sun et al.,
2024b) as a representative, aim to identify neurons whose removal minimally impacts output, thereby
reducing network parameters. In this paper, we present the first analysis of output perturbations
aimed at developing more effective selection metrics for cache eviction in efficient LLM inference.

KV cache eviction aims to retain only critical KV cache entries while evicting non-essential ones to
reduce cache size, facilitating efficient long-sequence inference in LLMs. Early methods (Xiao et al.,
2023), which preserved recent entries in a sliding window, risked losing important information in
long sequences. Techniques like H2O (Zhang et al., 2024b) and Scissorhands (Liu et al., 2024b) used
accumulated attention scores to identify key entries, aiming to retain crucial context. Subsequent
works refined these methods (Ge et al., 2024b; Adnan et al., 2024; Ge et al., 2024a; Li et al., 2024),
with SnapKV (Li et al., 2024) achieving the SOTA performance through introducing observation
window-based attention weight accumulation and pooling operations. However, these methods
are largely empirical, relying solely on attention weights to identify critical entries. Our paper
introduces a novel perturbation-constrained selection algorithm based on in-depth analysis from an
output perturbation perspective. This algorithm seamlessly integrates into existing cache eviction
methods without altering underlying accumulation processes. Additionally, recent advances in
budget allocation optimization (Yang et al., 2024a; Zhang et al., 2024a; Fu et al., 2024; Xiao et al.,
2024a; Zhang et al., 2025)—such as AdaKV [(Feng et al., 2024)], which adaptively allocating
budgets based on head characteristics, and HeadKV (Fu et al., 2024), which uses fine-grained offline
profiling to guide allocation—are fundamentally orthogonal to our approach. To comprehensively
demonstrate the effectiveness, we integrate our algorithm with these three representative cache-
eviction lines—SnapKV, AdaKV, and HeadKV—and observe substantial gains across all three.

3 CRITICAL KV CACHE ENTRY SELECTION

For critical cache entry selection, we aim to choose cache entries that represent the entire KV
cache during self-attention computation, producing an output that is a close approximation, if not
identical. Base on this insight, we formalize the problem of identifying critical cache entries from the
perspective of output perturbation (Definition 3.1) in Section 3.2. Subsequently, in Section 3.3, we
formalize the output perturbation and derive its upper bound. Then, we propose a two-stage greedy
algorithm in Section 3.4 that constrains worst-case perturbations for selecting critical entries, with
theoretical analysis provided in Section 3.5. Finally, in Section 3.6 we integrate the algorithm into
current SOTA cache eviction methods.

3.1 PRELIMINARIES

LLMs utilizing the multi-head self-attention mechanism operate with an autoregressive generation
approach. In this setup, each decoding step leverages the most recently generated token to predict the
next one. To illustrate this process, we focus on a single attention head as an example. Let X ∈ Rn×d

denote the embedding matrix for all tokens in the sequence, with x = X−1,: ∈ R1×d representing
the embedding vector of the most recent token, which serves as input at the current time step. The
parameter matrices, denoted by WQ, WK , and WV ∈ Rd×dh are used to map the token embeddings
into their respective Query, Key, and Value states with head dimension dh as follows:

q = xWQ;K = XWK ;V = XWV (1)
During the decoding phase, the Key and Value states of previously generated tokens (represented by
X) are stored in the KV cache, allowing for the elimination of redundant computation. Accordingly,
the query q, derived from the most recent token x, attends to the cached Key K to compute the
attention weights A. These weights are then applied to the cached Value V , producing an intermediate
output. This intermediate result is subsequently transformed into the final output o of the self-attention
mechanism by the output parameter matrix WO ∈ Rdh×d:

o = AVWO, where A = softmax
(
qKT /

√
d
)

(2)

3.2 WHAT CRITERIA DETERMINE THE CRITICAL KV CACHE?

Recent research has demonstrated only a small portion of critical KV cache entries do substantially
contribute to the attention output (Zhang et al., 2024b; Liu et al., 2024b). This insight presents
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promising opportunities to reduce inference costs by evicting a large number of non-critical KV cache
entries (Li et al., 2024; Zhang et al., 2024a; Feng et al., 2024; Ge et al., 2024b; Adnan et al., 2024;
Ge et al., 2024a). However, the key challenge lies in accurately identifying the critical KV cache
entries. Ideally, from a high-level perspective, the set of critical KV cache entries should completely
represent the entire cache, ensuring for given query state, the selected entries yield the same attention
output as the full set of KV pairs. In practice, the number of selected critical cache entries will be
constrained by a predefined budget, which is closely tied to the computational resources available in
downstream deployments. Consequently, our goal shifts toward minimizing the output perturbation
introduced by the replacement. So, the problem can be reformulated as follows.

Definition 3.1 (Critical KV Cache Identification Problem). Given a critical cache budget b, the task
is to select b critical KV cache entries ⟨K̂, V̂ ⟩ from a total of n cache entries ⟨K,V ⟩, with the goal of
minimizing the perturbation in the attention output o. By using the L1 distance L for quantification,
the objective is formalized as: argmin⟨K̂,V̂ ⟩ L = ∥o− ô∥1 , where ô represents the attention output

produced by the selected ⟨K̂, V̂ ⟩.

3.3 ARE ATTENTION WEIGHTS SUFFICIENT FOR IDENTIFYING CRITICAL CACHE ENTRIES?

According to Definition 3.1, the goal of identifying critical KV cache entries is to minimize the
perturbation L = ∥o− ô∥1. To achieve this, we can employ an additive masking M to simulate the
removal of non-critical cache entries’ contributions to the final output ô, thereby altering ô.

ô = A′VWO, A′ = softmax
(
M+ qKT /

√
d
)

where Mi =

{
−∞ if Ki and Vi are non-critical
0 otherwise.

(3)

Thus, the perturbation L can be further expressed as: L = ∥(A−A′)VWO∥1
Theorem 3.2. By introducing a mask N ∈ Rn applied through element-wise multiplication denoted
by ⊙, we can establish the relation between A′ and A as follows:

A′ =
N ⊙A∑n
i=1 NiAi

where Ni =

{
0 if Ki, Vi is non-critical
1 otherwise.

and
∑n

i=1
Ni = b (4)

Proof. See Appendix I.1 for details.
Theorem 3.2 utilizes a multiplicative mask N to quantifies how their selection impacts the attention
weights. However, directly minimizing L for critical cache selection is challenging due to complex
matrix operations it requires. Thus we turn to establish an upper bound θ, as shown in Theorem 3.3.
Theorem 3.3. The output perturbation L can be bounded by θ:

L ≤ θ = C −
(
2− 1∑n

i=1 NiAi

)∑n

i=1
NiAi∥Vi,:∥1, (5)

where C denotes the
∑n

i=1 Ai∥Vi,:∥1 and V ∈ Rn×d = VWO denotes all projected values states
through parameter matrix WO.

