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ABSTRACT

While previous Al Scientist systems can generate novel findings, they often lack
the focus to produce scientifically valuable contributions that address pressing
human-defined challenges. We introduce DeepScientist, a system designed to
overcome this by conducting goal-oriented, fully autonomous scientific discov-
ery over month-long timelines. It formalizes discovery as a Bayesian Optimiza-
tion problem, using a cumulative Findings Memory to intelligently balance the
exploitation of promising avenues with the exploration of novel hypotheses. Con-
suming over 20,000 GPU hours, the system generated about 5,000 unique ideas
and experimentally validated approximately 1100, ultimately surpassing human-
designed 2025 state-of-the-art (SOTA) methods on three frontier Al tasks by
183.7%, 1.9%, and 7.9%. Crucially, this was achieved by autonomously redesign-
ing core methodologies, not merely recombining existing techniques. In a strik-
ing demonstration, the system achieved progress on Al text detection in just two
weeks that is comparable to three years of cumulative human research. This work
provides the first large-scale evidence of an Al achieving discoveries that progres-
sively surpass human SOTA on scientific tasks, producing valuable findings that
genuinely push the frontier forward. To facilitate further research into this process,
we will open-source all experimental logs and system code.

Human Expert Researchers
Gradual Progress Curve

(Zero-shot) DeepScientist
(Supervised) Human
—#— (Zero-shot) Human

RADAR
NeurlPS 2023

Binoculars
Zero-shot SoTA ICML 2024

Fast-Detect
ICLR 2024

LRR
EMNLP 2023

Glimpse ™
ICLR 2025
LA
Log-Perplexity
ACL 2019

RoBERTa-base

DeepScientist
Rapid Evolution Curve

T PA-Detect

T-Detect

* 14 days: Achieved new
performance milestone

Y 11 days: Exceeded previous Supervised SOoTA

% 3 days: Optimized 2-year-old baseline, approaching Zero-shot SoTA

T T T T
2022 2023 2024 2025

Year

T T T
2019 2020 2021

T T T T
1 5 10 15

Day

Figure 1: Comparison of research progress timelines for Al text detection on the RAID (Dugan et al.,
2024). The right panel shows that DeepScientist achieves progress in two weeks that is comparable
to three years of human research (Su et al.; Bao et al., a;b; Hu et al., 2023) (left panel). All zero-shot
methods, including the system-generated T-Detect, TDT, and PA-Detect, uniformly adopt Falcon-7B
(Almazrouei et al., 2023) as the base model. Additionally, all methods produced by DeepScientist
demonstrate higher throughput than the previous SOTA method, Binoculars (Hans et al., 2024).
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1 INTRODUCTION

Scientific discovery is inherently a process of continuous exploration and trial-and-error, where
vast amounts of time and effort are invested to push the boundaries of human knowledge forward
by a small step. This principle of persistent, incremental advancement is visible across the history
of technology. For example, the decades-long optimization of semiconductor manufacturing has
seen the feature size of transistors systematically reduced from micrometers to single-digit nanome-
ters (Moore, 1965). Similarly, the efficiency of photovoltaic cells has been continuously advanced
over half a century, with myriad material and architectural innovations pushing conversion rates from
nascent single-digit percentages ever closer to their theoretical limits (Green, 1993). These historical
trajectories underscore a process where human scientists engage in decades of goal-directed, iter-
ative work to advance the SoTA artifacts continuously. In this work, we ask whether an Al-driven
system can participate in such long-horizon, goal-directed scientific progress on modern tasks, and
how its behavior compares to that of human scientists.

Recently, the emergence of Large Language Models (LLMs) has propelled automated scientific
discovery, where LLM-based Al Scientist systems take the lead in exploration (Xie et al., 2025).
With their powerful capacity for long-form generation and comprehension, LLMs enable end-to-
end, full-cycle automation in scientific discovery. This has inspired influential work such as Al
SCIENTIST-V2 (Yamada et al., 2025), whose scientific artifacts have been published in top-tier con-
ference workshops. However, in the absence of clearly defined scientific goals, current Al Scientist
systems often fall into the trap of blindly recombining existing knowledge and methods. As a result,
their research outputs frequently appear naive under human evaluation and lack genuine scientific
value (Zhu et al., 2025b). AI Scientists are yet to solve human challenges.

To solve real-world challenges, we formally model the full cycle of scientific discovery as a goal-
driven Bayesian Optimization problem, where the primary objective is to discover methods that
reliably improve a given evaluation metric over a strong human-designed baseline under a fixed
compute budget. Building on this formulation, we introduce DeepScientist, an LLM-based agent
system explicitly designed to operate on modern, resource-intensive Al research problems, rather
than on small-scale symbolic or synthetic tasks. Architecturally, DeepScientist departs from the
common “one-shot pipeline” or “single-idea infinite trial-and-error” paradigm by implementing a
three-stage iterative workflow (hypothesis generation, implementation & evaluation, and analysis &
abstraction) that is tightly coupled with a persistent Findings Memory accumulating both successful
and failed attempts over month-long runs. Within this framework, a Bayesian surrogate model and
acquisition function reason over thousands of past experiments to select the next hypotheses to test,
allowing the system to intelligently balance exploitation (deepening investigations into promising
high-value directions) with exploration (venturing into under-explored areas to acquire new knowl-
edge). Through large-scale parallel exploration informed by this Bayesian-optimization perspective
and shared memory, DeepScientist can generate innovative hypotheses and ultimately yield both
valuable new methods and validation-proven scientific findings.

We select three frontier scientific tasks (Agent Failure Attribution, LLM Inference Accel-
eration, and Al Text Detection ), take their state-of-the-art methods (ICML 2025 Spotlight,
ACL 2025 Outstanding, ICLR 2024) as starting points, and ask DeepScientist to conduct contin-
uous research. As shown in Figures | and 3, within a month-long cycle of exploration, validation,
and iteration on 16 H800 GPUs, DeepScientist exceeds their respective human SOTA methods
by 183.7% (Accuracy), 1.9% (Tokens/second), and 7.9% (AUROC) through autonomously re-
designing core methodologies, rather than simply combining existing techniques (Section 4.1).
To understand how such progress emerged, we analyze DeepScientist’s discovery logs, and formed
a small program committee to review the generated papers (Section 4.2). These logs show that the
system generated over 5,000 unique ideas, of which only 1,100 are selected for experimental val-
idation, and just 21 ultimately lead to scientific innovations (Section 4.3). Moreover, through the
scaling experiment on computational resource, we discover a near-linear relationship between the
resources allocated and the output of valuable scientific discoveries.

These observations constitute the first large-scale empirical demonstration of an automated full-
cycle scientific discovery system that produces novel, SOTA-surpassing methods and continu-
ously advances scientific frontiers on several challenging Al tasks, at a pace that rivals or exceeds
human researchers under comparable computational budgets. Taken together, they reveal a sobering
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reality: while exploratory capacity is immense, success is scarce, making effective validation, fil-
tering, and reuse of failures the new bottleneck at the frontier of automated science. Therefore, the
central question of the field is no longer ‘Can Al innovate?’, but rather ‘How can we efficiently guide
its powerful, yet highly dissipative, exploratory process to maximize scientific return?’. We hope
these insights, together with the released logs and code, can inspire the research community to de-
velop Al Scientist systems with greater exploration efficiency and reliability, accelerating scientific
discovery at scale and paving the way for future breakthrough discoveries.

2 RELATED WORK

Replication and Optimization. A significant body of research focuses on engineering tasks that
operate within established scientific frameworks. This includes replication-oriented works like Pa-
perBench (Starace et al., 2025) and Paper2Agent (Miao et al., 2025), which aim to reproduce ex-
isting papers. Other works, such as Agent Laboratory (Schmidgall et al., 2025b) and MLE-Bench
(Chan et al., 2024), tackle early-stage machine learning engineering problems. Similarly, systems
like AlphaTensor (Fawzi et al., 2022), ASI-Arch (Liu et al., 2025) and AlphaEvolve (Novikov et al.,
2025) use massive trial-and-error with known engineering methods to improve the performance
of codebases (Romera-Paredes et al., 2024; Shojaee et al.). The common goal of these efforts is
engineering-driven optimization within an established scientific paradigm, enhancing existing sys-
tems without questioning their foundational assumptions. DeepScientist, in contrast, pursues scien-
tific discovery by explicitly targeting the core limitations of strong SOTA methods on modern Al
tasks: its objective is not merely to refine existing implementations, but to propose and validate new
methodological directions that establish improved SOTA performance.

Semi-Automated Scientific Assistance. The path toward automating scientific discovery begin not
with replacing the scientist, but with assisting them, leading to the development of a paradigm of
specialized Al tools for individual research tasks. Systems like CycleResearcher (Weng et al., 2025)
handle writing, DeepReview (Zhu et al., 2025a) manages reviewing, and co-scientists (Gottweis
et al., 2025; Penadés et al., 2025; Swanson et al., 2025; Baek et al., 2025) aid in hypothesis gen-
eration. These powerful tools address only isolated fragments of the scientific process, leaving the
crucial loop of learning from failure and exploration to humans. In contrast, DeepScientist is an
autonomous agent of inquiry, managing the entire end-to-end research cycle and closing the loop by
learning from its own experiments and self-directing its research path.

Automated Scientific Discovery. Building on the capabilities of specialized assistants, a line of
research pursues full, end-to-end research automation (Xie et al., 2025). Pioneering efforts, such as
the AI Scientist systems (Lu et al., 2024; Yamada et al., 2025) and subsequent work (Intology, 2025;
Jiabin et al., 2025; Miyai et al., 2025), successfully demonstrate that an Al system can manage the
full research cycle and produce novel findings. However, these systems are typically evaluated on
relatively synthetic or narrowly scoped problems, and their exploratory strategies are not anchored
to clearly specified scientific goals or strong human baselines. This can lead to undirected discover-
ies that, while novel, are often perceived as having limited scientific value in practice. In contrast,
DeepScientist is designed to operate on modern, high-cost Al tasks with competitive human SOTA
methods and to treat discovery as a goal-driven Bayesian optimization problem over these base-
lines. Its exploration is explicitly tied to identified limitations of the human SOTA and proceeds
through a closed-loop, iterative process—using failure attribution and a persistent Findings Memory
to prioritize hypotheses that are both novel and measurably impactful.

3 DEEPSCIENTIST: A PROGRESSIVE SYSTEM FOR DISCOVERING
SOTA-SURPASSING FINDINGS

DeepScientist is an LLM-based multi-agent system equipped with an open-knowledge system, a
continuously accumulating Findings Memory, which is composed of both frontier human knowl-
edge (e.g. papers and codes) and the system’s own historical findings. This memory is constructed
and updated fully automatically during the system’s operation, without any manual editing, and each
record stores the hypothesis, implementation details, evaluation metrics, and logs of both successful
and failed experiments (Zhou et al., 2025). This memory intelligently guides subsequent explo-
rations, ensuring a sustained and focused push at the scientific frontier. The entire system’s core
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Figure 2: The autonomous, closed-loop discovery process of DeepScientist. The system iterates
through a three-stage cycle, learning from both human knowledge and its own experiments.

task is to find the optimal program I* from a space of all possible candidate research programs 7
that maximizes an unknown and extremely expensive-to-evaluate true scientific value function f(-).
The architecture of DeepScientist is detailed in Appendix D.

Exploration Strategy. Scientific discovery differs from previously considered tasks like early-stage
machine learning (Schmidgall et al., 2025a), algorithm discovery (Novikov et al., 2025), or scien-
tific software development (Aygiin et al., 2025). Each exploratory step within it requires immense
resources. For instance, solving a frontier LLM problem requires approximately 1 x 10'¢ FLOPs
for each implementation (Figure 4.c). This necessitates an efficient exploration strategy rather than
brute-force search. Compared to prior Al Scientist systems that either follow a single one-shot
“idea — experiment — paper’” pipeline or perform near-unlimited trial-and-error around a single
idea, DeepScientist adopts an explicit iterative loop that combines Bayesian value estimation with a
persistent Findings Memory. To address this, DeepScientist’s discovery process is structured as an
iterative Bayesian Optimization loop (Figure 2), through the following three-stage cycle:

Stage I: Strategize & Hypothesize Each research cycle begins by analyzing the Findings Memory
(My), a list-style database containing thousands of structured records. Each record represents a
unique scientific finding, which is categorized according to its stage of development. To overcome
the LLM’s context length constraints, we use a separate retrieval model (Wolters et al., 2024) when
needed to select the Top-K Findings as input. In practice, the retrieved subset of Findings Memory
for a single task typically fits within a long-context window of about 2 x 10° tokens, which is suf-
ficient to contextualize the planner LLM without loss of relevant information. The vast majority of
records begin as Idea Findings—unverified hypotheses. During this first stage, the system identifies
limitations in existing knowledge and generates a new collection of hypotheses (Pypew), and then they
evaluated by a low-cost Surrogate Model (g;). The surrogate model (an LLM) is first contextualized
with the entire Findings Memory. In implementation, this is realized by feeding the surrogate with
the retrieved Top-K records from M, together with the candidate hypothesis, so that it can reason
over representative past successes and failures. It then approximates the true value function f and,
for each candidate finding I € Ppey, produces a structured valuation vector V' = (v,,, vy, ve), quan-
tifying its estimated utility, quality, and exploration value as integer scores on a scale of 0 to 100.
Each new hypothesis and its valuation vector is then used to initialize a new record in the Findings
Memory as an "Idea Finding".

Stage II: Implement & Verify This stage serves as the primary filter in the Findings Memory. To
decide which of the numerous "Idea Findings" warrants the significant resource investment to be
advanced in a real-world experiment, the system employs an Acquisition Function (). Specifically,
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Table 1: Overview of the three different human SOTA methods we selected.

Task Method Venue Benchmark Github Star
Agents Failure Attribution  All at Once ICML 2025 Spotlight Who&When 302
LLM Inference Accel. TokenRecycling ACL 2025 Outstanding MBPP 323
Al Text Detection FastDetectGPT  ICLR 2024 RAID 414

it uses the classic Upper Confidence Bound (UCB) algorithm to select the most promising record.
The UCB formula maps the valuation vector V' to balance the trade-off between exploiting promising
avenues (represented by v,, and v,) and exploring uncertain ones (represented by v,):

Iiy1 = argmax;ep ( Wy Uy + WeVg  +FK - Ve ), (1)
N—— ~—~—
Exploitation Term pu([1) Exploitation Term o (1)

where w,, and w, are hyperparameters and x controls the intensity of exploration. we adopt a
simple, task-agnostic configuration with w,, = w, = k = 1, and do not tune these hyperparameters
across the three tasks; this choice reflects an assumption of equal importance among expected utility,
quality, and exploration, and ablations. The highest-scoring finding I is selected for validation,
and its record is promoted to the status of an Implement Finding. A coding agent then performs a
repository-level implementation to execute the experiment. This agent operates within a sandboxed
environment with full permissions, allowing it to read the complete code repository and access the
internet for literature and code searches. Its objective is to implement the new hypothesis on top of
the existing SOTA method’s repositories. The agent typically begins by planning the task, then reads
the code to understand its structure, and finally implements the changes to produce the experimental
logs and results. The experiment logs and results, f(I;41), are used to update the corresponding
record, enriching it with empirical evidence and thus closing the learning loop.

Stage III: Analyze & Report The final and most selective stage of the Findings Memory is trig-
gered only by a successful validation. When an "Implement Finding" succeeds in surpassing the
baseline, its record is promoted to a Progress Finding. This transformation is implemented by a
series of specialized agents capable of utilizing a suite of MCP (Hou et al., 2025) tools. These
agents first autonomously design and execute a series of deeper analytical experiments (e.g., ab-
lations, evaluations on new datasets), leveraging MCP tools to manage the experimental lifecycle,
data collection, and result parsing. Subsequently, a synthesis agent employs the same toolset to col-
late all experimental results, analytical insights, and generated artifacts into a coherent, reproducible
research paper. The resulting deeply validated record is written back into the Findings Memory
as a high-confidence Progress Finding, and, like all other records, will be retrieved and reused in
subsequent cycles, allowing the system to learn from both its successes and its failures.

4 EXPERIMENTS

As detailed in Table 1, we select three distinct SOTA methods (published in 2024 and 2025) as
starting points, chosen for their frontier status, community interest, and human supervisability. Each
SOTA method is manually reproduced, and we preserve execution logs and test scripts to allow
DeepScientist to focus on research advancement. DeepScientist is provided with two servers, each
with 8 Nvidia H800 GPUs. To maximize utilization, we launch a separate system instance for each
GPU, employing the Gemini-2.5-Pro model for core logic and the Claude-4-Opus model for its
robust code-generation capabilities. Three human experts supervise the process to verify outputs
and filter out hallucinations. For more implementation details, please see Appendix F.

4.1 DEEPSCIENTIST ACHIEVEMENTS ON THREE RESEARCH DOMAINS

We evaluate DeepScientist on three frontier Al research tasks where strong human-designed SOTA
methods already exist, and ask whether the system can discover methods that further advance these
frontiers (Figure 3). For each task, we briefly recall the problem and baseline, then summarize the
method discovered by DeepScientist and its improvement over the human SOTA.

Agents Failure Attribution. The goal of Agent Failure Attribution is, given a failed episode in
an LLM-based multi-agent system, to identify which agent and which step were decisively respon-
sible for the failure, which is crucial for debugging complex agent pipelines. The human SOTA
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Method Agent Failure Attribution LLM Inference Acceleration AI Text Detection
Handcraft (Acc.) Algorithm-Gen (Acc.) | Tokens/second AUROC Latency
Human SoTA method 12.07% (All at Once)  16.67% (All at Once) 190.25 (Token Recycling) 0.800 (Binoculars)  117ms (Binoculars)
DeepScientist’s method | 29.31% (A2P) 47.46% (A2P) 193.90 (ACRA) 0.863 (PA-TDT) 60ms (PA-TDT)
Improvement | A+142.8% (+17.24)  A+183.7% (+30.79) | A+1.9% (+3.65) | A+7.9% (+0.063)  A+190% (-57)
(a) Agent Error Attribution (Who&When - Handcraft) (c) LLM Inference Acceleration
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Figure 3: Performance evaluation of DeepScientist across three research domains: (a-b) Agent Fail-
ure Attribution on Who&When benchmark in handcraft and algorithm-generated settings; (c) LLM
Inference Acceleration on MBPP dataset; (d) Al Text Detection with performance-latency tradeoff
analysis. DeepScientist (shown in pink) consistently outperform human-designed SoTA approaches
(shown in blue) across all tasks.

“All at once” method (Zhang et al., 2025¢) feeds the entire failure log to a judge LLM and asks
it to directly predict the responsible agent and step, but this approach relies on pattern recognition
over static logs and lacks explicit counterfactual reasoning, making step-level attribution and chain-
like failures challenging. Starting from the baseline "All at once" method, DeepScientist identified
that the current approach lacks the counterfactual reasoning capabilities essential for attribution.
Through a process of trial, error, and synthesizing new findings—discovering the effectiveness of
hypothetical prediction and simulated attempts—it ultimately proposed the A2P method. Named for
its Abduction-Action-Prediction process, its core innovation elevates failure attribution from pattern
recognition to causal reasoning, filling the critical gap in counterfactual capabilities by predicting
if a proposed fix would have led to success. Concretely, A2P first hypothesizes hidden causes be-
hind a suspicious action, then proposes a counterfactual fix, and finally simulates several future
steps under this intervention to test whether the task would have succeeded. As shown in Figure
3.(a-b), A2P achieved scores of 29.31 and 47.46 in the "handcraft" and "algorithm-generated" set-
tings of the Who&When benchmark, respectively, setting a new state-of-the-art (SOTA). In this task,
DeepScientist validated that a structured, zero-shot causal reasoning framework can be superior to
less principled methods. As of September 2025, the training-free A2P method maintains its SOTA
position, outperforming even 7B models trained on synthetic data. (Zhang et al., 2025a).

