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ABSTRACT

The adversarial vulnerability of deep neural networks has attracted significant at-
tention in machine learning. As causal reasoning has an instinct for modeling
distribution change, it is essential to incorporate causality into analyzing this spe-
cific type of distribution change induced by adversarial attacks. However, causal
formulations of the intuition of adversarial attacks and the development of robust
DNNs are still lacking in the literature. To bridge this gap, we construct a causal
graph to model the generation process of adversarial examples and define the ad-
versarial distribution to formalize the intuition of adversarial attacks. From the
causal perspective, we study the distinction between the natural and adversarial
distribution and conclude that the origin of adversarial vulnerability is the focus
of models on spurious correlations. Inspired by the causal understanding, we pro-
pose the Causal-inspired Adversarial distribution alignment method, CausalAdv,
to eliminate the difference between natural and adversarial distributions by con-
sidering spurious correlations. Extensive experiments demonstrate the efficacy of
the proposed method. Our work is the first attempt towards using causality to
understand and mitigate the adversarial vulnerability.

1 INTRODUCTION

The seminal work (Szegedy et al., 2014; Biggio et al., 2013) shows that DNNs are vulnerable to
adversarial examples, which consist of malicious perturbations imperceptible to humans yet fool-
ing state-of-the-art models (Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan & Zisserman,
2015; He et al., 2016). The lack of robustness hinders the applications of DNNs to some safety-
critical areas such as automatic driving (Tuncali et al., 2018) and healthcare (Finlayson et al., 2019).
Therefore, mitigating the adversarial vulnerability is critical to the further development of DNNs.

Human cognitive systems are immune to the distribution change induced by adversarial attacks
because humans are more sensitive to causal relations than statistical associations (Gopnik et al.,
2004). Using causal language, causal reasoning can identify causal relation and ignore nuisance
factors, i.e., not the cause of labels, by intervention (Pearl, 2009; Peters et al., 2017). As adversarial
perturbations are usually imperceptible and make no impact on human decisions (Szegedy et al.,
2014; Goodfellow et al., 2015), it is reasonable to assume that the difference between natural and
adversarial examples comes from nuisance factors. This is because if task-relevant factors of some
samples are changed, these samples will make both humans and DNNs change their decisions. From
a causal viewpoint (Zhang et al., 2020a), adversarial attacks can be regarded as a specific type of
distribution change resulting from the intervention on the natural data distribution. In summary,
causal reasoning has the instinct for analyzing the effect of the intervention caused by adversarial
attacks, so it is essential to leverage causality to understand and mitigate the adversarial vulnerability.
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However, there are two significant problems to overcome before using causality to understand and
mitigate the adversarial vulnerability. Firstly, constructing a causal graph is arguably the fundamen-
tal premise for causal reasoning (Pearl, 2009; Peters et al., 2017), but how to construct causal graphs
in the context of adversarial attacks is still lacking in the literature. Secondly, using causal language
to formalize the intuition of adversarial attacks is the key to connect causality and adversarial vul-
nerability, but it also remains to be solved. These two problems are fundamental obstacles, which
prevent us from employing causality to contribute to adversarial learning.

To address these challenges, we first construct a causal graph to model the perceived data generation
process where nuisance factors are considered. The constructed causal graph can entail a specific
intervention distribution, i.e., the adversarial distribution. Moreover, the causal graph immediately
shows that, given inputs, labels are statistically correlated with nuisance factors, which have no
cause-effect to labels. The spurious correlation implies that if DNNs fit the conditional association
between labels and nuisance factors, their performance on different conditional associations between
labels and nuisance factors will change accordingly. Through investigating the distinction between
these two distributions induced by nuisance factors, we conclude that adversarial distributions can
be obtained by exploiting conditional associations between labels and nuisance factors, where the
conditional association of adversarial distributions is drastically different from that of natural dis-
tributions. Namely, the origin of adversarial vulnerability is the focus of DNNs on the spurious
correlation between labels and nuisance factors.

According to the causal perspective, an adversarial distribution is crafted by exploiting a specific
conditional association between labels and nuisance factors, this association is drastically different
from that of natural distributions. Intuitively, eliminating the difference in such conditional asso-
ciations between natural and adversarial distributions can promote the performance of models on
adversarial distributions. Thus, we propose the Causal-inspired Adversarial distribution alignment
method, CausalAdv, to eliminate the difference between these two distributions. Surprisingly, we
find that the proposed method shares the same spirits to existing adversarial training (Goodfellow
et al., 2015) variants, i.e., Madry (Madry et al., 2018) and TRADES (Zhang et al., 2019). We validate
the efficacy of the proposed method on MNIST, CIFAR10, and CIFAR100 (Krizhevsky et al., 2009)
datasets under various adversarial attacks such as FGSM (Goodfellow et al., 2015), PGD (Madry
et al., 2018), CW attack (Carlini & Wagner, 2017), and AutoAttack (Croce & Hein, 2020). Extensive
experiments demonstrate that CausalAdv can improve the adversarial robustness significantly.

Our main contributions are:

• We provide a causal perspective to understand and mitigate the adversarial vulnerability,
which is the first attempt towards using causality to contribute adversarial learning.

• To leverage causality to contribute adversarial learning, we solve two fundamental prob-
lems. Specifically, we construct a causal graph to model the adversarial data generation
process and define the adversarial distribution to formalize adversarial attacks.

• A defense method called causal-inspired adversarial distribution alignment, CausalAdv,
is proposed to reduce adversarial vulnerability by eliminating the difference between ad-
versarial distribution and natural distribution. Extensive experiments demonstrate that the
proposed method can significantly improve the adversarial robustness.

2 A CAUSAL VIEW ON ADVERSARIAL DATA GENERATION

The ability of humans to perform causal reasoning is arguably an essential factor that makes human
learning different from deep learning (Schölkopf et al., 2021; Zhang et al., 2020a; Gopnik et al.,
2004). The superiority of causal reasoning endows humans with the ability to identify causal re-
lations and ignore nuisance factors that are not relevant to the task. In contrast, DNNs are usually
trained to fit the perceived information overlooking the ability to distinguish causal relations and sta-
tistical associations. This shortcut solution could lead to overfitting to these nuisance factors, which
would further result in the sensitivity of DNNs to such factors. Therefore, we propose incorporating
causal reasoning to mitigate the sensitivity of DNNs to these nuisance factors.

Before using causal reasoning to analyze adversarial vulnerability, we need to construct a causal
graph, as causal graphs are the key for formalizing causal reasoning (Peters et al., 2017). In the
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context of adversarial learning, we desire the causal graph by which both the natural and the ad-
versarial distributions can be generated. In addition, the graph is required to reflect the impact of
nuisance factors on these two distributions, so that we can investigate the difference in nuisance
factors between these two distributions. Consequently, we can formally establish the connection
between nuisance factors and adversarial vulnerability. Therefore, we propose constructing a causal
graph to model the adversarial generation process where the nuisance factors are considered. One
approach is to use causal structure learning to infer causal graphs (Pearl, 2009; Peters et al., 2017),
but it is challenging to apply this kind of approach to high-dimensional data. Using external knowl-
edge to construct causal graphs is another approach (Zhang et al., 2013; Tang et al., 2020; Schölkopf
et al., 2021). As automatically learning a precise causal graph is out of scope for this work, external
human knowledge about the data generation process is employed to construct the causal graph.