Proof. See Appendix I.2 for details.
We can observe that θ encompasses not only the attention weights but also the projected value states.
This highlights that prior selection methods relying solely on attention weights are suboptimal.

3.4 IDENTIFY CRITICAL CACHE ENTRIES BY CONSTRAINING WORST-CASE PERTURBATION.

Drawing on optimization strategies in machine learning, we propose lowering the upper bound
of perturbation, effectively constraining the worst-case perturbation and thereby reducing actual
perturbations for identifying critical cache entries. However, directly minimizing the upper bound
θ remains non-trivial. To balance both the complexity and selection effectiveness, we introduce a
two-stage greedy perturbation-constrained selection Algorithm 1, specifically designed to lower the
perturbation upper bound for critical cache entry identification.

In this algorithm, the total budget b is divided into two portions based on a hyperparameter α. In the
first stage, a fraction of the budget, b′ = b× α, is allocated to prioritize KV cache entries with high
attention weights. In the second stage, the remaining budget, b′′ = b− b′, is used to consider both the
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Algorithm 1 Perturbation-Constrained Selection
Input: Budgets b, Query State q, Cache Entries K,V ,
Parameter Matrix WO , Hyper Parameter α = 0.25
Output: Critical Cache Entries K̂, V̂
1: initialize empty cache K̂, V̂
2: A = softmax(qKT ); V = VWO

3: A = (A+ ϵ)⊙ (L1 norm of each rows in V)
4: b′ = b× α; b′′ = b− b′

5: for all Ki, Vi ∈ K,V that Ai ∈ Topk(A, b′)

6: add Ki, Vi to K̂, V̂ Stage 1
7: remove Ai,Ki, Vi from A,K, V
8: for all Ki, Vi ∈ K,V that Ai ∈ Topk(A, b′′):
9: add Ki, Vi to K̂, V̂ Stage 2

10: return Critical Cache Entries K̂, V̂

Algorithm 2 Observation Win Based Eviction.
Input: All Query States Q ∈ Rn×dh , KV Cache
Entries K,V ∈ Rn×dh , Window Size n′

Output: Critical Cache Entries K̂, V̂
1: allocate budget b across heads #AdaKV,HeadKV
2: Q̂ = Q[−n′ :, :]

3: A = softmax(Q̂KT ) ; Ā = A.mean(dim = 0)
4: Ā = maxpooling(Ā) # SnapKV
5: if using regular selection then
6: select b critical entries K̂, V̂ by Topk(Ā

′, b)
7: else if using our selection then
8: select b critical entries K̂, V̂ by Algorithm 1
9: end if

10: return Critical Cache Entries K̂, V̂

norms of the projected value states and the attention weights 2. This two-stage selection employs a
Top-K operation to effectively constrain the worst-case perturbation. To substantiate the effectiveness
of our proposed algorithm, we provide a theoretical analysis in the following section.

3.5 THEORETICAL ANALYSIS OF ALGORITHM 1

Our proposed algorithm consists of two stages, referred to as stage 1 and stage 2, which work
collaboratively to select critical cache entries. Under the guarantee provided by Assumption 3.4, the
selection in stage 1 ensures that stage 2 adheres to the constraints on perturbations, as formalized in
Theorem 3.5. Let N ′ and N ′′ represent the selections from the stage 1 and 2, respectively, satisfying:∑n

i=1 N ′
i = b′ and

∑n
i=1 N ′′

i = b′′.Thus, the overall selection is N = N ′ +N ′′.
Assumption 3.4. In the first stage, a portion of the overall budget b′ = b× α is sufficient to collect
the cache entries corresponding to the highest attention weights, ensuring their cumulative attention
weights σ exceed half of the total, i.e., σ =

∑n
i=1 N ′

iAi =
∑

Topk(A, b′) > 0.5.

In this paper, we set α in Assumption 3.4 to a fixed value 0.5 based on two key considerations. First,
as verified in Appendix A, allocating 50% of the total budget is sufficient to capture enough attention
weight in over 99% of attention heads, thereby satisfying Assumption 3.4 across various settings.
This is attributed to the power-law distribution of attention weights (Zhang et al., 2024b), where
a small fraction of cache entries accounts for the majority. Second, this choice is both robust and
easy to apply across different cache budgets and models. While using different α values for specific
models, budgets, or attention heads could yield finer optimization, it would also introduce significant
search overhead and complicate deployment. Thus, we defer such granular adjustments to future
work. Subsequent experiments and visual analyses further confirm that setting α to 0.5 is a simple
yet effective choice. 3

Theorem 3.5. Given the stage 1 selection N ′
i , the objective N ′′

i of stage 2 is to minimize an upper
bound θ̂ of the output perturbation L, using the remaining budget b′′ = b− b′.

argmin
N ′′

i

θ̂ where θ̂ = C′ −
(
2− 1

σ

)∑n

i=1
N ′′

i Ai∥Vi,:∥1

subject to
∑n

i=1
N ′′

i = b′′, C′ = C−
(
2− 1

σ

)∑n

i=1
N ′

iAi∥Vi,:∥1. (6)

Proof. See Appendix I.3 for details.
Theorem 3.5 demonstrates that our second stage selection directly minimizes an upper bound of
output perturbation for identifying critical cache entries. Unlike traditional strategies that rely solely
on high attention weights for entry selection, the second stage of our algorithm jointly leverages
both the attention weights and the value states projected through the parameter matrix, to directly
constrain the worst-case output perturbation.

2A small ϵ (1E-4) is added to mitigate information loss from sparse attention weights during multiplication.
3As shown in Appendix B, our algorithm’s performance is robust to the choice of hyperparameter α.
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3.6 INTEGRATING INTO SOTA CACHE EVICTION METHODS

We showcase the effectiveness of our algorithm by integrating it into existing cache eviction methods
that rely on accumulated attention weights for selecting critical entries. Current SOTA plug-and-play
cache eviction workflow is established by SnapKV (Li et al., 2024), which introduces an observation
window mechanism to stably accumulate attention weights and employs the max pooling operations to
avoid missing key information. Subsequent research (Zhang et al., 2024a; Feng et al., 2024) highlights
the uneven distribution of critical cache entries across different heads, prompting the development of
budget allocation strategies. For example, AdaKV (Feng et al., 2024) improves upon SnapKV by
dynamically detecting variations in critical KV cache entries at runtime, enabling flexible budget
scheduling and enhancing output quality. Other methods, such as HeadKV (Fu et al., 2024), further
refine budget scheduling, albeit at the cost of offline training. Despite their differences in budget
allocation, these SOTA methods—SnapKV, AdaKV, and HeadKV—all use the same underlying
mechanism for KV cache selection. Consequently, they can be unified under the framework of
Algorithm 2, which consists of two main components: budget allocation across heads (line 1) and
an observation window with a pooling mechanism for attention weight accumulation (lines 2–5).
Our algorithm integrates seamlessly into this framework by replacing the original selection process,
which is based solely on attention weights (lines 5–9).

