

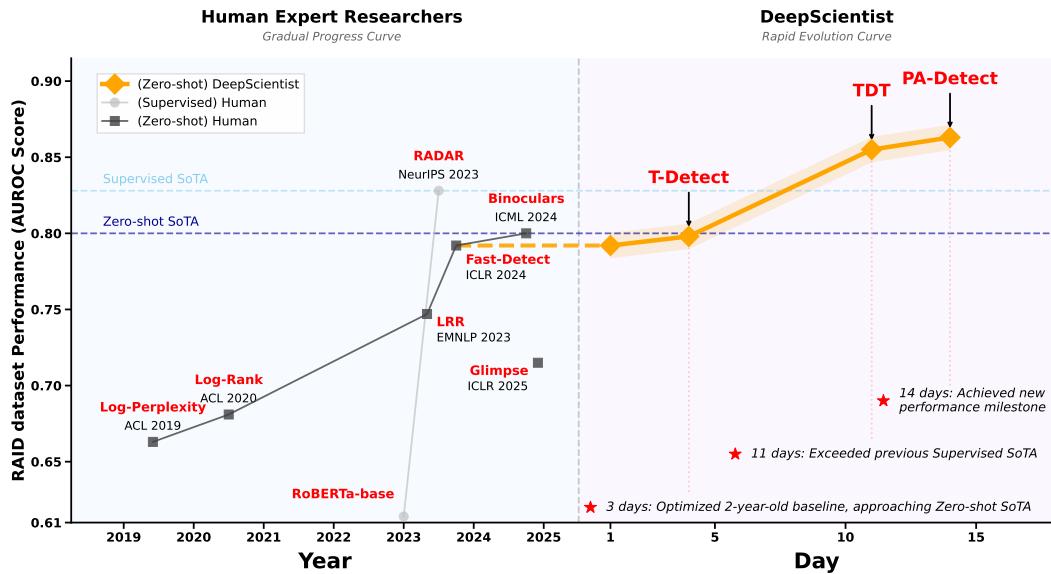
DEEPSIENTIST: ADVANCING FRONTIER-PUSHING SCIENTIFIC FINDINGS PROGRESSIVELY

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 While previous AI Scientist systems can generate novel findings, they often lack
 012 the focus to produce scientifically valuable contributions that address pressing
 013 human-defined challenges. We introduce DeepScientist, a system designed to
 014 overcome this by conducting goal-oriented, fully autonomous scientific discov-
 015 ery over month-long timelines. It formalizes discovery as a Bayesian Optimiza-
 016 tion problem, using a cumulative Findings Memory to intelligently balance the
 017 exploitation of promising avenues with the exploration of novel hypotheses. Con-
 018 suming over 20,000 GPU hours, the system generated about 5,000 unique ideas
 019 and experimentally validated approximately 1100, ultimately surpassing human-
 020 designed 2025 state-of-the-art (SOTA) methods on three frontier AI tasks by
 021 183.7%, 1.9%, and 7.9%. Crucially, this was achieved by autonomously redesign-
 022 ing core methodologies, not merely recombining existing techniques. In a strik-
 023 ing demonstration, the system achieved progress on AI text detection in just two
 024 weeks that is comparable to three years of cumulative human research. This work
 025 provides the first large-scale evidence of an AI achieving discoveries that progres-
 026 sively surpass human SOTA on scientific tasks, producing valuable findings that
 027 genuinely push the frontier forward. To facilitate further research into this process,
 028 we will open-source all experimental logs and system code.



047 Figure 1: Comparison of research progress timelines for AI text detection on the RAID (Dugan et al.,
 048 2024). The right panel shows that DeepScientist achieves progress in two weeks that is comparable
 049 to three years of human research (Su et al.; Bao et al., a,b; Hu et al., 2023) (left panel). All zero-shot
 050 methods, including the system-generated T-Detect, TDT, and PA-Detect, uniformly adopt Falcon-7B
 051 (Almazrouei et al., 2023) as the base model. Additionally, all methods produced by DeepScientist
 052 demonstrate higher throughput than the previous SOTA method, Binoculars (Hans et al., 2024).
 053

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
19

108 reality: while exploratory capacity is immense, success is scarce, making effective validation, fil-
 109 tering, and reuse of failures the new bottleneck at the frontier of automated science. Therefore, the
 110 central question of the field is no longer ‘Can AI innovate?’, but rather ‘How can we efficiently guide
 111 its powerful, yet highly dissipative, exploratory process to maximize scientific return?’. We hope
 112 these insights, together with the released logs and code, can inspire the research community to de-
 113 velop AI Scientist systems with greater exploration efficiency and reliability, accelerating scientific
 114 discovery at scale and paving the way for future breakthrough discoveries.

115

116 2 RELATED WORK

117

118 **Replication and Optimization.** A significant body of research focuses on engineering tasks that
 119 operate within established scientific frameworks. This includes replication-oriented works like Pa-
 120 perBench (Starace et al., 2025) and Paper2Agent (Miao et al., 2025), which aim to reproduce ex-
 121 isting papers. Other works, such as Agent Laboratory (Schmidgall et al., 2025b) and MLE-Bench
 122 (Chan et al., 2024), tackle early-stage machine learning engineering problems. **Similarly, systems**
 123 **like AlphaTensor** (Fawzi et al., 2022), **ASI-Arch** (Liu et al., 2025) and **AlphaEvolve** (Novikov et al.,
 124 2025) **use massive trial-and-error with known engineering methods to improve the performance**
 125 **of codebases** (Romera-Paredes et al., 2024; Shojaee et al.). The common goal of these efforts is
 126 engineering-driven optimization within an established scientific paradigm, enhancing existing sys-
 127 tems without questioning their foundational assumptions. **DeepScientist**, in contrast, pursues scien-
 128 **tific discovery by explicitly targeting the core limitations of strong SOTA methods on modern AI**
 129 **tasks: its objective is not merely to refine existing implementations, but to propose and validate new**
 130 **methodological directions that establish improved SOTA performance.**

131

132 **Semi-Automated Scientific Assistance.** The path toward automating scientific discovery begin not
 133 with replacing the scientist, but with assisting them, leading to the development of a paradigm of
 134 specialized AI tools for individual research tasks. Systems like CycleResearcher (Weng et al., 2025)
 135 handle writing, DeepReview (Zhu et al., 2025a) manages reviewing, and co-scientists (Gottweis
 136 et al., 2025; Penadés et al., 2025; Swanson et al., 2025; Baek et al., 2025) aid in hypothesis gen-
 137 eration. These powerful tools address only isolated fragments of the scientific process, leaving the
 138 crucial loop of learning from failure and exploration to humans. In contrast, DeepScientist is an
 139 autonomous agent of inquiry, managing the entire end-to-end research cycle and closing the loop by
 140 learning from its own experiments and self-directing its research path.

141

142 **Automated Scientific Discovery.** Building on the capabilities of specialized assistants, a line of
 143 research pursues full, end-to-end research automation (Xie et al., 2025). Pioneering efforts, such as
 144 the AI Scientist systems (Lu et al., 2024; Yamada et al., 2025) and subsequent work (Intology, 2025;
 145 Jiabin et al., 2025; Miyai et al., 2025), successfully demonstrate that an AI system can manage the
 146 full research cycle and produce novel findings. However, these systems are typically evaluated on
 147 relatively synthetic or narrowly scoped problems, and their exploratory strategies are not anchored
 148 to clearly specified scientific goals or strong human baselines. This can lead to undirected discover-
 149 ies that, while novel, are often perceived as having limited scientific value in practice. In contrast,
 150 DeepScientist is designed to operate on modern, high-cost AI tasks with competitive human SOTA
 151 methods and to treat discovery as a goal-driven Bayesian optimization problem over these base-
 152 lines. Its exploration is explicitly tied to identified limitations of the human SOTA and proceeds
 153 through a closed-loop, iterative process—using failure attribution and a persistent *Findings Memory*
 154 to prioritize hypotheses that are both novel and measurably impactful.

155

156 3 DEEPSIENTIST: A PROGRESSIVE SYSTEM FOR DISCOVERING 157 SOTA-SURPASSING FINDINGS

158

159 DeepScientist is an LLM-based multi-agent system equipped with an **open-knowledge system**, a
 160 continuously accumulating **Findings Memory**, which is composed of both frontier human knowl-
 161 edge (e.g. papers and codes) and the system’s own historical findings. This memory is constructed
 162 and updated fully automatically during the system’s operation, without any manual editing, and each
 163 record stores the hypothesis, implementation details, evaluation metrics, and logs of both successful
 164 and failed experiments (Zhou et al., 2025). This memory intelligently guides subsequent explo-
 165 rations, ensuring a sustained and focused push at the scientific frontier. The entire system’s core

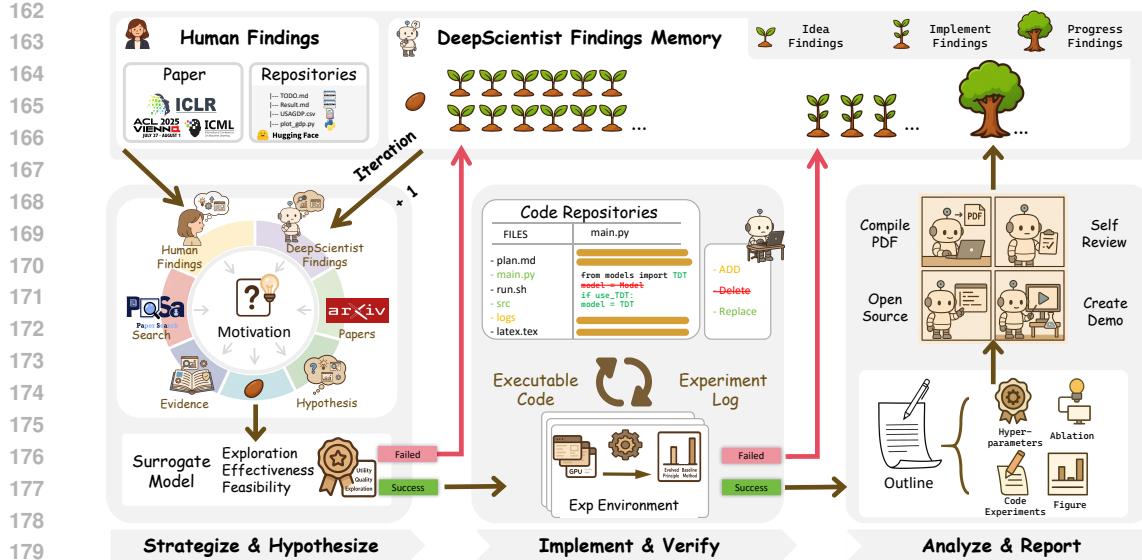


Figure 2: The autonomous, closed-loop discovery process of DeepScientist. The system iterates through a three-stage cycle, learning from both human knowledge and its own experiments.

task is to find the optimal program I^* from a space of all possible candidate research programs \mathcal{I} that maximizes an unknown and extremely expensive-to-evaluate true scientific value function $f(\cdot)$. The architecture of DeepScientist is detailed in Appendix D.