SC

Y X θ

E X̃

Figure 1: Causal graph of the per-
turbed data generation process. Each
node represents a random variable, and
gray ones indicate observable variables,
where C, S,X, Y,E, X̃,θ are content vari-
able, style variable, natural data, label, per-
turbation, perturbed data and parameters of a
neural network, respectively.

Specifically, we construct a causal graph G to for-
malize the image data generation process using the
following knowledge for analyzing adversarial vul-
nerability. As there might be a number of different
causes of natural dataX , we propose to divide all the
causes into two categories for simplicity. We group
content-related causes into one category, called con-
tent variable C. The rest causes, i.e., nuisance fac-
tors, are grouped into another category, called style
variable S, which is content-independent, i.e., S ⫫
C. This implies that C → X ← S. It is noteworthy
that, in this paper, we assume that only the content
variable is relevant for the task we care about, i.e.,
C → Y . Perceived data X̃ are usually composed
of perturbations E and natural data X . When the
perturbation E is designed carefully to fool DNNs,
E should be a compound result of X (the object to
be perturbed), Y (the reference for the perturbation),
and θ (the targets affected by the perturbation), e.g., white-box attacks (Goodfellow et al., 2015; Car-
lini & Wagner, 2017; Moosavi-Dezfooli et al., 2016), which means that (X,Y,θ)→ E

1. Leverage
all this background knowledge, we obtain the causal graph G formalizing the perturbed data gener-
ation process, depicted in Fig. 1.

Based on the causal graph, we can define valid interventions (Pearl, 2009; Schölkopf et al., 2021)
and the corresponding intervention distributions. Defining valid interventions is equivalent to de-
termining which variables or mechanisms in the causal graph can be intervened. In this work, we
consider both hard and soft interventions (Eberhardt & Scheines, 2007; Correa & Bareinboim, 2020)
on the perturbation variable E. Specifically, we can use a structural causal model to represent the
generating mechanism of E:

E ≔M(X,Y,θ, UE), (1)

where the exogenous variable UE stands for other indeterminacies, e.g., random start noise used in
PGD attack (Madry et al., 2018).

By intervening E in different ways, we can obtain different intervention distributions, which could
be either natural or adversarial, over the observed variables. For example, if we do a hard interven-
tion on E, i.e., do(E = 0) in the graph, the generated data distribution corresponds to the natural
distribution P (X,Y ). Different perturbations can be obtained by performing soft interventions on
E, i.e., modifying M. In the context of adversarial attacks, adversaries aim to maximize a certain
objective function `(⋅) to mislead a target model h (X;θ) by searching for the worst perturbation
for each instance (Goodfellow et al., 2015; Carlini & Wagner, 2017; Dong et al., 2018; Madry et al.,
2018), where θ stands for parameters of the target model. To formalize the intuition of adversarial

1These three causes are not indispensable. Deleting θ gives black-box attacks (Papernot et al., 2017;
Dong et al., 2018) that only use (X,Y ) to perform attacks. Deleting X leads to universal adversarial attacks
(Moosavi-Dezfooli et al., 2017; Hendrik Metzen et al., 2017), which assume that one adversarial perturbation
is sufficient to fool DNNs. Recent works show that a specific transform to X effectively evaluates the sensitiv-
ity of DNNs within a small neighborhood (Rahaman et al., 2019; Zhang et al., 2020b), which corresponds to
deleting (Y,θ) from the cause set.
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attacks, we can first search for the adversarial perturbation Eadv , and then use a function to approx-
imate the mechanism for generating Eadv . The adversarial perturbation Eadv can be obtained by
maximizing `(⋅):

Eadv = arg max
E ′
∈B

`(h(X + E
′
;θ), Y ). (2)

where B is a set of valid perturbations, and the adversarial perturbation Eadv is the result of the
mechanism Madv , i.e.,Eadv ≔Madv(X,Y,θ, UE). The intervention distribution that corresponds
to the adversarial mechanism Madv is defined as the adversarial distribution Pθ(X̃, Y ), where the
subscript θ indicates that Pθ(X̃, Y ) is crafted to attack the target model h (X;θ) with parameter θ.

3 METHOD

To understand the adversarial vulnerability, we study the difference between the natural and ad-
versarial distributions and conclude that conditional associations between labels and style factors
play a crucial role in adversarial vulnerability. Inspired by the conclusion, we propose a method to
eliminate the difference in such conditional associations to mitigate adversarial vulnerability.

3.1 ORIGIN OF ADVERSARIAL VULNERABILITY

Inspired by the causal graph, we derive a causal understanding of adversarial vulnerability. Accord-
ing to the causal graph G depicted in Fig. 1, there is a path, S → X ← C → Y , from the style
variable S to the label Y when X is given 2, which leads to the correlation between labels and style
variables. The spurious correlation implies that DNNs can perform well on the training set by fitting
the statistical association between Y and S, even though the genuine content information is dropped.
Moreover, if the conditional association between Y and S on the (natural) test set is similar to that
on the training set, fitting these spurious correlations will also perform well on the test set. This is
consistent with the recent work (Ilyas et al., 2019), which shows that training DNNs with incorrectly
labeled data, i.e., the genuine content information is not utilized for training, yields good accuracy
on the (natural) test set. However, suppose DNNs learn such spurious correlation. In that case,
their performance will change with the conditional association between Y and S. Consequently, fit-
ting such spurious correlation gives adversaries a chance to fool DNNs. Therefore, the conditional
association between labels and style variables is a key to understand adversarial vulnerability.

To identify the origin of adversarial vulnerability from the spurious correlation perspective, we study
the distinction between the adversarial distribution and the natural distribution. To look at what
makes the adversarial distribution different from the natural distribution, we expand the natural
P (Y ∣X) and the adversarial distribution Pθ(Y ∣X̃)

P (Y ∣X) = ∑
s∈S

P (s∣X)P (Y ∣X, s), Pθ(Y ∣X̃) = ∑
s∈S

Pθ(s∣X̃)Pθ(Y ∣X̃, s), (3)

where we assume the set of valid styles S is discrete, and s stands for a certain style. We can
see that the difference between P (Y ∣X) and Pθ(Y ∣X̃) results from two terms, i.e., Pθ(s∣X̃) and
Pθ(Y ∣X̃, s). Pθ(s∣X̃) represents the change of style information, e.g., textures (Geirhos et al.,
2018), transformations (Chen et al., 2020; Mitrovic et al., 2020; He et al., 2020), and domain shifts
(Ganin et al., 2016). It is shown that changing image textures has a significant impact on predictions
of DNNs (Geirhos et al., 2018), but such drastic style changes will hardly appear in the context of
adversarial attacks as perturbations are required to be imperceptible 3. Although modifying style
variables S is not allowed, adversaries can exploit the conditional association between Y and S, i.e.,
Pθ(Y ∣X̃, s), via injecting a specific perturbation to generate adversarial distributions. Specifically,
under an appropriate soft intervention, i.e., Madv , the conditional distribution Pθ(Y ∣X̃, s) can be
drastically different from P (Y ∣X, s). Namely, the property of adversarial distribution essentially
results from the drastic difference in the statistical association between labels and style variables.
Intuitively, if DNNs fit the conditional associations between Y and S, their performance will change

2Here, we use the underlined variable X to represent that the variable X is given.
3In this work, we focus on imperceptible adversarial examples, i.e., the widely studied `p-norm bounded

adversarial examples, where drastic style changes hardly appear.
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with the spurious correlation. Consequently, a drastic difference between the conditional association
between Y and S will cause significant performance degradation of DNNs.