4 EXPERIMENTS

4.1 SETTINGS

Models. We select three advanced open-source LLMs for evaluation: Llama-3.1-8B-Instruct (Llama-
3.1-8B) (Dubey et al., 2024), Mistral-7B-Instruct-v0.3 (Mistral-7B) (Jiang et al., 2023), and Qwen-2.5-
32B (Team, 2024). These models span different model families and parameter scales, demonstrating
the broad applicability of our algorithm.

Compression scenario. Following (Feng et al., 2024; NVIDIA, 2024), the context is compressed
independently before question is introduced. This setting better simulates practical scenarios (e.g.,
multi-turn QA or prefixed contexts) where multiple questions often pertain to the same context, or the
question is unavailable during context compression. It therefore provides a more realistic evaluation
of cache eviction methods. For the simple compression setting, where the context and question are
compressed together, please refer to Appendix D

Baselines. We integrated our algorithm with three cache eviction methods—SnapKV (Li et al.,
2024), AdaKV (Feng et al., 2024) and HeadKV (Fu et al., 2024). These respectively represent
the SOTA cache eviction in non–budget-allocation, adaptive budget allocation, and offline budget
allocation. By comparing the quality before and after integration, we demonstrate the improvements
our algorithm brings to these methods. We set α = 0.5 in Algorithm 1 for all experiments; see
Appendix B for robustness analysis. SnapKV and AdaKV used their original settings: max-pooling
kernel size 7 and observation window 32 (Feng et al., 2024). All methods were implemented with
FlashAttention-2 for faster inference. We also include the performance of H2O (Zhang et al., 2024b)
for reference, a foundational work in this area. Since it requires global attention weights—unsupported
by FlashAttention-2—it triggers OOM. Following (Xiao et al., 2024b), we simulate H2O by observing
the last 256 tokens’ attention weights.

4.2 RULER BENCHMARK

The Ruler benchmark (Hsieh et al., 2024) comprises 13 synthetic tasks for evaluating long-context
capabilities—a challenging testbed for cache eviction. It includes two Word Extraction variants (CWE
and FWE)—eight Needle-In-A-Haystack variations (NIAH), as well as Question Answering(QA)
and Variable Tracking (VT), with each scored out of 100. To match the Mistral model’s 32K context
window and control cost, we set the ruler length to 32K and sampled 100 instances per task.

Table 1 reports task-wise scores at a 40% cache size. SnapKV, AdaKV, and HeadKV all degrade
under cache eviction, but each sees substantial gains when augmented with our algorithm. For
instance, on Qwen2.5-32B, our algorithm yields consistent gains across all 13 tasks for all three
eviction method. Quantitatively, our algorithm increases the average score of SnapKV from 63.86 to
81.09 and AdaKV from 71.09 to 83.87. When applied to HeadKV, the average score climbs from
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Table 1: Detail Results on Ruler Benchmark with 40% Cache Size
CWE FWE NIAH

Multikey1

NIAH
Multikey2

NIAH
Multikey3

NIAH
Multiquery

NIAH
Multivalue

NIAH
Single1

NIAH
Single2

NIAH
Single3

QA1 QA2 VT Avg. Score ↓ loss

L
la

m
a-

3.
1-

8B
Full Cache 44.90 95.33 100.00 100.00 100.00 98.25 99.75 100.00 100.00 100.00 84.00 62.00 99.40 91.05 ↓ 00.0%

SnapKV 20.30 90.00 93.00 36.00 31.00 92.75 87.50 100.00 97.00 46.00 41.00 52.00 96.60 67.93 ↓ 25.4%

w/ ours 33.90 92.67 100.00 50.00 32.00 99.00 99.00 100.00 100.00 80.00 63.00 53.00 97.00 76.89 ↓ 15.6%

AdaKV 26.60 92.00 98.00 66.00 71.00 97.50 98.25 99.00 100.00 75.00 43.00 54.00 98.60 78.38 ↓ 13.9%

w/ ours 52.40 94.67 100.00 93.00 65.00 99.25 98.75 100.00 100.00 97.00 64.00 58.00 99.60 86.28 ↓ 5.2%

HeadKV 17.10 92.67 99.00 66.00 75.00 97.00 93.00 100.00 98.00 94.00 56.00 54.00 98.00 79.98 ↓ 12.2%

w/ ours 56.50 93.33 100.00 93.00 90.00 99.50 99.00 100.00 100.00 99.00 72.00 59.00 99.40 89.29 ↓ 1.9%

M
is

tr
al

-7
B

Full Cache 30.00 95.67 94.00 69.00 31.00 94.25 95.00 99.00 100.00 100.00 60.00 59.00 90.60 78.27 ↓ 00.0%

SnapKV 32.20 91.67 16.00 11.00 4.00 11.25 8.00 65.00 17.00 2.00 34.00 51.00 74.80 32.15 ↓ 58.9%

w/ ours 48.50 94.67 31.00 7.00 5.00 26.00 24.25 74.00 48.00 2.00 45.00 53.00 81.80 41.56 ↓ 46.9%

AdaKV 25.30 92.33 25.00 14.00 8.00 20.00 14.25 44.00 34.00 6.00 44.00 55.00 71.60 34.88 ↓ 55.4%

w/ ours 40.50 95.33 89.00 27.00 8.00 85.00 95.00 99.00 100.00 54.00 60.00 57.00 89.40 69.17 ↓ 11.6%

HeadKV 30.60 92.67 24.00 27.00 17.00 16.25 16.50 70.00 36.00 4.00 45.00 53.00 82.60 39.59 ↓ 49.4%

w/ ours 49.50 95.00 53.00 31.00 17.00 60.50 62.25 84.00 82.00 25.00 53.00 55.00 81.40 57.59 ↓ 26.4%

Q
w

en
2.

5-
32

B

Full Cache 90.60 96.00 99.00 90.00 90.00 100.00 99.25 100.00 100.00 100.00 82.00 74.00 100.00 93.91 ↓ 00.0%

SnapKV 87.90 92.00 63.00 23.00 9.00 71.75 61.75 100.00 94.00 14.00 50.00 64.00 99.80 63.86 ↓ 32.0%

w/ ours 88.60 93.33 98.00 35.00 16.00 99.75 99.50 100.00 100.00 88.00 67.00 69.00 100.00 81.09 ↓ 13.7%

AdaKV 88.90 93.33 81.00 34.00 21.00 87.50 83.50 100.00 97.00 19.00 55.00 64.00 100.00 71.09 ↓ 24.3%

w/ ours 89.50 94.33 98.00 54.00 34.00 100.00 99.50 100.00 100.00 91.00 64.00 66.00 100.00 83.87 ↓ 10.7%

HeadKV 89.30 94.67 92.00 46.00 45.00 97.25 96.25 100.00 100.00 59.00 68.00 66.00 100.00 81.04 ↓ 13.7%

w/ ours 89.90 95.33 99.00 85.00 71.00 100.00 98.75 100.00 100.00 99.00 72.00 69.00 100.00 90.69 ↓ 3.4%
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Figure 2: Performance on Ruler Tasks with Varying Cache Sizes

81.04 to 90.69, mitigating the loss relative to the full cache from 13.7% to just 3.4%. Similar trends
hold for the Llama and Mistral models, with an average improvement of 14.6 points across all cases.