Exploration Strategy. Scientific discovery differs from previously considered tasks like early-stage machine learning (Schmidgall et al., 2025a), algorithm discovery (Novikov et al., 2025), or scientific software development (Aygün et al., 2025). Each exploratory step within it requires immense resources. For instance, solving a frontier LLM problem requires approximately 1×10^{16} FLOPs for each implementation (Figure 4.c). This necessitates an efficient exploration strategy rather than brute-force search. Compared to prior AI Scientist systems that either follow a single one-shot “idea \rightarrow experiment \rightarrow paper” pipeline or perform near-unlimited trial-and-error around a single idea, DeepScientist adopts an explicit iterative loop that combines Bayesian value estimation with a persistent *Findings Memory*. To address this, DeepScientist’s discovery process is structured as an iterative Bayesian Optimization loop (Figure 2), through the following **three-stage** cycle:

Stage I: Strategize & Hypothesize Each research cycle begins by analyzing the Findings Memory (\mathcal{M}_t), a list-style database containing thousands of structured records. Each record represents a unique scientific finding, which is categorized according to its stage of development. To overcome the LLM’s context length constraints, we use a separate retrieval model (Wolters et al., 2024) when needed to select the Top-K Findings as input. In practice, the retrieved subset of Findings Memory for a single task typically fits within a long-context window of about 2×10^5 tokens, which is sufficient to contextualize the planner LLM without loss of relevant information. The vast majority of records begin as Idea Findings—unverified hypotheses. During this first stage, the system identifies limitations in existing knowledge and generates a new collection of hypotheses (\mathcal{P}_{new}), and then they evaluated by a low-cost Surrogate Model (g_t). The surrogate model (an LLM) is first contextualized with the entire Findings Memory. In implementation, this is realized by feeding the surrogate with the retrieved Top-K records from \mathcal{M}_t together with the candidate hypothesis, so that it can reason over representative past successes and failures. It then approximates the true value function f and, for each candidate finding $I \in \mathcal{P}_{\text{new}}$, produces a structured valuation vector $V = \langle v_u, v_q, v_e \rangle$, quantifying its estimated utility, quality, and exploration value as integer scores on a scale of 0 to 100. Each new hypothesis and its valuation vector is then used to initialize a new record in the Findings Memory as an “Idea Finding”.

Stage II: Implement & Verify This stage serves as the primary filter in the Findings Memory. To decide which of the numerous “Idea Findings” warrants the significant resource investment to be advanced in a real-world experiment, the system employs an Acquisition Function (α). Specifically,

216

217

Table 1: Overview of the three different human SOTA methods we selected.

218

219

Task	Method	Venue	Benchmark	Github Star
Agents Failure Attribution	All at Once	ICML 2025 Spotlight	Who&When	302
LLM Inference Accel.	TokenRecycling	ACL 2025 Outstanding	MBPP	323
AI Text Detection	FastDetectGPT	ICLR 2024	RAID	414

220

221

222

it uses the classic Upper Confidence Bound (UCB) algorithm to select the most promising record. The UCB formula maps the valuation vector V to balance the trade-off between exploiting promising avenues (represented by v_u and v_q) and exploring uncertain ones (represented by v_e):

$$I_{t+1} = \arg \max_{I \in \mathcal{P}_{\text{new}}} \left(\underbrace{w_u v_u + w_q v_q}_{\text{Exploitation Term } \mu(I)} + \kappa \cdot \underbrace{v_e}_{\text{Exploration Term } \sigma(I)} \right), \quad (1)$$

223

224

225

where w_u and w_q are hyperparameters and κ controls the intensity of exploration. we adopt a simple, task-agnostic configuration with $w_u = w_q = \kappa = 1$, and do not tune these hyperparameters across the three tasks; this choice reflects an assumption of equal importance among expected utility, quality, and exploration, and ablations. The highest-scoring finding I_{t+1} is selected for validation, and its record is promoted to the status of an Implement Finding. A coding agent then performs a repository-level implementation to execute the experiment. This agent operates within a sandboxed environment with full permissions, allowing it to read the complete code repository and access the internet for literature and code searches. Its objective is to implement the new hypothesis on top of the existing SOTA method’s repositories. The agent typically begins by planning the task, then reads the code to understand its structure, and finally implements the changes to produce the experimental logs and results. The experiment logs and results, $f(I_{t+1})$, are used to update the corresponding record, enriching it with empirical evidence and thus closing the learning loop.

226

227

228

Stage III: Analyze & Report The final and most selective stage of the Findings Memory is triggered only by a successful validation. When an "Implement Finding" succeeds in surpassing the baseline, its record is promoted to a Progress Finding. This transformation is implemented by a series of specialized agents capable of utilizing a suite of MCP (Hou et al., 2025) tools. These agents first autonomously design and execute a series of deeper analytical experiments (e.g., ablations, evaluations on new datasets), leveraging MCP tools to manage the experimental lifecycle, data collection, and result parsing. Subsequently, a synthesis agent employs the same toolset to collate all experimental results, analytical insights, and generated artifacts into a coherent, reproducible research paper. The resulting deeply validated record is written back into the Findings Memory as a high-confidence Progress Finding, and, like all other records, will be retrieved and reused in subsequent cycles, allowing the system to learn from both its successes and its failures.

229

230

231

232

233

234

235

236

237

238

239

4 EXPERIMENTS

240

241

242

243

244

245

246

247

248

249

250

251

252

As detailed in Table 1, we select three distinct SOTA methods (published in 2024 and 2025) as starting points, chosen for their frontier status, community interest, and human supervisability. Each SOTA method is manually reproduced, and we preserve execution logs and test scripts to allow DeepScientist to focus on research advancement. DeepScientist is provided with two servers, each with 8 Nvidia H800 GPUs. To maximize utilization, we launch a separate system instance for each GPU, employing the Gemini-2.5-Pro model for core logic and the Claude-4-Opus model for its robust code-generation capabilities. Three human experts supervise the process to verify outputs and filter out hallucinations. For more implementation details, please see Appendix F.

253

254

255

256

257

258

259

260

261

262

263

4.1 DEEPSIENTIST ACHIEVEMENTS ON THREE RESEARCH DOMAINS

264

265

266

267

268

269

We evaluate DeepScientist on three frontier AI research tasks where strong human-designed SOTA methods already exist, and ask whether the system can discover methods that further advance these frontiers (Figure 3). For each task, we briefly recall the problem and baseline, then summarize the method discovered by DeepScientist and its improvement over the human SOTA.

Agents Failure Attribution. The goal of Agent Failure Attribution is, given a failed episode in an LLM-based multi-agent system, to identify which agent and which step were decisively responsible for the failure, which is crucial for debugging complex agent pipelines. The human SOTA

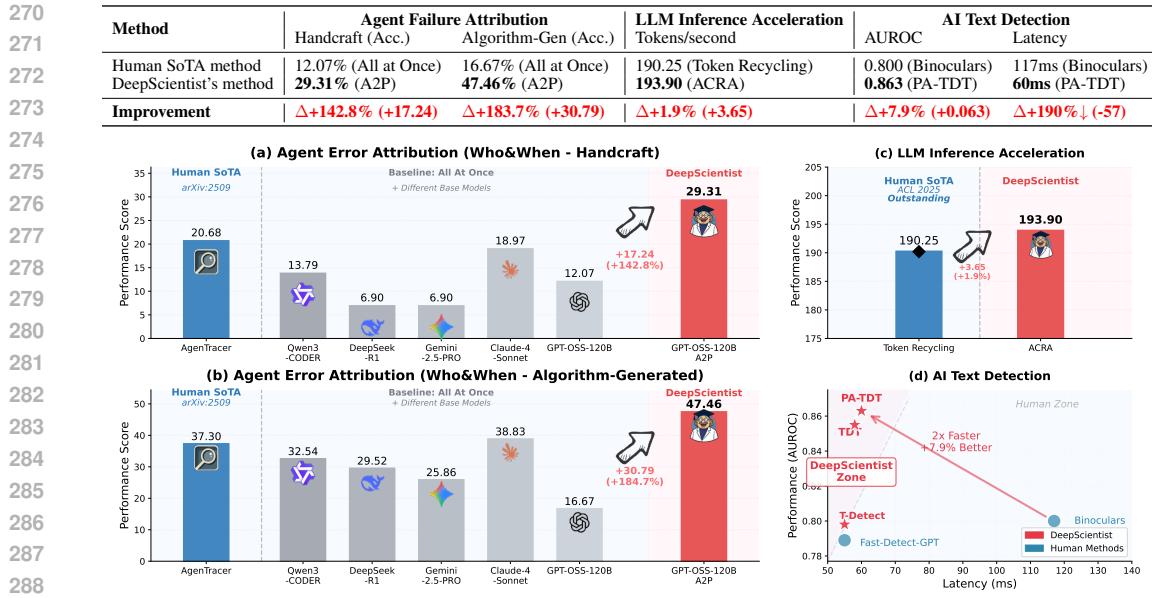


Figure 3: Performance evaluation of DeepScientist across three research domains: (a-b) Agent Failure Attribution on Who&When benchmark in handcraft and algorithm-generated settings; (c) LLM Inference Acceleration on MBPP dataset; (d) AI Text Detection with performance-latency tradeoff analysis. DeepScientist (shown in pink) consistently outperform human-designed SoTA approaches (shown in blue) across all tasks.

“All at once” method (Zhang et al., 2025c) feeds the entire failure log to a judge LLM and asks it to directly predict the responsible agent and step, but this approach relies on pattern recognition over static logs and lacks explicit counterfactual reasoning, making step-level attribution and chain-like failures challenging. Starting from the baseline “All at once” method, DeepScientist identified that the current approach lacks the counterfactual reasoning capabilities essential for attribution. Through a process of trial, error, and synthesizing new findings—discovering the effectiveness of hypothetical prediction and simulated attempts—it ultimately proposed the A2P method. Named for its Abduction-Action-Prediction process, its core innovation elevates failure attribution from pattern recognition to causal reasoning, filling the critical gap in counterfactual capabilities by predicting if a proposed fix would have led to success. Concretely, A2P first hypothesizes hidden causes behind a suspicious action, then proposes a counterfactual fix, and finally simulates several future steps under this intervention to test whether the task would have succeeded. As shown in Figure 3.(a-b), A2P achieved scores of 29.31 and 47.46 in the “handcraft” and “algorithm-generated” settings of the Who&When benchmark, respectively, setting a new state-of-the-art (SOTA). In this task, DeepScientist validated that a structured, zero-shot causal reasoning framework can be superior to less principled methods. As of September 2025, the training-free A2P method maintains its SOTA position, outperforming even 7B models trained on synthetic data. (Zhang et al., 2025a).