Hence, the origin of adversarial vulnerability is the excessive focus of DNNs on spurious correlations
between labels and style variables. This conclusion provides a causal perspective for the empirical
observation, i.e. some features are useful but not robust (Ilyas et al., 2019), so adversarial examples
can be viewed as a model phenomenon rather than merely a human phenomenon.

3.2 THE ADVERSARIAL DISTRIBUTION ALIGNMENT METHOD

In light of the causal understanding of the adversarial vulnerability, improving adversarial robust-
ness requires forcing DNNs to fit the causal relations rather than merely the statistical associations.
However, only the perceived data can be observed in practice, and the supervised information of
content variables is usually unavailable. Therefore, an approach that can avoid reliance on such
supervised information is required.

To develop such an approach, we revisit the difference between the adversarial and natural distribu-
tions. Intuitively, if the difference between the natural and the adversarial distribution is negligible,
the adversarial vulnerability of DNNs can be mitigated, as DNNs perform well on the natural distri-
bution (Krizhevsky et al., 2012; He et al., 2016; Zhang et al., 2021). Consequently, a straightforward
solution for improving adversarial robustness is to align these two distributions. The aforementioned
analysis shows that the property of adversarial distributions to fool DNNs comes from specific con-
ditional associations between labels Y and style variables S, i.e., Pθ(Y ∣X̃, s) and P (Y ∣X, s).
Inspired by the conclusion, we propose an adversarial distribution alignment method to eliminate
the difference between the natural and adversarial distributions. Specifically, we regard the natural
distribution P (Y ∣X, s) as an anchor, then align the adversarial distribution Pθ(Y ∣X̃, s) with the
anchor such that the difference between these two distributions is negligible. In addition, the rela-
tionship between Y and X should also be the same on both the adversarial and natural distributions.
Concretely, we operationalize the intuition of the adversarial distribution alignment by:

min
θ

d (P (Y ∣X) , Pθ (Y ∣X̃)) + λEsd (P (Y ∣X, s) , Pθ (Y ∣X̃, s)) . (4)

Here d(⋅) is a metric reflecting the divergence between two distributions, and λ > 0 presents the
weighting of the misalignment penalty. In addition, we assume X and X̃ have the same support set
because adversarial perturbations are usually bounded. Solving the adversarial distribution align-
ment objective is equivalent to search a classifier h(X̃;θ) such that the adversarial distribution of
the classifier is similar to the natural distribution. Benefiting from the consistency of these two
distributions, classifier h(X̃;θ) can perform well on both the natural and adversarial distributions.

In practice, the adversarial distribution often cannot be obtained analytically, so we relax the dis-
tribution divergence in Eq. 4 to the sum of two divergences, see Appendix A for details. For the
divergence between P (Y ∣X) and Pθ(Y ∣X̃), we have:

KL (Pθ (Y ∣X̃) , Qθ (Y ∣X̃)) + γKL (P (Y ∣X) , Qθ (Y ∣X))
=E(X̃,Y )∼Pθ(X̃,Y )CE (h (X̃;θ) , Y ) + γE(X,Y )∼P (X,Y )CE (h (X;θ) , Y )
≈E(X,Y )∼P (X,Y )CE (h (X + Eadv;θ) , Y ) + γCE (h (X;θ) , Y ) , (5)

where KL is the Kullback-Leibler divergence, CE is the cross-entropy loss, Qθ(Y ∣X) is the con-
ditional distribution specified by the classifier h (X;θ), and γ is a tunable hyperparameter. Because
adversarial examples are usually generated by adding perturbation to their corresponding natural
samples rather than sampled from the adversarial distribution independently, we use X + Eadv to
approximate examples independently sampled from the adversarial distribution, whereX is sampled
from the natural distribution independently.

Similar to Eq. 5, the divergence between P (Y ∣X̃, s) and Pθ(Y ∣X̃, s) can be approximated by:

E(X,Y )∼P (X,Y )CE (g (s (X + Eadv) ;Wg) , Y ) + β (g (s (X) ;Wg) , Y ) , (6)

where g (s (X) ;Wg) is a function used for modeling the statistically conditional association be-
tween labels and style variables, s (X) stands for the integrated representation of X and s, and β
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is a tunable hyperparameter. Thus, the overall objective of the proposed adversarial distribution
alignment method can be expressed as

min
θ,Wg

E(X,Y )∼P (X,Y )CE (h (X + Eadv;θ) , Y ) + γCE (h (X;θ) , Y )

+ λ (EsCE (g (s (X + Eadv) ;Wg) , Y ) + βCE (g (s (X) ;Wg) , Y )) .
(7)

To make sure that introducing g can benefit learning h, it is necessary to design an approach to con-
nect model g and model h. In this paper, we connect g and h by representation sharing. Interestingly,
according to Eq. 4 and Eq. 7, if we omit the spurious correlation between labels and style variables,
i.e., λ = 0, and set γ = 0, Eq. 7 then becomes the objective function introduced by Madry (Madry
et al., 2018). This suggests that the proposed adversarial distribution alignment method is consistent
with the seminal variant Madry (Madry et al., 2018) of adversarial training.

3.3 REALIZATION OF ADVERSARIAL DISTRIBUTION ALIGNMENT METHOD

According to Eq. 7, realizing the proposed adversarial distribution alignment method requires pre-
dicting labels with all style variables, i.e., modeling the statistically conditional association between
Y and S. However, there are two major obstacles preventing us from calculating the last term of
Eq. 7. Specifically, a) the number of all possible styles s is infinite, so the cost of calculating the
expectation in Eq. 7 can grow to infinity; b) the representation of the integrated representation of X
and s, i.e., s (X), used for predicting labels is unknown.

To calculate the expectation in Eq. 7, we have to make some assumptions to approximate the dis-
tribution of the style variable, as the true distribution is unknown. Following previous work (Gal
& Ghahramani, 2016; Kendall & Gal, 2017), we assume a Gaussian distribution to approximate the
unknown distribution. Specifically, the representation s (X) is estimated by ŝ (X) sampled from a
Gaussian distribution, i.e., ŝ (X) ∼ N (µ (X) ,Σ), where µ (X) is employed to model the Gaus-
sian distribution’s mean, and Σ is the covariance matrix. Because little prior knowledge about the
covariance matrix is observed, we simply regard the covariance matrix Σ as an identity matrix, i.e.,
ŝ (X) ∼ N (µ (X) , σ2

I). Then, the expectation can be approximated by

EsCE (g (s (X) ;Wg) , Y ) ≈ Eŝ(X)∼N (µ(X),σ2I)CE (g (ŝ (X) ;Wg) , Y ) . (8)

Thanks to the Gaussian distribution assumption, we can derive an upper bound of the expectation:

Eŝ(X)∼N (µ(X),σ2I)CE (g (ŝ (X) ;Wg) , Y ) ≤ CE (g (µ (X) ;Wg) , Y ) , (9)

where the probability of the ith category of g (µ (X) ;Wg) is (see Appendix B for details)

P (Y = i∣g (µ (X) ;Wg)) =
e
W
⊤
g,iµ(X)

∑j e
W⊤
g,jµ(X)+σ2

2
(Wg,j−Wg,i)⊤(Wg,j−Wg,i)

. (10)

Here, we simply set g to a linear function, i.e., Wg is a linear mapping. Instead of calculating all
styles ŝ (X), the conclusion of Eq. 9 and Eq. 10 shows that only the mean and variance of ŝ (X)
are required to calculate the expectation in Eq. 7.