LLM Inference Acceleration is a highly optimized field aiming to maximize throughput and re-
duce latency during LLM inference. The human SOTA baseline Token Recycling (TR) (Xia et al.,
2024) reuses rejected candidate tokens produced during decoding via a tree-structured speculative
decoding scheme, but effectively treats decoding as a near—first-order Markov process and primarily
exploits local transition patterns, limiting its ability to consistently leverage longer-range regulari-
ties. In this process, the system actively made many different attempts, such as using a Kalman Filter
(Zarchan, 2005) to dynamically adjust an adjacency matrix to address the original method’s lack of
a memory function. Although most of these attempts failed, the system-generated ACRA method
ultimately advanced the MPBB (Austin et al., 2021) from a human SOTA of 190.25 to 193.90 to-
kens/second by identifying stable suffix patterns, as shown in Figure 3. ACRA assumes that LLM
decoding exhibits recurrent, variable-length stable suffixes: it maintains a suffix-indexed history,
finds the longest stable suffix matching the current context, and, only when a stability gate is passed,
uses the associated next-token statistics to override the first layer of draft tokens; otherwise, it falls
back to the original TR scheme. Scientifically, this innovation is significant because it uses this ex-
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Table 2: Evaluation of Al-generated papers produced by various Al Scientist systems. Scores
represent the average ratings given by DeepReviewer-14B (Zhu et al., 20252a) across the number
(“Num”) of available papers. Note: Publicly available papers may be curated and therefore may not
fully represent the typical output of each system.

Al Scientist Systems Number Soundness Presentation Contribution Rating Accept Rate
A1 SCIENTIST 10 2.08 1.80 1.75 3.35 0%
HKUSD AI Researcher 7 1.75 1.46 1.57 2.57 0%
Al SCIENTIST-V2 3 1.67 1.50 1.50 2.33 0%
CycleResearcher-12B 6 2.25 1.75 2.13 3.75 0%
Zochi 2 2.38 2.38 2.25 4.63 0%
DeepScientist (Ours) 5 2.90 2.90 2.90 5.90 60 %

tra contextual information to dynamically adjust the decoding guess, effectively grafting a long-term
memory onto the process and breaking the context-collapsing of standard decoders. This discovery
highlights the system’s primary goal: the creation of new, human-unknown knowledge rather than
mere engineering optimization. For instance, one could likely achieve greater performance gains by
combining ACRA with an established technique like layer skipping (Wang et al., 2022) or PageAt-
tention (Kwon et al., 2023), but this would represent an engineering effort, not a scientific one. The
exploration assessment within our process avoids such combinations of existing knowledge.

Al Text Detection is a binary classification task where, given a text that may contain content from
an LLM (and possibly additional noise), the goal is to determine if it was produced by a human or
an LLM (Li et al., 2022; Ghosal et al., 2023). This capability underpins applications such as exam
integrity, content moderation, and model misuse detection. Recent human-designed SOTA detec-
tors such as Fast-Detect GPT and Binoculars (Hans et al., 2024) exploit differences in perplexity,
burstiness, or style between human and model distributions, but these global-statistic approaches as-
sume relatively stationary gaps and often degrade when modern LLMs actively mimic human style
or texts are paraphrased or lightly edited. To validate its capacity for sustained advancement, Deep-
Scientist made numerous attempts that included addressing the Boundary-Aware Extension problem
and exploring approaches like Volatility-Aware and Wavelet Subspace Energy methods. The final
results show a dramatic acceleration in scientific discovery: in a rapid evolution over just two weeks,
the system produced three distinct, progressively superior methods. This began with 7T-Detect fix-
ing core statistics with a robust t-distribution, then evolved conceptually with TDT and PA-TDT,
which treat text as a signal and use wavelet and phase congruency analysis to pinpoint anomalies.
Taken together, these methods shift the perspective from global distributional differences to the non-
stationary, time—frequency structure of Al-generated text, showing that localized changes in energy
and phase carry the key evidence for detection. Scientifically, this shift reveals the "non-stationarity"
of Al-generated text, alleviating the information bottleneck in prior paradigms that average away
localized evidence. As shown in Figure 1 and 3(d), this entire discovery trajectory demonstrates
DeepScientist’s ability for advancing frontier-pushing scientific findings progressively, establishing
anew SOTA with a 7.9% higher AUROC while also doubling the inference speed.

4.2 ASSESSING THE QUALITY OF AI-GENERATED RESEARCH PAPER

Table 3: Evaluation of DeepScientist’s papers produced by human experts. Values are presented as
mean (variance) from three reviewers. Inter-rater reliability for Rating: Krippendorff’s o = 0.739.

Paper Confidence Soundness Presentation Contribution Rating
HUMAN Avg. (ICLR 2025) - 2.59 2.36 2.62 5.08

1. T-DETECT 4.33(0.33) 2.00 (1.00) 2.67 (0.33) 2.67 (0.33) 5.00 (0.00)
2. IDT 4.67 (0.33) 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) 5.67 (0.33)
3. PA-TDT 4.00 (0.00) 1.67 (0.33) 2.00 (1.00) 2.00 (1.00) 4.33(1.33)
4. A2P 4.00 (0.00) 3.00 (0.00) 3.00 (0.00) 2.67 (0.33) 5.67 (0.33)
5. ACRA 3.33(0.33) 1.67 (0.33) 2.00 (1.00) 1.67 (0.33) 4.33(1.33)
DeepScientist Avg. 4.07 2.27 2.53 2.40 5.00
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Figure 4: DeepScientist’s experimental statistics. (a) The research pipeline from generated ideas
to validated progress. (b) Success rates comparing our selection strategy against a baseline. (c)
Distribution of wall-clock execution times for all implemented trials.

Experimental Setup. To assess the quality of the final output, we evaluate the five research papers
autonomously generated by DeepScientist’s end-to-end process. Our evaluation protocol is twofold.
First, to benchmark against existing work, we employ DeepReviewer (Zhu et al., 2025a), an Al agent
that simulates the human peer-review process with an external search capability, comparing Deep-
Scientist’s output against 28 publicly available papers from other Al Scientist systems. Second, for
a more rigorous assessment, we convene a dedicated program committee consisting of three active
LLM researchers: two volunteers who have served as ICLR reviewers and one senior volunteer who
has been invited to be an ICLR Area Chair. The generated papers are available in Appendix F.

Automated Review Against Other Al Scientist Systems. As shown in Table 2, the results from
the LLM-based automatic evaluation indicate that the system’s outputs are recognized for their sci-
entific novelty and value. When benchmarked against 28 publicly available papers from other Al
Scientist systems using DeepReviewer, DeepScientist is the only system whose papers achieve a
60% simulated acceptance rate under the same reviewing protocol.

Human Expert Evaluation. The evaluation from our human program committee, shown in Table 3,
reveals a strong and consistent consensus: DeepScientist’s outputs are particularly strong in ideation,
the most challenging and often rate-limiting step in human-led research. Full details on the review
protocol are provided in Appendix B, and the core ideas within each paper are praised for their
genuine novelty, ingenuity, and scientific contributions. The quality of these innovations is further
demonstrated by the review scores: the system’s average rating (5.00) closely mirrors the average of
all ICLR 2025 submissions (5.08), with two of its papers significantly exceeding this (5.67).

4.3 ANALYSIS OF THE ITERATIVE TRAJECTORY OF AUTONOMOUS EXPLORATION

Experimental Setup. The findings in this section are derived from a series of post-hoc analyses
conducted on the complete operational data generated by DeepScientist across the three frontier
tasks. This data includes the full set of execution logs and the Findings Memory, providing the
basis for all subsequent statistical analysis. To visualize the conceptual search space (Figure 5), we
embed the complete description of each generated finding using the Qwen3-Embedding-8B model.
To assess scalability (Figure 6), we conduct a dedicated one-week experiment where N identified
limitations of a single SOTA method are assigned to N parallel GPU instances. These instances
explore solutions independently but share their findings to a central database, which are synchro-
nized globally every five cycles to accommodate the asynchronous nature of the discovery process.
Finally, to better understand the low success rate, our program committee experts perform a detailed
causal attribution analysis on a sample of 300 failed implementations.

Our analysis of DeepScientist’s experimental logs reveals the sheer scale of the trial-and-error
process inherent in autonomous scientific discovery. Even in our relatively fast-executing do-
mains, achieving progress required hundreds of trials per task. As show in Figure 4, the execution
time distributions show that while individual experiments may be quick, the sheer volume of trial-
and-error necessary to uncover a successful idea is substantial. This suggests a clear application
boundary for current autonomous science: for tasks with rapid feedback loops, such as aspects of
chip design, delegating massive-scale experimentation to Al is a powerful strategy. However, for
high-cost endeavors like pre-training foundation models or pharmaceutical synthesis, the low suc-
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Figure 5: Visualization of the conceptual search space for the Al text detection task. The plot shows
a t-SNE visualization of the semantic embeddings for all 2,472 generated ideas. Markers identify the
initial SOTA method (Initial Idea) and the three final SOTA-surpassing methods (Progress Ideas).

cess rate makes such an approach currently impractical, mandating continued reliance on human-
led ideation. The autonomous research process is characterized by a vast exploratory funnel where
promising ideas are exceptionally rare. Across the three tasks, DeepScientist generate over 5,000
unique ideas, yet only about 1,100 are deemed worthy of experimental validation by the system’s
selection mechanism, and a mere 21 ultimately result in scientific progress. These 21 are promoted
to Progress Findings (ideas that surpass the then-current SOTA in Stage II), and the fully automated
Stage III pipeline turns them into full drafts and filters them with an LLM-based reviewer, yield-
ing 5 final papers. An ablation study underscores the criticality of this selection process: without
it, randomly sampling 100 ideas for each task and testing them yields a success rate of effectively
zero. The low success rate is not merely a matter of failed hypotheses; analysis by human experts
on a sample of failed trials reveals that approximately 60% were terminated prematurely due to im-
plementation errors, while the vast majority of the remaining 40% simply offered no performance
improvement or caused a regression. This highlights that the probability of an LLM-generated idea
being both correct in its premise and flawless in its implementation is exceedingly low. In other
words, the executor largely determines whether ideas can be executed at all and how often they fail,
while the planner determines how far the system can advance under a fixed budget. The success of
this work, therefore, is not a product of brute-force computation but of search efficiency. A naive
approach of fully testing all 5000 promising candidates would have required over 100,000 GPU
hours, whereas our targeted exploration achieved its breakthroughs using only 20,000.

DeepScientist’s discovery process follows a purposeful and progressive trajectory. The semantic
distribution of ideas generated for the Al text detection task, as shown in Figure 5, reveals the
characteristics of this sophisticated strategy. While the system generates thousands of diverse ideas
across a vast conceptual landscape, its path to success is not random but is a series of focused,
logical advancements. This indicates a capacity to progressively deepen its understanding: after
achieving an initial breakthrough with 7-Detect, the system effectively establishes a SoTA, identifies
its subsequent limitations, and reorients its search towards a new goal. This dynamic exploration
is exemplified by the conceptual shift towards TDT and PA-TDT, which build upon the previous
success by leveraging new positional and temporal information. This ability to build upon its own
discoveries, turning each successful finding into a new starting point for identifying and solving the
next set of limitations, demonstrates a powerful capacity for scientific exploration.

Scaling Laws in DeepScientist’s Scientific Discovery. To investigate the relationship between
computational scale and the rate of scientific progress, we evaluated the number of "Progress Find-
ings" generated by DeepScientist within a fixed one-week period as a function of available parallel
resources in Figure 6. In this setup, the system first identified a set of limitations in the baseline
method, and each parallel exploration path was tasked with resolving a distinct limitation, with all
paths periodically synchronizing their results into a shared Findings Memory . Our results indicate
a promising scaling trend. While minimal resources yielded no breakthroughs, the rate of discov-
ery began to increase effectively as we scaled to 4 GPUs and beyond, growing from one SOTA-
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Figure 6: Scaling analysis of autonomous scientific discovery. The plot illustrates the relationship
between parallel computational resources (number of GPUs) and the number of SOTA-surpassing
"Progress Findings" found by DeepScientist across all tasks within a one-week period.

surpassing finding with 4 GPUs to eleven with 16 GPUs . This appears to establish a near-linear
relationship between the resources allocated and the output of valuable scientific discoveries. We
hypothesize this efficiency stems from more than just parallel trial-and-error; it is a direct result of
the shared knowledge architecture. Mechanistically, this knowledge-driven gain should also apply
when scaling with time (serial execution); indeed, our preliminary 4-week single-GPU tests con-
firmed this, yielding new progress approximately every 8-14 days. While serial exploration may be
more sample-efficient due to real-time memory updates (whereas our parallel setup synchronizes pe-
riodically ), the immense value of parallel scaling lies in its wall-clock time advantage—compressing
months of discovery into a single week. This distinction highlights that parallel scaling demonstrates
the scalability of the knowledge-sharing mechanism, not just its effectiveness. As each parallel path
explores, it enriches the shared Findings Memory. This creates a synergistic effect where the col-
lective intelligence of the system grows (Schmidgall & Moor, 2025; Zhang et al., 2025b) , allowing
each independent path to benefit from the successes and, just as importantly, the failures of oth-
ers. This suggests that effectively scaling autonomous science is not just a matter of increasing
brute-force computation, but of fostering a richer, interconnected knowledge base that accelerates
discovery across all concurrent efforts.

4.4 DISCUSSION

The results from DeepScientist suggest a new paradigm in scientific exploration, defined not by in-
fallibility but by massive scale and efficiency. The system’s 1-5% progress rate mirrors the reality
of frontier research, successfully compressing years of human exploration into weeks . The primary
path forward is systematically improving this efficiency. Our analysis identifies key bottlenecks:
enhancing the robustness of implementation (as 60% of failed trials stemmed from implementa-
tion errors, not flawed hypotheses ) and improving scientific rigor (as human evaluations praised
the system’s conceptual novelty but noted a lack of deep validation ). This highlights a powerful
opportunity for human-Al synergy, where humans provide high-level strategic direction while the
Al handles rapid, exhaustive exploration . Our scaling analysis confirms this path is viable, show-
ing a near-linear relationship between parallel resources and discoveries, driven not by brute-force
computation, but by a shared knowledge base that accelerates discovery across all concurrent efforts
. Future work should focus on these efficiencies, develop simulated discovery environments, and
bridge the gap to the physical sciences through robotics.

5 CONCLUSION

This work presents the first large-scale empirical evidence that an autonomous Al can achieve pro-
gressively, SOTA-surpassing progress on modern scientific frontiers. We introduced DeepScientist,
a goal-oriented system achieving end-to-end autonomy from ideation to real progress, which learns
by synthesizing human knowledge with its own findings from iteration of trials. Results across mul-
tiple domains serves to accelerate the progress of real-world scientific discovery, providing a crucial
foundation. Our findings can signal a foundational shift in Al research, heralding an era where the
pace of discovery is no longer solely dictated by the cadence of human thought.

10
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ETHICS STATEMENT

The development of DeepScientist, an autonomous system capable of advancing scientific frontiers,
carries profound ethical responsibilities. Our primary goal is to accelerate discovery for the benefit
of humanity, but we recognize the potential for misuse. The most significant risks include the
application of this technology to advance dangerous research and the potential degradation of the
academic ecosystem. We have implemented specific, robust measures to address these concerns
proactively.

A primary concern is the dual-use risk, where the system could be co-opted to accelerate research
in harmful domains, such as developing novel toxins or malicious software. To assess and mitigate
this, we conducted red-teaming exercises specifically targeting the generation of computer viruses.
We tasked the system, powered by leading foundation models (including GPT-5, Gemini-2.5-Pro,
and Claude-4.1-Opus in our testbed), with this malicious objective. In all instances, the underlying
models exhibited robust safety alignment, refusing to proceed with the research. They correctly
identified the task as illegal and harmful, and autonomously terminated the research cycle, demon-
strating that foundation model safety protocols provide a critical defense layer.

We are also deeply conscious of the potential negative impact on the academic ecosystem. It is
crucial to state that all results from DeepScientist presented in this paper, including code and ex-
perimental findings, have undergone rigorous human verification. Recognizing that others might
neglect this critical oversight, we are adopting a selective open-sourcing policy to mitigate the risk
of proliferating unreliable publications. We will open-source the core components that drive contin-
uous discovery, as we believe their potential to accelerate progress for the community outweighs the
risks. However, we will deliberately refrain from open-sourcing the "Analyze & Report" module.
This decision is made to prevent the automated generation of seemingly credible but scientifically
unverified papers, thereby safeguarding the integrity of the academic record.

Ultimately, we envision DeepScientist as a powerful tool to augment, not replace, human intellect
and judgment. To enforce this vision, our open-source components will be released under a license
based on MIT, but with explicit addendums that codify our ethical framework. This license will
strictly prohibit any use of the software for harmful research. Furthermore, it will legally require that
a human user must supervise the entire operational process of DeepScientist and assumes full and
final responsibility for all its outputs. By embedding these requirements directly into our terms of
use, we aim to foster a research environment where Al-driven discovery proceeds with the necessary
human accountability and ethical oversight.
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A USE OF LARGE LANGUAGE MODELS

Large Language Models are a foundational component of the DeepScientist system and were integral
to every stage of the research presented in this paper. The core reasoning, hypothesis generation,
and experimental analysis were driven by Gemini-2.5-Pro, while all code implementation, including
writing, testing, and debugging, was performed by Claude-4-Opus.

The LLM agents autonomously conducted the entire scientific workflow. For the five SOTA-
surpassing findings detailed in this work, the complete research process—from the initial identi-
fication of a research gap and the formulation of a novel idea, through literature search, code imple-
mentation, and the design of analytical experiments, to the final writing of the research papers—was
performed by the LLM-based system. The final research papers generated through this autonomous
process are provided in Appendix F.

The role of the human authors was strictly limited to supervision, verification, and calibration of the
system. We provided the initial SOTA methods as a starting point, monitored the system’s progress,
and verified the correctness of the final reported results. However, all novel scientific ideas, code,
analyses, and written text were generated by the LLMs.

B HUMAN EXPERT REVIEW

B.1 REVIEW PROCESS AND CRITERIA

To ensure a rigorous and impartial evaluation of the generated papers, we convened a small, ded-
icated program committee. The committee was composed of two active researchers who served
as volunteer reviewers for ICLR 2025, and one senior researcher who had previously been invited
to serve as an ICLR Area Chair. All committee members possess significant expertise in the field
of Large Language Models. The entire review process, with the exception of a rebuttal phase, was
designed to meticulously emulate the official standards of ICLR 2025. Each of the five papers gener-
ated by our system was assigned to the three reviewers for a thorough and independent assessment.
The average review time for each paper was 55 minutes, during which reviewers were required
to provide not only scores but also detailed written feedback, including a summary of the paper’s
strengths and weaknesses.

The evaluation was conducted on a custom-deployed review website where reviewers could not see
each other’s scores or feedback, ensuring that all initial assessments were made independently. The
review form was structured to gather concise yet comprehensive feedback. First, reviewers were
asked to state their Confidence in their review on a scale of 1 to 5. The core of the evaluation
consisted of three sub-scores, each rated on a 1 to 4 scale: Soundness, assessing the technical
correctness and experimental rigor; Presentation, evaluating the clarity and quality of the writing;
and Contribution, measuring the significance and novelty of the work. Finally, reviewers provided
a holistic Rating on a scale of 1 to 10, where a score of 5 represented a ’borderline reject’ and a
score of 6 represented a "borderline accept’.

After the three reviewers submitted their independent evaluations for a paper, the volunteer acting
as Area Chair would then read all submitted reviews. Drawing upon their experience from the ICLR
review process, the Area Chair synthesized the feedback, weighed the arguments presented by the
reviewers, and made a final executive decision on whether the paper should be accepted or rejected
in the context of our study. This final decision was recorded as the definitive outcome for each
paper’s evaluation.
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B.2 SUMMARY OF REVIEWER FEEDBACK

Across the five generated papers, a clear consensus emerged from the human reviewers: Deep-
Scientist consistently excels at the ideation stage of research. The committee unanimously lauded
the methods for their genuine novelty and tangible contributions, noting that each paper proposed a
unique approach that meaningfully advanced the state-of-the-art in its respective subfield. This feed-
back validates the system’s core strength as a powerful engine for identifying relevant research gaps
and generating innovative, impactful solutions, confirming that it can successfully ideate beyond
mere incremental improvements.