Figure 2 further offers a comprehensive view across different cache sizes for both the Llama and
Mistral models. Results for Qwen2.5-32B are omitted due to the prohibitive cost of evaluating a
32B-scale model across multiple cache sizes. More results for the Mistral are provided in Appendix E.
On both the Llama and Mistral models, our method consistently and significantly improves all base
methods. For instance, with Llama model at a 60% cache size, AdaKV achieves an average score
of 87.92. When enhanced with our algorithm, this score increases to 90.94—almost matching the
full-cache performance of 91.04. The benefits of our algorithm are even more pronounced at small
cache sizes. at 40% and 20%, our algorithm increases AdaKV’s average scores from 78.38 to 86.28
and from 57.48 to 68.94, respectively. Similarly, on Mistral, our algorithm boosts AdaKV from 48.80
to 75.85 at 60% size, and from 34.88 to 69.17 at 40% size. These results highlight the effectiveness
of our algorithm as a universal enhancement to a wide range of existing KV cache eviction methods.
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Table 2: Task Domain Scores on LongBench.

Domain Full
Cache

SnapKV 20%b SnapKV 40%b AdaKV 20%b AdaKV 40%b HeadKV 20%b HeadKV 40%b

base w/ ours base w/ ours base w/ ours base w/ ours base w/ ours base w/ ours
L

la
m

a-
3.

1-
8B

SingleDoc. QA 43.10 28.78 30.43 35.27 38.27 31.39 32.74 36.63 39.24 31.53 33.60 39.96 40.61
MultiDoc. QA 46.49 33.51 35.87 40.50 43.17 34.90 35.31 41.36 45.11 34.97 36.33 43.10 44.33
Summarization 28.97 23.82 24.64 26.11 27.15 24.29 24.98 26.66 27.31 24.49 25.28 27.06 27.24
Fewshot 69.45 61.95 63.04 65.10 66.87 63.70 64.74 66.43 68.19 62.79 65.41 65.64 68.06
Synthetic 53.73 48.19 52.16 53.17 54.22 50.39 52.30 53.00 53.60 49.32 52.18 52.89 54.04
Code 57.86 60.05 60.75 60.49 60.91 61.14 61.16 60.30 60.60 61.14 58.85 61.34 57.89
Avg. Score 49.20 41.29 42.99 45.52 47.29 42.87 43.77 46.24 48.00 42.64 43.99 47.23 47.79
Avg. Loss ↓ 0.00 % 16.1 % 12.6 % 7.5 % 3.9 % 12.9 % 11.0 % 6.0 % 2.4 % 13.3 % 10.6 % 4.0 % 2.9 %

M
is

tr
al

-7
B

Single-Doc. QA38.37 25.13 28.24 31.64 34.33 27.25 29.06 33.42 36.06 27.94 30.95 33.90 36.21
Multi-Doc. QA 39.40 29.64 32.07 33.57 36.61 31.71 33.04 35.97 38.00 31.58 34.47 35.28 37.66
Summarization 28.76 24.18 24.61 26.24 26.94 24.18 24.83 26.24 27.06 24.49 25.63 26.76 27.72
Few-shot 70.33 63.89 65.54 67.95 68.57 66.00 67.08 68.67 69.79 64.73 67.58 67.46 69.78
Synthetic 52.50 45.25 46.53 49.75 51.05 48.00 49.25 50.75 50.84 47.79 48.02 50.50 50.20
Code 61.25 61.40 61.94 63.41 62.06 62.55 62.56 63.35 62.68 61.96 61.76 63.16 61.56
Avg. Score 47.38 40.11 41.77 44.03 45.35 41.78 42.85 45.07 46.23 41.61 43.46 44.84 46.10
Avg. Loss ↓ 0.0 % 15.3 % 11.8 % 7.1 % 4.3 % 11.8 % 9.6 % 4.9 % 2.4 % 12.2 % 8.3 % 5.4 % 2.7 %

Q
w

en
2.

5-
32

B Single-Doc. QA43.23 26.65 28.12 32.22 37.18 26.62 29.00 32.37 35.70 29.9 32.07 38.74 40.49
Multi-Doc. QA 54.03 42.00 46.88 50.90 54.55 42.36 47.40 52.75 53.75 46.35 50.60 55.13 55.33
Summarization 27.40 23.22 24.23 25.19 26.03 23.21 24.06 24.95 25.97 23.88 24.34 26.10 26.36
Few-shot 68.97 65.43 66.86 67.43 67.80 66.56 67.44 68.18 68.65 65.96 68.53 68.37 69.27
Synthetic 56.25 44.21 53.00 55.25 55.75 46.63 52.75 54.63 55.25 50.88 53.88 55.09 55.04
Code 41.93 45.04 44.72 44.89 43.75 46.30 45.43 46.21 44.88 44.83 46.27 44.88 46.54
Avg. Score 48.58 40.65 43.36 45.47 47.23 41.38 43.75 46.03 47.03 43.11 45.43 47.81 48.59
Avg. Loss ↓ 0.0 % 16.3 % 10.8 % 6.4 % 2.8 % 14.8 % 9.9 % 5.3 % 3.2 % 11.3 % 6.5 % 1.6 % 0.0 %

4.3 LONGBENCH EVALUATION

We also incorperate the real-world benchmark LongBench, consisting of 16 datasets across six task
domains: single-document QA, multi-document QA , summarization, few-shot learning, synthetic,
and code. For each dataset, we use the recommended evaluation metrics and report the average score
within each task domain. Detailed information can be found in Appendix F.

As shown in Table 2, our algorithm achieves improvements across most evaluation cases. In the
five widely used long-dependency task domains (single-document QA, multi-document QA , sum-
marization, few-shot learning, synthetic), cache eviction degrades the performance by disrupting
historical information. Our algorithm markedly mitigates this loss: across 90 test cases—covering
five long-dependency domains, three models (Llama-3.1-8B, Mistral-7B, Qwen2.5-32B), and three
compression methods (SnapKV, AdaKV, HeadKV) at two cache sizes—we observe improvements
in 88 cases. This 97.8% success rate highlights the breadth and robustness of our method. Nu-
merically, the effect is clear: for instance in Multi-Doc QA with Llama-3.1-8B, applying AdaKV
at 40% cache reduces the score from 46.49 to 41.36; adding our algorithm raises it to 45.11. On
Mistral-7B, compression lowers the score from 39.40 to 35.97, while our algorithm restores it to
38.00. By contrast, the code domain is naturally insensitive to cache eviction. At a 20% cache size,
performance can even surpass that of the full cache—a phenomenon reported in prior work Feng et al.
(2024); Li et al. (2024); Zhang et al. (2024a). This arises because code-related tend to rely less on
long-range dependencies; compressing the KV cache can paradoxically improve accuracy by filtering
out historical context. Consequently, the code domain is generally not considered a suitable indicator.