In light of Eq. 9 and Eq. 10, the challenge of learning the representation of s (X) boils down
to estimating the mean of ŝ (X), i.e., no need to estimate every style representation explicitly. In
addition, the variance can be treated as a hyperparameter. To estimate the mean, we draw inspi-
ration from the proposed causal graph. According to the causal graph G, the content and style
variables are statistically independent, i.e., C ⫫ S. Thus, the estimated content ĉ (X) and style
ŝ (X) are desired to be independent, i.e., ĉ (X) ⫫ ŝ (X). The underlying intuition is that we
aim to model the causal relation between the content variable and the style variable and omit the
spurious correlation between ĉ (X) and ŝ (X), because the spurious correlation is not a causal
relation, although ĉ (X) and ŝ (X) are not statistically independent. Following previous work (Le-
Cun et al., 1998; Bengio et al., 2013), we regard DNNs as a combination of representation learn-
ing modules and linear classifier modules. Specifically, we apply a linear function to the learned
representation for approximating the content which is further used to predicting labels. Specifi-
cally, we have ĉ (X) = ĉ (r (X;Wr) ;Wc) = Wcr (X;Wr). That is, Wc are parameters used
for predicting labels. According to the Gaussian distribution assumption, we can obtain the esti-
mated style by the reparameterization trick, i.e., ŝ (X) = µ (X;Ws) + σn, where Ws presents
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parameters for modeling the mean, and n is sampled from a normal distribution. For simplic-
ity, we assume that µ (X;Ws) is an affine mapping applied to the learned representation 4, i.e.,
µ (X;Ws) = µ (r (X;Wr) ;Ws) = Wsr (X;Wr). Assume that r (X;Wr) is a Gaussian distribu-
tion with a covariance matrix M . Then, the independence ĉ (X) ⫫ ŝ (X) holds if we set Ws as an
instantiation of the orthogonal complement of Wc, i.e., ker (Wc)⊥ ⊥M ker (Ws)⊥. Here, we define
⟨a, b⟩M = ⟨a,Mb⟩, and the orthogonality of two subspaces is defined likewise. Therefore, we can
simply employ the learned representation r (X;Wr) and the parameters used for predicting labels,
i.e., Wc, to estimate µ (X), see Appendix C for details.

Combining Eq. 7 and Eq. 9, we derive a realization of adversarial distribution alignment method:

min
θ,Wg

E(X,Y )∼P (X,Y )CE (h (X + Eadv;θ) , Y ) + γCE (h (X;θ) , Y )

+ λ (CE (g (µ (X + Eadv) ;Wg) , Y ) + βCE (g (µ (X) ;Wg) , Y )) .
(11)

Given X , Eq. 11 encourages the statistically conditional association between labels and style vari-
ables of the adversarial distribution to be close to that of the natural distribution. The explicit dis-
tribution alignment can reduce the difference between the adversarial distribution and the natural
distribution. If the conditional association of the adversarial distribution is similar to that of the nat-
ural distribution, it should be hard for the adversary to find adversarial examples, which is consistent
with recent work (Kilbertus et al., 2018; Schölkopf et al., 2021).

4 EXPERIMENT

4.1 SETUPS

Baseline methods. Our experiments are designed to demonstrate the necessity of considering the
spurious correlation between labels Y and style variables S when developing robust models. Eq. 7
shows that if we set the hyperparameter γ = 0, and omit the spurious correlation between Y and
S, the proposed method is equivalent to the adversarial training variant Madry (Madry et al., 2018).
Thus, to demonstrate the necessity of considering the spurious correlation, we set γ = 0 and λ > 0
in Eq. 7, named CausalAdv-M, and compare the adversarial robustness of CausalAdv-M with that
of Madry. In addition, the model capacity is often insufficient in adversarial training (Madry et al.,
2018), so replacing one-hot labels of the first term in Eq. 7 with soft targets, i.e., the model prediction
h(X;θ), can relieve the problem of insufficient model capacity 5. Considering the insufficient model
capacity, we replace Y in the first term of Eq. 7 with the model prediction, and the derived method
is called CausalAdv-T. We find that CausalAdv-T becomes the objective introduced in TRADES
(Zhang et al., 2019) when we omit the spurious correlation, i.e., λ = 0, which shows that the
proposed method also shares the same spirits to TRADES. Therefore, to demonstrate the importance
of the spurious correlation between Y and S, we compare CausalAdv-M and CausalAdv-T with
Madry and TRADES, respectively.

Evaluation metrics and training details. To evaluate the robustness for different methods, we
compute the test accuracy on natural and adversarial examples with `∞-norm bounded perturbation
generated by: FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018), and C&W (Carlini &
Wagner, 2017) attacks. The robustness is evaluated on both the best checkpoint model suggested
by (Rice et al., 2020) and the last checkpoint model used in (Madry et al., 2018), respectively. For
MNIST, we use the same CNN architecture as (Carlini & Wagner, 2017; Zhang et al., 2019). For
CIFAR10 and CIFAR100, two architectures are employed: ResNet-18 (He et al., 2016) and WRN-
34-10 (Zagoruyko & Komodakis, 2016). The settings of attacks and hyper-parameters for training
are the same as previous works, more details can be found in Appendix D.

4.2 ROBUSTNESS EVALUATION

We evaluate the robustness of Madry, TRADES, and the proposed method on MNIST, CIFAR10, and
CIFAR100 against various attacks (Goodfellow et al., 2015; Madry et al., 2018; Carlini & Wagner,
2017), which are widely used in the literature. We report the classification accuracy on MNIST in

4Studying non-linear functions is an interesting open question, and we leave it as future work.
5Knowledge distillation (Hinton et al., 2015) shows that models with insufficient capacity prefer soft targets.
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Table 1: Classification accuracy (%) on MNIST under the white-box threat model with ε = 0.3. The
best-performance model and the corresponding accuracy are highlighted.

Method Best checkpoint Last checkpoint
Natural FGSM PGD-40 CW-40 Natural FGSM PGD-40 CW-40

Madry 99.48 97.82 95.75 95.92 99.47 96.52 94.33 94.45
CausalAdv-M 99.53±0.04 98.02±0.07 96.37±0.12 96.47±0.17 99.49±0.08 96.83±0.10 94.67±0.14 94.84±0.19

TRADES 99.39 97.22 96.55 96.66 99.36 96.76 94.89 94.91
CausalAdv-T 99.49±0.06 97.82±0.07 96.72±0.10 96.78±0.15 99.49±0.04 97.32±0.08 96.63±0.13 96.69±0.21

Table 2: Classification accuracy (%) of ResNet-18 on CIFAR-10 under the white-box threat model
with ε = 8/255. The best-performance model and the corresponding accuracy are highlighted.