LLM Inference Acceleration is a highly optimized field aiming to maximize throughput and reduce latency during LLM inference. The human SOTA baseline Token Recycling (TR) (Xia et al., 2024) reuses rejected candidate tokens produced during decoding via a tree-structured speculative decoding scheme, but effectively treats decoding as a near-first-order Markov process and primarily exploits local transition patterns, limiting its ability to consistently leverage longer-range regularities. In this process, the system actively made many different attempts, such as using a Kalman Filter (Zarchan, 2005) to dynamically adjust an adjacency matrix to address the original method’s lack of a memory function. Although most of these attempts failed, the system-generated ACRA method ultimately advanced the MPBB (Austin et al., 2021) from a human SOTA of 190.25 to 193.90 tokens/second by identifying stable suffix patterns, as shown in Figure 3. ACRA assumes that LLM decoding exhibits recurrent, variable-length stable suffixes: it maintains a suffix-indexed history, finds the longest stable suffix matching the current context, and, only when a stability gate is passed, uses the associated next-token statistics to override the first layer of draft tokens; otherwise, it falls back to the original TR scheme. Scientifically, this innovation is significant because it uses this ex-

324
 325 Table 2: Evaluation of AI-generated papers produced by various AI Scientist systems. Scores
 326 represent the average ratings given by DeepReviewer-14B (Zhu et al., 2025a) across the number
 327 (“Num”) of available papers. Note: Publicly available papers may be curated and therefore may not
 328 fully represent the typical output of each system.

AI Scientist Systems	Number	Soundness	Presentation	Contribution	Rating	Accept Rate
AI SCIENTIST	10	2.08	1.80	1.75	3.35	0%
HKUSD AI Researcher	7	1.75	1.46	1.57	2.57	0%
AI SCIENTIST-v2	3	1.67	1.50	1.50	2.33	0%
CycleResearcher-12B	6	2.25	1.75	2.13	3.75	0%
Zochi	2	2.38	2.38	2.25	4.63	0%
DeepScientist (Ours)	5	2.90	2.90	2.90	5.90	60%

336
 337 tra contextual information to dynamically adjust the decoding guess, effectively grafting a long-term
 338 memory onto the process and breaking the context-collapsing of standard decoders. This discovery
 339 highlights the system’s primary goal: the creation of new, human-unknown knowledge rather than
 340 mere engineering optimization. For instance, one could likely achieve greater performance gains by
 341 combining ACRA with an established technique like layer skipping (Wang et al., 2022) or PageAt-
 342 tention (Kwon et al., 2023), but this would represent an engineering effort, not a scientific one. The
 343 exploration assessment within our process avoids such combinations of existing knowledge.

344 **AI Text Detection** is a binary classification task where, given a text that may contain content from
 345 an LLM (and possibly additional noise), the goal is to determine if it was produced by a human or
 346 an LLM (Li et al., 2022; Ghosal et al., 2023). This capability underpins applications such as exam
 347 integrity, content moderation, and model misuse detection. Recent human-designed SOTA detec-
 348 tors such as Fast-Detect GPT and Binoculars (Hans et al., 2024) exploit differences in perplexity,
 349 burstiness, or style between human and model distributions, but these global-statistic approaches as-
 350 sume relatively stationary gaps and often degrade when modern LLMs actively mimic human style
 351 or texts are paraphrased or lightly edited. To validate its capacity for sustained advancement, Deep-
 352 Scientist made numerous attempts that included addressing the Boundary-Aware Extension problem
 353 and exploring approaches like Volatility-Aware and Wavelet Subspace Energy methods. The final
 354 results show a dramatic acceleration in scientific discovery: in a rapid evolution over just two weeks,
 355 the system produced three distinct, progressively superior methods. This began with T-Detect fix-
 356 ing core statistics with a robust t-distribution, then evolved conceptually with TDT and PA-TDT,
 357 which treat text as a signal and use wavelet and phase congruency analysis to pinpoint anomalies.
 358 Taken together, these methods shift the perspective from global distributional differences to the non-
 359 stationary, time-frequency structure of AI-generated text, showing that localized changes in energy
 360 and phase carry the key evidence for detection. Scientifically, this shift reveals the “non-stationarity”
 361 of AI-generated text, alleviating the information bottleneck in prior paradigms that average away
 362 localized evidence. As shown in Figure 1 and 3(d), this entire discovery trajectory demonstrates
 363 DeepScientist’s ability for advancing frontier-pushing scientific findings progressively, establishing
 364 a new SOTA with a 7.9% higher AUROC while also doubling the inference speed.

364 4.2 ASSESSING THE QUALITY OF AI-GENERATED RESEARCH PAPER

365
 366 Table 3: Evaluation of DeepScientist’s papers produced by human experts. Values are presented as
 367 mean (variance) from three reviewers. Inter-rater reliability for Rating: Krippendorff’s $\alpha = 0.739$.

Paper	Confidence	Soundness	Presentation	Contribution	Rating
HUMAN Avg. (ICLR 2025)	-	2.59	2.36	2.62	5.08
1. T-DETECT	4.33 (0.33)	2.00 (1.00)	2.67 (0.33)	2.67 (0.33)	5.00 (0.00)
2. TDT	4.67 (0.33)	3.00 (0.00)	3.00 (0.00)	3.00 (0.00)	5.67 (0.33)
3. PA-TDT	4.00 (0.00)	1.67 (0.33)	2.00 (1.00)	2.00 (1.00)	4.33 (1.33)
4. A2P	4.00 (0.00)	3.00 (0.00)	3.00 (0.00)	2.67 (0.33)	5.67 (0.33)
5. ACRA	3.33 (0.33)	1.67 (0.33)	2.00 (1.00)	1.67 (0.33)	4.33 (1.33)
DeepScientist Avg.	4.07	2.27	2.53	2.40	5.00

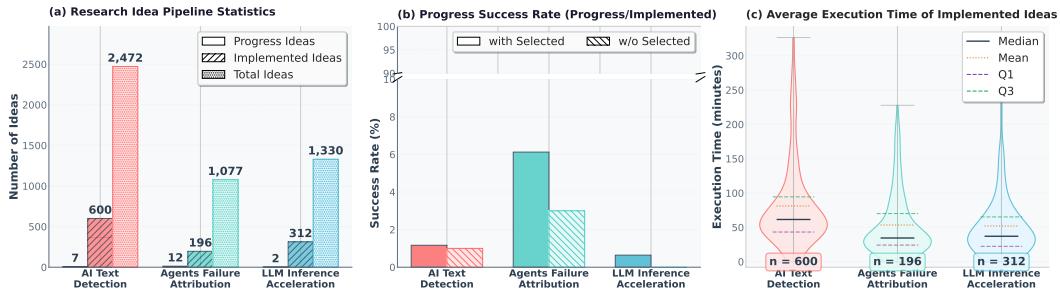


Figure 4: DeepScientist’s experimental statistics. (a) The research pipeline from generated ideas to validated progress. (b) Success rates comparing our selection strategy against a baseline. (c) Distribution of wall-clock execution times for all implemented trials.

Experimental Setup. To assess the quality of the final output, we evaluate the five research papers autonomously generated by DeepScientist’s end-to-end process. Our evaluation protocol is twofold. First, to benchmark against existing work, we employ DeepReviewer (Zhu et al., 2025a), an AI agent that simulates the human peer-review process with an external search capability, comparing DeepScientist’s output against 28 publicly available papers from other AI Scientist systems. Second, for a more rigorous assessment, we convene a dedicated program committee consisting of three active LLM researchers: two volunteers who have served as ICLR reviewers and one senior volunteer who has been invited to be an ICLR Area Chair. The generated papers are available in Appendix F.

Automated Review Against Other AI Scientist Systems. As shown in Table 2, the results from the LLM-based automatic evaluation indicate that the system’s outputs are recognized for their scientific novelty and value. When benchmarked against 28 publicly available papers from other AI Scientist systems using DeepReviewer, DeepScientist is the only system whose papers achieve a 60% simulated acceptance rate under the same reviewing protocol.

Human Expert Evaluation. The evaluation from our human program committee, shown in Table 3, reveals a strong and consistent consensus: DeepScientist’s outputs are particularly strong in ideation, the most challenging and often rate-limiting step in human-led research. Full details on the review protocol are provided in Appendix B, and the core ideas within each paper are praised for their genuine novelty, ingenuity, and scientific contributions. The quality of these innovations is further demonstrated by the review scores: the system’s average rating (5.00) closely mirrors the average of all ICLR 2025 submissions (5.08), with two of its papers significantly exceeding this (5.67).

4.3 ANALYSIS OF THE ITERATIVE TRAJECTORY OF AUTONOMOUS EXPLORATION

Experimental Setup. The findings in this section are derived from a series of post-hoc analyses conducted on the complete operational data generated by DeepScientist across the three frontier tasks. This data includes the full set of execution logs and the Findings Memory, providing the basis for all subsequent statistical analysis. To visualize the conceptual search space (Figure 5), we embed the complete description of each generated finding using the Qwen3-Embedding-8B model. To assess scalability (Figure 6), we conduct a dedicated one-week experiment where N identified limitations of a single SOTA method are assigned to N parallel GPU instances. These instances explore solutions independently but share their findings to a central database, which are synchronized globally every five cycles to accommodate the asynchronous nature of the discovery process. Finally, to better understand the low success rate, our program committee experts perform a detailed causal attribution analysis on a sample of 300 failed implementations.