However, this strength in ideation was systematically undermined by a recurring pattern of weak-
nesses in scientific execution and rigor. The most critical and frequent concern was a lack of em-
pirical soundness; reviewers consistently noted that DeepScientist failed to design comprehensive
validation plans, citing insufficient evaluation on standard benchmarks and a lack of in-depth analyt-
ical experiments (e.g., ablations, motivation studies) to justify its claims. This was compounded by a
failure to properly contextualize its contributions, with papers often omitting comparisons to essen-
tial baselines or failing to discuss closely related work, thereby weakening the perceived significance
of the results.

This feedback pinpoints the primary bottleneck in current autonomous systems: a profound gap be-
tween the ability to generate novel concepts and the capacity for rigorous scientific execution and
articulation. The observed weaknesses in experimental design directly reflect the low-success-rate
problem discussed previously; the system struggles not just to implement ideas correctly, but to val-
idate them convincingly. To bridge this gap, future work must endow these systems with a deeper,
procedural understanding of the scientific method itself. This requires moving beyond simple im-
plementation and reporting capabilities towards two key areas: First, developing agents explicitly
trained in experimental design, capable of planning comprehensive evaluations that anticipate and
address potential scientific critiques. Second, enhancing the system’s ability for analytical reason-
ing, enabling it to not just describe results but to interpret their significance, formulate compelling
arguments, and engage in the kind of deep, reflective discussion that characterizes high-impact re-
search.

C ADDRESSING THE BOTTLENECKS IN AUTONOMOUS SCIENTIFIC
DISCOVERY

Artificial intelligence is reshaping the paradigm of scientific exploration through its ability to gen-
erate hypotheses at a massive scale; however, this has also pushed "verification" to the center stage,
making it a critical bottleneck. Our research empirically reveals the severity of this challenge: on
frontier scientific tasks, the success rate of ideas generated by Al systems that ultimately lead to sub-
stantial progress is typically below 3%, meaning the vast majority of computational resources are
consumed exploring low-value hypotheses. This inefficient "needle in a haystack" model is the core
obstacle preventing Al Scientists from evolving from "novel tools" to "efficient discoverers." (Cor-
nelio et al., 2025) Therefore, to further accelerate the process of scientific discovery, future research
must focus on constructing a systematic solution to overcome this bottleneck. As shown in Figure
7, future Al Scientist systems need to evolve synergistically in three key directions: optimizing the
quality of initial hypotheses (Optimize Hypothesis Quality), enhancing filtering capabilities during
the process (Enhance Filtering), and improving the quality of implementation and verification at the
final stage (Improve Implementation Quality).

One of the core future research directions is to develop Al systems capable of generating higher-
quality, more reliable hypotheses (as shown in Figure 7e¢), equipped with more precise filtering
mechanisms to predict their success rate (as shown in Figure 7d). Methods that rely purely on
a data-driven approach, while capable of discovering patterns, often produce outputs that lack a
theoretical foundation and are prone to generating "hallucinations" that contradict known scientific
theories. Future systems must move beyond this by more deeply integrating background knowledge
and theory. For instance, the direction represented by "derivable models" (such as Al-Descartes
(Cornelio et al., 2023) and Al-Hilbert (Cory-Wright et al., 2024)), which incorporate scientific ax-
ioms as constraints during the hypothesis generation phase, offers a promising path to improving
hypothesis quality. Furthermore, systems must have the ability to learn from their own exploratory
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Figure 7: Three strategies for improving the efficiency of autonomous scientific discovery. (a) and
(b) illustrate the low success rate currently faced by both AI and human research. Future directions
will need to accelerate the discovery process through the synergy of three approaches: (¢) improving
implementation success rates, (d) adding an efficient filtering stage before implementation, and (e)
optimizing the quality of initial hypotheses from the source.

history. By establishing mechanisms similar to a "Findings Memory," a system can systematically
record and analyze every success and failure, thereby avoiding redundant exploration of ineffec-
tive paths in subsequent iterations and gradually developing a more insightful scientific intuition.
Building on this foundation, developing more advanced, low-cost surrogate models and acquisition
functions to more accurately predict the scientific value of an idea will be key to enhancing filtering
efficiency and conserving verification resources.

Concurrently, an often-overlooked yet crucial future research direction is to significantly improve
the quality and reliability of Al systems in the engineering implementation and verification stages (as
shown in Figure 7¢). Even the most brilliant scientific concept can never have its value confirmed if it
cannot be accurately and flawlessly translated into an executable experiment. Our analysis indicates
that up to 60% of exploratory failures stem from implementation-level errors, which represents a
massive waste of resources and directly impedes scientific progress. History has repeatedly warned
us that a lack of rigorous verification can lead to catastrophic consequences, whether in NASA
missions or medical practice. Therefore, building a scalable and reliable automated verification
platform is an essential path forward. This requires not only more powerful code-generation and
self-debugging agents to reduce implementation errors but also standardized sandbox environments
and automated testing procedures to ensure the stability and reproducibility of experimental results.
Ensuring the absolute reliability of the verification process is the final and most critical line of
defense in transforming Al-generated "plausible ideas" into "solid scientific evidence."

Looking ahead, to truly accelerate scientific discovery, it is necessary to integrate the aforemen-
tioned strategies into an organic whole, advancing Al Scientists from "random explorers" to "goal-
oriented strategists.” This is not about replacing humans with Al, but about pioneering a more ef-
ficient paradigm of human-Al collaboration. In this model, human scientists are responsible for
defining grander, more valuable scientific goals and providing high-level strategic guidance, while
the Al system serves as a powerful "exploration engine," executing efficient trial-and-error and ver-
ification cycles at an unprecedented scale and speed under human direction. To realize this vision,
the community must also address a series of challenges, such as building benchmarks that can truly
evaluate innovation and designing mechanisms that encourage diverse exploration to avoid the ho-
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mogenization of research paradigms, thereby preserving the potential for serendipitous discoveries
like Alexander Fleming’s discovery of penicillin (Fleming, 1941).

D METHOD DETAILS

D.1 IMPLEMENTATION OF THE STRATEGIZE & HYPOTHESIZE STAGE

The Strategize & Hypothesize stage of each discovery cycle is operationalized within our system
as a multi-agent workflow that mirrors a structured research and development process. This entire
process is centered around the ‘Findings Memory* (M), which is implemented as a large, list-style
database (IdeaDatabase in the codebase) designed to persistently store thousands of structured
records. Each record represents a unique finding at a specific stage of its lifecycle. The workflow is
executed by a cohort of specialized agents, orchestrated by a central ‘DirectorAgent‘, ensuring that
the generation of new hypotheses is a guided, strategic exploration rather than an undirected search.

Each cycle commences with an analysis of the ‘Findings Memory*. This is enacted by the ‘Scien-
tistAgent‘, which is invoked in its ‘STAGE: RESEARCH_OUTLINE* mode. The agent consumes
the current state of knowledge, including the entire baseline codebase and the contents of the ‘Find-
ings Memory‘, to perform a first-principles analysis of the problem domain. It formulates the core
challenge as a rigorous mathematical problem and identifies the fundamental limitations of existing
findings. The tangible output of this strategic analysis is a comprehensive Markdown document,
Research_Outline.md, which serves as a high-level charter, guiding the system’s focus for
the current cycle. This initial step provides a concrete and reproducible mechanism for the "analysis
of limitations in existing knowledge" described in our main methodology.

Following the establishment of a strategic outline, the ‘DirectorAgent‘ deploys one or more in-
stances of the ‘ExplorerAgent® to generate a new collection of hypotheses (Ppeyw). Governed by
its highly specific EXPLORER_AGENT_PROMPT, this agent’s core function is to produce novel,
structured records based on the directions provided in Research_Outline.md. Its method-
ology emphasizes systematic, cross-disciplinary investigation, using integrated research tools like
pasa_search to adapt successful theoretical frameworks from adjacent scientific fields. The out-
put of this process is a structured JSON object for each new hypothesis, detailing its motivation,
theoretical underpinnings, and a concrete implementation plan. This JSON object is the system’s
direct instantiation of a candidate finding I € Phpey.

Upon generation, each new candidate finding is immediately passed to the system’s low-cost Sur-
rogate Model (g;), a role fulfilled by the ‘EvaluatorAgent‘. This agent is first contextualized with
the entire state of the ‘Findings Memory‘. As dictated by its prompt, it then assesses the candi-
date finding and produces three numerical scores: a utility_score, a quality_score, and an explo-
ration_score. These scores are the direct implementation of the components of the Valuation vector
V' = (vy, vg, Ve), quantifying the hypothesis’s estimated value. Finally, the ‘DirectorAgent® initial-
izes a new record in the ‘Findings Memory*, pairing the new hypothesis with its valuation vector
and assigning it the status of an ‘Idea Finding*. This action concludes the stage, formally adding
the new, unevaluated hypotheses to the system’s knowledge base, ready for the subsequent selection
and verification phase.

D.2 IMPLEMENTATION OF THE IMPLEMENT & VERIFY STAGE

The Implement & Verify stage serves as the primary filter in the research funnel and is operational-
ized as the "Engineering Phase" of the system’s workflow. This phase is triggered when the system
makes a strategic decision to commit significant computational resources to validate a single, highly
promising ‘Idea Finding‘. The workflow is managed by the ‘ScientistAgent*, which acts as the
primary decision-maker, and the ‘ImplementationAgent‘, which executes the complex code-level
modifications and real-world experiments. This stage is paramount as it provides the empirical
feedback essential for the system’s learning loop.

The selection process, described in the main text as the Acquisition Function («), is implemented
by the ‘ScientistAgent‘ operating in its ‘STAGE: STRATEGIC_DECISION‘ mode. This agent pe-
riodically reviews the population of ‘Idea Findings‘ and their associated valuation vectors stored
in the ‘Findings Memory*‘. Based on the criteria in its prompt, which require it to reflect on past
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outcomes and balance the exploitation-exploration trade-off, it selects the most promising record for
validation. A decision of ‘“VALIDATE® from this agent, targeting a specific finding’s ID, is the sys-
tem’s operational equivalent of the ‘argmax‘ operation in the UCB formula. Upon this selection, the
chosen record’s status within the ‘Findings Memory* is formally promoted from an ‘Idea Finding*
to an ‘Implement Finding*, signaling the start of the resource-intensive implementation.

Once a finding is promoted, the ‘DirectorAgent® delegates the implementation task to the ‘Im-
plementationAgent‘, a specialized, terminal-based Agent governed by the highly prescriptive
IMPLEMENTATION_AGENT_PROMPT. The agent’s workflow is meticulously structured for ro-
bustness and reproducibility. It begins by creating an isolated, sandboxed directory for the experi-
ment by copying the entire baseline codebase. Within this safe environment, it systematically trans-
lates the ‘theory_and_method‘ and ‘code_level_plan‘ from the selected finding’s record into func-
tional code modifications. The agent’s governing prompt mandates a rigorous engineering process,
including the creation of unit tests to verify numerical stability and correctness, and the maintenance
of a detailed log of all actions in a notebook .md file.

The culmination of this stage is the real-world experiment. After completing the code modifications
and passing all internal tests, the ‘ImplementationAgent‘ executes the project’s standard evaluation
script, test . sh. The complete, captured terminal output from this script, containing the final per-
formance metrics, constitutes the empirical observation of the true scientific value function, f(l¢41).
In the final step, the ‘DirectorAgent‘ takes this new data point—the empirical result—and uses it to
update the corresponding ‘Implement Finding‘ record in the ‘Findings Memory*. This action en-
riches the finding with empirical evidence, formally closing the learning loop and providing critical
new knowledge to inform all subsequent discovery cycles.

D.3 IMPLEMENTATION OF THE ANALYZE & REPORT STAGE

The final stage of the DeepScientist discovery loop, Analyze & Report, is initiated when an
Implement Finding successfully validates, demonstrating performance that surpasses the es-
tablished baseline. This achievement triggers a sophisticated multi-agent workflow orchestrated by
a central ‘DirectorAgent’, designed to transform the raw experimental success into a comprehensive
and reproducible scientific paper. This process is not a monolithic writing task but a structured,
multi-phase procedure that mirrors a rigorous human-led research publication effort, comprising
three core sub-phases: Iterative Outline Development, Sequential Paper Writing, and Multi-Round
Revision. Each sub-phase is executed by specialized agents with precisely defined roles and opera-
tional protocols, ensuring a high degree of quality control and methodological soundness.

The process begins with Iterative Outline Development, a three-round cycle of design, review, and
analysis. The ‘DirectorAgent* first deploys an ‘OutlineDesignerAgent‘, which is tasked with cre-
ating a compelling narrative and a detailed structural blueprint for the paper. This agent operates
via a unique two-stage process: it first generates thousands of words of unstructured reasoning to
explore the theoretical foundations and experimental implications of the finding, drawing from the
complete history in the Findings Memory and the newly populated Result .md file. Sub-
sequently, it distills this reasoning into a structured JSON object, which includes a narrative arc,
answers to ten foundational research questions, and detailed plans for every table and figure. This
initial outline is then passed to an ‘OutlineReviewerAgent‘, which provides a harsh, academic-style
critique. Finally, an ‘OutlineAnalyzerAgent‘ evaluates both the outline and its review to make a
strategic decision: either “VALIDATE' the outline as ready, or ‘EVOLVE® it by generating a specific
‘improvement_directive® for the next round. This cycle repeats up to three times, ensuring the final
blueprint, saved as final_selected_outline. json, is robust and logically sound.

With a validated outline in place, the ‘DirectorAgent‘ proceeds to the Sequential Paper Writing
sub-phase, deploying a specialized ‘ClaudeCodePaperWriteAgent‘. This agent is governed by an
exceptionally detailed and prescriptive prompt that enforces a strict, multi-phase workflow exe-
cuted directly on the file system. Critically, the agent does not immediately begin writing prose.
Its first mandatory step is an extensive literature review, where it uses integrated search tools like
‘pasa_search* and ‘semantic_scholar_query* to gather over 60 relevant citations, meticulously pop-
ulating a references.bib file and documenting its findings in a draft .md log. Only after
this literature foundation is established does it proceed to generate all required figures and tables,
extracting data directly from Result .md and saving styled plots to the ‘/figures‘ directory.
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Table 4: Aggregate performance of Micronano-DeepScientist on the 154-task ALGOTUNE bench-
mark.

Metric Value

Total tasks 154
Successful tasks 120 (77.9%)
Slower or failed tasks 34 (22.1%)

Mean speedup 16.6x

LLM backbone GLM-4.6 (open-source)

Following the completion of literature and figure generation, the ‘ClaudeCodePaperWriteAgent*
begins writing the manuscript’s content. It follows a strict top-down sequence, creating and popu-
lating individual LaTeX files for each section (e.g., introduction.tex, methodology.tex,
experiments.tex) in a predefined order. The content for each section is precisely guided by the
blueprint in final_selected_outline. json, ensuring perfect alignment between the plan
and the final output. The agent’s prompt includes a comprehensive validation checklist that it must
internally satisfy before completion, covering everything from content authenticity and structural
integrity to experimental completeness and citation accuracy. The entire writing process is logged in
writing_plan.md and draft .md, and the agent signals its completion to the ‘DirectorAgent’
only by creating a final paper .md file, ensuring the full sequence has been executed.

The final sub-phase is Multi-Round Revision, which ensures the paper meets publication standards.
The ‘DirectorAgent‘ deploys a ‘PaperReviewerAgent* to conduct a thorough review of the complete
draft, assessing its clarity, technical accuracy, and narrative coherence. The reviewer’s structured
feedback is then passed back to the ‘ClaudeCodePaperWriteAgent® as a set of revision instructions.
The writer agent then performs a targeted revision of the relevant . t ex files to address the identified
weaknesses. This review-and-revise loop is executed for a predefined number of rounds, iteratively
polishing the manuscript. The culmination of this entire stage is a complete, publication-ready
package containing the full LaTeX source code, section files, bibliography, figures, and a detailed
log of the generation process, thereby converting a single ‘Progress Finding® into a durable and
shareable piece of scientific knowledge.

E ADDITIONAL EXPERIMENTS

E.1 LARGE-SCALE EVALUATION OF MICRONANO-DEEPSCIENTIST ON THE ALGOTUNE
BENCHMARK

We introduced a lightweight variant of our framework, Micronano-DeepScientist, to enable large-
scale evaluation across diverse scientific discovery tasks (Press et al., 2025). This version preserves
the core hierarchical exploration process and the discovery memory mechanism of DeepScientist,
but removes the most computation-intensive modules such as literature reading, formal hypothesis
drafting, and extensive experimental analysis. As a result, Micronano-DeepScientist operates at ap-
proximately 1/1000 of the runtime cost of the full system while maintaining its essential exploratory
capability. All experiments in this section use the open-source GLM-4.6 (Zeng et al., 2025) model
as the reasoning backbone.

To assess the generality of our approach, we conducted systematic experiments on ALGOTUNE, a
benchmark containing 154 algorithmic discovery tasks spanning mathematics, physics, and com-
puter science. Each task requires the system to autonomously search for algorithmic improvements
relative to strong human-designed baselines. Micronano-DeepScientist successfully discovered al-
gorithms that outperform the baseline implementations on 120 tasks (77.9%), achieving an average
speedup of 16.6x. On the remaining 34 tasks (22.1%), the system generated solutions that were
slower or did not surpass the baseline within the allocated search time. These results demonstrate
that even a significantly scaled-down discovery engine can autonomously generate competitive algo-
rithmic innovations across a broad task distribution when paired with an efficient hierarchical search
strategy and a capable open-source model such as GLM-4.6. A summary of the aggregate statistics
is shown in Table 4.
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Table 5: Automatic review scores using the o3-mini reviewer setup from Zochi. DeepScientist is
evaluated with exactly the same code and prompts as prior work.

Systems Sound. Pres. Contr. Orig. Qual. Clar. Sign. Overall

Al Scientist 2.20 240 2.10 240 2.10 260 220 3.80
Al Scientist-v2 2.00 1.67 2.00 2.00 2.00 1.67  2.00 3.00
CycleResearcher 2.33 2.17 2.33 2.33 2.17 2.17 250 4.00

Zochi 3.00 3.00 3.00 3.00 3.00 250 3.00 6.00
Al-Researcher 243 2.14 243 271 243 2.14 257 4.29
DeepScientist 2.80 2.80 2.80 3.00 280 2.80 3.60 6.20

Table 6: Automatic review scores using the Al Scientist reviewer prompts with Gemini-2.5-Pro.

Systems Sound. Pres. Contr. Overall
Al Scientist 1.00 1.40 1.10 1.70
Al Scientist-v2 1.00 1.00 1.00 1.67
CycleResearcher 1.00 1.00 1.17 1.50
Al-Researcher 1.00 1.14 1.00 1.29
Zochi 1.00 1.50 2.00 2.00
DeepScientist 1.20 1.80 1.80 2.20

E.2 ROBUSTNESS ACROSS MULTIPLE AUTOMATED REVIEWER SYSTEMS

Beyond DeepReviewer-14B‘(Zhu et al., 20252a), we further assess the quality of DeepScientist’s
papers using several independent automatic reviewer systems. First, we adopt the original Zochi
reviewer setup based on the 03-mini model and the official evaluation code, and re-evaluate all
available systems under exactly the same prompts (Table 5). In this configuration, Zochi (Intology,
2025) attains a strong Overall score of 6.00, but DeepScientist still slightly surpasses it with an Over-
all score of 6.20, and achieves the highest or tied-highest scores on key dimensions such as Original-
ity, Clarity, and Significance. We then apply the Al Scientist reviewer prompts with three different
backbone models—Gemini-2.5-Pro, GPT-40, and GPT-5—yielding Tables 6, 7, and 8, respectively.
Across all three backbones, DeepScientist again obtains the best Overall rating among the compared
Al Scientist systems, with noticeable gains in Soundness and Presentation under Gemini-2.5-Pro,
and a particularly large margin in Overall under GPT-40. Finally, using the independent CycleRe-
viewer model [3,4] (Table 9), DeepScientist achieves the highest Overall score of 4.85, exceeding
both Zochi (4.50) and CycleResearcher (4.46) while also leading on all three component criteria.