With respect to the average performance loss compared to full cache case, our method substantially
reduces this degradation from previous cache eviction methods. For instance, under a 40% cache size
on the Llama model, integrating our algorithm with AdaKV reduces the average loss from 6.0% to
2.4%. Similar gains are observed for the Mistral and Qwen models, where our algorithm decreases
the losses from 4.9% to 2.4% and from 5.3% to 3.2%, respectively. These results affirm that our
algorithm provides a robust and general solution for mitigating the quality loss caused by KV cache
eviction across diverse real-world applications.

4.4 EFFICIENCY EVALUATION

Cache eviction methods are typically applied after the prefill phase to significantly save cache memory
footprint and accelerate decoding. We evaluate efficiency using time-to-first-token (TTFT) for the
prefill phase (including eviction process) and single-step latency for decoding, measured on a single
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(a) Prefilling (b) Decoding
Figure 3: Efficiency. (all use FlashAttention-2).
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Figure 4: Perturbation reduction across heads.
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(b) AdaKV
Figure 5: Perturbation reduction across layers.
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Figure 6: Perturbation reduction across budgets.

80GB A100 GPU with Llama-3.1-8B and a 40% cache size. The additional overhead introduced by
our method is a minor increase in TTFT from the perturbation constraints algorithm, primarily due to
the computation of |VWO|. This operation is linear in complexity and has negligible impact. As
shown in Figure 3a, at a 32K context length, TTFT increases by only 0.06s for batch size 1 (3.54
→ 3.60) and 0.16s for batch size 4 (14.20 → 14.36, or 0.04s per request). For decoding, all cache
eviction methods demonstrate same efficiency and outperform the full cache baseline. For batch size
4 and 32K context, SnapKV (with or without our algorithm) achieves 0.0332s, representing a 2.49×
speedup over the full cache time of 0.0828s. Thus, our algorithm substantially improves the quality
of existing cache eviction methods while maintaining almost identical computational efficiency.

4.5 ANALYSIS OF PRACTICAL OUTPUT PERTURBATION

We further investigate whether our algorithm of constraining the theoretical perturbation upper bound
effectively reduces the practical output perturbation. We visualize the perturbations on attention
output of the first decoding token, using 200 samples from the MultiNews summarization dataset
with the KV cache compressed to 20% size. a. Head-wise Analysis: Our algorithm significantly
reduces head-wise average output perturbation across all samples in the Llama model, achieving lower
perturbations in 92% and 86% of attention heads for Llama-3.1-8B and Mistral-7B, respectively
(Figure 4). b. Layer-wise Analysis: Figure 5 shows how our algorithm progressively reduces
perturbation across layers, leading to substantial decreases in the final layer, which directly impacts
the generated token vocabulary distribution. c. Budget-wise Analysis: Figure 6 illustrates that
our method effectively lowers output perturbation across different cache sizes from 2.5% to 40%,
underscoring its robustness of varying budget constrains. These analyses demonstrate that our method
robustly reduces practical output perturbation by theoretically constraining worst-case perturbation
by Algorithm 1. This results in the post-eviction output hidden states that are more consistent with
those from the full KV cache, thereby enhancing generation consistency and reducing quality loss.

5 CONCLUSION

In this paper, we pinpoint a key limitation in current cache eviction methods: the reliance on intuitive
heuristics of using attention weights to select critical cache entries. For the first time, we formalize
the problem of critical cache entry selection from the perspective of output perturbation and provide
a theoretical analysis. Furthermore, we propose a novel algorithm based on constraining output
perturbation in the worst-case for critical cache selection, which is then integrated into existing SOTA
cache eviction methods. Comprehensive evaluations using 29 datasets from Ruler and Longbench
demonstrate that our algorithm improves the performance of existing cache eviction methods. Further
empirical analysis also confirms and explains this benefit from the perspective of practical output
perturbation: our algorithm consistently yields lower perturbation compared to previous methods that
rely solely on attention weights in various settings. Our work offers a new perspective for advancing
cache eviction area, highlighting its significant benefits and future potential.
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Figure 7: Assumption 3.4 validates in over 99% of heads across various cache sizes.

A ANALYSIS OF α IN ASSUMPTION 3.4

We ensure the reliability of Assumption 3.4 by analyzing the cumulative attention weights of critical
KV Cache entries

∑n
i=1 N iAi in individual heads. As shown in Figure 7, across different models

and cache sizes, almost all attention heads can accumulate over half of the attention weights as
said in Assumption 3.4. The only exceptions are a few attention heads in the first layer. This is
primarily due to the low sparsity of attention weights in certain heads of the first layer, a phenomenon
that has been noted in many related studies (Tang et al., 2024a; Zhang et al., 2024b;a). However,
this effect is negligible, as these heads constitute less than 1% of the total and their minor negative
impact is far outweighed by the substantial gains from the compliant heads. A potential solution is
to set the algorithm’s threshold α based on the head-wise characteristics to achieve greater benefits.
However, considering the additional complexity that might introduce, we retain a fixed α = 0.5 for
its simplicity and strong empirical performance, leaving fine-grained tuning for future work.

Table 3: Impact of safeguard α on algorithm performance based on Ada-KV.
Model Ada-KV α = 0 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7
Llama-3.1-8B 42.87 44.35 43.67 43.86 43.88 43.31 43.29
Mistral-7B-v0.3 41.78 31.94 42.54 42.76 42.88 42.98 42.80

B SENSITIVITY ANALYSIS OF α

As demonstrated previously, a simple choice of α = 0.5 is sufficient to ensure that Assumption 3.4
holds for nearly all attention heads. To further investigate the sensitivity of this safeguard parameter,
we evaluate its impact by varying its value and observing the average scores across all tasks in the
Longbench dataset. As shown in Table 3, our method, when integrated with Ada-KV, consistently
outperforms the base method Ada-KV across a range of α values (0.3, 0.4, 0.5, 0.6, and 0.7). For
instance, on the Mistral-7B-v0.3 model, our approach achieves scores between 42.54 and 42.98,
all of which are notably higher than the base score of 41.78. Nevertheless, the inclusion of α is a
necessary safeguard. Removing it entirely (i.e., setting α = 0) may lead to a violation of Assumption
3.4, resulting in a significant performance degradation. This is evidenced by the sharp drop to a score
of 31.94 on Mistral-7B-v0.3 when α is omitted.