Our analysis of DeepScientist’s experimental logs reveals the sheer scale of the trial-and-error process inherent in autonomous scientific discovery. Even in our relatively fast-executing domains, achieving progress required hundreds of trials per task. As shown in Figure 4, the execution time distributions show that while individual experiments may be quick, the sheer volume of trial-and-error necessary to uncover a successful idea is substantial. This suggests a clear application boundary for current autonomous science: for tasks with rapid feedback loops, such as aspects of chip design, delegating massive-scale experimentation to AI is a powerful strategy. However, for high-cost endeavors like pre-training foundation models or pharmaceutical synthesis, the low suc-

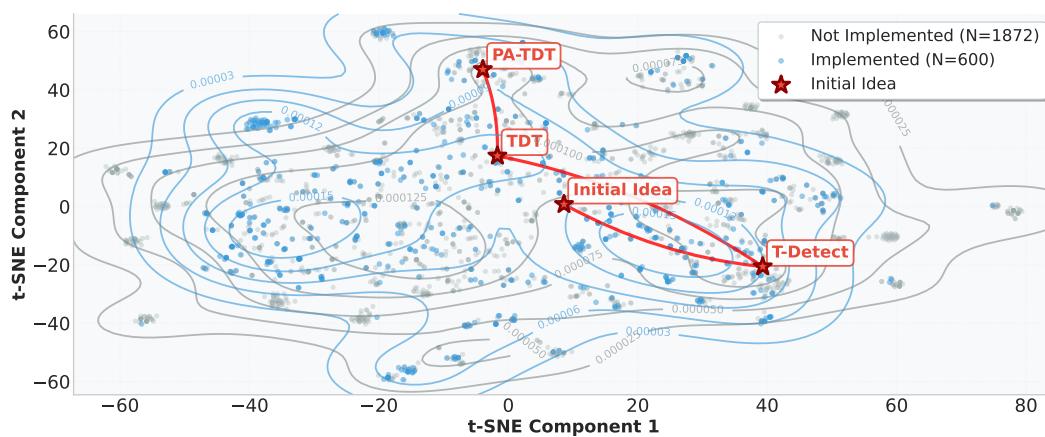


Figure 5: Visualization of the conceptual search space for the AI text detection task. The plot shows a t-SNE visualization of the semantic embeddings for all 2,472 generated ideas. Markers identify the initial SOTA method (Initial Idea) and the three final SOTA-surpassing methods (Progress Ideas).

cess rate makes such an approach currently impractical, mandating continued reliance on human-led ideation. The autonomous research process is characterized by a vast exploratory funnel where promising ideas are exceptionally rare. Across the three tasks, DeepScientist generate over 5,000 unique ideas, yet only about 1,100 are deemed worthy of experimental validation by the system’s selection mechanism, and a mere 21 ultimately result in scientific progress. These 21 are promoted to *Progress Findings* (ideas that surpass the then-current SOTA in Stage II), and the fully automated Stage III pipeline turns them into full drafts and filters them with an LLM-based reviewer, yielding 5 final papers. An ablation study underscores the criticality of this selection process: without it, randomly sampling 100 ideas for each task and testing them yields a success rate of effectively zero. The low success rate is not merely a matter of failed hypotheses; analysis by human experts on a sample of failed trials reveals that approximately 60% were terminated prematurely due to implementation errors, while the vast majority of the remaining 40% simply offered no performance improvement or caused a regression. This highlights that the probability of an LLM-generated idea being both correct in its premise and flawless in its implementation is exceedingly low. In other words, the executor largely determines whether ideas can be executed at all and how often they fail, while the planner determines how far the system can advance under a fixed budget. The success of this work, therefore, is not a product of brute-force computation but of search efficiency. A naive approach of fully testing all 5000 promising candidates would have required over 100,000 GPU hours, whereas our targeted exploration achieved its breakthroughs using only 20,000.

DeepScientist’s discovery process follows a purposeful and progressive trajectory. The semantic distribution of ideas generated for the AI text detection task, as shown in Figure 5, reveals the characteristics of this sophisticated strategy. While the system generates thousands of diverse ideas across a vast conceptual landscape, its path to success is not random but is a series of focused, logical advancements. This indicates a capacity to progressively deepen its understanding: after achieving an initial breakthrough with *T-Detect*, the system effectively establishes a SoTA, identifies its subsequent limitations, and reorients its search towards a new goal. This dynamic exploration is exemplified by the conceptual shift towards *TDT* and *PA-TDT*, which build upon the previous success by leveraging new positional and temporal information. This ability to build upon its own discoveries, turning each successful finding into a new starting point for identifying and solving the next set of limitations, demonstrates a powerful capacity for scientific exploration.

Scaling Laws in DeepScientist’s Scientific Discovery. To investigate the relationship between computational scale and the rate of scientific progress, we evaluated the number of “Progress Findings” generated by DeepScientist within a fixed one-week period as a function of available parallel resources in Figure 6. In this setup, the system first identified a set of limitations in the baseline method, and each parallel exploration path was tasked with resolving a distinct limitation, with all paths periodically synchronizing their results into a shared Findings Memory. Our results indicate a promising scaling trend. While minimal resources yielded no breakthroughs, the rate of discovery began to increase effectively as we scaled to 4 GPUs and beyond, growing from one SOTA-

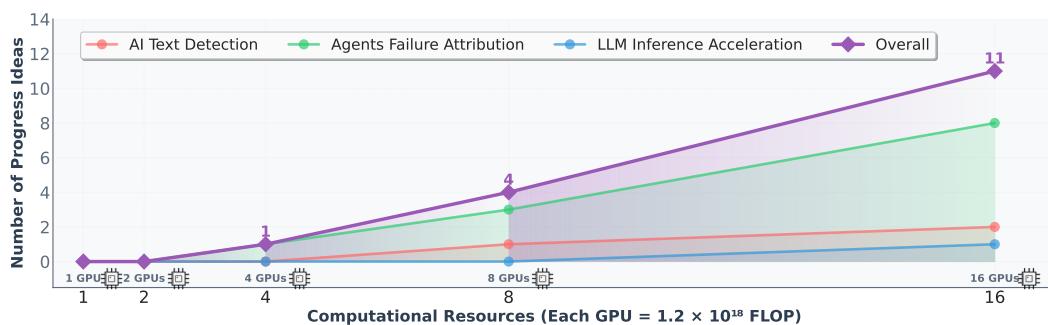


Figure 6: Scaling analysis of autonomous scientific discovery. The plot illustrates the relationship between parallel computational resources (number of GPUs) and the number of SOTA-surpassing "Progress Findings" found by DeepScientist across all tasks within a one-week period.

surpassing finding with 4 GPUs to eleven with 16 GPUs . This appears to establish a near-linear relationship between the resources allocated and the output of valuable scientific discoveries. We hypothesize this efficiency stems from more than just parallel trial-and-error; it is a direct result of the shared knowledge architecture. Mechanistically, this knowledge-driven gain should also apply when scaling with time (serial execution); indeed, our preliminary 4-week single-GPU tests confirmed this, yielding new progress approximately every 8-14 days. While serial exploration may be more sample-efficient due to real-time memory updates (whereas our parallel setup synchronizes periodically), the immense value of parallel scaling lies in its wall-clock time advantage—compressing months of discovery into a single week. This distinction highlights that parallel scaling demonstrates the scalability of the knowledge-sharing mechanism, not just its effectiveness. As each parallel path explores, it enriches the shared Findings Memory. This creates a synergistic effect where the collective intelligence of the system grows (Schmidgall & Moor, 2025; Zhang et al., 2025b) , allowing each independent path to benefit from the successes and, just as importantly, the failures of others. This suggests that effectively scaling autonomous science is not just a matter of increasing brute-force computation, but of fostering a richer, interconnected knowledge base that accelerates discovery across all concurrent efforts.

4.4 DISCUSSION

The results from DeepScientist suggest a new paradigm in scientific exploration, defined not by infallibility but by massive scale and efficiency. The system’s 1-5% progress rate mirrors the reality of frontier research, successfully compressing years of human exploration into weeks . The primary path forward is systematically improving this efficiency. Our analysis identifies key bottlenecks: enhancing the robustness of implementation (as 60% of failed trials stemmed from implementation errors, not flawed hypotheses) and improving scientific rigor (as human evaluations praised the system’s conceptual novelty but noted a lack of deep validation). This highlights a powerful opportunity for human-AI synergy, where humans provide high-level strategic direction while the AI handles rapid, exhaustive exploration . Our scaling analysis confirms this path is viable, showing a near-linear relationship between parallel resources and discoveries, driven not by brute-force computation, but by a shared knowledge base that accelerates discovery across all concurrent efforts . Future work should focus on these efficiencies, develop simulated discovery environments, and bridge the gap to the physical sciences through robotics.

5 CONCLUSION

This work presents the first large-scale empirical evidence that an autonomous AI can achieve progressively, SOTA-surpassing progress on modern scientific frontiers. We introduced DeepScientist, a goal-oriented system achieving end-to-end autonomy from ideation to real progress, which learns by synthesizing human knowledge with its own findings from iteration of trials. Results across multiple domains serve to accelerate the progress of real-world scientific discovery, providing a crucial foundation. Our findings can signal a foundational shift in AI research, heralding an era where the pace of discovery is no longer solely dictated by the cadence of human thought.

540 ETHICS STATEMENT
541542 The development of DeepScientist, an autonomous system capable of advancing scientific frontiers,
543 carries profound ethical responsibilities. Our primary goal is to accelerate discovery for the benefit
544 of humanity, but we recognize the potential for misuse. The most significant risks include the
545 application of this technology to advance dangerous research and the potential degradation of the
546 academic ecosystem. We have implemented specific, robust measures to address these concerns
547 proactively.548 A primary concern is the dual-use risk, where the system could be co-opted to accelerate research
549 in harmful domains, such as developing novel toxins or malicious software. To assess and mitigate
550 this, we conducted red-teaming exercises specifically targeting the generation of computer viruses.
551 We tasked the system, powered by leading foundation models (including GPT-5, Gemini-2.5-Pro,
552 and Claude-4.1-Opus in our testbed), with this malicious objective. In all instances, the underlying
553 models exhibited robust safety alignment, refusing to proceed with the research. They correctly
554 identified the task as illegal and harmful, and autonomously terminated the research cycle, demon-
555 strating that foundation model safety protocols provide a critical defense layer.556 We are also deeply conscious of the potential negative impact on the academic ecosystem. It is
557 crucial to state that all results from DeepScientist presented in this paper, including code and ex-
558 perimental findings, have undergone rigorous human verification. Recognizing that others might
559 neglect this critical oversight, we are adopting a selective open-sourcing policy to mitigate the risk
560 of proliferating unreliable publications. We will open-source the core components that drive contin-
561 uous discovery, as we believe their potential to accelerate progress for the community outweighs the
562 risks. However, we will deliberately refrain from open-sourcing the "Analyze & Report" module.
563 This decision is made to prevent the automated generation of seemingly credible but scientifically
564 unverified papers, thereby safeguarding the integrity of the academic record.565 Ultimately, we envision DeepScientist as a powerful tool to augment, not replace, human intellect
566 and judgment. To enforce this vision, our open-source components will be released under a license
567 based on MIT, but with explicit addendums that codify our ethical framework. This license will
568 strictly prohibit any use of the software for harmful research. Furthermore, it will legally require that
569 a human user must supervise the entire operational process of DeepScientist and assumes full and
570 final responsibility for all its outputs. By embedding these requirements directly into our terms of
571 use, we aim to foster a research environment where AI-driven discovery proceeds with the necessary
572 human accountability and ethical oversight.573 REFERENCES
574575 Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
576 jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
577 et al. The falcon series of open language models. *arXiv preprint arXiv:2311.16867*, 2023.578 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
579 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
580 models. *arXiv preprint arXiv:2108.07732*, 2021.582 Eser Aygün, Anastasiya Belyaeva, Gheorghe Comanici, Marc Coram, Hao Cui, Jake Garrison, Re-
583 nee Johnston Anton Kast, Cory Y. McLean, Peter Norgaard, Zahra Shamsi, David Smalling,
584 James Thompson, Subhashini Venugopalan, Brian P. Williams, Chujun He, Sarah Martinson,
585 Martyna Plomecka, Lai Wei, Yuchen Zhou, Qian-Ze Zhu, Matthew Abraham, Erica Brand, Anna
586 Bulanova, Jeffrey A. Cardille, Chris Co, Scott Ellsworth, Grace Joseph, Malcolm Kane, Ryan
587 Krueger, Johan Kartiwa, Dan Liebling, Jan-Matthis Lueckmann, Paul Raccuglia, Xuefei, Wang,
588 Katherine Chou, James Manyika, Yossi Matias, John C. Platt, Lizzie Dorfman, Shibl Mourad, and
589 Michael P. Brenner. An ai system to help scientists write expert-level empirical software, 2025.
590 URL <https://arxiv.org/abs/2509.06503>.591 Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. Researchagent: Iterative
592 research idea generation over scientific literature with large language models. In *Proceedings of*
593 *the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 6709–6738, 2025.