Method Best checkpoint Last checkpoint
Natural FGSM PGD-20 CW-20 Natural FGSM PGD-20 CW-20

Madry 83.56 56.69 51.92 51.00 84.65 54.37 46.38 46.73
CausalAdv-M 80.42±0.39 57.98±0.21 54.44±0.18 52.51±0.25 83.72±0.41 59.17±0.24 51.82±0.19 50.93±0.27

TRADES 81.39 57.25 53.64 51.39 82.91 57.95 52.80 51.27
CausalAdv-T 81.22±0.27 58.97±0.17 54.55±0.16 52.95±0.26 81.62±0.30 58.90±0.16 53.64±0.14 52.70±0.37

Table 1, where “Natural” denotes the accuracy on natural test images. We denote by PGD-40 the
PGD attack with 40 iterations for generating adversarial examples, which also applies to the C&W
attack. The results of ResNet-18 on CIFAR10 and CIFAR100 are illustrated in Table 2 and Table 3,
respectively. The results of WRN-34-10 are in Appendix E. We can see that the proposed method
achieves the best robustness against all three types of attacks, demonstrating that taking into account
the spurious correlation can significantly improve the adversarial robustness. To further understand
the comparative effects of different terms of the proposed method, we reorganize the robust accuracy
of the best checkpoint trained on CIFAR-10 and CIFAR-100 in Appendix F.

4.3 DISCUSSION

Figure 2: Comparisons of Madry (dotted lines)
and CausalAdv-M (solid lines) using ResNet-18
on the CIFAR-10 dataset under PGD-20 attack.
Madry-Nat and Madry-Adv represent the accu-
racy of Madry on the natural and adversarial data,
respectively, which also applies to CausalAdv-M.
To verify that CausalAdv-M effectively alleviates
the robust overfitting rather than delaying the oc-
currence of robust overfitting, we train these mod-
els with 200 epochs which is larger than the basic
setting.

Consideration of gradient obfuscation. Accord-
ing to the criterion suggested by (Athalye et al.,
2018), we exclude the potential effect of gradient ob-
fuscation by showing the following phenomenons:
a) the performance of our method on FSGM at-
tack (59.17%) is better than iterative attacks PGD-
20 (51.82%) and C&W-20 (50.93%); b) the per-
formance of our method on black-box PGD-20
(83.65%) and C&W-20 (83.57%) attacks is better
than that on white-box attacks (51.82%); c) strong
attacks cause lower accuracy than weak attacks, i.e.,
the accuracy on PGD-20 and PGD-100 are 51.82%
and 48.05%, respectively. In addition, no gradient
shattering operator is used in our method. All these
results are evaluated on the CIFAR10 dataset using
the last checkpoint of ResNet-18. Thus, according
to the criterion suggested by (Athalye et al., 2018),
the robustness improvement of the proposed method
does not result from gradient obfuscation.

Consideration of adaptive attack. According to
the adaptive attack criterion (Tramer et al., 2020),
we augment the original objective function used in the PGD attack with the proposed adversarial
distribution alignment loss to implement adaptive attacks, i.e., Eq. 11. Under the adaptive attack,
the accuracy is 51.68%, while under the original PGD-20 attack is 51.82%, demonstrating that the
proposed method is genuinely robust.

Consideration of AutoAttack. Following previous work (Pang et al., 2020), we verify the effec-
tiveness of the proposed method on AutoAttack (Croce & Hein, 2020). According to the commonly
used setting, see (Pang et al., 2020), we report robust accuracy of WRN-34-10 trained with CIFAR10
dataset on Auto-Attack, Madry: 49.58%, CausalAdv-M: 51.56%, TRADES: 52.46%, CausalAdv-
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Table 3: Classification accuracy (%) of ResNet-18 on CIFAR-100 under the white-box threat model
with ε = 8/255. The best-performance model and the corresponding accuracy are highlighted.

Method Best checkpoint Last checkpoint
Natural FGSM PGD-20 CW-20 Natural FGSM PGD-20 CW-20

Madry 55.98 28.39 25.15 24.04 55.08 25.35 21.63 21.42
CausalAdv-M 54.07±0.17 29.76±0.16 27.62±0.13 25.44±0.15 54.81±0.23 26.83±0.19 23.34±0.15 22.93±0.13

TRADES 53.85 29.04 27.91 24.09 53.54 29.29 26.80 23.79
CausalAdv-T 53.17±0.39 30.66±0.20 28.57±0.18 25.74±0.18 54.79±0.41 30.81±0.40 28.51±0.35 25.32±0.27

T: 54.09%, and HE (Pang et al., 2020): 53.74%, where HE is an adversarial variant achieving
state-of-the-art performance. These results show that the proposed method can endow models with
robustness comparable to the state-of-the-art performance.

Mitigating robust overfitting. The recent work (Rice et al., 2020) first studies the robust overfitting
phenomenon. Robust overfitting means that further training will increase the robust training accu-
racy and test accuracy on natural data after a certain training epoch, but the robust test accuracy will
decrease. The robust overfitting phenomenon of Madry (Madry et al., 2018) is depicted in Fig. 2.
It can be seen that the robust test accuracy of Madry decreases to about 44%, while the best robust
accuracy of Madry is 51.92%. In contrast, the proposed method drastically reduces the difference
between the best robust accuracy 54.44% and the robust accuracy 50.93% of the last checkpoint.

5 RELATED WORK

Adversarial attack. Unlike the assumption employed in noisy labels (Han et al., 2020; Liu &
Tao, 2015; Xia et al., 2020), adversarial attacks assume that the input determines noise. Since the
realization of the adversarial example phenomenon (Biggio et al., 2013; Szegedy et al., 2014), tons
of adversarial attacks have been proposed (Moosavi-Dezfooli et al., 2016; Goodfellow et al., 2015;
Carlini & Wagner, 2017; Dong et al., 2018; Tu et al., 2019; Madry et al., 2018; Croce & Hein, 2020).
Among these attacks, FGSM Goodfellow et al. (2015), PGD attack (Madry et al., 2018), C&W
attack (Carlini & Wagner, 2017), and Auto-Attack (Croce & Hein, 2020) are the most commonly
used attacks for evaluating robustness.

Adversarial defense. The development of adversarial attacks promotes the progress of adversarial
defense and detection. Recent work on improving adversarial robustness mainly falls into two cat-
egories: certified defense (Raghunathan et al., 2018; Wong & Kolter, 2018; Singla & Feizi, 2020)
and empirical defense and detection with two-sample test (Najafi et al., 2019; Carmon et al., 2019;
Shafahi et al., 2019; Wong et al., 2019; Pang et al., 2020; Rice et al., 2020; Ma et al., 2018; Gao
et al., 2021). Detailed discussions of these exciting works can be found in Appendix G.

Causal reasoning. The field of graphical causality, like machine learning, has a long history, see
Pearl (2009); Schölkopf et al. (2021); Peters et al. (2017). One purpose of causal reasoning is to
pursue the causal effect of interventions, contributing to achieving the desired objectives. Recent
work shows the benefits of introducing causality into machine learning from various aspects (Zhang
et al., 2020a; Mitrovic et al., 2020; Teshima et al., 2020; Tang et al., 2020; Sauer & Geiger, 2020;
Tang et al., 2021). More details about relevant works can be found in Appendix H.