C LIMITATIONS

Our work demonstrates that L1 distance-based perturbation-constrained selection algorithms can
effectively enhance the retrieval scores of the original SnapKV and AdaKV. We also evaluated the
L2 distance metric and found its performance to be similar to the L1 distance. Future work may
explore more sophisticated distance metrics within this framework. In addition, our current approach
assumes that the α = 50% most important KV cache entries are retained in the first stage to ensure the
assumption hold (Appendix A). Nonetheless, exploring more fine-grained strategies can be explored
for further improvement.
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Figure 8: Performance on Ruler Tasks of Mistral-7B-v0.3 with Varying Cache Sizes

D TASK DOMAIN ANALYSIS OF LONGBENCH RESULTS WITH AN EASY
COMPRESSION SETTING

Table 4 reports domain scores on the LongBench benchmark under an easy compression setting,
where both the context and question are simultaneously provided for compression . Because this
setup allows cache compression targeted to specific questions, it is considered simple and results
in minimal quality degradation, with scores nearly matching the full cache case even in 20% cache
size. Nevertheless, our enhanced cache eviction method also improves quality across most domains.
However, this scenario is not widely applicable in practice, as it fails in multi-turn question answering
or real-world contexts where future questions cannot be anticipated. Therefore, we recommend
evaluating methods under more challenging compression settings as adopted in our main experiments
that better reflect practical use cases.

E DETAIL RESULTS OF MISTRAL-7B-V0.3 ON RULER BENCHMARK

Figure 8 presents the detailed results of the Mistral model on the Ruler benchmark with varying cache
sizes. Overall, our algorithm significantly improves the performance of all three baseline methods.

F DETAILS OF 16 DATASETS IN LONGBENCH

As a widely used long-context benchmark (Feng et al., 2024; Li et al., 2024; Zhang et al., 2024a),
LongBench consists of 16 datasets across six task domains: single-document question answering
(QA) (Kočiskỳ et al., 2018; Dasigi et al., 2021), multi-document QA (Yang et al., 2018; Ho et al.,
2020; Trivedi et al., 2022), summarization (Huang et al., 2021; Zhong et al., 2021; Fabbri et al.,
2019), few-shot learning (Joshi et al., 2017; Gliwa et al., 2019; Li & Roth, 2002), synthetic tasks (Bai
et al., 2023), and code generation (Guo et al., 2023; Liu et al., 2023). The average token length across
all 16 datasets is 6,711. Table 5 provides detailed information on the 16 datasets in LongBench.

G ANALYSIS OF PREVIOUS SOLELY ATTENTION WEIGHTS-BASED
SELECTION FROM A PERTURBATION PERSPECTIVE

Our algorithm differs from the previous solely attention weights-based selection method primarily in
Stage 2. Specifically, by modifying stage 2 of our algorithm to perform the same attention weights-
based selection operation as in stage 1, our approach will degrade into the previous method. This
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Table 4: Domain Scores on LongBench under Easy Compression Setting.

Domain Full
Cache

AdaKV b = 5% AdaKV b = 10% AdaKV b = 20% AdaKV b = 40%

base w/ ours base w/ ours base w/ ours base w/ ours
L

la
m

a-
3.

1-
8B

E
as

y
Se

tti
ng

SingleDoc. QA 43.10 38.57 38.79 41.36 41.07 42.73 43.05 43.31 43.59
MultiDoc. QA 46.49 44.61 45.28 46.03 46.08 46.64 46.42 47.02 46.97
Summarization 28.97 22.85 22.97 24.17 24.63 25.49 26.05 27.24 27.79
Fewshot 69.45 67.06 67.49 68.65 68.72 69.19 69.03 69.36 69.40
Synthetic 53.73 53.49 53.36 53.25 53.56 53.57 54.45 53.96 54.59
Code 57.86 56.72 57.26 57.63 58.24 58.43 58.57 58.27 58.46
Ave. Score 49.20 46.23 46.55 47.65 47.82 48.51 48.73 49.08 49.33
Avg. Loss ↓ 0.0 % 6.0 % 5.4 % 3.2 % 2.8 % 1.4 % 1.0 % 0.2 % -0.3 %

Table 5: Details of 16 datasets in LongBench.

Task Task Type Eval metric Avg len Language Sample Num

NarrativeQA Single-Doc. QA F1 18,409 EN 200
Qasper Single-Doc. QA F1 3,619 EN 200
MultiFieldQA-en Single-Doc. QA F1 4,559 EN 150
HotpotQA Multi-Doc. QA F1 9,151 EN 200
2WikiMultihopQA Multi-Doc. QA F1 4,887 EN 200
MuSiQue Multi-Doc. QA F1 11,214 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200
MultiNews Summarization Rouge-L 2,113 EN 200
TREC Few-shot Learning Accuracy 5,177 EN 200
TriviaQA Few-shot Learning F1 8,209 EN 200
SAMSum Few-shot Learning Rouge-L 6,258 EN 200
PassageCount Synthetic Accuracy 11,141 EN 200
PassageRetrieval-en Synthetic Accuracy 9,289 EN 200
LCC Code Edit Sim 1,235 Python/C#/Java 500
RepoBench-P Code Edit Sim 4,206 Python/Java 500

modification allows us to conveniently apply perturbation-constrained theory to analyze the earlier
attention weights-based selection strategy.
Theorem G.1. Previous solely attention weights-based selection is equivalent to minimizing another
upper bound θ̂relax, a relaxed form of θ̂, with remaining budget b′′ based on stage 1 selection.

θ̂relax = C ′ −M

(
2− 1

σ

)∑n

i=1
N ′′

i Ai where M = MIN(∥Vi,:∥1) (7)

Proof. We relax the upper bound θ̂ by utilizing M = MIN(∥Vi,:∥1):

θ̂ = C ′ −
(
2− 1

σ

)∑n

i=1
N ′′

i Ai∥Vi,:∥1 ≤ C ′ −M

(
2− 1

σ

)∑n

i=1
N ′′

i Ai = θ̂relax (8)

In the solely attention weights-based selection strategy, the N ′′ selection is performed using Top−
K(Ai, b

′′) to maximize
∑n

i=1 N ′′
i Ai. This is therefore equivalent to minimizing the relaxed upper

bound, θ̂relax.

Theorem G.1 demonstrates that the solely attention weights-based selection strategy is equivalent to
minimizing the relaxed upper bound θ̂relax. In contrast, our algorithm optimizes a tighter upper bound,
θ̂. While this does not guarantee that our approach will yield a strictly better solution, intuitively,
an algorithm designed to optimize a tighter bound often achieves better results. Theorem G.1 also
provides some insight into why a critical KV Cache subset can replace the entire KV Cache in cache
eviction methods. Due to the power-law distribution of attention weights (Zhang et al., 2024b),
removing most cache entries with near-zero attention weights has a negligible impact on this upper
bound. Consequently, the perturbation to the actual output is also bounded by this upper bound.
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Figure 9: Choice of Distance Metric: L1 distance and L2 distance.