594 Guangsheng Bao, Yanbin Zhao, Juncai He, and Yue Zhang. Glimpse: Enabling white-box methods
 595 to use proprietary models for zero-shot llm-generated text detection. In *The Thirteenth Interna-*
 596 *tional Conference on Learning Representations*, a.

597

598 Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Effi-
 599 cient zero-shot detection of machine-generated text via conditional probability curvature. In *The*
 600 *Twelfth International Conference on Learning Representations*, b.

601 Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
 602 Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
 603 ing agents on machine learning engineering. *arXiv preprint arXiv:2410.07095*, 2024.

604

605 Cristina Cornelio, Sanjeeb Dash, Vernon Austel, Tyler R. Josephson, Joao Goncalves, Kenneth L.
 606 Clarkson, Nimrod Megiddo, Bachir El Khadir, and Lior Horesh. Combining data and theory
 607 for derivable scientific discovery with AI-Descartes. *Nature Communications*, 14(1):1777, April
 608 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-37236-y. URL <https://doi.org/10.1038/s41467-023-37236-y>.

609

610 Cristina Cornelio, Takuya Ito, Ryan Cory-Wright, Sanjeeb Dash, and Lior Horesh. The need for
 611 verification in ai-driven scientific discovery, 2025. URL <https://arxiv.org/abs/2509.01398>.

612

613 Ryan Cory-Wright, Cristina Cornelio, Sanjeeb Dash, Bachir El Khadir, and Lior Horesh. Evolv-
 614 ing scientific discovery by unifying data and background knowledge with ai hilbert. *Nature*
 615 *Communications*, 15:5922, July 2024. doi: 10.1038/s41467-024-50074-w. URL <https://doi.org/10.1038/s41467-024-50074-w>.

616

617 Liam Dugan, Alyssa Hwang, Filip Trhlík, Andrew Zhu, Josh Magnus Ludan, Hainiu Xu, Daphne
 618 Ippolito, and Chris Callison-Burch. RAID: A shared benchmark for robust evaluation of machine-
 619 generated text detectors. In *Proceedings of the 62nd Annual Meeting of the Association for Com-*
 620 *putational Linguistics (Volume 1: Long Papers)*, pp. 12463–12492, Bangkok, Thailand, August
 621 2024. Association for Computational Linguistics. URL <https://aclanthology.org/2024.acl-long.674>.

622

623 Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
 624 madamin Barekatain, Alexander Novikov, Francisco J R. Ruiz, Julian Schrittweis, Grzegorz
 625 Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
 626 *Nature*, 610(7930):47–53, 2022.

627

628 Alexander Fleming. Penicillin. *British medical journal*, 2(4210):386, 1941.

629

630 Soumya Suvra Ghosal, Souradip Chakraborty, Jonas Geiping, Furong Huang, Dinesh Manocha,
 631 and Amrit Bedi. A survey on the possibilities & impossibilities of AI-generated text detec-
 632 *tion*. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=AXtFeYjboj>. Survey Certification.

633

634 Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
 635 Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist.
 636 *arXiv preprint arXiv:2502.18864*, 2025.

637

638 Martin A Green. Silicon solar cells: evolution, high-efficiency design and efficiency enhance-
 639 *ments*. *Semiconductor science and technology*, 8(1):1, 1993.

640

641 Abhimanyu Hans, Avi Schwarzschild, Valeria Cherepanova, Hamid Kazemi, Aniruddha Saha,
 642 Micah Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-
 643 shot detection of machine-generated text. In *International Conference on Machine Learning*,
 644 pp. 17519–17537. PMLR, 2024.

645

646 Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Land-
 647 *scape, security threats, and future research directions*. *arXiv preprint arXiv:2503.23278*, 2025.

648

649 Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. Radar: Robust ai-text detection via adversarial
 650 learning. *Advances in neural information processing systems*, 36:15077–15095, 2023.

648 Intology. Zochi technical report. *arXiv*, 2025.
 649

650 Tang Jiabin, Xia Lianghao, Li Zhonghang, and Huang Chao. Ai-researcher: Autonomous scientific
 651 innovation, 2025. URL <https://arxiv.org/abs/2505.18705>.

652 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 653 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 654 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626, 2023.

655

656 Bin Li, Yixuan Weng, Qiya Song, and Hanjun Deng. Artificial text detection with multiple training
 657 strategies. *arXiv preprint arXiv:2212.05194*, 2022.

658

659 Yixiu Liu, Yang Nan, Weixian Xu, Xiangkun Hu, Lyumanshan Ye, Zhen Qin, and Pengfei Liu.
 660 Alphago moment for model architecture discovery. *arXiv preprint arXiv:2507.18074*, 2025.

661

662 Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
 663 Towards fully automated open-ended scientific discovery. *arXiv preprint arXiv:2408.06292v3*,
 664 2024. URL <https://www.arxiv.org/abs/2408.06292v3>.

665

666 Jiacheng Miao, Joe R. Davis, Jonathan K. Pritchard, and James Zou. Paper2agent: Reimagining
 667 research papers as interactive and reliable ai agents, 2025. URL <https://arxiv.org/abs/2509.06917>.

668

669 Atsuyuki Miyai, Mashiro Toyooka, Takashi Otonari, Zaiying Zhao, and Kiyoharu Aizawa. Jr. ai
 670 scientist and its risk report: Autonomous scientific exploration from a baseline paper. *arXiv*
 671 *preprint arXiv:2511.04583*, 2025.

672

Gordon Moore. Moore’s law. *Electronics Magazine*, 38(8):114, 1965.

673

674 Alexander Novikov, Ngan Vu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
 675 Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al.
 676 Alphaevolve: A coding agent for scientific and algorithmic discovery. Technical report, Technical
 677 report, Google DeepMind, 05 2025. URL <https://storage.googleapis.com/>, 2025.

678

José R Penadés, Juraj Gottweis, Lingchen He, Jonasz B Patkowski, Alexander Shurick, Wei-Hung
 679 Weng, Tao Tu, Anil Palepu, Artiom Myaskovsky, Annalisa Pawlosky, et al. Ai mirrors experimen-
 680 tal science to uncover a novel mechanism of gene transfer crucial to bacterial evolution. *bioRxiv*,
 681 pp. 2025–02, 2025.

682

Ori Press, Brandon Amos, Haoyu Zhao, Yikai Wu, Samuel K Ainsworth, Dominik Krupke, Patrick
 683 Kidger, Touqir Sajed, Bartolomeo Stellato, Jisun Park, et al. Algotune: Can language models
 684 speed up general-purpose numerical programs? *arXiv preprint arXiv:2507.15887*, 2025.

685

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 686 M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
 687 Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
 688 *Nature*, 625(7995):468–475, 2024.

689

Samuel Schmidgall and Michael Moor. Agentrxiv: Towards collaborative autonomous research.
 690 *arXiv preprint arXiv:2503.18102*, 2025.

691

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
 692 Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants.
 693 *arXiv preprint arXiv:2501.04227v1*, 2025a. URL <https://arxiv.org/abs/2501.04227v1>.

694

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
 695 Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants.
 696 *arXiv preprint arXiv:2501.04227v2*, 2025b.

697

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
 698 Llm-sr: Scientific equation discovery via programming with large language models. In *The Thir-
 699 teenth International Conference on Learning Representations*.

700

701

702 Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
 703 Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai's ability
 704 to replicate ai research. *arXiv preprint arXiv:2504.01848*, 2025.

705 Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank infor-
 706 mation for zero-shot detection of machine-generated text. In *The 2023 Conference on Empirical
 707 Methods in Natural Language Processing*.

708 Kyle Swanson, Wesley Wu, Nash L Bulaong, John E Pak, and James Zou. The virtual lab of ai
 709 agents designs new sars-cov-2 nanobodies. *Nature*, pp. 1–3, 2025.

710 Jue Wang, Ke Chen, Gang Chen, Lidan Shou, and Julian McAuley. Skipbert: Efficient inference
 711 with shallow layer skipping. In *Proceedings of the 60th Annual Meeting of the Association for
 712 Computational Linguistics (Volume 1: Long Papers)*, pp. 7287–7301, 2022.

713 Yixuan Weng, Minjun Zhu, Guangsheng Bao, Hongbo Zhang, Jindong Wang, Yue Zhang, and Linyi
 714 Yang. Cycleresearcher: Improving automated research via automated review. In *The Thirteenth
 715 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=bjcsVLoHYS>.

716 Christopher Wolters, Xiaoxuan Yang, Ulf Schlichtmann, and Toyotaro Suzumura. Memory is all you
 717 need: An overview of compute-in-memory architectures for accelerating large language model
 718 inference, 2024. URL <https://arxiv.org/abs/2406.08413>.