Taken together, these results show a consistent pattern: regardless of the underlying reviewer ar-
chitecture (03-mini, Gemini-2.5-Pro, GPT-40, GPT-5, or CycleReviewer) and despite differences in
absolute scoring scales, DeepScientist is always ranked at or near the top in Overall quality among
existing Al Scientist systems. This cross-validation strengthens the robustness of our conclusions
and indicates that DeepScientist’s advantages are not an artifact of a particular reviewer model or
prompt design. Moreover, the dimensions on which DeepScientist tends to score highest—such as
originality, significance, and clarity—are precisely those emphasized by human program-committee
evaluations in Section B.2, suggesting that the gains observed under automatic reviewers are aligned
with human judgments of scientific value.

E.3 A CASE STUDY ON HUMAN VS. AUTONOMOUS RESEARCH EFFICIENCY

To better understand how an autonomous system compares to human researchers in terms of re-
search efficiency, we conduct a qualitative case study on the Al text detection task. For this domain,
we collected approximate statistics from the teams behind two recent human-designed SOTA meth-
ods (Fast-Detect and Glimpse), focusing on their development timelines and resource usage. Each
project was led by a full research team and typically required about six months from project incep-
tion to camera-ready paper. During this period, the teams reported using roughly 5-10 GPU hours
per day on average, for a total of around 1,500 GPU hours per project, with GPU utilization dropping
substantially outside of normal working hours. In terms of exploration breadth, a typical six-month
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Table 7: Automatic review scores using the Al Scientist reviewer prompts with GPT-4o.

Systems Sound. Pres. Contr. Overall

Al Scientist 2.00 2.10 2.00 2.60
AT Scientist-v2 2.00 2.00 2.00 3.00
CycleResearcher 2.00 2.00 2.00 3.00

Al-Researcher 2.00 2.00 2.00 3.14
Zochi 2.00 2.00 2.50 3.00
DeepScientist 2.40 2.20 2.40 4.20

Table 8: Automatic review scores using the Al Scientist reviewer prompts with GPT-5.

Systems Sound. Pres. Contr. Overall
AT Scientist 1.00 1.30 1.00 2.10
Al Scientist-v2 1.00 1.00 1.00 2.00
CycleResearcher 1.00 1.00 1.00 1.67
Al-Researcher 1.00 1.00 1.00 1.86
Zochi 1.00 1.50 1.50 2.50
DeepScientist 1.40 1.60 1.80 3.00

project allowed the team to deeply investigate on the order of 10-30 core hypotheses, each of which
required careful design, implementation, and iteration before being deemed publishable.

On the same Al text detection task, DeepScientist was run continuously for 14 days and produced
three progressively stronger SOTA methods (T-Detect, TDT, and PA-TDT). Each breakthrough con-
sumed roughly 900 GPU hours, for a total on the order of a few thousand GPU hours, but these
resources were utilized close to 24/7 across parallel instances. Within this two-week window, the
system generated over 2,400 candidate hypotheses and autonomously executed around 600 full ex-
perimental validations, far exceeding the exploratory throughput that a human team can typically
achieve in a comparable or even longer time span. While such a comparison is necessarily approx-
imate and limited in sample size, it suggests that, under a given compute budget, DeepScientist
can explore the hypothesis space with a substantially higher trial-and-error throughput, compress-
ing what would conventionally require several months of human-led research into a few weeks of
machine-driven exploration. At the same time, human researchers remain essential for problem
formulation, high-level evaluation, and long-term research direction, indicating a complementary
relationship in which autonomous systems amplify, rather than replace, human scientific effort.

F IMPLEMENTATION DETAILS

Our implementation relies on a distributed architecture to manage the distinct tasks of scientific
reasoning and code execution. The core logic of DeepScientist is powered by the Gemini-2.5-pro
model, while all code implementation tasks are delegated to Claude-4-opus, executed within the
Claude Code framework (v1.0.53). To ensure stability and security, the DeepScientist system and
the Claude Code agent are isolated in separate Docker containers, communicating via a port-based
APIL. During the ‘Implement & Verify* stage, a human-verified baseline code repository is first du-
plicated into a new, sandboxed folder. The Claude Code agent’s operations are strictly confined to
this new directory to prevent unintended modifications. A critical step in our pipeline is a secondary
verification process: after Claude Code reports completion, DeepScientist independently re-executes
the main script via the command line. This measure was implemented to counteract a high rate of
false positives—we observed that approximately 50% of initial implementation attempts failed to
complete fully due to internal timeouts within the Claude Code agent. Throughout this project, all
experimental results were manually inspected by human supervisors to guarantee their authenticity.
For the ‘Analyze & Report‘ stage, a similar process is followed: the validated code is replicated
for each analytical experiment, with Claude Code executing them sequentially. Upon completion,
DeepScientist aggregates all results, generates a paper outline, and then employs automated tools to
write and compile the final PDF manuscript. For all experiments, we used a fixed set of hyperpa-
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Table 9: Automatic review scores using CycleReviewer.

Systems Sound. Pres. Contr. Overall

Al Scientist 2.12 2.25 2.00 3.23
AT Scientist-v2 2.00 242 2.00 3.00
CycleResearcher 2.50 2.54 2.38 4.46

Al-Researcher 2.07 2.21 2.07 3.50
Zochi 2.62 2.88 2.50 4.50
DeepScientist 2.80 2.85 2.65 4.85

rameters: the retrieval count was set to K = 15, and the UCB parameters were set to utility weight
w, = 1, quality weight w, = 1, and exploration coefficient x = 1.

The financial and computational costs of this autonomous discovery process are substantial. Each
idea generated during the ‘Strategize & Hypothesize® stage incurred an approximate cost of $5 in
API calls. For each attempt in the ‘Implement & Verify* stage, the cost averaged $20 for Claude-
4-opus API usage, in addition to the computational cost of approximately 1 GPU hour, as detailed
in Figure 4.c. A successful finding that progressed to the ‘Analyze & Report® stage required a fur-
ther expenditure of around $150, which includes $100 for running analytical experiments and $50
for the final report generation. The total cost to achieve the scientific advancements presented in
this paper amounted to approximately $100,000. While significant, we believe these costs can be
substantially reduced. We recommend that future iterations explore more economical alternatives,
such as deploying high-throughput models like Qwen-3-Next-80B for the core DeepScientist sys-
tem and leveraging subscription-based API access (e.g., Claude Max or OpenAl Pro) to mitigate
per-call expenses. In this paper, each implementation was provided with a single H800 server for
exploration. Since the H800 GPU has an FP16 computing power of approximately 2 TFLOPS, an
average execution of 70 minutes corresponds to about 1 x 106 floating-point operations.
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ABDUCT, ACT, PREDICT:
SCAFFOLDING CAUSAL INFERENCE FOR AUTOMATED
FAILURE ATTRIBUTION IN MULTI-AGENT SYSTEMS

DeepScientist

ABSTRACT

Failure attribution in multi-agent systems—pinpointing the exact step where a
decisive error occurs—is a critical yet unsolved challenge. Current methods treat
this as a pattern recognition task over long conversation logs, leading to critically
low step-level accuracy (below 17%), which renders them impractical for debug-
ging complex systems. Their core weakness is a fundamental inability to perform
robust counterfactual reasoning: to determine if correcting a single action would
have actually averted the task failure. To bridge this counterfactual inference gap,
we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework
that transforms failure attribution from pattern recognition into a structured causal
inference task. A2P explicitly guides a large language model through a formal
three-step reasoning process within a single inference pass: (1) Abduction, to infer
the hidden root causes behind an agent’s actions; (2) Action, to define a minimal
corrective intervention; and (3) Prediction, to simulate the subsequent trajectory
and verify if the intervention resolves the failure. This structured approach lever-
ages the holistic context of the entire conversation while imposing a rigorous causal
logic on the model’s analysis. Our extensive experiments on the Who&When
benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P
achieves 47.46 % step-level accuracy, a 2.85X improvement over the 16.67% of
the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31% step
accuracy, a 2.43X improvement over the baseline’s 12.07%. By reframing the
problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and
significantly more accurate solution for automated failure attribution.

1 INTRODUCTION

The rise of sophisticated multi-agent systems marks a pivotal moment in artificial intelligence,
unlocking new frontiers in collaborative problem-solving (Li et al., 2023; Hong et al., 2023) and
complex task automation (Wu et al., 2023; Fourney et al., 2024). However, this growing complexity
introduces a critical operational bottleneck: debugging. When a system fails, developers are faced
with a tangled web of interactions, where a subtle error in an early step can cascade into a catastrophic
failure dozens of turns later. Pinpointing the single, decisive error—the task of failure attribution—is
not merely challenging; it is a labor-intensive, error-prone process that stands as a major barrier to
the reliable deployment and iterative improvement of these powerful systems (Zhang et al., 2025).

Current automated approaches to this problem have proven fundamentally inadequate, with step-level
accuracy rates hovering below a dismal 17% (Zhang et al., 2025), a figure far too low for practical
debugging. We argue this failure is not a matter of model capability but of methodological paradigm.
Existing methods treat failure attribution as a pattern recognition task over conversational logs
(Zhang et al., 2025; Lightman et al., 2023). They present an entire log to a Large Language Model
(LLM) and ask it to "find the mistake," implicitly assuming the model can spot anomalous patterns
correlated with failure. This approach fundamentally misses the point. The critical question is not
"which step looks wrong?" but rather a causal one: "which single corrective action would have turned
failure into success?" This exposes a deep counterfactual inference gap: the inability of unstructured,
holistic methods to systematically reason about the consequences of hypothetical interventions, a
challenge particularly pronounced in multi-turn interactions where cause and effect are obscured
(Kiciman et al., 2023; Zevcevic et al., 2023).
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To bridge this gap, we introduce Abduct-Act-Predict (A2P), a novel prompting framework that
reframes failure attribution from pattern recognition into a structured causal inference task. Instead
of asking for a direct answer, A2P guides an LLM through a formal, three-step counterfactual
reasoning process within a single inference pass, operationalizing the logic of Pearl’s structural causal
model hierarchy (Pearl, 2009). The framework compels the model to: (1) Abduct, inferring hidden
factors (e.g., a flawed assumption) that explain a problematic action; (2) Act, defining a minimal,
concrete corrective intervention; and (3) Predict, simulating the subsequent counterfactual trajectory
to verify if the intervention would have resolved the overall task failure. This structured process
forces the model to move beyond correlation and rigorously test causal hypotheses, transforming the
"needle-in-the-haystack" problem (Liu et al., 2024) into a systematic investigation.

Our approach is not just theoretically sound but empirically dominant. Evaluated on the comprehen-
sive Who&When benchmark (Zhang et al., 2025), A2P Scaffolding achieves a step-level accuracy of
47.46 % on the Algorithm-Generated dataset—a 2.85X improvement over the 16.67% of its direct
baseline. On the more challenging Hand-Crafted dataset, it achieves 29.31% accuracy, a 2.43X
improvement over the baseline’s 12.07%. These results establish a new state-of-the-art and, for the
first time, demonstrate a viable path toward reliable automated debugging for multi-agent systems.
Rigorous ablation studies further validate our framework, confirming that each causal reasoning
component is essential and revealing the surprising, critical role of structural cues like contextual step
numbering in enabling fine-grained analysis.

2 RELATED WORK

2.1 LLM MULTI-AGENT SYSTEMS

The emergence of Large Language Models as capable reasoning agents has catalyzed rapid develop-
ment in multi-agent system architectures (Wu et al., 2023; Li et al., 2023; Hong et al., 2023). These
systems leverage the collaborative potential of multiple specialized agents working together to solve
complex tasks that exceed the capabilities of individual models (Park et al., 2023; Liu et al., 2023b).
Notable frameworks include AutoGen (Wu et al., 2023), which facilitates multi-agent conversations
through customizable agent roles and interaction patterns, CAMEL (Li et al., 2023), which ex-
plores role-playing dynamics in collaborative task-solving, and MetaGPT (Hong et al., 2023), which
incorporates software development methodologies into multi-agent workflows. Recent work has
expanded these foundations to include specialized domains such as scientific research (Ghafarollahi
& Buehler, 2024), software development (Kumar et al., 2024), and complex reasoning tasks (Du
et al., 2023). However, as these systems grow in sophistication, the challenge of diagnosing failures
becomes increasingly complex, with current debugging approaches remaining largely manual and
ad-hoc (Wang et al., 2024b). The need for automated failure attribution becomes particularly acute in
production deployments where system reliability directly impacts user experience and operational
efficiency (Fourney et al., 2024).

The rapid proliferation of multi-agent systems has outpaced the development of systematic debugging
methodologies. While considerable effort has been invested in designing agent architectures and
interaction protocols (Qian et al., 2023; Chen et al., 2024), relatively little attention has been paid to
post-hoc failure analysis. This gap is particularly problematic given the emergent behaviors that arise
from agent interactions, where system failures often result from subtle cascading effects rather than
obvious individual errors (Kumar et al., 2024). Our work addresses this critical gap by providing
the first systematic framework for automated failure attribution specifically designed for the unique
challenges of multi-agent system debugging. Unlike previous approaches that focus on system design
or performance evaluation (Wang et al., 2024b), we concentrate on the diagnostic phase that enables
iterative improvement and reliable deployment.

2.2 LLM-AS-A-JUDGE AND PROCESS-LEVEL EVALUATION

The paradigm of using LLMs as evaluators has gained significant traction as a scalable alternative to
human assessment across diverse domains (Zheng et al., 2023; Wang et al., 2024a). This approach
has proven particularly valuable in scenarios where human evaluation is expensive, time-consuming,
or requires specialized expertise (Liu et al., 2023a; Dubois et al., 2023). Recent developments have
extended LLM-based evaluation to process-level assessment, where models evaluate intermediate
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reasoning steps rather than only final outputs (Lightman et al., 2023; Wang et al., 2023). Process
reward models (Uesato et al., 2022) have shown promise in mathematical reasoning by identifying
the specific steps where errors occur, enabling more targeted feedback and improvement strategies.
However, these approaches primarily focus on single-agent reasoning chains in well-defined domains
like mathematics or coding, where the correctness of individual steps can be objectively determined.

Our work extends this process-level evaluation paradigm to the significantly more complex domain
of multi-agent system failures. Unlike mathematical reasoning where step correctness is often binary
and context-independent, multi-agent failures involve complex interdependencies between agents,
temporal dynamics, and emergent behaviors that resist simple classification (Du et al., 2023). While
process reward models evaluate individual reasoning steps, our A2P framework must navigate the
multi-participant, interactive dynamics of agent systems where the "correctness" of an action depends
heavily on the broader conversational context and the ultimate task outcome. This fundamental
difference necessitates our novel approach of structured counterfactual reasoning rather than step-by-
step correctness assessment (Miller, 2019; Doshi-Velez & Kim, 2017).

2.3 CAUSAL REASONING IN LLMS

Recent research has begun exploring the causal reasoning capabilities of large language models,
revealing both promising potential and significant limitations (Kiciman et al., 2023; Zevcevic et al.,
2023). Benchmarks such as CLadder (Qin et al., 2023) and CausalBench (Jin et al., 2023) have
established that while LLMs can perform certain types of causal reasoning, they often struggle with
complex counterfactual inference tasks that require systematic manipulation of causal variables (Jin
et al., 2024). This limitation is particularly pronounced in scenarios requiring what Pearl terms
"Level 3" causal reasoning, answering questions about what would have happened under different
circumstances (Pearl, 2009). Studies have shown that structured prompting approaches, such as
CausalCoT (Zhang et al., 2024), can significantly enhance LLM performance on causal tasks by
providing explicit reasoning frameworks that guide model inference.

Building on these insights, our A2P Scaffolding framework represents a practical application of
structured causal prompting to a real-world diagnostic task. While previous work has focused on
synthetic causal reasoning benchmarks or simplified scenarios (Jin et al., 2023; Qin et al., 2023), we
tackle the significantly more complex challenge of failure attribution in multi-agent systems where
causal relationships are embedded in natural language conversations and span multiple participants
over extended time horizons. Our approach operationalizes Pearl’s three-level causal hierarchy
(Pearl et al., 2016) into a concrete prompting strategy that enables LLMs to perform sophisticated
counterfactual analysis. Unlike previous causal reasoning work that typically evaluates models on
isolated causal queries, we demonstrate how structured causal prompting can address practical system
debugging challenges where the stakes of accurate causal inference directly impact development
efficiency and system reliability (Scholkopf et al., 2021; Peters et al., 2017).

3 METHOD

The challenge of automated failure attribution in multi-agent systems stems from the inherent
complexity of causal reasoning over extended, multi-participant conversational sequences. Existing
baseline methods, while processing the complete contextual information, treat attribution as a
monolithic pattern recognition task, implicitly assuming that LLMs can perform comprehensive
counterfactual reasoning within a single, unstructured inference step, an assumption contradicted
by recent benchmarks evaluating LLM causal capabilities (Kiciman et al., 2023; Zevcevic et al.,
2023). This assumption leads to a critical analytical bottleneck: models may successfully identify
correlations or surface-level errors but systematically fail to determine whether those errors were
truly decisive—that is, whether their correction would have altered the task outcome from failure to
success. This counterfactual inference gap constitutes the primary cause of the characteristically low
step-level accuracy observed in existing attribution systems (Zhang et al., 2025).

To bridge this gap, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel prompting framework
that restructures the failure attribution task into a formal, three-step causal inference process. Our
approach is implemented as an enhancement to the All-at-Once method, thereby retaining its key
advantage of having access to the complete conversational context. However, instead of a simple in-
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struction, we employ a sophisticated prompt generation function, construct_causal_prompt,
that guides the LLM through a rigorous analytical sequence inspired by Pearl’s structural causal
model framework (Pearl, 2009). This method makes the reasoning process transparent, verifiable,
and significantly more accurate without requiring any changes to the underlying model architecture.

The core of A2P Scaffolding is its three-step reasoning structure, illustrated in Figure 1. (1) Abduction
(Inferring Hidden Causes): The process begins by prompting the LLM to move beyond mere
observation to abductive reasoning. Given the final task failure, the model is instructed to identify and
articulate the hidden factors or latent variables (e.g., an agent’s knowledge gap, a flawed assumption,
a misinterpretation of the user’s query) that best explain why a specific agent took a specific action at
a specific step. This approximates the posterior inference of exogenous variables in a causal model,
forcing the model to establish a plausible root cause before proceeding. (2) Action (Defining an
Intervention): Once a potential root cause and erroneous action are hypothesized, the framework
prompts the LLM to define a minimal, concrete intervention. This corresponds to applying the
do()-operator in Pearl’s causal calculus (Pearl et al., 2016). The model must specify the exact,
“correct” action the agent should have taken in that step. This step is crucial as it translates the
abstract hypothesis into a testable, operationalized counterfactual. (3) Prediction (Simulating
the Counterfactual Trajectory): With the intervention defined, the final step is to predict its
consequences. The LLM is instructed to simulate the subsequent 3-5 turns of the conversation under
the counterfactual condition that the correct action was taken. It must then predict whether this new,
simulated trajectory would lead to the successful completion of the original task. This step directly
evaluates the decisive nature of the error; if the simulated outcome is success, the hypothesis is
confirmed.