H CHOICE OF DISTANCE METRIC

To evaluate the impact of different distance metrics on our algorithm, we compared the commonly
used L1 and L2 distances on the 4K Ruler Benchmark. As shown in Figure 9, we observed no
significant improvement in quality when using the more complex L2 distance compared to the
simpler L1 distance. For its simplicity, we adopt the L1 distance metric in our analysis. Exploring
more advanced distance metrics within our framework remains a promising direction for future work.

I PROOFS FOR THEOREMS

I.1 PROOF FOR THEOREM 3.2

Theorem. By introducing a mask N ∈ Rn applied through element-wise multiplication denoted by
⊙, we can establish the relation between A′ and A as follows:

A′ =
N ⊙A∑n
i=1 NiAi

where Ni =

{
0 if Ki, Vi is non-critical
1 otherwise.

and
∑n

i=1
Ni = b

Proof. Let a = qKT /
√
d, we can express the attention weights A′ under critical cache entries as:

A′ =
exp(M+ a)∑n

i=1 exp(M+ a)i
(9)

=
N ⊙ exp(a)∑n
i=1 Niexp(a)i

= N ⊙ exp(a)∑n
i=1 exp(a)i

∑n
i=1 exp(a)i∑n

i=1 Niexp(a)i

Considering A = exp(a)∑n
i=1 exp(a)i

, thus
∑n

i=1 NiAi =
∑n

i=1 Niexp(a)i∑n
i=1 exp(a)i

. Therefore, A′ = N⊙A∑n
i=1 NiAi

.

I.2 PROOF FOR THEOREM 3.3

Theorem. The output perturbation L can be bounded by θ:

L ≤ θ = C −
(
2− 1∑n

i=1 NiAi

)∑n

i=1
NiAi∥Vi,:∥1, (10)
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where C denotes the
∑n

i=1 Ai∥Vi,:∥1 and V ∈ Rn×d = VWO denotes all projected values states
through parameter matrix WO.

Proof. Let V ∈ Rn×d = VWO denote all projected value states, thus:

L = ∥
(
A− N ⊙A∑n

i=1 NiAi

)
V∥1 (11)

= ∥
∑n

i=1

(
Ai −

NiAi∑n
i=1 NiAi

)
Vi,:∥1

≤ θ =
∑n

i=1
∥
(
Ai −

NiAi∑n
i=1 NiAi

)
Vi,:∥1 (12)

=
∑n

i=1
|Ai −

NiAi∑n
i=1 NiAi

| × ∥Vi,:∥1

Given that the multiplicative mask N is either 0 or 1, the index set i ∈ [1, n] can be split into I0 and
I1, according to its value. Thus:

θ =
∑

i∈I0
Ai∥Vi,:∥1 +

∑
i∈I1

(
Ai∑n

i=1 NiAi
−Ai

)
∥Vi,:∥1 (13)

Let C represent
∑n

i=1 Ai∥Vi,:∥1, a constant independent of the selection of critical entries. We can
express

∑
i∈I0

Ai∥Vi,:∥1 as C −
∑

i∈I1
Ai∥Vi,:∥1. Thus:

L ≤ θ = C +
∑

i∈I1

(
Ai∑n

i=1 NiAi
− 2Ai

)
∥Vi,:∥1 (14)

= C −
(
2− 1∑n

i=1 NiAi

)∑n

i=1
NiAi∥Vi,:∥1

I.3 PROOF FOR THEOREM 3.5

Theorem. Given the stage 1 selection N ′
i , the objective N ′′

i of stage 2 is to minimize an upper bound
θ̂ of the output perturbation L, using the remaining budget b′′ = b− b′.

argmin
N ′′

i

θ̂ where θ̂ = C ′ −
(
2− 1

σ

)∑n

i=1
N ′′

i Ai∥Vi,:∥1

subject to
∑n

i=1
N ′′

i = b′′, C ′ = C −
(
2− 1

σ

)∑n

i=1
N ′

iAi∥Vi,:∥1. (15)

Proof. From Assumption 3.4, the first stage selection ensures:
∑n

i=1 NiAi >
∑n

i=1 N ′
iAi = σ >

0.5, leading to the inequality: 2− 1∑n
i=1 NiAi

> 2− 1
σ > 0.

θ =C −
(
2− 1∑n

i=1 NiAi

)∑n

i=1
(N ′

i +N ′′
i )Ai∥Vi,:∥1

<C −
(
2− 1

σ

)∑n

i=1
N ′

iAi∥Vi,:∥1

−
(
2− 1

σ

)∑n

i=1
N ′′

i Ai∥Vi,:∥1 (16)

Let C ′ = C−
(
2− 1

σ

)∑n
i=1 N ′

iAi∥Vi,:∥1, then we can derive a new upper bound θ̂ for L factoring
by second stage selection N ′′

i : θ < C ′ −
(
2− 1

σ

)∑n
i=1 N ′′

i Ai∥Vi,:∥1 = θ̂ Thus, minimizing θ̂
corresponds to selecting the b′′ entries with the highest values of Ai = Ai∥Vi, :∥1, as implemented
in the stage 2 selection (Algorithm 1).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

J ADDITIONAL RELATED WORKS

Some adaptive methods in KV cache eviction or sparse attention, such as (Ge et al., 2024b; Jiang et al.,
2024), employ varying critical cache selection strategies tailored to the characteristics of different
attention heads. For example, some heads use attention weights based selection, while others utilize
fixed patterns, such as recent window-based or special token-based approaches. Our method can also
be applied to enhance performance in the head which according to attention weights-based selection
strategies, providing a boost to adaptive methods.

A range of techniques beyond cache eviction have also been explored to reduce the KV cache footprint.
Think (Xu et al., 2024) compresses the cache by decreasing the number of channels in key states.
Methods like MiniCache exploit similarities between layers to achieve compact representations (Liu
et al., 2024a; Yang et al., 2024b). KV cache quantization (Liu et al., 2024c; Hooper et al., 2024) also
contributes by lowering the precision of individual entries. All of these methods are orthogonal to
cache eviction and offer potential for further enhancement.

Sparse attention methods (Jiang et al., 2024; Tang et al., 2024b; Lv et al., 2024) are conceptually
related to the KV cache eviction methods discussed in this paper. While KV cache eviction retains
only a small subset of essential KV cache entries, sparse attention methods maintain all entries during
inference. However, during computation, only the most critical entries are selectively utilized in
the sparse attention mechanism. Consequently, sparse attention methods do not reduce the memory
footprint of the KV cache but enhance inference speed and often offer better output quality than cache
eviction methods (Tang et al., 2024b). Existing sparse attention methods typically rely on approximate
estimations of attention weights to identify critical entries (Tang et al., 2024b; Lv et al., 2024). Future
works could explore integrating our proposed perturbation-constrained selection algorithm to refine
these methods by achieving more accurate critical cache entry identification.