719 Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
 720 Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
 721 of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikanth (eds.), *Findings of
 722 the Association for Computational Linguistics ACL 2024*, pp. 7655–7671, Bangkok, Thailand and
 723 virtual meeting, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 724 findings-acl.456. URL <https://aclanthology.org/2024.findings-acl.456>.

725 Qiujie Xie, Yixuan Weng, Minjun Zhu, Fuchen Shen, Shulin Huang, Zhen Lin, Jiahui Zhou, Zilan
 726 Mao, Zijie Yang, Linyi Yang, et al. How far are ai scientists from changing the world? *arXiv
 727 preprint arXiv:2507.23276*, 2025.

728 Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
 729 and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
 730 search. *arXiv preprint arXiv:2504.08066*, 2025.

731 Paul Zarchan. *Progress in astronautics and aeronautics: fundamentals of Kalman filtering: a prac-
 732 tical approach*, volume 208. Aiaa, 2005.

733 Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
 734 Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
 735 models. *arXiv preprint arXiv:2508.06471*, 2025.

736 Guibin Zhang, Junhao Wang, Junjie Chen, Wangchunshu Zhou, Kun Wang, and Shuicheng Yan.
 737 Agentracer: Who is inducing failure in the llm agentic systems?, 2025a. URL <https://arxiv.org/abs/2509.03312>.

738 Pengsong Zhang, Heng Zhang, Huazhe Xu, Renjun Xu, Zhenting Wang, Cong Wang, Animesh
 739 Garg, Zhibin Li, Arash Ajoudani, and Xinyu Liu. Scaling laws in scientific discovery with ai and
 740 robot scientists. *arXiv preprint arXiv:2503.22444*, 2025b.

741 Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
 742 Chi Wang, Huazheng Wang, Yiran Chen, and Qingyun Wu. Which agent causes task failures
 743 and when? on automated failure attribution of LLM multi-agent systems. In *Forty-second Inter-
 744 national Conference on Machine Learning*, 2025c. URL <https://openreview.net/forum?id=GazlTYxZss>.

745 Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan, Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun
 746 Zhang, Kun Shao, Linyi Yang, and Jun Wang. Memento: Fine-tuning llm agents without fine-
 747 tuning llms, 2025. URL <https://arxiv.org/abs/2508.16153>.

756 Minjun Zhu, Yixuan Weng, Linyi Yang, and Yue Zhang. Deepreview: Improving llm-based paper
 757 review with human-like deep thinking process. *arXiv preprint arXiv:2503.08569*, 2025a.
 758

759 Minjun Zhu, Qiuje Xie, Yixuan Weng, Jian Wu, Zhen Lin, Linyi Yang, and Yue Zhang. Ai scientists
 760 fail without strong implementation capability. *arXiv preprint arXiv:2506.01372*, 2025b.
 761

764 A USE OF LARGE LANGUAGE MODELS

766 Large Language Models are a foundational component of the DeepScientist system and were integral
 767 to every stage of the research presented in this paper. The core reasoning, hypothesis generation,
 768 and experimental analysis were driven by Gemini-2.5-Pro, while all code implementation, including
 769 writing, testing, and debugging, was performed by Claude-4-Opus.
 770

771 The LLM agents autonomously conducted the entire scientific workflow. For the five SOTA-
 772 surpassing findings detailed in this work, the complete research process—from the initial identi-
 773 fication of a research gap and the formulation of a novel idea, through literature search, code imple-
 774 mentation, and the design of analytical experiments, to the final writing of the research papers—was
 775 performed by the LLM-based system. The final research papers generated through this autonomous
 776 process are provided in Appendix F.
 777

778 The role of the human authors was strictly limited to supervision, verification, and calibration of the
 779 system. We provided the initial SOTA methods as a starting point, monitored the system’s progress,
 780 and verified the correctness of the final reported results. However, all novel scientific ideas, code,
 781 analyses, and written text were generated by the LLMs.
 782

783 B HUMAN EXPERT REVIEW

784 B.1 REVIEW PROCESS AND CRITERIA

785 To ensure a rigorous and impartial evaluation of the generated papers, we convened a small, dedi-
 786 cated program committee. The committee was composed of two active researchers who served
 787 as volunteer reviewers for ICLR 2025, and one senior researcher who had previously been invited
 788 to serve as an ICLR Area Chair. All committee members possess significant expertise in the field
 789 of Large Language Models. The entire review process, with the exception of a rebuttal phase, was
 790 designed to meticulously emulate the official standards of ICLR 2025. Each of the five papers gener-
 791 ated by our system was assigned to the three reviewers for a thorough and independent assessment.
 792 The average review time for each paper was 55 minutes, during which reviewers were required
 793 to provide not only scores but also detailed written feedback, including a summary of the paper’s
 794 strengths and weaknesses.
 795

796 The evaluation was conducted on a custom-deployed review website where reviewers could not see
 797 each other’s scores or feedback, ensuring that all initial assessments were made independently. The
 798 review form was structured to gather concise yet comprehensive feedback. First, reviewers were
 799 asked to state their **Confidence** in their review on a scale of 1 to 5. The core of the evaluation
 800 consisted of three sub-scores, each rated on a 1 to 4 scale: **Soundness**, assessing the technical
 801 correctness and experimental rigor; **Presentation**, evaluating the clarity and quality of the writing;
 802 and **Contribution**, measuring the significance and novelty of the work. Finally, reviewers provided
 803 a holistic **Rating** on a scale of 1 to 10, where a score of 5 represented a ‘borderline reject’ and a
 804 score of 6 represented a ‘borderline accept’.
 805

806 After the three reviewers submitted their independent evaluations for a paper, the volunteer acting
 807 as Area Chair would then read all submitted reviews. Drawing upon their experience from the ICLR
 808 review process, the Area Chair synthesized the feedback, weighed the arguments presented by the
 809 reviewers, and made a final executive decision on whether the paper should be accepted or rejected
 810 in the context of our study. This final decision was recorded as the definitive outcome for each
 811 paper’s evaluation.
 812

810 B.2 SUMMARY OF REVIEWER FEEDBACK
811812 Across the five generated papers, a clear consensus emerged from the human reviewers: Deep-
813 Scientist consistently excels at the ideation stage of research. The committee unanimously lauded
814 the methods for their genuine novelty and tangible contributions, noting that each paper proposed a
815 unique approach that meaningfully advanced the state-of-the-art in its respective subfield. This feed-
816 back validates the system's core strength as a powerful engine for identifying relevant research gaps
817 and generating innovative, impactful solutions, confirming that it can successfully ideate beyond
818 mere incremental improvements.819 However, this strength in ideation was systematically undermined by a recurring pattern of weak-
820 nesses in scientific execution and rigor. The most critical and frequent concern was a lack of em-
821 pirical soundness; reviewers consistently noted that DeepScientist failed to design comprehensive
822 validation plans, citing insufficient evaluation on standard benchmarks and a lack of in-depth analyt-
823 ical experiments (e.g., ablations, motivation studies) to justify its claims. This was compounded by a
824 failure to properly contextualize its contributions, with papers often omitting comparisons to essen-
825 tial baselines or failing to discuss closely related work, thereby weakening the perceived significance
826 of the results.827 This feedback pinpoints the primary bottleneck in current autonomous systems: a profound gap be-
828 tween the ability to generate novel concepts and the capacity for rigorous scientific execution and
829 articulation. The observed weaknesses in experimental design directly reflect the low-success-rate
830 problem discussed previously; the system struggles not just to implement ideas correctly, but to val-
831 idate them convincingly. To bridge this gap, future work must endow these systems with a deeper,
832 procedural understanding of the scientific method itself. This requires moving beyond simple im-
833 plementation and reporting capabilities towards two key areas: First, developing agents explicitly
834 trained in experimental design, capable of planning comprehensive evaluations that anticipate and
835 address potential scientific critiques. Second, enhancing the system's ability for analytical reason-
836 ing, enabling it to not just describe results but to interpret their significance, formulate compelling
837 arguments, and engage in the kind of deep, reflective discussion that characterizes high-impact re-
838 search.839 C ADDRESSING THE BOTTLENECKS IN AUTONOMOUS SCIENTIFIC
840 DISCOVERY
841842 Artificial intelligence is reshaping the paradigm of scientific exploration through its ability to gen-
843 erate hypotheses at a massive scale; however, this has also pushed "verification" to the center stage,
844 making it a critical bottleneck. Our research empirically reveals the severity of this challenge: on
845 frontier scientific tasks, the success rate of ideas generated by AI systems that ultimately lead to sub-
846 stantial progress is typically below 3%, meaning the vast majority of computational resources are
847 consumed exploring low-value hypotheses. This inefficient "needle in a haystack" model is the core
848 obstacle preventing AI Scientists from evolving from "novel tools" to "efficient discoverers." (Cor-
849 nelio et al., 2025) Therefore, to further accelerate the process of scientific discovery, future research
850 must focus on constructing a systematic solution to overcome this bottleneck. As shown in Figure
851 7, future AI Scientist systems need to evolve synergistically in three key directions: optimizing the
852 quality of initial hypotheses (Optimize Hypothesis Quality), enhancing filtering capabilities during
853 the process (Enhance Filtering), and improving the quality of implementation and verification at the
854 final stage (Improve Implementation Quality).855 One of the core future research directions is to develop AI systems capable of generating higher-
856 quality, more reliable hypotheses (as shown in Figure 7e), equipped with more precise filtering
857 mechanisms to predict their success rate (as shown in Figure 7d). Methods that rely purely on
858 a data-driven approach, while capable of discovering patterns, often produce outputs that lack a
859 theoretical foundation and are prone to generating "hallucinations" that contradict known scientific
860 theories. Future systems must move beyond this by more deeply integrating background knowledge
861 and theory. For instance, the direction represented by "derivable models" (such as AI-Descartes
862 (Cornelio et al., 2023) and AI-Hilbert (Cory-Wright et al., 2024)), which incorporate scientific ax-
863 ioms as constraints during the hypothesis generation phase, offers a promising path to improving
hypothesis quality. Furthermore, systems must have the ability to learn from their own exploratory