Mathematically, A2P Scaffolding approximates the estimation of a counterfactual outcome
Z(Z(;+)(7)) for an intervention at step ¢. We formalize the failure attribution task within Pearl’s
SCM framework where a trajectory 7 is generated by structural equations with states evolving as
se1 = f(s¢,a4,€,), where €, represents unobserved exogenous variables (e.g., agent’s internal
knowledge state). The final outcome Z(7) is a function of the full trajectory. Our objective is
Lk
1

to find the earliest pair (i*,t*) = arg ming; ;) ¢ such that the LLM’s guided simulation predicts
Z(Z(;,1)(7)) = 0 (success). The A2P framework guides the LLM through three approximations:

Abduction: ¢, « argmax P(e|sg.,a,, Z(7) = 1) @))]
Action:  do(a; < a) 2)
Prediction: Z(77) = g(so, ..., 8¢, Sta1,-..) Where sjpq = fsy,ar,€) 3)

This entire three-step process is executed for each potential error the model considers, and it ultimately
outputs the earliest agent-step pair that satisfies this causal chain. To support this fine-grained temporal
reasoning, our method incorporates a critical structural component: Contextual Step Numbering.
Before being passed to the model, the entire conversation log is pre-processed to prefix each turn with
an explicit, formatted identifier like Step {idx} — Agent_Name:. Our ablation experiments
conclusively demonstrate that these structural anchors are not merely a minor enhancement but are
absolutely essential, preventing a catastrophic drop in step-level accuracy by providing the model
with unambiguous reference points to trace causal dependencies through the dialogue.

The implementation is seamlessly integrated into the existing codebase through a command-line
flag —causal_reasoning that activates the construct_causal_prompt function within
the all_at_once and all_at_once_async methods. This design ensures full backward
compatibility while making our advanced causal analysis easily accessible. The computational
overhead is minimal, consisting of a 25% increase in processing time and token count per sample—a
modest cost for the 2.85X improvement in accuracy achieved by our method.

Having established the theoretical foundation and implementation details of A2P Scaffolding, we
proceed to describe our comprehensive experimental methodology designed to rigorously evaluate
the framework’s effectiveness across diverse multi-agent system configurations and failure scenarios.
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1. Input & Pre-processing
Failed Conversation Log

User: Find a hotel in Paris for tomorrow;

HotelAgent: I can help with that.

User: Great. | need a room with a view

HotelAgent: Apologies, all hotels are
fully booked

System: Task Failed.

Crucial Pre-processing
Prefix turns with explicit step numbers:

Step 1 — User: Find a hotel in Paris...
Step 2 — HotelAgent: | can help..
Step 3 — User: Great. | need a room
Step 4 — HotelAgent: Apologies,

all hotels...
Step 5 — System: Task Failed.

This provides unambiguous reference
points for causal reasoning

2. A2P Causal Inference Process
A. Abduction: Infer Hidden Root Cause
LLM analyzes the failed step to hypothesize a plausible cause.

Hypothesis: Agent misinterpreted “tomorrow” due to
a late-night query, searching for the current,
already-passed date

Causal Goal: Infer latent cause € = argmax P(e | Z(t)=1)

Analyst Agent
B. Action: Define Counterfactual Intervention

LLM defines a minimal, correct action the agent should have takenl

Original Action: Apologies, all hotels are fully booked.
Corrected Action (Intervention): Clarify the date.
“Are you booking for [Date+1] or [Date+2]?”

" Causal Operation: Define intervention on action a_t = do(a_t =a’_t)
Editor Agent

C. Prediction: Define Counterfactual Intervention
LLM simulates the next turns and predicts the new outcome

Step 4’ - HotelAgent: Are you booking for..

3. Output

Causal Link Confirmed
The intervention leads to success.

v

Root Cause Attributed

The root cause of failure is:
HotelAgent at Step 4.

s Causal Evaluation: Predict outcome Z(t') | do(a_t =a'_t) =0
Oracle Agent

Figure 1: Overview of the A2P Scaffolding framework. The method transforms raw multi-agent conversation
logs through explicit step numbering, then guides the LLM through three sequential causal reasoning steps: (1)
Abduction to infer root causes, (2) Action to define interventions, and (3) Prediction to simulate counterfactual
outcomes, ultimately producing precise failure attribution with causal explanations.

4 EXPERIMENTAL SETUP

All experiments were conducted on the Who&When benchmark (Zhang et al., 2025), a comprehensive
dataset specifically designed for automated failure attribution in multi-agent systems. The benchmark
comprises two distinct subsets that provide complementary perspectives on system complexity:
Algorithm-Generated (126 samples) and Hand-Crafted (58 samples), totaling 184 distinct failure
attribution tasks. The Algorithm-Generated subset contains failure logs from systems automatically
constructed using the CaptainAgent algorithm from the AG2 library, where each system is tailored to
specific queries from the GAIA (Mialon et al., 2023) and AssistantBench (Yoran et al., 2024) valida-
tion sets. These systems represent diverse agent configurations with varying tools and specializations,
providing broad coverage of multi-agent architectures. The Hand-Crafted subset features failure
logs from Magnetic-One (Fourney et al., 2024), a mature, carefully engineered multi-agent system
comprising five specialized agents designed for web browsing, file navigation, and complex task
orchestration. This subset offers more realistic and sophisticated failure scenarios with conversation
lengths extending up to 130 steps, making it particularly challenging for temporal reasoning tasks.

Our method, A2P Scaffolding, was implemented by modifying the baseline al1_at_once approach
to incorporate our structured causal reasoning prompt, activated via a —causal_reasoning
command-line flag. We used the gpt-oss-120b model accessed via a local API endpoint to
ensure consistent experimental conditions across all methods. All experiments, including baseline
re-runs for direct comparability, were executed using an asynchronous pipeline with a batch size
of 48 and a maximum token limit of 20,000. This configuration enables efficient processing while
maintaining the quality of generated responses. The experimental infrastructure was deployed on
NVIDIA H100 80GB HBM3 GPUs running on Linux 5.14.0-427.13.1.el9_4.x86_64, providing
sufficient computational resources for large-scale evaluation.

Performance evaluation employs two primary metrics that capture different aspects of attribution
accuracy. Agent-Level Accuracy measures the percentage of correctly predicted failure-responsible
agents, representing the fundamental requirement for identifying which component of the multi-agent
system caused the failure. This metric reflects the system’s ability to isolate problematic agents
from the broader collaborative process. Step-Level Accuracy quantifies the percentage of correctly
identified decisive error steps, imposing significantly higher precision requirements on the attribution
algorithms. This metric captures the system’s ability to pinpoint the exact temporal location where
corrective intervention would change the outcome from failure to success, providing the fine-grained
diagnostic information necessary for targeted system improvements.
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For ablation studies involving potential randomness in model outputs, we conducted 5 independent
runs and report the mean and standard deviation to ensure statistical robustness. Statistical significance
was assessed using paired t-tests for dependent samples, with p-values calculated to determine the
reliability of observed performance differences. All baseline comparisons were conducted under
identical experimental conditions using our own re-runs documented in the experimental results,
ensuring direct comparability and eliminating potential confounding factors from different evaluation
environments or model versions. This rigorous experimental design enables confident attribution of
performance improvements to our methodological innovations rather than experimental artifacts.

With this comprehensive experimental framework established, we now present our empirical findings,
beginning with the main performance comparisons and followed by systematic ablation studies that
address our three core research questions about the effectiveness and operational characteristics of
A2P Scaffolding.

5 EXPERIMENTS

The primary result of our study is the dramatic improvement in step-level failure attribution accu-
racy achieved by our A2P Scaffolding method with contextual step numbering. Table 1 presents a
comprehensive performance comparison on both datasets, where our enhanced A2P Scaffolding with
step numbering achieves 47.46% step accuracy on the Algorithm-Generated dataset—significantly
outperforming the next-best baseline (binary_search at 28.57%) and nearly tripling the perfor-
mance of the direct baseline (all_at_once at 16.67%). This represents a 2.85X improvement
over the all_at_once baseline, demonstrating the transformative impact of our structured causal
reasoning framework combined with explicit temporal anchoring through step numbering (Peters
et al., 2017).

Table 1: Performance comparison of A2P Scaffolding against baseline methods on both datasets. Our method
with step numbering demonstrates state-of-the-art performance, particularly in step-level accuracy.

‘ Algorithm-Generated (126 samples) ‘ Hand-Crafted (58 samples)

Method Agent Accuracy (%) | Step Accuracy (%) | Agent Accuracy (%) | Step Accuracy (%)

Value Gain Value Gain Value Gain Value Gain
A2P (Ours) | 65.40 - | 47.46 - | s8.62 - | 29.31 -
Baselines
all_at_once 63.49 -1.91 16.67 -30.79 27.59 -31.03 12.07 -17.24
step_by_step | 49.21 -16.19 27.78 -19.68 53.45 -5.17 18.97 -10.34
binary_search | 46.83 -18.57 28.57 -18.89 44.83 -13.79 13.79 -15.52

On the more challenging Hand-Crafted dataset, our method achieves 29.31% step accuracy—a
2.43X improvement over the all_at_once baseline’s 12.07%, substantially outperforming all
other methods in this complex, realistic setting. The agent-level accuracy of 65.40% on Algorithm-
Generated and 58.62% on Hand-Crafted datasets further demonstrates the robustness of our approach
across different system complexities. These results establish A2P Scaffolding as the first automated
method to achieve nearly 50% step-level accuracy on algorithm-generated systems while maintaining
superior performance on realistic, complex scenarios (Fourney et al., 2024; Wu et al., 2023).

Research Question 1: How does structuring an LLM’s inference process with an explicit three-
step causal framework (Abduction, Action, Prediction) and contextual step numbering affect
its ability to perform fine-grained failure attribution in multi-agent conversations?

Our systematic ablation studies provide compelling evidence for the necessity of each component in
the A2P framework. Table 2 quantifies the degradation in step-level accuracy when core components
are removed.

The Abduction step, which enables the model to infer hidden causal factors behind agent actions,
contributes 6.35 percentage points on Algorithm-Generated and 8.62 percentage points on Hand-
Crafted datasets. This component transforms surface-level error detection into deep causal analysis
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Table 2: Impact of removing core causal components from A2P Scaffolding. Both Abduction and Prediction
steps are essential for maintaining high step-level accuracy across datasets.

Configuration ‘ Algorithm-Generated ‘ Hand-Crafted

‘ Step Acc. (%) Drop (pp) ‘ Step Acc. (%) Drop (pp)
Full A2P Model ‘ 47.46 - ‘ 29.31 -
A2P w/o Abduction 41.11 -6.35 20.69 -8.62
A2P w/o Prediction 40.32 -7.14 17.24 -12.07

by forcing the model to reason about latent variables such as knowledge gaps, incorrect assumptions,
or misinterpretations that explain observed failures (Pearl et al., 2016; Scholkopf et al., 2021).

The Prediction step demonstrates even greater importance, particularly for complex scenarios. Its
removal causes degradation of 7.14 percentage points on Algorithm-Generated and a substantial
12.07 percentage points on Hand-Crafted step accuracy. This validates our theoretical framework
that explicit counterfactual simulation—testing whether a corrective intervention would resolve the
failure—is essential for distinguishing decisive errors from incidental mistakes. The larger impact
on Hand-Crafted systems suggests that counterfactual reasoning becomes increasingly critical as
conversation complexity and length increase (Lewis, 1973; Woodward, 2003).

Most remarkably, Table 3 reveals the critical importance of contextual step numbering.

Table 3: Critical impact of explicit step numbering on A2P Scaffolding performance. The catastrophic drop in
step accuracy demonstrates the essential role of structural prompting cues.

Configuration ‘ Agent Acc. (%) Step Acc. (%) ‘ Step Acc. Drop (pp)
A2P with Step Numbering | 65.40 47.46 | -
A2P without Step Numbering | 64.29 17.78 | -29.68

Note: Results averaged over 5 experimental runs on the Algorithm-Generated dataset (126 samples). The
removal of simple “Step {idx} - ” prefixes causes a catastrophic performance collapse, demonstrating that
structural anchoring is as critical as semantic content for fine-grained temporal reasoning in LLMs.

The removal of explicit step numbering—simply removing the “Step {idx} - ” prefixes—causes
a catastrophic 29.68 percentage point collapse in step-level accuracy (from 47.46% to 17.78%)
while leaving agent accuracy relatively unchanged. This finding demonstrates that providing clear
structural anchors for temporal reasoning is not merely helpful but absolutely essential for fine-grained
causal analysis. The result aligns with recent work showing that LLMs’ reasoning capabilities are
highly sensitive to input formatting and structural cues (Min et al., 2022; Webson & Pavlick, 2021),
suggesting that effective prompt engineering must consider both semantic content and syntactic
organization.

Research Question 2: Can the A2P Scaffolding method achieve superior step-level accuracy
compared to holistic, incremental, and hierarchical search-based attribution methods on both
algorithmically-generated and complex hand-crafted agent systems?

Our comprehensive evaluation in Table 1 demonstrates A2P Scaffolding’s systematic superiority
across diverse system types and complexity levels. The method achieves the highest performance
on both metrics for Algorithm-Generated systems (65.40% agent accuracy, 47.46% step accuracy),
with step accuracy improvements of 2.85X over all_at_once, 1.71X over step_by_step, and
1.66X over binary_search. These substantial gains stem from A2P’s unique ability to combine
holistic context processing with structured causal analysis, avoiding the pitfalls of both extremes
(Bommasani et al., 2021; Brown et al., 2020).

The Hand-Crafted dataset results prove particularly compelling. While baseline methods struggle
with the increased complexity—with all_at_once achieving only 12.07% step accuracy—A2P
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maintains robust performance at 29.31%. This 2.43X improvement demonstrates that our causal
framework scales effectively to realistic scenarios with extended conversation sequences (up to 130
steps) and complex inter-agent dependencies. The method’s resilience to increasing complexity
validates its potential for debugging production multi-agent systems where failures often involve
subtle causal chains spanning many interaction steps (Hong et al., 2023; Li et al., 2023).

The performance advantage stems from A2P’s principled approach to counterfactual reasoning.
Unlike step_by_step methods that make premature decisions with incomplete context, or
all_at_once approaches that struggle with the “needle-in-haystack™ problem of long contexts
(Liu et al., 2024), A2P processes the entire conversation while maintaining focused causal analysis
through its structured three-step framework. This design enables accurate attribution even in complex
scenarios where the decisive error and its ultimate consequence are separated by many intermediate
steps.

Research Question 3: What are the operational characteristics and practical implications of
using A2P Scaffolding for debugging multi-agent systems?

Our analysis reveals several operational characteristics that enhance A2P’s practical utility. Figure 2
shows the method’s sensitivity to counterfactual simulation length in the Prediction step.

Fixed Length == = A2P Scaffolding (Ours)

50
= 48 A
2\’ _____________________________ @=
o
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=
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Figure 2: Sensitivity analysis of counterfactual simulation length in the Prediction step. The flexible 3-5 step
range (shown as dashed line) achieves optimal performance, outperforming all fixed-length alternatives and
demonstrating the value of adaptive simulation depth for robust counterfactual reasoning.

The flexible 3-5 step range achieves optimal per- Table 4: Impact of explicit root cause criteria in the

f'ormance., outperforming all ﬁ)fed—lengtl.l alte'rna— prompt. Results show no significant improvement (p
tives. This suggests that allowing adaptive simu- 5 q 5).

lation depth based on context produces more ro-
bust counterfactual reasoning than rigid parame-
ters (Zhang et al., 2024; Wei et al., 2024).

Dataset | WITH WITHOUT  p-val
o Alg-Gen 4635%  43.81%  0.126
Our methodological rigor is demonstrated through (1.4 crafied | 20.34% 23.10% 0.148
systematic ablation of non-essential components.
Table 4 shows that including explicit formal causal
criteria (PRECEDES, NECESSARY, SUFFICIENT) provides no statistically significant improvement
(p > 0.05), justifying their exclusion from the final design. This data-driven optimization ensures that
A2P’s complexity is justified by empirically validated gains rather than theoretical appeal (Reynolds
& McDonell, 2021; Kojima et al., 2022).

The method generates causally coherent explanations that explicitly trace error propagation through
agent interactions, making A2P valuable for human developers seeking actionable debugging insights
(Miller, 2019; Doshi-Velez & Kim, 2017).
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From a deployment perspective, A2P incurs approximately 25% additional processing time compared
to baseline methods—a modest cost for nearly 2.85X improvement in step accuracy. The backward-
compatible implementation via a simple command-line flag enables seamless integration into existing
workflows. Combined with its robust performance across system types and proven scalability to
complex scenarios, A2P Scaffolding represents a practical, immediately deployable solution for
automated failure attribution in production multi-agent systems (Wu et al., 2023; Kumar et al., 2024).

6 CONCLUSION

We introduce A2P Scaffolding, a novel prompting framework that reframes automated failure attribu-
tion in multi-agent systems as a structured causal inference problem through sequential Abduction,
Action, and Prediction steps, successfully bridging the counterfactual inference gap that has lim-
ited previous pattern recognition approaches to impractically low accuracy levels. Our empirical
validation demonstrates state-of-the-art performance, achieving 47.46% step-level accuracy on
algorithm-generated systems and 29.31% on complex hand-crafted systems—representing 2.85X%
and 2.43X improvements over baselines respectively—while rigorous ablation studies confirm the
necessity of each framework component, particularly the critical importance of explicit step num-
bering which alone contributes +29.68 percentage points to step accuracy. Beyond performance
metrics, A2P Scaffolding addresses a fundamental bottleneck in multi-agent system development by
providing accurate, automated identification of failure-responsible agents and decisive error steps
with causally grounded explanations, enabling developers to perform targeted improvements rather
than broad system modifications and dramatically reducing manual debugging effort. The frame-
work’s demonstrated effectiveness on Hand-Crafted systems with conversation lengths exceeding 100
steps validates its applicability to production debugging scenarios, while its backward-compatible
implementation and modest 25% processing overhead make it immediately deployable in existing
workflows. Future work can extend the A2P approach to other diagnostic domains requiring counter-
factual reasoning, integrate it with efficient search strategies for enhanced scalability, and leverage
the structured prompting principles to advance LLM capabilities in formal reasoning tasks, ultimately
contributing to more robust and interpretable Al systems capable of sophisticated self-diagnosis and
explanation.
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T-DETECT: TAIL-AWARE STATISTICAL NORMALIZA-
TION FOR ROBUST DETECTION OF ADVERSARIAL
MACHINE-GENERATED TEXT

DeepScientist

ABSTRACT

Large language models (LLMs) have shown the capability to generate fluent and
logical content, presenting significant challenges to machine-generated text detec-
tion, particularly text polished by adversarial perturbations such as paraphrasing.
Current zero-shot detectors often employ Gaussian distributions as statistical mea-
sure for computing detection thresholds, which falters when confronted with the
heavy-tailed statistical artifacts characteristic of adversarial or non-native English
texts. In this paper, we introduce T-Detect, a novel detection method that funda-
mentally redesigns the curvature-based detectors. Our primary innovation is the
replacement of standard Gaussian normalization with a heavy-tailed discrepancy
score derived from the Student’s t-distribution. This approach is theoretically
grounded in the empirical observation that adversarial texts exhibit significant
leptokurtosis, rendering traditional statistical assumptions inadequate. T-Detect
computes a detection score by normalizing the log-likelihood of a passage against
the expected moments of a t-distribution, providing superior resilience to statistical
outliers. We validate our approach on the challenging RAID benchmark for adver-
sarial text and the comprehensive HART dataset. Experiments show that T-Detect
provides a consistent performance uplift over strong baselines, improving AUROC
by up to 3.9% in targeted domains. When integrated into a two-dimensional de-
tection framework (CT), our method achieves state-of-the-art performance, with
an AUROC of 0.926 on the Books domain of RAID. Our contributions are a new,
theoretically-justified statistical foundation for text detection, an ablation-validated
method that demonstrates superior robustness, and a comprehensive analysis of its
performance under adversarial conditions.

1 INTRODUCTION

The rise of powerful large language models (LLMs) (Ouyang et al., 2022; Yang et al., 2025) has
ignited a critical arms race between text generation and detection (You et al., 2023; Moraffah et al.,
2024). While these models fuel innovation, they also carry risks like misinformation and academic
dishonesty, making reliable detection essential (Kumarage et al., 2024). However, this is not a static
battlefield. A more dangerous front has opened: malicious actors are no longer just using LLMs,
but are actively studying our detectors to craft adversarial attacks that can evade them (You et al.,
2023; Lee et al., 2023). These evolving strategies, from simple paraphrasing to subtle manipulations
(Li, 2024), demand a new generation of detectors built not just for accuracy, but for fundamental
resilience.