K PROMPT TEMPLATES FOR RULER AND LONGBENCH IN REGULAR AND
CONTEXT-ONLY COMPRESSION SCENARIOS

Below are prompt templates for various tasks. We assess performance under two scenarios: regular
compression and context-only compression. We adhere to the input prompt format from KVPress
(NVIDIA, 2024), dividing the input into context and question segments. The question segment
is highlighted in green, while other colors represent the context segment. In regular compression,
both the context and question segments are input into the model and compressed. For context-
only compression, where future questions are unpredictable, only the context segment is input for
compression. After compression, the question segment is input for answer generation.

K.1 NIAH TEMPLATE

In the Needle-in-A-Haystack task, a keyword, referred to as the "needle", is embedded within a
lengthy context known as the "haystack". The objective of this task is to extract the "needle" from the
"haystack", which is composed of essays by Paul Graham (Kamradt, 2023).

For the Single Needle-in-A-Haystack(S-NIAH) task, the goal is to retrieve a single "needle". Similarly,
the Multi-Value Needle-in-A-Haystack(MV-NIAH) task requires the extraction of multiple inserted
"needles". To prevent models from refusing to answer our questions, we append the answer prefix to
the input, prompting the models to generate answers.

K.2 LONGBENCH TEMPLATE

The construction of the LongBench template follows the official formats (Bai et al., 2024) to evaluate
performance under regular compression and context-only compression.
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Table 6: Single retrieval and multi retrieval templates in Needle-in-A-Haystack tests.

Single retrieval

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will
quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number}. ......
What is the special magic number for {word} mentioned in the provided text?

The special magic number for {word} mentioned in the provided text is

Multi retrieval

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will
quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number-1}. ......
...... One of the special magic numbers for {word} is: {number-2}. ......
...... One of the special magic numbers for {word} is: {number-3}. ......
...... One of the special magic numbers for {word} is: {number-4}. ......
What are all the special magic numbers for {word} mentioned in the provided text?

The special magic numbers for {word} mentioned in the provided text are

Table 7: LongBench templates. Single-Doc. QA Tasks.

NarrativeQA

Task Template:
You are given a story, which can be either a novel or a movie script, and a question. Answer the
question asconcisely as you can, using a single phrase if possible. Do not provide any explanation.

Story: {context}

Now, answer the question based on the story asconcisely as you can, using a single phrase if possible.
Do not provide any explanation.

Question: {question}

Qasper

Task Template:
You are given a scientific article and a question. Answer the question as concisely as you can, using a
single phrase or sentence if possible. If the question cannot be answered based on the information
in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or
"unanswerable". Do not provide any explanation.

Article: {context}

Answer the question based on the above article as concisely as you can, using a single phrase or
sentence if possible. If the question cannot be answered based on the information in the article, write
"unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not
provide any explanation.

Question: {question}

MultifieldQA EN

Task Template:
Read the following text and answer briefly.

{context}

Now, answer the following question based on the above text, only give me the answer and do not
output any other words.

Question: {question}
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Table 8: LongBench templates. Multi-Doc. QA Tasks.

HotpotQA

Task Template:
Answer the question based on the given passages. Only give me the answer and do not output any
other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the answer and do not output any
other words.

Question: {question}

2WikimQA

Task Template:
Answer the question based on the given passages. Only give me the answer and do not output any
other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the answer and do not output any
other words.

Question: {question}

Musique

Task Template:
Answer the question based on the given passages. Only give me the answer and do not output any
other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the answer and do not output any
other words.

Question: {question}

Table 9: LongBench templates. Summarization Tasks.

Gov Report

Task Template:
You are given a report by a government agency. Write a one-page summary of the report.

Report:
{context}

Now, write a one-page summary of the report.

QMSum

Task Template:
You are given a meeting transcript and a query containing a question or instruction. Answer the query
in one or more sentences.

Transcript:
{context}

Now, answer the query based on the above meeting transcript in one or more sentences.

Query: {question}

Multi News

Task Template:
You are given several news passages. Write a one-page summary of all news.

News:
{context}

Now, write a one-page summary of all the news.
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Table 10: LongBench templates. Few-shot Learning Tasks.

TREC

Task Template:
Please determine the type of the question below. Here are some examples of questions.

{context}
{question}

TriviaQA

Task Template:
Answer the question based on the given passage. Only give me the answer and do not output any
other words. The following are some examples.

{context}

{question}

SAMSum

Task Template:
Summarize the dialogue into a few short sentences. The following are some examples.

{context}

{question}

Table 11: LongBench templates. Synthetic Tasks.

Passage Count

Task Template:
There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please
carefully read these paragraphs and determine how many unique paragraphs there are after removing
duplicates. In other words, how many non-repeating paragraphs are there in total?

{context}

Please enter the final count of unique paragraphs after removing duplicates. The output format should
only contain the number, such as 1, 2, 3, and so on.

Passage Retrieval EN

Task Template:
Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph
the abstract is from.

{context}

The following is an abstract.

{question}

Please enter the number of the paragraph that the abstract is from. The answer format must be like
"Paragraph 1", "Paragraph 2", etc.

Table 12: LongBench templates. Code Tasks.

Lcc

Task Template:
Please complete the code given below.
{context}
Next line of code:

Repobench-P

Task Template:
Please complete the code given below.
{context}
{question}
Next line of code:

22


	Introduction
	Related Works
	Critical KV Cache Entry Selection
	Preliminaries
	What criteria determine the critical KV cache?
	Are attention weights sufficient for identifying critical cache entries?
	Identify critical cache entries by constraining worst-case perturbation.
	Theoretical analysis of Algorithm 1
	Integrating into SOTA cache eviction methods

	Experiments
	Settings
	Ruler Benchmark
	LongBench Evaluation
	Efficiency Evaluation
	Analysis of Practical Output Perturbation

	Conclusion
	Analysis of  in Assumption 3.4
	Sensitivity Analysis of  
	Limitations
	Task Domain Analysis of Longbench Results with an easy compression setting
	Detail Results of Mistral-7b-v0.3 on Ruler Benchmark
	Details of 16 Datasets in Longbench
	Analysis of Previous Solely Attention Weights-Based Selection from a Perturbation Perspective
	Choice of Distance Metric
	Proofs for Theorems
	Proof for Theorem 3.2
	Proof for Theorem 3.3
	Proof for Theorem 3.5

	Additional Related Works
	Prompt Templates for Ruler and Longbench in Regular and Context-only Compression Scenarios
	NIAH Template
	LongBench Template