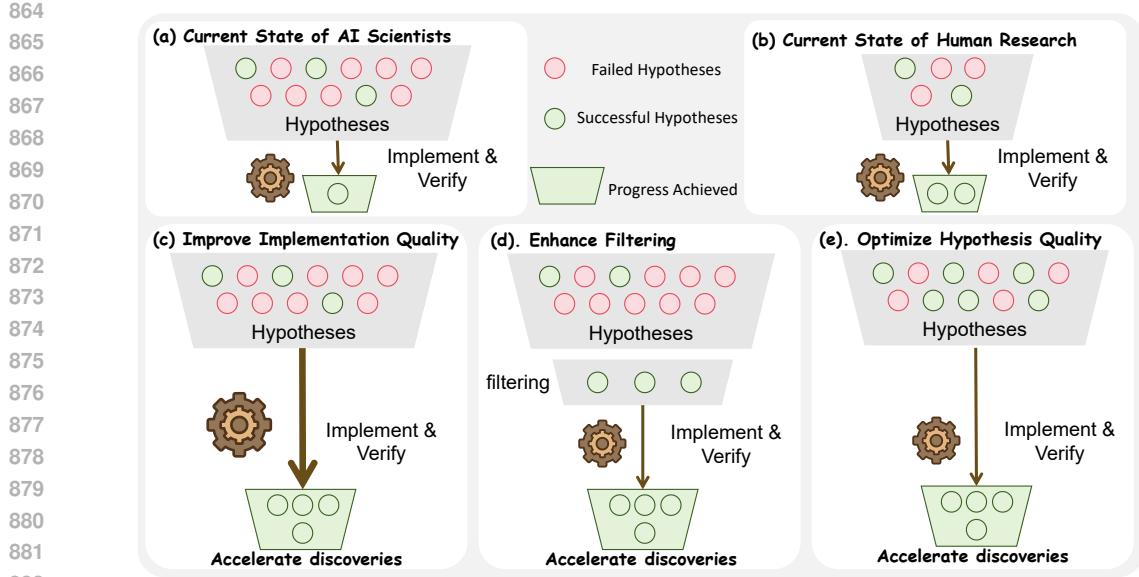


Figure 7: Three strategies for improving the efficiency of autonomous scientific discovery. (a) and (b) illustrate the low success rate currently faced by both AI and human research. Future directions will need to accelerate the discovery process through the synergy of three approaches: (c) improving implementation success rates, (d) adding an efficient filtering stage before implementation, and (e) optimizing the quality of initial hypotheses from the source.

history. By establishing mechanisms similar to a "Findings Memory," a system can systematically record and analyze every success and failure, thereby avoiding redundant exploration of ineffective paths in subsequent iterations and gradually developing a more insightful scientific intuition. Building on this foundation, developing more advanced, low-cost surrogate models and acquisition functions to more accurately predict the scientific value of an idea will be key to enhancing filtering efficiency and conserving verification resources.

Concurrently, an often-overlooked yet crucial future research direction is to significantly improve the quality and reliability of AI systems in the engineering implementation and verification stages (as shown in Figure 7c). Even the most brilliant scientific concept can never have its value confirmed if it cannot be accurately and flawlessly translated into an executable experiment. Our analysis indicates that up to 60% of exploratory failures stem from implementation-level errors, which represents a massive waste of resources and directly impedes scientific progress. History has repeatedly warned us that a lack of rigorous verification can lead to catastrophic consequences, whether in NASA missions or medical practice. Therefore, building a scalable and reliable automated verification platform is an essential path forward. This requires not only more powerful code-generation and self-debugging agents to reduce implementation errors but also standardized sandbox environments and automated testing procedures to ensure the stability and reproducibility of experimental results. Ensuring the absolute reliability of the verification process is the final and most critical line of defense in transforming AI-generated "plausible ideas" into "solid scientific evidence."

Looking ahead, to truly accelerate scientific discovery, it is necessary to integrate the aforementioned strategies into an organic whole, advancing AI Scientists from "random explorers" to "goal-oriented strategists." This is not about replacing humans with AI, but about pioneering a more efficient paradigm of human-AI collaboration. In this model, human scientists are responsible for defining grander, more valuable scientific goals and providing high-level strategic guidance, while the AI system serves as a powerful "exploration engine," executing efficient trial-and-error and verification cycles at an unprecedented scale and speed under human direction. To realize this vision, the community must also address a series of challenges, such as building benchmarks that can truly evaluate innovation and designing mechanisms that encourage diverse exploration to avoid the ho-

918 mogenization of research paradigms, thereby preserving the potential for serendipitous discoveries
 919 like Alexander Fleming’s discovery of penicillin (Fleming, 1941).
 920

921 D METHOD DETAILS

922 D.1 IMPLEMENTATION OF THE STRATEGIZE & HYPOTHESIZE STAGE

923 The Strategize & Hypothesize stage of each discovery cycle is operationalized within our system
 924 as a multi-agent workflow that mirrors a structured research and development process. This entire
 925 process is centered around the ‘**Findings Memory**’ (\mathcal{M}_t), which is implemented as a large, list-style
 926 database (`IdeaDatabase` in the codebase) designed to persistently store thousands of structured
 927 records. Each record represents a unique finding at a specific stage of its lifecycle. The workflow is
 928 executed by a cohort of specialized agents, orchestrated by a central ‘**DirectorAgent**’, ensuring that
 929 the generation of new hypotheses is a guided, strategic exploration rather than an undirected search.
 930

931 Each cycle commences with an analysis of the ‘**Findings Memory**’. This is enacted by the ‘**Sci-
 932 entistAgent**’, which is invoked in its ‘STAGE: RESEARCH_OUTLINE’ mode. The agent consumes
 933 the current state of knowledge, including the entire baseline codebase and the contents of the ‘Find-
 934 ings Memory’, to perform a first-principles analysis of the problem domain. It formulates the core
 935 challenge as a rigorous mathematical problem and identifies the fundamental limitations of existing
 936 findings. The tangible output of this strategic analysis is a comprehensive Markdown document,
 937 `Research_Outline.md`, which serves as a high-level charter, guiding the system’s focus for
 938 the current cycle. This initial step provides a concrete and reproducible mechanism for the “analysis
 939 of limitations in existing knowledge” described in our main methodology.
 940

941 Following the establishment of a strategic outline, the ‘**DirectorAgent**’ deploys one or more in-
 942 stances of the ‘**ExplorerAgent**’ to generate a new collection of hypotheses (\mathcal{P}_{new}). Governed by
 943 its highly specific `EXPLORER_AGENT_PROMPT`, this agent’s core function is to produce novel,
 944 structured records based on the directions provided in `Research_Outline.md`. Its method-
 945 ology emphasizes systematic, cross-disciplinary investigation, using integrated research tools like
 946 `pasa_search` to adapt successful theoretical frameworks from adjacent scientific fields. The out-
 947 put of this process is a structured JSON object for each new hypothesis, detailing its motivation,
 948 theoretical underpinnings, and a concrete implementation plan. This JSON object is the system’s
 949 direct instantiation of a candidate finding $I \in \mathcal{P}_{\text{new}}$.
 950

Upon generation, each new candidate finding is immediately passed to the system’s low-cost Sur-
 951 rogate Model (g_t), a role fulfilled by the ‘**EvaluatorAgent**’. This agent is first contextualized with
 952 the entire state of the ‘Findings Memory’. As dictated by its prompt, it then assesses the candi-
 953 date finding and produces three numerical scores: a `utility_score`, a `quality_score`, and an `explo-
 954 ration_score`. These scores are the direct implementation of the components of the Valuation vector
 955 $V = \langle v_u, v_q, v_e \rangle$, quantifying the hypothesis’s estimated value. Finally, the ‘**DirectorAgent**’ initial-
 956 izes a new record in the ‘Findings Memory’, pairing the new hypothesis with its valuation vector
 957 and assigning it the status of an ‘**Idea Finding**’. This action concludes the stage, formally adding
 958 the new, unevaluated hypotheses to the system’s knowledge base, ready for the subsequent selection
 959 and verification phase.
 960

961 D.2 IMPLEMENTATION OF THE IMPLEMENT & VERIFY STAGE

962 The Implement & Verify stage serves as the primary filter in the research funnel and is operational-
 963 ized as the “Engineering Phase” of the system’s workflow. This phase is triggered when the system
 964 makes a strategic decision to commit significant computational resources to validate a single, highly
 965 promising ‘**Idea Finding**’. The workflow is managed by the ‘**ScientistAgent**’, which acts as the
 966 primary decision-maker, and the ‘**ImplementationAgent**’, which executes the complex code-level
 967 modifications and real-world experiments. This stage is paramount as it provides the empirical
 968 feedback essential for the system’s learning loop.
 969

970 The selection process, described in the main text as the Acquisition Function (α), is implemented
 971 by the ‘**ScientistAgent**’ operating in its ‘STAGE: STRATEGIC_DECISION’ mode. This agent pe-
 972 riodically reviews the population of ‘**Idea Findings**’ and their associated valuation vectors stored
 973 in the ‘**Findings Memory**’. Based on the criteria in its prompt, which require it to reflect on past

972 outcomes and balance the exploitation-exploration trade-off, it selects the most promising record for
 973 validation. A decision of ‘VALIDATE’ from this agent, targeting a specific finding’s ID, is the system’s operational equivalent of the ‘argmax’ operation in the UCB formula. Upon this selection, the
 974 chosen record’s status within the ‘Findings Memory’ is formally promoted from an ‘Idea Finding’
 975 to an ‘Implement Finding’, signaling the start of the resource-intensive implementation.

976
 977 Once a finding is promoted, the ‘DirectorAgent’ delegates the implementation task to the ‘ImplementationAgent’, a specialized, terminal-based Agent governed by the highly prescriptive
 978 IMPLEMENTATION_AGENT_PROMPT. The agent’s workflow is meticulously structured for ro-
 979 bustness and reproducibility. It begins by creating an isolated, sandboxed directory for the experi-
 980 ment by copying the entire baseline codebase. Within this safe environment, it systematically trans-
 981 lates the ‘theory_and_method’ and ‘code_level_plan’ from the selected finding’s record into func-
 982 tional code modifications. The agent’s governing prompt mandates a rigorous engineering process,
 983 including the creation of unit tests to verify numerical stability and correctness, and the maintenance
 984 of a detailed log of all actions in a notebook.md file.

985
 986 The culmination of this stage is the real-world experiment. After completing the code modifications
 987 and passing all internal tests, the ‘ImplementationAgent’ executes the project’s standard evaluation
 988 script, test.sh. The complete, captured terminal output from this script, containing the final per-
 989 formance metrics, constitutes the empirical observation of the true scientific value function, $f(I_{t+1})$.
 990 In the final step, the ‘DirectorAgent’ takes this new data point—the empirical result—and uses it to
 991 update the corresponding ‘Implement Finding’ record in the ‘**Findings Memory**’. This action en-
 992 riches the finding with empirical evidence, formally closing the learning loop and providing critical
 993 new knowledge to inform all subsequent discovery cycles.