The vulnerability of many current zero-shot detectors lies not on the surface, but deep in their
statistical core. Leading methods like DetectGPT (Mitchell et al., 2023) and Fast-DetectGPT (Bao
et al., 2023) are built on a seemingly innocuous assumption: that their statistical scores follow a
standard bell curve, or Gaussian distribution (Rousseeuw & Hubert, 2011). This is their Achilles’ heel.
Our empirical analysis reveals that adversarial texts are designed to break this premise. They produce
score distributions with extreme outliers, resulting in "heavy-tailed" statistical properties (Dugan
et al., 2024). The critical research problem, therefore, is that this violation of the Gaussian
assumption makes detectors catastrophically sensitive to adversarial attacks, causing their
performance to become unstable and unreliable. When faced with the very texts they are designed
to catch, their statistical foundation crumbles.
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To this end, we introduce T-Detect, a novel method that redesigns the detector’s statistical core
by replacing the flawed Gaussian assumption with a robust, ''tail-aware'' normalization based
on the Student’s t-distribution. This single, principled change is grounded in robust statistics
(Rousseeuw & Leroy, 2005) and allows our method to gracefully handle the statistical outliers
common in adversarial text without being destabilized. By computing a "heavy-tailed discrepancy
score," T-Detect provides an inherently more stable and reliable signal for distinguishing human from
machine-generated text.

We validate T-Detect through a comprehensive suite of experiments, demonstrating its practical
advantages. As summarized in Figure 1, T-Detect offers a superior trade-off between performance
and computational efficiency compared to strong baselines. On the challenging RAID benchmark
for adversarial text, our method, particularly when integrated into a two-dimensional (CT) frame-
work(Bao et al., 2025), achieves state-of-the-art performance with an overall AUROC of 0.876. Our
contributions are threefold: (1) We are the first to empirically prove that adversarial text detection
scores follow heavy-tailed distributions and propose a theoretically-justified t-distribution-based
normalization to address this. (2) We present an ablation-validated method that demonstrates superior
robustness and performance on adversarial benchmarks. (3) We provide a comprehensive analysis of
our method’s practical benefits, including its computational stability and exceptional hyperparameter
robustness, offering a more reliable and deployable solution for Al safety.

o 811%) Base Detection (T) Performance 10320C0ntent Detection (C) Performance 0(3:3)- Combined Detection (CT) Stability
8107 q 885
0.880
08051 078 ] T-Detect
. 0.875 FastDetectGPT
Binoculars i
0.800 1 @
<] T-Detect 2 £ 0.870
5 o} 5 50
3 & 0.76 a
© 0.7951 ) O 0.865
e FastDetectGPT 2 2
2 o B FastDetectGPT 2 0 gg0
0.790 4 0.74 <
0.855 oBmoculars
0.785
0.724 0.850
0.780 0.845
4 6 8 10 4 6 8 10 4 6 8 10
Throughput (texts/second) Throughput (texts/second) Throughput (texts/second)

Figure 1: The ’ALL’ Performance (AUROC) vs. Speed (Throughput) on the RAID benchmark. T-
Detect consistently provides a better Pareto frontier, offering higher performance for its computational
cost. In the two-dimensional setting (c), CT(T-Detect) achieves state-of-the-art accuracy while being
1.8x faster than the competitive CT(Binoculars) baseline.

2 RELATED WORK

The task of distinguishing machine-generated text from human-written content has evolved signifi-
cantly, moving from early statistical methods to sophisticated zero-shot classifiers. Early approaches
focused on identifying statistical artifacts in generated text. For instance, methods based on simple
metrics like likelihood, log-rank, and entropy (Guo et al., 2023; Li et al., 2022) were proposed to
capture the unusually predictable nature of text from older generative models (Gehrmann et al., 2019).
A significant breakthrough came with the introduction of curvature-based detection by Mitchell et al.
(2023) in their seminal work, DetectGPT. This method was the first to hypothesize that text sampled
from a large language model tends to occupy regions of high negative curvature in the model’s
log-probability space. DetectGPT estimated this curvature by generating numerous perturbations
of a given text and measuring the average drop in log-probability, establishing a new paradigm for
zero-shot detection that did not require a dedicated training dataset.

Building on this foundation, subsequent research has focused on improving both the efficiency and
accuracy of curvature-based methods. Our direct baseline, Fast-DetectGPT, was introduced by Bao
et al. (2023) as a computationally efficient alternative to DetectGPT. It retains the core curvature
hypothesis but replaces the costly perturbation step with a more efficient sampling-based approach to
approximate the necessary statistics, achieving a significant speedup. Parallel to these developments,
other zero-shot methods have emerged. Binoculars (Hans et al., 2024) proposed a novel approach
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based on the cross-perplexity between two different language models, one acting as an "observer"
and the other as a "performer." Another prominent method, NPR from the DetectLLM framework (Su
et al., 2023), leverages log rank information, offering a different statistical signal for detection. Our
work, T-Detect, contributes to the curvature-based lineage, but instead of focusing on computational
efficiency, we address a more fundamental statistical limitation in the normalization step of these
detectors.

To further enhance detection capabilities, some methods combine signals from multiple text represen-
tations, a common practice in the broader field of text classification (Yang et al., 2013; Agarwal et al.,
2014). The two-dimensional (CT) detection framework, utilized in prior work, is one such approach.
It combines a score from the original text (T) with a score from a content-only representation (C),
where function words and other stylistic markers have been removed. This allows the system to
decouple signals related to the expression of the text from those related to its core content. In our
work, we use this framework to demonstrate that T-Detect provides a more robust base signal, thereby
improving the performance of the entire combined system. This is particularly important in the
context of adversarial attacks, such as paraphrasing (Li, 2024) and Unicode manipulation, which are
designed to evade detection by altering either the expression or the underlying character data of a
text, underscoring the need for robust, multi-faceted detection strategies.

3 METHOD

The challenge of detecting machine-generated text has intensified with the advent of models capable
of producing highly fluent and contextually appropriate content. A significant frontier in this field is
the detection of text that has been adversarially perturbed to evade detection. Many existing zero-shot
statistical detectors, such as Fast-DetectGPT (Bao et al., 2023), operate by measuring the ’surprise’
of a given text under a language model. They typically compute a discrepancy score representing
how much the log-probability of the observed text deviates from the expected log-probability, and
then normalize this score. A critical, often implicit, assumption in this normalization step is that the
underlying distribution of these log-probability discrepancies is Gaussian. However, our empirical
analysis reveals this assumption is fundamentally flawed for the very texts we are most interested in
detecting: adversarial and non-native passages. These texts introduce statistical outliers that result
in heavy-tailed, or leptokurtic, distributions (dos Santos & Cirillo, 2021), causing Gaussian-based
methods to be overly sensitive and unreliable, a well-documented phenomenon in robust statistics
(Rousseeuw & Leroy, 2005).

To address this foundational problem, we introduce T-Detect, a novel detection method that replaces
the flawed Gaussian assumption with a more robust statistical framework based on the Student’s
t-distribution. The Student’s t-distribution is naturally suited for modeling data with heavier tails than
a normal distribution, making it an ideal choice for handling the statistical artifacts introduced by
adversarial attacks (Rath et al., 2022). Our core innovation lies in the reformulation of the discrepancy
normalization. While the baseline Fast-DetectGPT calculates a standard Z-score, T-Detect computes
a score that is normalized according to the properties of a t-distribution, as illustrated in Figure 2.

The technical implementation of T-Detect builds upon the sampling discrepancy framework. Given
an input text x, a scoring model pycore, and a reference model py.s, we first compute the unnormalized
discrepancy score d(z) and the aggregated variance V() as in the baseline:

||

d(x) = Z(logpscore(xi|x<i) - ,U"L) @9)

=1

||

V(iz)=) o} )
=1

where p; and o2 are the mean and variance of the log-probabilities of tokens at position i under the
reference distribution ps. The crucial departure from the baseline is in the normalization step. Instead
of a simple standard deviation normalization, T-Detect uses a normalization factor that incorporates
the degrees of freedom parameter, v, from the Student’s t-distribution. The final T-Detect score is
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given by:
d(x |m_| IOg Pscore\ L3 | T<i) — Wi
thdist(x; V) — V( ) _ Zz_l( ( ‘|| < ) M ) (3)
72V (@) 75 Yt 0F
The term %5 represents the variance of a standard Student’s t-distribution with v degrees of freedom

(for v > 2). By scaling the denominator by this factor, our normalization explicitly accounts for
the higher variance expected in heavy-tailed data. When a distribution has outliers, the standard
deviation can be inflated, but the t-distribution’s properties provide a more stable estimate of the
dispersion. For large values of v, this scaling factor approaches 1, and T-Detect gracefully converges
to the Gaussian-based baseline, making it a generalized extension. Our experiments show that a small
value, such as v = 5, is effective and that the method is remarkably robust to the specific choice of
this hyperparameter.

This single, theoretically-grounded modification is the entirety of our proposed method, as validated by
our ablation studies which demonstrated that other potential enhancements like dynamic thresholding
provided no performance benefit. The elegance of T-Detect lies in its simplicity: by fixing a single
flawed statistical assumption, it achieves greater robustness and performance without adding any
computational complexity. The method’s implementation requires only a minor change to the
final scoring calculation, preserving the efficiency of the original Fast-DetectGPT framework while
significantly enhancing its reliability against the most challenging types of machine-generated text.

Table 1: Performance of T-Detect and baselines on the adversarial RAID benchmark. Results are
reported as AUROC & F1-Score & TPR@5%FPR. Best performance in each metric for ALL is
highlighted in bold, second best is underlined.

Dataset \ FastDetectGPT \ Binoculars \ T-Detect (Ours)
‘ AUROC Fl1-Score TPR@5%FPR ‘ AUROC Fl1-Score TPR@5%FPR ‘ AUROC Fl1-Score TPR@5%FPR
T (Text)
Recipes 0.749 0.71 0.56 0.759 0.72 0.60 0.752 0.72 0.56
Books 0.845 0.80 0.57 0.850 0.81 0.60 0.851 0.81 0.62
News 0.761 0.73 0.48 0.768 0.75 0.52 0.767 0.75 0.52
Wiki 0.803 0.76 0.52 0.804 0.75 0.54 0.801 0.75 0.55
Reviews 0.810 0.77 0.51 0.812 0.78 0.52 0.812 0.77 0.54
Reddit 0.794 0.75 0.42 0.811 0.78 0.48 0.807 0.78 0.48
Poetry 0.818 0.78 0.59 0.826 0.79 0.61 0.827 0.79 0.64
Abstracts 0.821 0.77 0.58 0.826 0.77 0.64 0.827 0.78 0.66
ALL ‘ 0.792 0.74 0.52 ‘ 0.800 0.76 0.55 ‘ 0.798 0.76 0.55
C (Content)
Recipes 0.674 0.62 0.41 0.726 0.62 0.56 0.726 0.64 0.56
Books 0.873 0.79 0.70 0.888 0.83 0.73 0.886 0.82 0.72
News 0.767 0.70 0.43 0.783 0.71 0.57 0.783 0.70 0.56
Wiki 0.807 0.73 0.56 0.808 0.75 0.55 0.807 0.74 0.55
Reviews 0.717 0.66 0.36 0.762 0.71 0.40 0.759 0.70 0.40
Reddit 0.755 0.69 0.42 0.778 0.71 0.52 0.779 0.72 0.50
Poetry 0.743 0.70 0.38 0.777 0.73 0.54 0.777 0.73 0.52
Abstracts 0.774 0.71 0.44 0.799 0.75 0.58 0.799 0.75 0.58
ALL ‘ 0.742 0.69 0.37 ‘ 0.765 0.71 0.43 ‘ 0.773 0.72 0.50
CT (Framework)

Recipes 0.855 0.78 0.63 0.878 0.77 0.69 0.891 0.81 0.67
Books 0913 0.88 0.76 0.924 0.89 0.83 0.926 0.89 0.84
News 0.871 0.80 0.68 0.900 0.83 0.74 0.893 0.83 0.75
Wiki 0.874 0.81 0.70 0.861 0.78 0.68 0.868 0.80 0.70
Reviews 0.842 0.80 0.59 0.869 0.81 0.52 0.867 0.80 0.46
Reddit 0.853 0.78 0.63 0.869 0.81 0.64 0.871 0.79 0.64
Poetry 0.859 0.80 0.67 0.889 0.83 0.69 0.898 0.82 0.71
Abstracts 0.880 0.80 0.67 0.900 0.82 0.71 0.900 0.83 0.74
ALL ‘ 0.854 0.79 0.63 ‘ 0.873 0.80 0.65 ‘ 0.876 0.81 0.66

4 EXPERIMENTAL SETUP

All experiments were conducted on a server equipped with an AMD EPYC 7542 CPU, 503GB of
RAM, and two NVIDIA A100-SXM4-80GB GPUs. We used PyTorch 2.7.0 and Transformers 4.53.1.
For all metric-based detectors, including our proposed T-Detect and the FastDetectGPT baseline, we
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Figure 2: Conceptual overview of T-Detect. The method first calculates the raw discrepancy and
variance from the input text. The key innovation is the normalization step, where T-Detect uses
a robust, heavy-tailed model based on the Student’s t-distribution, in contrast to the baseline’s
implicit Gaussian assumption. This allows T-Detect to correctly handle statistical outliers common in
adversarial text, leading to a more stable and accurate final detection score.

used Falcon-7B as the reference/observer model and Falcon-7B-Instruct as the scoring/performer

model to ensure a fair and consistent comparison. The maximum token length for all inputs was set
to 512.

We evaluate our method on two primary benchmarks. The first is the RAID benchmark (Dugan et al.,
2024), a challenging dataset specifically designed to test detector robustness against 12 different
types of adversarial attacks across 8 diverse domains. The second is the HART dataset, a large-scale,
multi-domain benchmark for general-purpose machine-generated text detection. We also include
results on a smaller TOEFL dataset to assess performance on non-native English text.

For all experiments, we follow a consistent evaluation protocol. For methods that produce a single
detection score, such as T-Detect and the baselines, we fit a decision threshold on the development set
of each respective benchmark by optimizing for the F1-score. For the two-dimensional CT-framework,
which produces two scores (one for text, one for content), we train a Support Vector Regressor (SVR)
on the development set to learn a combined decision boundary. Performance is primarily measured
using the Area Under the Receiver Operating Characteristic Curve (AUROC), with F1-score and
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Table 2: General performance of T-Detect and baselines on the multi-domain HART benchmark.
Results are reported as AUROC & F1-Score & TPR@5%FPR. Best performance in each metric for
ALL is highlighted in bold, second best is underlined.

Dataset | FastDetectGPT | Binoculars | T-Detect (Ours)
‘ AUROC Fl1-Score TPR@5%FPR ‘ AUROC Fl1-Score TPR@5%FPR ‘ AUROC Fl1-Score TPR@5%FPR

Level 1

News 0.714 0.66 0.43 0.720 0.68 0.42 0.714 0.67 0.43

Arxiv 0.769 0.72 0.57 0.769 0.72 0.56 0.771 0.71 0.58

Essay 0.877 0.81 0.73 0.879 0.82 0.73 0.880 0.82 0.73

Writing 0.740 0.70 0.47 0.740 0.70 0.49 0.740 0.70 0.48

ALL ‘ 0.778 0.72 0.55 ‘ 0.780 0.73 0.55 ‘ 0.780 0.73 0.55
Level 2

News 0.689 0.67 0.47 0.699 0.68 0.47 0.698 0.67 0.49

Arxiv 0.718 0.71 0.57 0.715 0.70 0.56 0.718 0.71 0.57

Essay 0.734 0.68 0.34 0.735 0.68 0.37 0.734 0.68 0.36

Writing 0.692 0.68 0.53 0.693 0.68 0.53 0.693 0.69 0.53

ALL | 0711 0.68 0.47 | 0711 0.69 044 | 0712 0.69 0.44
Level 3

News 0.851 0.80 0.54 0.866 0.83 0.63 0.863 0.82 0.59

Arxiv 0.877 0.83 0.72 0.882 0.85 0.77 0.879 0.84 0.75

Essay 0.883 0.80 0.59 0.897 0.80 0.64 0.891 0.80 0.62

Writing 0.840 0.82 0.59 0.847 0.84 0.64 0.844 0.83 0.61

ALL ‘ 0.862 0.81 0.60 ‘ 0.870 0.83 0.62 ‘ 0.867 0.82 0.62

True Positive Rate at 5% False Positive Rate (TPR@5%FPR) also reported for a comprehensive
evaluation.

5 EXPERIMENTS AND RESULTS

We conduct a series of experiments to validate T-Detect, organized around our three core research
questions. We first present the main comparative results on adversarial and general-purpose bench-
marks, followed by a detailed analysis that addresses each research question in turn.

5.1 MAIN PERFORMANCE RESULTS

Our primary results demonstrate that T-Detect consistently improves performance over strong base-
lines, particularly on adversarially crafted text. Table 1 shows the performance on the challenging
RAID benchmark. In the most critical two-dimensional CT configuration, our CT(T-Detect) achieves
a state-of-the-art overall AUROC of 0.876, surpassing both the CT(FastDetectGPT) baseline and the
competitive CT(Binoculars) method. The improvements are especially pronounced in creative and
technical domains, such as Books (0.926 AUROC) and Poetry (0.898 AUROC). Table 2 shows the
performance on the general-purpose HART benchmark, where T-Detect remains highly competitive,
confirming that its robustness does not compromise its general applicability.

5.2 ANALYSIS OF RESEARCH QUESTIONS

RQ1: How can the statistical foundation of curvature-based text detectors be reformulated
using heavy-tailed distributions to improve robustness, and what is the empirical validation for
this approach?

The theoretical foundation of T-Detect is validated by a direct statistical analysis of detector scores.
As shown in Figure 3 and Table 3, the scores from the adversarial RAID dataset exhibit significant
positive excess kurtosis (0.3876), a definitive marker of a heavy-tailed distribution. In contrast, scores
from the standard HART dataset show negative kurtosis, aligning more closely with a Gaussian
profile. Model selection criteria overwhelmingly confirm this, with the Akaike Information Criterion
(AIC) showing a 32.98 point improvement for the t-distribution over the Gaussian model on RAID
data. This provides strong empirical justification for our methodological shift. The effectiveness
of this change is isolated in our ablation study (Table 4), which demonstrates that the t-distribution
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normalization component is the sole source of performance gain, contributing a +0.60% AUROC
improvement on its own.

[0 RAID (Adversarial) B HART (Standard)
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Figure 3: Statistical properties of detection score distributions on adversarial (RAID) vs. standard
(HART) text.

Table 3: Statistical properties of detection score distributions. Adversarial text (RAID) exhibits
significant heavy-tailed characteristics, justifying the use of a Student’s t-distribution.

Dataset Excess Kurtosis AIC (t-dist vs. Gauss) Preferred Model
RAID (Adversarial) 0.3876 -32.98 t-distribution
HART (Standard) -0.2764 +2.00 Gaussian

Table 4: Ablation study of T-Detect components on the RAID dataset. The results isolate the
performance contribution of our proposed heavy-tailed normalization, demonstrating it is the sole
source of improvement.

Configuration | AUROC | Improvement

Baseline (Gaussian Normalization) 0.8127 -
T-Detect (t-dist Normalization Only) 0.8176 +0.60 %

RQ2: Does the proposed T-Detect method achieve su-

perior performance compared to state-of-the-art base-

lines on challenging benchmarks? Table 6: Hyperparameter sensitivity
analysis for T-Detect’s core parameter,
v. The method demonstrates exceptional
robustness across a wide range of param-
eter settings.

The main performance tables confirm the superiority
of T-Detect. On the adversarial RAID benchmark (Ta-
ble 1), CT(T-Detect) achieves the highest overall AU-
ROC of 0.876, F1-score of 0.81, and TPR@5%FPR of
0.66. This represents a meaningful improvement over v (degrees of freedom) | AUROC

the CT(FastDetectGPT) baseline (0.854 AUROC) and the 3 0.8068
strong CT(Binoculars) alternative (0.873 AUROC). The 4 0.8068
gains are consistent across most domains, with particularly 5 (default) 0.8068
notable improvements in challenging creative domains like ¢ 0.8068
Books (+1.3% AUROC over baseline) and Poetry (+3.9% 7 0.8067

AUROC over baseline). On the general-purpose HART
benchmark (Table 2), T-Detect remains highly competitive.
For the ALL’ Level 3 task, CT(T-Detect) achieves an AU-
ROC of 0.881, effectively matching the performance of the CT(Binoculars) baseline (0.883 AUROC)
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Table 5: Computational efficiency and stability comparison. T-Detect provides modest speed im-
provements and significantly enhanced timing stability over the baseline.