6 CONCLUSION

In this paper, we provide a novel causality viewpoint for understanding and mitigating adversarial
vulnerability. Through constructing the causal graph of the adversarial data generation process
and formalizing the intuition of adversarial attacks, we show that the spurious correlation between
labels and style variables is important for understanding and mitigating adversarial vulnerability.
Inspired by the observation, we propose the adversarial distribution alignment method, which takes
the spurious correlation into account for robustness improvement. In addition, we find that the
proposed method shares the same spirits to existing adversarial training variants. In future work,
we will develop more effective algorithms to leverage or eliminate the spurious correlation between
labels and style variables to further improve adversarial robustness. In addition, we will explore the
uses of counterfactual statements to explain and mitigate the adversarial vulnerability. In sum, we
make a first step towards employing causality to contribute to adversarial learning.
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A DERIVATION OF DISTRIBUTION DIVERGENCE

Considering that the adversarial distribution often cannot be obtained analytically, we need to relax
the distribution divergence in Eq. 4, i.e., d (P (Y ∣X) , Pθ (Y ∣X̃)). Without loss of generality, the
metric d in Eq. 4 can be realized as total variation distance (TVD). Thus, according to the definition
of TVD, we have

d (P (Y ∣X) , Pθ (Y ∣X̃)) ≤ d (Pθ (Y ∣X̃) , Qθ (Y ∣X̃)) + d (P (Y ∣X) , Qθ (Y ∣X)) , (12)

where Qθ(Y ∣X) is the conditional distribution specified by the classifier h (X;θ). According to

the Pinsker inequality, i.e., d (P,Q) ≤
√
KL(P ∣∣Q)

2
, where KL is the Kullback-Leibler divergence,

we have an upper bound of Eq. 12:

d (P (Y ∣X) , Pθ (Y ∣X̃)) ≤

√
KL (Pθ (Y ∣X̃) ∣∣Qθ (Y ∣X̃))

2
+

√
KL (P (Y ∣X) ∣∣Qθ (Y ∣X))

2
.

(13)

Now, we can employ the upper bound Eq. 13 as a surrogate loss. In practice, we can re-

place
√
KL(P ∣∣Q)

2
with KL (P ∣∣Q). The intuition is that the difference between

√
KL(P ∣∣Q)

2

and KL (P ∣∣Q) is relatively small when KL (P ∣∣Q) is not extremely large, so the replacement
will not introduce much difference. Thus, we derive Eq. 5: KL (Pθ (Y ∣X̃) ∣∣Qθ (Y ∣X̃)) +
γKL (P (Y ∣X) ∣∣Qθ (Y ∣X)) , where γ is a tunable hyperparameter.

Here, we give an intuitive explanation of why optimizing Eq. 5 can make the adversarial dis-
tribution similar to the natural distribution. Considering that both the adversarial distribu-
tion Pθ (Y ∣X̃) and the anchor Qθ (Y ∣X̃) are parameterized by θ, so optimizing θ to mini-
mize KL (Pθ (Y ∣X̃) ∣∣Qθ (Y ∣X̃)) can force the adversarial distribution be similar to the dis-
tribution specified by the classifier h (X; θ), i.e., Qθ (Y ∣X̃). That is, optimizing Qθ (Y ∣X̃)
will also change the adversarial distribution Pθ (Y ∣X̃). In addition, minimizing the divergence
KL (P (Y ∣X) ∣∣Qθ (Y ∣X̃)) can endow the classifier with the ability to provide a good prediction
performance. Thus, minimizing KL (Pθ (Y ∣X̃) ∣∣Qθ (Y ∣X̃)) will make the adversarial distribu-
tion be similar with the natural distribution.

To verify the replacement will not introduce much difference, we evaluate the robustness of
CausalAdv-M and CausalAdv-T on the CIFAR-10 dataset with two losses, i.e., Eq. 5 and Eq. 13.
The results evaluated on best checkpoints are shown in Table 4.

Table 4: Classification accuracy (%) on CIFAR-10 under the white-box threat model with ε = 8/255.
Here, “*” means that Eq. 13 is used for optimization.

Natural FGSM PGD20 CW20
Madry 83.56 56.69 51.92 51.00
CausalAdv-M 80.42 57.98 54.44 52.51
CausalAdv-M* 80.03 57.47 52.98 52.72
TRADES 81.39 57.25 53.64 51.39
CausalAdv-T 81.22 58.97 54.55 52.95
CausalAdv-T* 79.94 58.46 54.12 52.28

B CALCULATION OF THE EXPECTATION ON THE STYLE INFORMATION

We provide details of calculating Eŝ(X̃)∼N (µ(X̃),σ2I)CE (g (ŝ (X̃) ;Wg) , Y ). We assume a normal

distribution for the styles, i.e., ŝ (X̃) ∼ N (µ (X̃) , σ2
I). According to the definition of the cross-

entropy loss, for a input pair (x, y) we have:
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Eŝ(x)∼N (µ(x),σ2I)CE (g (ŝ (x) ;Wg) , y)

= Eŝ(x)∼N (µ(x),σ2I) log
1

P (Y = y∣g (ŝ (x) ;Wg)))

≤ log
1

Eŝ(x)∼N (µ(x),σ2I)P (Y = y∣g (ŝ (x) ;Wg)))

= log
1

Eŝ(x)∼N (µ(x),σ2I)
eW

⊤
g,yŝ(x)

∑j e
W⊤
g,j ŝ(x)

= logEŝ(x)∼N (µ(x),σ2I) ∑
j

e
(Wg,j−Wg,y)⊤ŝ(x)

= log∑
j

e
(Wg,j−Wg,y)⊤µ(x)+ 1

2
(Wg,j−Wg,y)⊤σ2

I(Wg,j−Wg,y)

= log
∑j e

W
⊤
g,jµ(x)+σ

2

2
(Wg,j−Wg,y)⊤(Wg,j−Wg,y)

W⊤
g,yµ (x)

≜ log
1

P ((Y = y∣g (µ (x) ;Wg))
≜ CE (g (µ (x) ;Wg) , y) ,

(14)

where the inequality follows from the Jensen’s inequality: E log(X) ≤ logEX , the expectation is
calculated by leveraging the moment-generating function:

EetX = e
tµ+ 1

2
σ
2
t
2

, X ∼ N (µ, σ2). (15)

Note that, we define the function g (µ (x) ;Wg) for simplicity:

P ((Y = y∣g (µ (x) ;Wg)) ≜
W
⊤
g,yµ (x)

∑j=1 e
W⊤
g,jµ(x)+σ

2

2
(Wg,j−Wg,y)⊤(Wg,j−Wg,y)

. (16)

Besides seting g to a linear model, non-linear models, e.g., neural networks, can also be employed
in practice. To verify the influence introduced by selecting different instantiation of model g, we
compare different realizations of mode g, i.e., linear mapping and non-linear neural networks. The
following results suggest that our method is relatively robust to the selection of model g. Note that,
all these results are evaluated on the best checkpoint models trained on CIFAR-10 dataset.

Table 5: Classification accuracy (%) on CIFAR-10 under the white-box threat model with ε = 8/255.
Here, “+ Linear” means that model g is instantiated with a linear mapping, and “+ Non-linear” means
that model g is instantiated with a neural network.