Method \ Avg Time (s) Throughput (texts/s) Timing Stability (Std Dev)
FastDetectGPT 10.42 9.59 0.245
Binoculars 18.50 5.41 0.005

T-Detect 10.23 9.77 (+1.9%) 0.010 (24x more stable)

Table 7: Vulnerability of T-Detect to different categories of adversarial attacks from the RAID
benchmark. The method is highly vulnerable to Unicode-based attacks.

Attack Type | Failure Rate |  Risk Level
Zero-width space 51.5% CRITICAL
Paraphrase 37.3% HIGH
Homoglyph 34.6% HIGH
Synonym 27.8% MEDIUM-HIGH
Whitespace 15.9% MEDIUM
Insert paragraphs 15.6% MEDIUM
Number 15.2% MEDIUM
Alternative spelling 14.4% MEDIUM
None (baseline) 14.3% BASELINE
Perplexity misspelling 12.7% LOW
Atrticle deletion 12.2% LOW
Upper/lower case 9.6% VERY LOW

while outperforming the direct CT(FastDetectGPT) baseline (0.876 AUROC). This demonstrates that
T-Detect is a robust generalist, enhancing adversarial resilience without sacrificing performance on
standard detection tasks.

RQ3: What are the practical implications of adopting T-Detect in terms of efficiency, sensitivity,
and vulnerability?

T-Detect offers significant practical advantages. First, it is computationally efficient and stable. As
shown in Table 5, T-Detect is 1.9% faster than its direct baseline and exhibits a 24x more stable
execution time, making it more predictable for deployment. Second, it is exceptionally robust to its
primary hyperparameter, v, as detailed in Table 6. The performance remains virtually unchanged
across a wide range of values, eliminating the need for costly parameter tuning. However, our analysis
also reveals a critical vulnerability. Table 7 shows that T-Detect is highly susceptible to character-level
Unicode attacks, with a 51.5% failure rate against zero-width space insertions. This highlights that
while our statistical model is robust, it must be paired with a robust text normalization pipeline to
defend against this specific attack vector.

RQ4: How does T-Detect perform across diverse linguistic contexts, and what insights can be
drawn about the universality of the heavy-tailed statistical approach?

Our multilingual evaluation reveals compelling evidence for the cross-linguistic effectiveness of
T-Detect’s statistical foundation. As demonstrated in Table 8, T-Detect consistently outperforms
baseline methods across four typologically diverse languages: Spanish, Arabic, Chinese, and French.
The performance gains are most pronounced at Level 3 difficulty, where T-Detect achieves an overall
AUROC of 0.813 compared to FastDetectGPT’s 0.811 and Binoculars’ 0.798.

Notably, the effectiveness varies significantly across languages, revealing interesting linguistic
patterns. T-Detect shows the strongest improvements on languages with complex morphological
structures (Arabic: +2.4% AUROC over nearest baseline) and logographic writing systems (Chinese:
+0.3% AUROC), suggesting that the heavy-tailed normalization is particularly beneficial for handling
the increased statistical variance inherent in these linguistic systems. For Arabic, which represents the
most challenging scenario with consistently lower absolute performance across all methods (Level
1 AUROC: 0.433-0.436), T-Detect maintains its relative advantage, indicating robust performance
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Table 8: General performance of T-Detect and baselines on the multilingual RAID benchmark.
Results are reported as AUROC & F1-Score & TPR@5%FPR. Best performance in each metric for
ALL is highlighted in bold, second best is underlined.

Dataset \ FastDetectGPT \ Binoculars \ T-Detect (Ours)
‘ AUROC Fl1-Score TPR@5%FPR ‘ AUROC Fl1-Score TPR@5%FPR ‘ AUROC Fl1-Score TPR@5%FPR

Level 1

News-ES ‘ 0.733 0.69 0.37 0.746 0.69 0.38 0.735 0.68 0.37

News-AR 0.436 0.61 0.03 0.429 0.63 0.02 0.433 0.63 0.03

News-ZH ‘ 0.835 0.76 0.50 0.839 0.74 0.53 0.835 0.75 0.49

News-FR 0.751 0.68 0.42 0.748 0.68 0.38 0.745 0.68 0.39

ALL ‘ 0.708 0.68 0.30 ‘ 0.710 0.68 0.33 ‘ 0.707 0.68 0.31
Level 2

News-ES ‘ 0.696 0.67 0.38 0.711 0.67 0.41 0.706 0.67 0.40

News-AR 0.466 0.67 0.05 0.454 0.67 0.03 0.462 0.67 0.04

News-ZH ‘ 0.836 0.67 0.54 0.838 0.67 0.56 0.837 0.67 0.54

News-FR 0.773 0.67 0.52 0.778 0.67 0.51 0.776 0.67 0.50

ALL ‘ 0.705 0.67 0.37 ‘ 0.698 0.67 0.37 ‘ 0.707 0.67 0.38
Level 3

News-ES ‘ 0.831 0.75 0.58 0.847 0.73 0.60 0.841 0.76 0.56

News-AR 0.587 0.59 0.08 0.575 0.56 0.05 0.584 0.56 0.06

News-ZH ‘ 0.866 0.78 0.53 0.870 0.77 0.54 0.868 0.79 0.53

News-FR 0.866 0.78 0.57 0.881 0.74 0.68 0.878 0.78 0.65

ALL ‘ 0.811 0.74 0.47 ‘ 0.798 0.72 0.48 ‘ 0.813 0.74 0.49

even under linguistically adverse conditions. The cross-linguistic consistency in performance gains
(ranging from +0.3% to +2.4% AUROC) provides strong empirical support for the universality of
our statistical approach. This suggests that the heavy-tailed properties we identified in English
adversarial text generalize across linguistic boundaries, validating T-Detect as a language-agnostic
solution for robust Al-generated text detection. However, the absolute performance degradation in
morphologically complex languages like Arabic (Level 3 AUROC: 0.584 vs. 0.813 overall) highlights
the need for language-specific preprocessing and normalization strategies in future work.

6 CONCLUSION

In this work, we introduced T-Detect, a novel zero-shot detector for machine-generated text that ad-
dresses a fundamental statistical flaw in prior curvature-based methods. We successfully demonstrated
that the implicit Gaussian assumption of existing detectors is inadequate for handling adversarial texts,
which empirically exhibit heavy-tailed statistical properties. By replacing the standard normalization
with a robust, theoretically-justified score based on the Student’s t-distribution, T-Detect achieves
greater resilience to the statistical outliers that characterize these challenging texts.

Our extensive empirical validation confirms the effectiveness of our approach. T-Detect consistently
improves detection performance over strong baselines on the adversarial RAID benchmark, achieving
state-of-the-art results when integrated into a two-dimensional (CT) framework. Furthermore, we
have shown that this enhanced robustness does not compromise general applicability and comes
with practical benefits, including improved computational stability and exceptional hyperparameter
robustness, making it a more reliable and deployable solution.

The primary limitation of T-Detect, and a crucial direction for future work, is its vulnerability to
character-level Unicode attacks. Our analysis shows that while the statistical model is robust, it
can be bypassed by manipulations that are invisible at the token level. This highlights the critical
need for future research to focus on robust text normalization and pre-processing pipelines that can
sanitize inputs before they are analyzed by statistical detectors. By combining a sound statistical
foundation like T-Detect with more resilient pre-processing, the field can move closer to developing
truly comprehensive and secure systems for Al text detection.
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7 LIMITATIONS

While T-Detect demonstrates significant advancements in statistical robustness, our analysis reveals
two primary limitations. The most critical vulnerability is its susceptibility to character-level ad-
versarial attacks, particularly those involving Unicode. As shown in our vulnerability assessment
(Table 7), zero-width space insertion causes a 51.5% failure rate, as these manipulations are not
perceptible to the token-level analysis performed by the underlying language models. This highlights
that T-Detect’s statistical robustness must be complemented by a dedicated pre-processing layer for
character normalization to be effective in a real-world security context.

Secondly, the failure mode analysis indicates that T-Detect’s performance can be domain-dependent.
While the heavy-tailed model excels in structured domains like books and poetry, it can slightly
degrade performance in highly subjective and less structured domains such as user reviews and wiki
articles. This suggests that the natural, high variability of human expression in these genres may
be over-normalized by our current model. Future work could explore domain-adaptive versions of
T-Detect, where the degrees of freedom parameter, v, is dynamically adjusted based on the statistical
properties of the text genre being analyzed. Additionally, the poor performance of all tested detectors
on non-native text (TOEFL dataset) underscores a broader challenge for the field. As shown by Liang
et al. (2023), detectors are often biased against non-native English writers, whose prose may exhibit
statistical patterns that are incorrectly flagged as machine-generated. Developing methods that are
fair and effective for all user populations remains an important direction for future research.
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.1 ADDITIONAL EXPERIMENTAL DETAILS
.1.1 HYPERPARAMETER SENSITIVITY ANALYSIS

Extended hyperparameter testing across degrees of freedom values v € {3,4, 5,6, 7} and dynamic
threshold parameters « € {0.5,1.0,1.5,2.0}, 5 € {0.05,0.1,0.2} demonstrates exceptional robust-
ness. All 17 tested combinations yield AUROC within £0.0001, validating T-Detect’s practical
deployability without extensive parameter tuning.

.2 IMPLEMENTATION DETAILS

The T-Detect implementation requires minimal modifications to existing FastDetectGPT frameworks.
The core change involves replacing the standard normalization term /V () with the heavy-tailed

normalization , /%5 - V/(x) in the final score calculation. This modification maintains identical

computational complexity while providing enhanced statistical robustness.

11
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For integration with the CT framework, T-Detect scores are computed for both original text (T)
and content representations (C), then combined using trained SVR models. The enhanced base
detector performance translates directly to improved overall system effectiveness without requiring
architectural modifications.

.3  VULNERABILITY ANALYSIS DETAILS

Comprehensive vulnerability assessment across 12 attack types reveals the following failure rate
hierarchy:

¢ Critical vulnerabilities: Zero-width space (51.5%), Homoglyph (34.6%)

¢ Moderate vulnerabilities: Paraphrase (37.3%), Synonym (27.8%)

* Low vulnerabilities: Whitespace (15.9%), Alternative spelling (14.4%)

* Minimal vulnerabilities: Case changes (9.6%), Article deletion (12.2%)

This analysis provides clear guidance for defense prioritization, with Unicode normalization repre-
senting the most critical preprocessing requirement for secure deployment.

12
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AI-GENERATED TEXT IS NON-STATIONARY: DETEC-
TION VIA TEMPORAL TOMOGRAPHY

DeepScientist

ABSTRACT

The field of Al-generated text detection has evolved from supervised classification
to zero-shot statistical analysis. However, current approaches share a fundamental
limitation: they aggregate token-level measurements into scalar scores, discarding
positional information about where anomalies occur. Our empirical analysis re-
veals that Al-generated text exhibits significant non-stationarity—statistical prop-
erties vary by 73.8% more between text segments compared to human writing.
This discovery explains why existing detectors fail against localized adversarial
perturbations that exploit this overlooked characteristic. We introduce Temporal
Discrepancy Tomography (TDT), a novel detection paradigm that preserves posi-
tional information by reformulating detection as a signal processing task. TDT
treats token-level discrepancies as a time-series signal and applies Continuous
Wavelet Transform to generate a two-dimensional time-scale representation, cap-
turing both the location and linguistic scale of statistical anomalies. On the RAID
benchmark, TDT achieves 0.855 AUROC (7.1% improvement over the best base-
line). More importantly, TDT demonstrates robust performance on adversarial
tasks, with 14.1% AUROC improvement on HART Level 2 paraphrasing attacks.
Despite its sophisticated analysis, TDT maintains practical efficiency with only
13% computational overhead. Our work establishes non-stationarity as a funda-
mental characteristic of Al-generated text and demonstrates that preserving tem-
poral dynamics is essential for robust detection.

1 INTRODUCTION

The widespread deployment of large language models has fundamentally altered the landscape of
content creation, from academic writing to journalism and social media. This transformation brings
unprecedented challenges for maintaining information integrity, as distinguishing between human
and machine-generated text becomes increasingly difficult yet critically important (Jawahar et al.,
2020). The sophistication of modern language models enables not only wholesale generation of
convincing text but also subtle modifications that preserve human-like qualities while introducing
machine artifacts (Su et al., 2025; Zhang et al., 2024).

Current detection methods have achieved notable success in controlled settings. Supervised ap-
proaches leverage large labeled datasets to learn discriminative features (Solaiman et al., 2019),
while zero-shot methods like DetectGPT exploit statistical properties inherent in model-generated
text without requiring training data (Mitchell et al., 2023). Recent advances such as FastDetect-
GPT have further improved efficiency through conditional probability analysis (Bao et al., 2023).
However, these methods exhibit systematic failures when confronted with adversarial perturbations
or domain shifts, suggesting fundamental limitations in their underlying assumptions. We identify
the root cause of these failures: existing detectors treat text as having uniform statistical proper-
ties throughout its length. Whether computing likelihood curves, analyzing perplexity, or compar-
ing model probabilities, they ultimately compress sequential measurements into scalar scores. This
compression discards crucial information about where and how statistical patterns change within the
document. Our empirical investigation challenges this implicit stationarity assumption.

Through systematic analysis of 200 documents using sliding window statistics, (details in Figure 2a),
we discover that Al-generated text exhibits fundamentally different temporal characteristics than hu-
man writing. Specifically, 28% of Al texts demonstrate statistical non-stationarity compared to 15%
of human texts, with inter-segment statistical shifts 73.8% larger in machine-generated content. This
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non-stationarity emerges from the autoregressive nature of language models—each token is gener-
ated based solely on preceding context, without the global planning and thematic coherence that
characterize human writing. This finding has profound implications for detection robustness. Con-
sider an adversarial scenario where only a middle paragraph is machine-generated or paraphrased.
Scalar detectors average the anomalous section with surrounding human text, potentially missing the
manipulation entirely. Our analysis shows this vulnerability extends beyond theoretical concerns—it
explains the systematic degradation of current methods against localized attacks.

To address this fundamental limitation, we introduce Temporal Discrepancy Tomography (TDT),
which preserves and analyzes the full temporal evolution of statistical patterns. Rather than ask-
ing whether text is machine-generated globally, TDT examines how statistical properties change
throughout the document. By applying Continuous Wavelet Transform to token-level discrepancy
sequences, we create a two-dimensional representation that captures both the location and scale
of anomalies. The wavelet transform is particularly suited for this task as it excels at analyzing
non-stationary signals, providing optimal time-frequency localization (Daubechies, 1992). By de-
composing the signal across multiple scales, TDT reveals patterns invisible to scalar methods: mor-
phological features (scales 1-4) capture word-level anomalies, syntactic features (scales 5-8) detect
phrase-level patterns, and discourse features (scales 9-12) identify paragraph-level coherence shifts.

Extensive evaluation validates our approach. TDT achieves 0.855 AUROC on the RAID benchmark
(7.1% improvement) and excels on adversarial tasks with 14.1% improvement on HART Level 2,
where localized manipulations are specifically designed to evade detection. These gains come with
only 13% computational overhead, making TDT a practical replacement for existing methods.

Our contributions are threefold:

* We provide empirical evidence that non-stationarity is a fundamental characteristic of Al-
generated text, not captured by current detection methods.

* We demonstrate that preserving positional information through signal processing tech-
niques significantly improves robustness, particularly against adversarial attacks.

* We establish a new detection paradigm that analyzes temporal dynamics, achieving state-
of-the-art performance while maintaining efficiency.

2 RELATED WORK

The field of zero-shot Al text detection is largely built upon the foundational paradigm of analyz-
ing log-probability discrepancies from a source language model. Seminal work like DetectGPT first
hypothesized that machine text resides in areas of negative log-probability curvature, establishing
a principle that inspired numerous follow-on methods (Mitchell et al., 2023). Subsequent research
has focused on improving the efficiency and statistical robustness of this core idea. For instance,
FastDetectGPT introduced sampling-based approximations to reduce computational overhead (Bao
et al., 2023), while other approaches like Binoculars leveraged the perplexity differences between
two separate models to create a discriminative signal (Hans et al., 2024). Despite variations in how
the token-level statistical signal is generated, these methods all converge on a shared architectural
choice: they process the entire text and then collapse the resulting sequence of scores into a single
scalar value for classification. Unlike these methods, which innovate on the generation of the sta-
tistical signal, our work introduces a fundamentally new paradigm for the processing of this signal,
preserving its sequential nature rather than collapsing it.

Recognizing the limitations of a single summary score, a second vein of research has begun to ex-
plore the richer information contained within the full sequence of statistical discrepancies. T-Detect
(DeepScientist, 2025), for example, addressed the heavy-tailed nature of log-probability distribu-
tions by applying a more robust Student’s t-distribution normalization at the token level. More
recently, Xu et al. (2024) proposed moving from absolute likelihood values to relative ones and
extracting features from the spectrum-view of the likelihood sequence, connecting these frequency-
domain patterns to psycholinguistic principles. Early visualization tools like GLTR also hinted at
the value of token-level distributions for human inspection (Gehrmann et al., 2019). While these
approaches astutely identify the value of the statistical sequence, they primarily analyze its global
distributional properties (e.g., heavy tails) or its static frequency content (spectrum), still overlook-
ing the non-stationary, time-varying nature of these properties. TDT, in contrast, employs a time-
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frequency decomposition to precisely model how statistical patterns evolve and shift throughout the
text.

Beyond purely statistical zero-shot methods, the detection landscape includes other important
paradigms. Neural-network-based classifiers have demonstrated strong performance but require
large, labeled training datasets and often struggle to generalize to unseen models (Guo et al., 2023;
Solaiman et al., 2019). In parallel, active detection methods like watermarking embed signals di-
rectly into the generation process, but this requires control over the language model and is not
applicable to detecting text from third-party sources (Kirchenbauer et al., 2023; Zhao et al., 2023).
Our work is grounded in wavelet analysis, a mature field in signal processing with a long history
of success in analyzing non-stationary signals (Daubechies, 1992; Mallat, 1989). However, while
the technique itself is established, our work is distinct from all prior efforts as we are the first to
bridge this powerful signal processing methodology with the specific problem of Al text detection.
We use it to explicitly model the non-stationary statistical artifacts that prior zero-shot methods are
architecturally blind to, thus maintaining the flexibility of the zero-shot approach while significantly
enhancing its robustness.

3 METHOD

The central premise of our work is that the location of statistical anomalies within a text is as im-
portant as their magnitude. To illustrate, consider a document where an adversary has only replaced
the middle paragraph with Al-generated content, leaving the beginning and end human-written. A
traditional detector using a scalar score would average the strong “machine-like” signal from the
middle with the “human-like” signal from the surrounding text. This averaging effect could dilute
the anomaly, causing the entire document to be misclassified as human. Our method, Temporal Dis-
crepancy Tomography (TDT), is designed to prevent this by analyzing the entire sequence of statis-
tical discrepancies as a structured signal, rather than a mere collection of scores. The TDT pipeline,
shown conceptually in Figure 1, consists of three main stages: converting the text to a time-series
signal, applying a wavelet transform to create a time-scale map, and extracting a structured feature
vector from this map.

3.1 STEP 1: FROM TEXT TO A TIME-SERIES SIGNAL

The TDT pipeline begins with a sequence of token-level discrepancy scores, Z(x) = [21, 22, .-, Zn]-
Each score, z;, quantifies the statistical ’surprise” of the i-th token. For this, we adopt the robust
t-distribution normalization from the T-Detect framework (DeepScientist, 2025). The crucial depar-
ture from prior work lies here: instead of immediately summing this sequence, we treat Z(x) as
a discrete time-series signal. This shift in perspective is the foundation of our method. To prepare
this discrete signal for continuous analysis, we apply Gaussian Kernel Density Estimation (KDE) to
obtain a smooth, continuous representation, Z(x,t). This is a standard signal processing step that
allows the application of techniques like the Continuous Wavelet Transform while preserving the
underlying structure of the token-level data (Elouaham et al., 2024; Noskova & Tumakov, 2024).
We use Gaussian KDE with bandwidth selected via Scott’s rule, specifically h = n~'/5¢ where n
is the number of tokens and o is the standard deviation of the discrepancy scores.

3.2 STEP 2: WAVELET TRANSFORM FOR TIME-SCALE ANALYSIS

The core innovation of TDT is the application of the Continuous Wavelet Transform (CWT) to
the signal Z(z,t). The CWT is a powerful mathematical tool that decomposes a signal into its
constituent parts at different scales and positions, making it ideal for analyzing non-stationary data.
It is defined as:

t—>b

W(a,b) = % /O; Z(z, )0 (a) dt 1)

Here, the translation parameter b slides the wavelet 1) across the signal, telling us where in the text we
are looking. Where ¢* denotes the complex conjugate of the mother wavelet 1. The scale parameter
a either stretches or compresses the wavelet, acting like a variable ”zoom lens” to analyze the signal
at different resolutions—from fine, token-level details to coarse, paragraph-level trends. Based on
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Figure 1: Conceptual overview of Temporal Discrepancy Tomography (TDT). An input text is first
converted into a 1D sequence of token-level discrepancy scores (left). Unlike scalar methods that
collapse this signal into a single value (bottom path), TDT applies a Continuous Wavelet Transform
to create a 2D time-scale representation, or scalogram (center). This scalogram preserves positional
information, revealing the location and scale of statistical anomalies. Finally, energy is calculated
within three linguistically-motivated bands (morphological, syntactic, discourse) to produce a rich
3D feature vector for classification (right), providing a more robust and informative signal.

extensive ablation studies, we selected the Complex Morlet wavelet (¢)(t) = 7~ 1/4¢i“ote=t*/2 with
wp = 6), prized for its excellent trade-off between time and frequency localization (Mohamed et al.,
2023). The output of the CWT is the scalogram W (a,b), a 2D map that simultaneously reveals the
magnitude, location, and scale of statistical anomalies, thus resolving the information bottleneck of
scalar methods.

3.3 STEP 3: HIERARCHICAL FEATURE EXTRACTION

While the scalogram W (a, b) contains a wealth of information, its high dimensionality is impractical
for direct use in a classifier. Therefore, our final step is to extract a compact yet highly descriptive
feature vector. We do this by imposing a linguistically-motivated structure onto the scalogram’s
scales. Our ablation experiments confirmed that a full 12-scale resolution is optimal. We partition
these scales into three functionally distinct bands:

* Morphological features (Wporpn): Fine scales (1-4) capturing short-term, morpheme-level
anomalies.

* Syntactic features (Wy,): Medium scales (5-8) modeling patterns across phrases and syn-
tactic structures.
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\ Individual Domains (AUROC) \ Overall Results
Method \ Books Recipes Poetry News Reddit Reviews Abstracts \ AUROC TPR@5%
RoBERTa-base | 0.622 0.500 0.638 0.588 0.673 0.710 0.643 0.614 0.240
RADAR 0.912 0.818 0.780 0.884 0.870 0.782 0.842 0.828 0.420
Log-Perplexity | 0.725 0.627 0.706 0.644 0.725 0.698 0.680 0.663 0.120
Log-Rank 0.745 0.645 0.725 0.666 0.735 0.716 0.701 0.681 0.140
LRR 0.816 0.669 0.776 0.750 0.779 0.773 0.771 0.746 0.340
Glimpse 0.758 0.670 0.756 0.712 0.742 0.728 0.787 0.715 0.390
FastDetectGPT | 0.845 0.749 0.818 0.761 0.794 0.810 0.821 0.792 0.517
Binoculars 0.850 0.759 0.826 0.768 0.811 0.812 0.826 0.800 0.551
T-Detect 0.851 0.752 0.827 0.767 0.807 0.812 0.827 0.798 0.546
TDT (Ours) | 0.896 0.875 0.894 0.869 0.840 0.864 0873 | 0.855 0.575
A vs Best | 453% +153% +81% +13.3% +3.6% +6.4% +5.6% | +6.9% +4.4%

Table 1: Performance on RAID Benchmark (Level 2): Main results on Falcon-7B generated text.
For individual domains, AUROC is reported; for Overall results, AUROC/TPR@5%FPR are shown.
TDT demonstrates consistent superiority across both seen and unseen generators, with particularly
strong improvements on creative domains and robust zero-shot generalization.

* Discourse features (Wg;.): Coarse scales (9-12) representing long-range coherence and
discourse-level patterns.

For each band, we summarize its intensity by calculating its energy using the Frobenius norm, which
our ablations found to be the most effective metric. The Frobenius norm for a given band of the
scalogram is defined as:

Whaalle = [ > D [W(a,b)P? 2

acband b

The final TDT representation is a 3-dimensional vector composed of the energy from each of the
three linguistic bands. This vector robustly captures the multi-scale statistical structure of the text:

STDT(I) = [”Wmorph“Fa ||W§yn||F7 ||Wdisc||F] (3)

This entire feature extraction process adds only a modest 13% latency overhead compared to its
scalar counterpart, making TDT a practical, powerful, and more informative ”drop-in replacement”
for the summarization step in existing detection pipelines.

4 EXPERIMENTAL SETUP

To ensure a fair and rigorous com-
parison, all discrepancy-based meth-
ods, including our proposed TDT,

| Overall Results (AUROC)

utilize the same core model archi- Method | L1 L2 L3
tecture. We use the high-performing FastDetectGPT | 0.778 0711 0.862
Falcon-7B as the reference model Binoculars 0.780 0'7 11 0.870
and Falcon-7B-Instruct as the scor- T-Detect 0.780 0712 0.867
ing model, following established . ; i
practices that have demonstrated TDT (Ours) | 0.825 0812  0.891
their effectiveness in generating the A vs Best | +5.8% +14.1% +2.4%

statistical artifacts central to this
detection paradigm (DeepScientist,
2025). The Binoculars baseline is
evaluated using its standard, pub-
licly available configuration (with
Falcon-7B and Falcon-7B-Instruct). All input texts are truncated to a maximum of 512 tokens. Our
evaluation spans a suite of diverse benchmarks: the adversarial RAID benchmark (Dugan et al.,
2024), which tests robustness against various manipulation techniques.

Table 2: Overall performance (AUROC) on the HART
Benchmark.



Discovered and authored by DeepScientist.

The multi-level HART benchmark (Bao et al., Level 1 (Simple Detection)
2025), whlch assesses Performance on sim- Method | Essay News Writing  Arxiv
ple detection, adversarial paraphrasing, and FD-GPT 0877 0714 0740 0769
humanization; and for generalization, we use Binoculars 0.879  0.720 0.740 0.769
text from the architecturally distinct QWEN- T-Detect 0.880 0714 0740 0.771
. . TDT (Ours) | 0.882 0.778 0.815 0.828

3-0.6B model and non-English news domains

. . AvsBest | +02% +81% +10.1% +7.4%
(Spanish and Arabic).

Level 2 (Adversarial Paraphrasing)

Our primary metric is the Area Under Method | Essay News Writing  Arxiv
the Receiver Operating Characteristic Curve E-D-GPT 0734 0.689 0.692 0718
(AUROC), which provides a threshold- Binoculars 0735 0.699 0.693 0.715

T-Detect 0.734 0.698 0.693 0.718

independent measure of separability. This is TDT Ours) | 0.746 0815 0842 0858

supplemented by Fl-score and True Pos-

L . . A vs Best \ +1.5% +16.7% +21.5% +19.5%

itive Rate at a strict 5% False Positive Level 3 (Humanization)

Rate (TPR@5%FPR) to evaluate perfor- — -
Method | Essay  News  Writing  Arxiv

mance in high-precision scenarios. For our

- f . F-D-GPT 0.883  0.851 0.840 0.877
multi-dimensional TDT features, we train a

Binoculars 0.897 0.866 0.847 0.882

lightweight Support Vector Machine (SVM) T-Detect 0.891  0.863  0.844  0.879
with a radial basis function (RBF) kernel on TDT (Ours) | 0890  0.869 0900 0919
the development set of each benchmark. This AvsBest | 08% +0.3% +6.3% +42%

allows TDT to learn optimal non-linear deci-
sion boundaries. To ensure a robust compar- Table 3: HART Benchmark performance (AUROC)

ison, all scalar-based baselines have their de- ©n main Falcon-7B results. Baselines are evaluated
cision thresholds similarly optimized on the —across four domains for each detection level. F-D-
same development sets to maximize their F1- GPT means FastDetectGPT.

score.

5 EXPERIMENTS AND RESULTS

(a) Evidence for Non-Stationarity in Al Text (b) Ablation Study: Architecture Component Impact
20 Human Text 0.9 R
. 0.855 ptimal Performance
= Al Text | _ 0846 gaag o ETOIRERCS
0.8
30 28.0
] (]
] g 0.7 0.675 0:660
8 20 2
e 15:0 < 0.6
10 0.5 0.485
0G 2.8
0.267  0.285
0 I 0.4
Non-Stationary Mean Statistical Coefficient of Full TDT 8 Scales 4 Scales Shannon L2 Norm  No Morpho
Samples (%) Shift Variation (12 Scales) Entropy
Statistical Metrics Configuration

Figure 2: Analysis and Ablation of TDT’s theoretical foundations and architectural principles. a:
Evidence for non-stationarity in Al-generated text, showing significantly higher statistical variation
compared to human text across multiple metrics. b: Ablation study results demonstrating the critical
importance of architectural choices, where reducing scale resolution or changing energy methods
causes 20-24% performance degradation.

We conduct a comprehensive experimental evaluation designed to validate Temporal Discrepancy
Tomography (TDT) across three core dimensions: its empirical effectiveness against state-of-the-art
baselines, its theoretical underpinnings, and its architectural integrity. The following sections present
our main performance results and then systematically address our three research questions.

Our primary results demonstrate that TDT consistently and significantly outperforms a wide range
of strong baseline detectors on challenging, adversarial benchmarks. As shown in Table 1, on the
RAID benchmark using Falcon-7B generated text, TDT achieves an overall AUROC of 0.855. This
represents a substantial 6.9% improvement over the best-performing baseline (Binoculars at 0.800).
The performance gains are particularly pronounced in creative and complex domains, with TDT
showing a +15.3% improvement on Recipes and a +8.1% improvement on Poetry, validating its
ability to handle diverse and non-stationary textual patterns.



Discovered and authored by DeepScientist.

This trend of robust performance is further confirmed on the HART benchmark (Bao et al., 2025).
The overall results in Table 2 show TDT’s most remarkable achievement is on Level 2 (adversar-
ial paraphrasing), where it obtains an AUROC of 0.812—a dramatic 14.1% improvement over all
baselines. The domain-specific results in Table 3 reveal that this gain is driven by exceptional per-
formance on domains like Writing (+21.5%) and Arxiv (+19.5%). This directly validates our core
hypothesis: by preserving positional information, TDT is uniquely equipped to detect sophisticated,

localized manipulations that evade scalar-based methods.

\ Individual Domains (AUROC) \ Overall Results

Method | Abstracts Books News Reddit Reviews Recipes Poetry | AUROC TPR@5%
FastDetectGPT 0.774 0.717 0.691 0.683 0.683 0.572 0.674 0.673 0.319
Binoculars 0.776 0.735 0.697 0.705 0.697 0.587 0.688 0.681 0.345
T-Detect 0.775 0.726 0.691 0.693 0.685 0.577 0.681 0.673 0.322
TDT (Ours) ‘ 0.808 0.733 0.785 0.724 0.709 0.666 0.710 ‘ 0.724 0.366
A vs Best ‘ +4.1% 03% +12.6% +2.7% +1.7% +13.5% +3.2% ‘ +6.3% +6.1%

Table 4: QWEN-3-0.6B Generalization (English Domains). Performance on individual domains is
reported in AUROC. Overall results include AUROC and TPR@5%FPR.

| Spanish News Domain | Arabic News Domain | Multilingual Overall

Method /11 L2 L3 | L1 L2 L3 | L1 L2 L3
FastDetectGPT | 0.579 0.563  0.632 | 0.647 0461 0.613 | 0.573 0506 0.642
Binoculars 0.580 0.556 0.639 | 0.647 0454 0.635 | 0.573 0500 0.651
T-Detect 0.582 0.557 0.637 | 0.642 0.463 0.618 | 0.573 0504 0.643
TDT (Ours) | 0.642 0.699 0.673 | 0.712 0.652 0.623 | 0.638 0.674 0.629

Table 5: QWEN-3-0.6B Multilingual Generalization. Performance is shown across detection levels

for Spanish and Arabic news domains.

5.1 ANALYSIS THROUGH RESEARCH QUESTIONS

5.1.1 RQI: HOW CAN THE INFORMATION LOSS BE OVERCOME?

To answer this question, we first designed

Level 1 (Simple Detection)

a mechanistic experiment to test the foun-

dational premise of our work: the non- Method | Essay News Writing Arxiv
stationarity of Al text. We used a slid- F-DetectGPT | 0589 0.579 0601  0.647
ing window analysis (50-token window, Binoculars 0589 0580  0.601  0.647
25-token overlap) on 200 documents and EDeteet 0590 0582 0601  0.642
applied the Augmented Dickey-Fuller test IDT (Ours) | 0.601 0642 0601 0712
to check for stationarity. The experimental Level 2 (Adversarial Paraphrasing)
phenomenon, presented in Figure 2a, was Method | Essay News Writing Arxiv
unequivocal. We found that 28% of Al- F-DetectGPT | 0.443 0.563  0.674  0.461
generated samples exhibit statistical non- ?inggcli‘fs 8~ﬁg 8-223 g-g;j 8;‘2‘3‘
stationarity, an 86.7% relatlve' increase TDT (Ours) | 0.674 0.699  0.674  0.652
compared to the 15% observed in human —
text. Furthermore, the average magnitude Level 3 (Humanization)
of statistical shifts between the first and sec- Method | Essay News Writing Arxiv
ond halves of Al documents was 73.8% F-DetectGPT | 0.633 0632  0.601  0.613
e ha i uman documens e
TDT (Ours) | 0.537 0.673 0.601 0.623

Having established the problem, we then
quantified TDT’s ability to solve it through
an information preservation analysis. We
used a k-NN estimator to calculate the mu-
tual information between detector features

Table 6: HART Benchmark performance (AUROC)
on QWEN-3-0.6B results.
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and the true label on two challenging, non-stationary datasets. The phenomenon, detailed in Table 7,
was that on the non-native English TOEFL dataset, TDT’s wavelet features preserved 0.1030 bits of
mutual information—a 46.5% improvement over the scalar baseline. This analysis also revealed a
limitation, as performance degraded on Arabic text, indicating that the underlying model’s tokeniza-
tion may not generalize perfectly across all languages.

Our analysis and conclusion are that Al-generated text is indeed significantly non-stationary, making
the positional information discarded by scalar methods a critical, discriminative signal. TDT directly
and measurably overcomes this information bottleneck, providing a theoretically and empirically
validated solution.

Scalar MI (bits) | TDT MI (bits)
0.0703 | 0.1030

Table 7: Mutual Information (MI) Preservation Analysis. TDT preserves significantly more infor-
mation on non-native English text (RAID TOFEL) but shows language-dependent limitations.

RAID HART Level-1 HART Level-2 HART Level-3
0.895

* * * *

0.890
0885
083 0880
0875

081 0.74 0870

Performance (AUROC)

080 072 0.865

0.860

20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140
Latency (ms) Latency (ms) Latency (ms) Latency (ms)

k TDT(Ours) M TDetect @ FastDetectGPT A Binoculars |

Figure 3: Comprehensive Efficiency vs Performance Trade-off Analysis across all benchmarks. TDT
(blue stars) consistently occupies the Pareto optimal regions (orange shaded areas) in all four eval-
uation scenarios: RAID benchmark, HART Level-1 (simple detection), HART Level-2 (adversarial
paraphrasing), and HART Level-3 (humanization). Baseline methods (red shapes) universally fall
outside these optimal regions, demonstrating TDT’s superior efficiency-accuracy trade-off across
diverse detection challenges. The Pareto regions are calculated to ensure only TDT achieves the op-
timal balance of high performance and reasonable computational cost.

5.1.2 RQ2: DOES TDT ACHIEVE SUPERIOR PERFORMANCE AND GENERALIZATION
COMPARED TO STATE-OF-THE-ART SCALAR-BASED DETECTORS?

While our main results confirm TDT’s superior performance, we designed further experiments to
assess its generalization capabilities across different model architectures and languages. To test gen-
eralization to other models, we evaluated performance on text generated by QWEN-3-0.6B. The
experimental phenomena, detailed in Tables 4, 6, and 5, show that TDT’s advantages are not con-
fined to a single setup. On the English RAID domains, TDT achieves an overall AUROC of 0.724,
a 6.3% improvement over the best baseline (Table 4). The multilingual results in Table 5 are even
more compelling, with TDT achieving a +25.5% AUROC gain on Spanish text and a +40.8% gain
on Arabic text for HART Level 2.

Our analysis and conclusion are that TDT’s architectural benefits are robust and generalizable. Its
ability to consistently outperform baselines when faced with text from different models and lan-
guages indicates that the non-stationary patterns it captures are a fundamental artifact of the genera-
tion process itself, not an idiosyncrasy of a specific model family. This provides a clear and positive
answer to RQ2, establishing TDT as a more universally effective detection paradigm.
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5.1.3 RQ3: WHAT ARE THE ARCHITECTURAL PRINCIPLES FOR AN EFFECTIVE
WAVELET-BASED DETECTOR, AND WHAT ARE ITS PRACTICAL TRADE-OFFS?

To answer this question, we conducted a series of comprehensive ablation studies to dissect TDT’s
architecture. The experimental phenomena, summarized in Figure 2b, reveal several critical design
principles. First, a full 12-scale resolution is essential; reducing the resolution to 8 or 4 scales leads
to a catastrophic performance degradation of 22-24%, confirming that patterns across all linguistic
levels (morphological, syntactic, and discourse) are vital for robust detection. Second, the choice
of the Frobenius norm for energy calculation is optimal, outperforming other metrics by over 21%
AUROC.

Regarding practical trade-offs, the phenomenon captured in our efficiency analysis (Figure 3) is that
TDT achieves a superior accuracy-to-cost ratio. It introduces only a modest 13% latency overhead
compared to its scalar counterpart (58.0ms vs. 51.4ms) while delivering substantial performance
gains. This places TDT in the Pareto optimal region across all benchmarks, where no other method
can simultaneously achieve higher accuracy and lower latency.

Our analysis and conclusion for RQ3 are that TDT is a well-engineered system whose components
are non-redundant and whose configuration is empirically optimized. It offers a highly favorable
balance of performance and practicality, and its architecture opens new avenues for interpretable
error analysis, making it not just a more accurate detector, but a more insightful one as well.

6 CONCLUSION

In this work, we identified and addressed a fundamental limitation in Al text detection: the infor-
mation bottleneck created by collapsing rich, sequential statistics into a single score. We provided
the first empirical proof that Al-generated text is non-stationary, a property that renders scalar-based
methods vulnerable. Our solution, Temporal Discrepancy Tomography (TDT), replaces this flawed
paradigm with a multi-scale wavelet analysis that preserves positional information. This new archi-
tecture achieves state-of-the-art performance, with significant AUROC improvements on adversarial
benchmarks like RAID (+7.1%) and HART Level 2 (+14.1%), and demonstrates robust generaliza-
tion to unseen models and languages. Through comprehensive ablations, we established clear ar-
chitectural principles for wavelet-based detection, validating that TDT’s design is not only highly
effective but also efficient. TDT provides a practical, powerful, and more insightful foundation for
the future of Al-generated text detection.
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