Natural FGSM PGD20 CW20
Madry 83.56 56.69 51.92 51.00
CausalAdv-M + Linear 80.68 57.18 53.36 51.41
CausalAdv-M + Non-linear 80.42 57.98 54.44 52.51
TRADES 81.39 57.25 53.64 51.39
CausalAdv-T + Linear 80.31 58.43 54.31 52.25
CausalAdv-T + Non-linear 81.22 58.97 54.55 52.95

C RELATIONSHIP BETWEEN ORTHOGONALITY AND STATISTICAL
INDEPENDENCE

We give the proof for the following lemma in Sec. 3.3. Note that, we use R to present the learned
representation of X , and replace X with R for simplicity.
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Lemma 1. R ∈ Rd is the learned representation, where d is the number of dimension of R. Assume
that R is a normal distribution with mean m and covariance matrix M . The content used for pre-
dicting labels, i.e., logits, is obtained by applying a linear functions to R, i.e., ĉ (R) =WcR, where
Wc are parameters used for mapping R to logits. The style is modeled by a normal distribution, i.e.,
ŝ (R) = µ (R;Ws) + Σ (Y )

1
2 n, where Ws presents parameters for modeling the mean of styles,

and n is sampled from a standard normal distribution. Assume that µ (R;Ws) is a linear function,
i.e., ŝ (R) = WsR + Σ (Y )

1
2 n. Then, setting Ws as an instantiate of the orthogonal complement

of Wc leads to statistical independence, i.e., ĉ (R) ⫫ ŝ (R). Here, ⫫ denotes the statistical inde-
pendence, and we define ⟨a, b⟩M = ⟨a,Mb⟩ for a given semi-definite matrix M . The orthogonality
A ⊥M B of two subspaces A and B is defined likewise.

Proof. Under the assumption in Lemma 1, setting Ws as an instantiate of the orthogonal comple-
ment of Wc, we have:

ker(Ws)⊥ ⊥M ker(Wc)⊥⟺ im(W⊤
s ) ⊥M im(W⊤

c )⟺ ⟨W⊤
s a,W

⊤
c b⟩M = 0∀a, b

⟺ ⟨W⊤
s a,MW

⊤
c b⟩ = 0∀a, b⟺WsMW

⊤
c = 0⟺ ERWs (R −m) (R −m)⊤W⊤

c = 0

⟺ ER,nWs (R + Σ
1
2n −m) (R −m)⊤W⊤

c = 0⟺ Cov (ŝ (R) , ĉ (R)) = 0

⟺ ĉ (R) ⫫ ŝ (R)
(17)

D MORE DETAILS ABOUT EVALUATION METRICS AND TRAINING DETAILS

Evaluation metrics. For MNIST dataset, we set the maximum perturbation bound ε = 0.3, pertur-
bation step size η = 0.01, and the number of iterations K = 40 for PGD and C&W attacks, which
keeps the same as (Zhang et al., 2019). Following (Rice et al., 2020), we set perturbation bound
ε = 8/255, perturbation step size η = ε/10, and the number of iterations K = 20 for CIFAR-10
dataset.

Training details. For MNIST, we use the same CNN architecture as (Carlini & Wagner, 2017;
Zhang et al., 2019). Following (Zhang et al., 2019), the network is trained using SGD with 0.9
momentum for 50 epochs with an initial learning rate 0.01, and the batch size is set to 128. Hyper-
parameters used to craft adversarial examples for training are the same as those used for evaluation.
These two networks share the same hyper-parameters: we use SGD with 0.9 momentum, weight
decay 2 × 10

−4, batch size 128, and an initial learning rate of 0.1. The maximum epoch is 120, and
the learning rate is divided by 10 at epoch 60 and 90, respectively. To generate adversarial examples
for training, we set the maximal perturbation ε = 8/255, the perturbation step size η = 2/255, and
the number of iterations K = 10, which is the same as (Rice et al., 2020). In all of our experiments
β is set to 1.0. For CausalAdv-M, λ is set to 1.0 and 0.5 for CIFAR-10 and CIFAR-100 datasets,
respectively. For CausalAdv-T, λ is set to 0.5 and 1.0 for CIFAR-10 and CIFAR-100 datasets,
respectively.

E EXPERIMENTS OF WRN-34-10 ON CIFAR-10

Table 6: Classification accuracy (%) of WRN-34-10 on CIFAR-10 under the white-box threat model.
The best-performance model and the corresponding accuracy are highlighted.

Method Best checkpoint Last checkpoint
Natural FGSM PGD-20 CW-20 Natural FGSM PGD-20 CW-20

Madry 86.63 59.48 53.65 53.58 86.60 57.07 49.23 49.46
CausalAdv-M 85.24 61.22 55.17 55.68 85.61 60.08 51.76 52.59

TRADES 84.32 60.94 56.69 54.87 84.86 59.94 52.04 52.39
CausalAdv-T 84.19 61.62 57.36 55.75 84.35 61.57 55.15 55.23

In Table 6, we report the accuracy of WRN-34-10 (Zagoruyko & Komodakis, 2016) of Madry,
TRADES, and the proposed method on CIFAR-10 against various attacks, i.e., FGSM, PGD, and
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C&W attacks, which are widely used in the literature. Here, “Natural” denotes the accuracy of nat-
ural test images. We denote by PGD-20 the PGD attack with 20 iterations for generating adversarial
examples, which also applies to the C&W attack. We can see that the proposed method achieves the
best robustness against all three types of attacks, demonstrating that taking into account the spurious
correlation can significantly improve the adversarial robustness. Note that the standard deviations
of 5 runs are omitted, because they hardly affect the results.

F ABLATION STUDY

Table 7: Robust accuracy (%) of ResNet-18 on CIFAR-10 and CIFAR-100 under the white-box
threat model. For simplicity, we use t1, t2, and t3 to represent the first, second, and third terms in
Eq. 11, respectively. The best-performance model and the corresponding accuracy are highlighted.

Method t1 t2 t3
CIFAR-10 CIFAR-100

FGSM PGD-20 CW-20 FGSM PGD-20 CW-20
Madry ✓ 56.69 51.92 51.00 56.69 51.92 51.00

CausalAdv-M ✓ ✓ 57.98 54.44 52.51 57.98 54.44 52.51
TRADES ✓ ✓ 57.25 53.64 51.39 57.25 53.64 51.39

CausalAdv-T ✓ ✓ ✓ 58.97 54.55 52.95 58.97 54.55 52.95

We implicitly conducted ablation studies when designing Table 1, Table 2, and Table 3. To further
understand the comparative effects of different terms of the proposed method, we reorganize the
robust accuracy of the best checkpoint trained on CIFAR-10 and CIFAR-100 in Table 7. Comparing
Madry, TRADES, and CausalAdv-M, we find that introducing the second (t2) and the third term
(t3) can improve the robustness and that the effect of these two terms is close. Similarly, comparing
TRADES and CausalAdv-T, we see that introducing the third term (t3) can further improve the
robustness.

To further analyze the superiority of our method, we compare CausalAdv-M with Madry to explore
which kind of adversarial examples that CausalAdv-M is more robust to. These analyses are based
on the spurious perspective, as one main conclusion of our paper is that the origin of adversarial vul-
nerability is the excessive focus of DNNs on spurious correlations between labels and style variables.
Specifically, we calculate the KL-divergence betweenKL (P (Y ∣h (x, s)) ∣∣P (Y ∣h (xadv, s))) for
each input x, and divide samples into several (10 in our experiment) bins according to the KL-
divergence. Then, we evaluate the robust accuracy of models trained with CausalAdv-M and Madry
in each bin sample, and results are depicted in Fig. 3. We can see that CausalAdv-M is more robust

Figure 3: Classification accuracy (%) on CIFAR-10 under the PGD attack with with ε = 8/255.

to samples leading to large KL-divergence than Madry. According to these empirical results, we
can conclude that the proposed method is more robust to samples causing a significant difference
between natural and adversarial distributions.
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To further verify that CausalAdv-T can outperform TRADES interms of both the natural and ad-
versairal robustness, we compare the robust accuracy of CausalAdv-T with that of TRADES on
CIFAR-10 and CIFAR-100 dataset. The results evaluated on the best checkpoint models are shown
in Table 8. We can see that CausalAdv-T can improve both the natural and the adversarial accuracy.

Table 8: Robust accuracy (%) of ResNet-18 on CIFAR-10 and CIFAR-100 under the white-box
threat model.

CIFAR-10 CIFAR-100
Natural FGSM PGD20 CW20 Natural FGSM PGD20 CW20

TRADES 81.39 57.25 53.64 51.39 53.85 29.04 27.91 24.09
CausalAdv-T 81.72 58.26 54.06 51.90 53.91 30.19 28.11 24.90

To explore the sensitivity of our method on hyperparameters, we evaluate our methods on CIFAR10
and CIFAR100 datasets. The results are organized in Table 9. Results in Table 9 demonstrate that

Table 9: Robust accuracy (%) of ResNet-18 on CIFAR-10 and CIFAR-100 under the white-box
threat model.

CIFAR10 CIFAR100
Natural FGSM PGD20 CW20 Natural FGSM PGD20 CW20

Madry 83.56 56.69 51.92 51.00 55.98 28.39 25.15 24.04
CausalAdv-M λ = 0.2 82.17 57.13 53.28 51.80 54.68 29.85 27.32 25.88
CausalAdv-M λ = 0.5 80.83 57.28 53.65 51.97 54.07 29.76 27.62 25.44
CausalAdv-M λ = 1.0 80.42 57.98 54.44 52.51 52.69 29.77 27.80 26.04
CausalAdv-M λ = 1.5 80.17 57.53 53.24 51.40 52.37 30.74 28.49 26.71
CausalAdv-M λ = 2.0 80.35 58.29 53.16 52.71 48.40 30.07 28.52 25.97

TRADES 81.39 57.25 53.64 51.39 53.85 29.04 27.91 24.09
CausalAdv-T λ = 0.2 81.72 58.26 54.06 51.90 53.83 29.76 28.05 24.49
CausalAdv-T λ = 0.5 81.22 58.97 54.55 52.95 53.91 30.19 28.11 24.90
CausalAdv-T λ = 1.0 79.65 58.48 54.45 52.89 53.17 30.66 28.57 25.74
CausalAdv-T λ = 1.5 78.09 57.42 53.66 51.38 52.22 30.49 28.17 25.48
CausalAdv-T λ = 2.0 74.42 55.29 52.07 50.04 50.40 30.22 28.14 25.49

both CausalAdv-M and CausalAdv-T are relatively insensitive to the hyperparameters.

G MORE DETAILS ABOUT ADVERSARIAL LEARNING

Recent work on improving adversarial robustness mainly falls into two categories: certified defense
and empirical methods.

Certified defense (Raghunathan et al., 2018; Wong & Kolter, 2018; Singla & Feizi, 2020) aims to
endow the model with provably adversarial robustness against norm-bounded perturbations. Al-
though the certified defense strategy is promising, the empirical defense (Goodfellow et al., 2015;
Madry et al., 2018; Zhang et al., 2019; Pang et al., 2020; Wong & Kolter, 2018; Xie et al., 2019;
Yang et al., 2019), especially the adversarial training method (Goodfellow et al., 2015; Madry et al.,
2018; Zhang et al., 2019), is currently the most effective strategy. Empirical defense firstly generates
adversarial examples using a certain adversarial attack, then incorporates the generated adversarial
examples into the training process. Recently, an empirical detection strategy is to utilize a two-
sample test to detect adversarial examples (Gao et al., 2021). In the following, we mainly discuss
defense strategies, as the detection approach is not the main focus of this paper.

Recently, various efforts (Najafi et al., 2019; Carmon et al., 2019; Shafahi et al., 2019; Wong et al.,
2019; Pang et al., 2020; Rice et al., 2020) have been devoted to improving adversarial training. One
line of work focuses on accelerating the training procedure (Shafahi et al., 2019; Wong et al., 2019).
Another line of research (Najafi et al., 2019; Carmon et al., 2019) shows a promising direction that
unlabeled training data can significantly mitigate the adversarial vulnerability. Lastly, recent work
(Pang et al., 2020; Rice et al., 2020) provides an interesting direction where these methods rethink
the adversarial training from a exciting aspect, i.e., rethinking the role of normalization (Pang et al.,
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2020) and basic training strategies (Rice et al., 2020). However, all these methods overlook the
spurious correlation between labels and the style information.

Another related work is (Ilyas et al., 2019), which provides an interesting viewpoint, i.e., adversarial
examples can be viewed as a human phenomenon because the model’s reliance on useful but not
robust features leads to adversarial vulnerability. Our work gives a new causal perspective of ad-
versarial vulnerability. Specifically, a) (Ilyas et al., 2019) found some features were useful but not
robust, while our work explores the phenomenon’s fundamental cause and provides a clear explana-
tion of why some features are useful but not robust: GivenX , labels Y are spuriously correlated with
the style variables, so fitting the spurious correlation can predict labels. Thus, the style variables can
be viewed as ‘features’; b) (Ilyas et al., 2019) claimed that adversarial examples could be viewed as
a human phenomenon, while our work shows that adversarial examples can be viewed as a model
phenomenon rather than merely a human phenomenon. Specifically, the adversarial vulnerability
results from fitting the correlation between labels and style variables and failing to fit the causal
relations, i.e., DNNs fail to extract content variables.

H MORE DETAILS ABOUT CAUSAL REASONING

The most relevant work is CAMA (Zhang et al., 2020a) that aims to improve the robustness of
DNNs on unseen perturbation via explicitly modeling the perturbation from a causal view. The
main difference between our method and CAMA is that we focus on the adversarial vulnerability
while CAMA aims to improve the robustness of unseen perturbations. In addition, CAMA assumes
a hard intervention on a latent variable. It promotes robustness via modeling the perturbation in the
latent space. In this paper, we employ a soft intervention and propose to penalize DNNs when the
adversarial distribution is different from the natural distribution. A recent work (Bühlmann, 2020)
also aims to connect robust learning and causality, but the main focus of (Bühlmann, 2020) is on
out-of-distribution generalization, which is different from adversarial learning.

Another related work is RELIC (Mitrovic et al., 2020), a regularizer used in self-supervised learning
that uses the independence of mechanisms (Peters et al., 2017) and encourages DNNs to be invari-
ant to different augmentations of the same instance. The self-supervised learning method (Mitrovic
et al., 2020) also constructs a causal graph to model the data generation process, but the focus of
RELIC is on the content invariant property, overlooking the importance of style information. One
concurrent work (Tang et al., 2021) propose using the instrumental variable to perform causal inter-
vention, based on a strong assumption that the adversarial vulnerability results from the confounding
effect. In contrast, merely some general assumptions are required in this paper, e.g., causal model
assumption. Although (Sagawa et al., 2020) takes spurious correlations into account, (Sagawa et al.,
2020) proposes using prior knowledge to group the training data to avoid the reliance on spurious
correlations. Difference from (Sagawa et al., 2020), our method does not rely on prior knowledge.
Another related work is CORE (Heinze-Deml & Meinshausen, 2021), a regularizer inspired by a
causal graph is proposed to minimizing the variance of prediction and loss condition on label and ID
information to mitigate the influence of domain shift. Different from (Heinze-Deml & Meinshausen,
2021), our method is designed to eliminate the difference between the natural and adversarial distri-
butions.
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