994 995 D.3 IMPLEMENTATION OF THE ANALYZE & REPORT STAGE 996

997 The final stage of the DeepScientist discovery loop, Analyze & Report, is initiated when an
 998 Implement Finding successfully validates, demonstrating performance that surpasses the es-
 999 tablished baseline. This achievement triggers a sophisticated multi-agent workflow orchestrated by
 1000 a central ‘DirectorAgent’, designed to transform the raw experimental success into a comprehensive
 1001 and reproducible scientific paper. This process is not a monolithic writing task but a structured,
 1002 multi-phase procedure that mirrors a rigorous human-led research publication effort, comprising
 1003 three core sub-phases: Iterative Outline Development, Sequential Paper Writing, and Multi-Round
 1004 Revision. Each sub-phase is executed by specialized agents with precisely defined roles and opera-
 1005 tional protocols, ensuring a high degree of quality control and methodological soundness.

1006 The process begins with Iterative Outline Development, a three-round cycle of design, review, and
 1007 analysis. The ‘DirectorAgent’ first deploys an ‘OutlineDesignerAgent’, which is tasked with cre-
 1008 ating a compelling narrative and a detailed structural blueprint for the paper. This agent operates
 1009 via a unique two-stage process: it first generates thousands of words of unstructured reasoning to
 1010 explore the theoretical foundations and experimental implications of the finding, drawing from the
 1011 complete history in the Findings Memory and the newly populated Result.md file. Sub-
 1012 sequently, it distills this reasoning into a structured JSON object, which includes a narrative arc,
 1013 answers to ten foundational research questions, and detailed plans for every table and figure. This
 1014 initial outline is then passed to an ‘OutlineReviewerAgent’, which provides a harsh, academic-style
 1015 critique. Finally, an ‘OutlineAnalyzerAgent’ evaluates both the outline and its review to make a
 1016 strategic decision: either ‘VALIDATE’ the outline as ready, or ‘EVOLVE’ it by generating a specific
 1017 ‘improvement_directive’ for the next round. This cycle repeats up to three times, ensuring the final
 1018 blueprint, saved as final_selected_outline.json, is robust and logically sound.

1019 With a validated outline in place, the ‘DirectorAgent’ proceeds to the Sequential Paper Writing
 1020 sub-phase, deploying a specialized ‘ClaudeCodePaperWriteAgent’. This agent is governed by an
 1021 exceptionally detailed and prescriptive prompt that enforces a strict, multi-phase workflow exe-
 1022 cuted directly on the file system. Critically, the agent does not immediately begin writing prose.
 1023 Its first mandatory step is an extensive literature review, where it uses integrated search tools like
 1024 ‘pasa_search’ and ‘semantic_scholar_query’ to gather over 60 relevant citations, meticulously pop-
 1025 ulating a references.bib file and documenting its findings in a draft.md log. Only after
 1026 this literature foundation is established does it proceed to generate all required figures and tables,
 1027 extracting data directly from Result.md and saving styled plots to the ‘/figures’ directory.

1026
 1027 Table 4: Aggregate performance of Micronano-DeepScientist on the 154-task ALGOTUNE bench-
 1028 mark.

Metric	Value
Total tasks	154
Successful tasks	120 (77.9%)
Slower or failed tasks	34 (22.1%)
Mean speedup	16.6 \times
LLM backbone	GLM-4.6 (open-source)

1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037 Following the completion of literature and figure generation, the ‘ClaudeCodePaperWriteAgent’
 1038 begins writing the manuscript’s content. It follows a strict top-down sequence, creating and popu-
 1039 lating individual LaTeX files for each section (e.g., `introduction.tex`, `methodology.tex`,
 1040 `experiments.tex`) in a predefined order. The content for each section is precisely guided by the
 1041 blueprint in `final_selected_outline.json`, ensuring perfect alignment between the plan
 1042 and the final output. The agent’s prompt includes a comprehensive validation checklist that it must
 1043 internally satisfy before completion, covering everything from content authenticity and structural
 1044 integrity to experimental completeness and citation accuracy. The entire writing process is logged in
 1045 `writing_plan.md` and `draft.md`, and the agent signals its completion to the ‘DirectorAgent’
 1046 only by creating a final `paper.md` file, ensuring the full sequence has been executed.

1047 The final sub-phase is Multi-Round Revision, which ensures the paper meets publication standards.
 1048 The ‘DirectorAgent’ deploys a ‘PaperReviewerAgent’ to conduct a thorough review of the complete
 1049 draft, assessing its clarity, technical accuracy, and narrative coherence. The reviewer’s structured
 1050 feedback is then passed back to the ‘ClaudeCodePaperWriteAgent’ as a set of revision instructions.
 1051 The writer agent then performs a targeted revision of the relevant `.tex` files to address the identified
 1052 weaknesses. This review-and-revise loop is executed for a predefined number of rounds, iteratively
 1053 polishing the manuscript. The culmination of this entire stage is a complete, publication-ready
 1054 package containing the full LaTeX source code, section files, bibliography, figures, and a detailed
 1055 log of the generation process, thereby converting a single ‘Progress Finding’ into a durable and
 1056 shareable piece of scientific knowledge.

E ADDITIONAL EXPERIMENTS

E.1 LARGE-SCALE EVALUATION OF MICRONANO-DEEPSIENTIST ON THE ALGOTUNE BENCHMARK

1057
 1058 We introduced a lightweight variant of our framework, **Micronano-DeepScientist**, to enable large-
 1059 scale evaluation across diverse scientific discovery tasks (Press et al., 2025). This version preserves
 1060 the core hierarchical exploration process and the discovery memory mechanism of DeepScientist,
 1061 but removes the most computation-intensive modules such as literature reading, formal hypothesis
 1062 drafting, and extensive experimental analysis. As a result, Micronano-DeepScientist operates at ap-
 1063 proximately **1/1000** of the runtime cost of the full system while maintaining its essential exploratory
 1064 capability. All experiments in this section use the **open-source GLM-4.6** (Zeng et al., 2025) model
 1065 as the reasoning backbone.

1066
 1067 To assess the generality of our approach, we conducted systematic experiments on ALGOTUNE, a
 1068 benchmark containing **154 algorithmic discovery tasks** spanning mathematics, physics, and com-
 1069 puter science. Each task requires the system to autonomously search for algorithmic improvements
 1070 relative to strong human-designed baselines. Micronano-DeepScientist successfully discovered al-
 1071 gorithms that outperform the baseline implementations on **120 tasks (77.9%)**, achieving an average
 1072 speedup of **16.6 \times** . On the remaining 34 tasks (22.1%), the system generated solutions that were
 1073 slower or did not surpass the baseline within the allocated search time. These results demonstrate
 1074 that even a significantly scaled-down discovery engine can autonomously generate competitive algo-
 1075 rithmic innovations across a broad task distribution when paired with an efficient hierarchical search
 1076 strategy and a capable open-source model such as GLM-4.6. A summary of the aggregate statistics
 1077 is shown in Table 4.

1080

1081 Table 5: Automatic review scores using the o3-mini reviewer setup from Zochi. DeepScientist is
1082 evaluated with exactly the same code and prompts as prior work.

Systems	Sound.	Pres.	Contr.	Orig.	Qual.	Clar.	Sign.	Overall
AI Scientist	2.20	2.40	2.10	2.40	2.10	2.60	2.20	3.80
AI Scientist-v2	2.00	1.67	2.00	2.00	2.00	1.67	2.00	3.00
CycleResearcher	2.33	2.17	2.33	2.33	2.17	2.17	2.50	4.00
Zochi	3.00	3.00	3.00	3.00	3.00	2.50	3.00	6.00
AI-Researcher	2.43	2.14	2.43	2.71	2.43	2.14	2.57	4.29
DeepScientist	2.80	2.80	2.80	3.00	2.80	2.80	3.60	6.20

1089

1090

1091

1092 Table 6: Automatic review scores using the AI Scientist reviewer prompts with Gemini-2.5-Pro.

Systems	Sound.	Pres.	Contr.	Overall
AI Scientist	1.00	1.40	1.10	1.70
AI Scientist-v2	1.00	1.00	1.00	1.67
CycleResearcher	1.00	1.00	1.17	1.50
AI-Researcher	1.00	1.14	1.00	1.29
Zochi	1.00	1.50	2.00	2.00
DeepScientist	1.20	1.80	1.80	2.20

1093

1094

1095

1096

1097

1098

1099

1100

1101

E.2 ROBUSTNESS ACROSS MULTIPLE AUTOMATED REVIEWER SYSTEMS

Beyond DeepReviewer-14B⁴(Zhu et al., 2025a), we further assess the quality of DeepScientist’s papers using several independent automatic reviewer systems. First, we adopt the original Zochi reviewer setup based on the o3-mini model and the official evaluation code, and re-evaluate all available systems under exactly the same prompts (Table 5). In this configuration, Zochi (Intology, 2025) attains a strong Overall score of 6.00, but DeepScientist still slightly surpasses it with an Overall score of 6.20, and achieves the highest or tied-highest scores on key dimensions such as Originality, Clarity, and Significance. We then apply the AI Scientist reviewer prompts with three different backbone models—Gemini-2.5-Pro, GPT-4o, and GPT-5—yielding Tables 6, 7, and 8, respectively. Across all three backbones, DeepScientist again obtains the best Overall rating among the compared AI Scientist systems, with noticeable gains in Soundness and Presentation under Gemini-2.5-Pro, and a particularly large margin in Overall under GPT-4o. Finally, using the independent CycleReviewer model [3,4] (Table 9), DeepScientist achieves the highest Overall score of 4.85, exceeding both Zochi (4.50) and CycleResearcher (4.46) while also leading on all three component criteria.

Taken together, these results show a consistent pattern: regardless of the underlying reviewer architecture (o3-mini, Gemini-2.5-Pro, GPT-4o, GPT-5, or CycleReviewer) and despite differences in absolute scoring scales, DeepScientist is always ranked at or near the top in Overall quality among existing AI Scientist systems. This cross-validation strengthens the robustness of our conclusions and indicates that DeepScientist’s advantages are not an artifact of a particular reviewer model or prompt design. Moreover, the dimensions on which DeepScientist tends to score highest—such as originality, significance, and clarity—are precisely those emphasized by human program-committee evaluations in Section B.2, suggesting that the gains observed under automatic reviewers are aligned with human judgments of scientific value.

1124

1125

1126

E.3 A CASE STUDY ON HUMAN VS. AUTONOMOUS RESEARCH EFFICIENCY

To better understand how an autonomous system compares to human researchers in terms of research efficiency, we conduct a qualitative case study on the AI text detection task. For this domain, we collected approximate statistics from the teams behind two recent human-designed SOTA methods (Fast-Detect and Glimpse), focusing on their development timelines and resource usage. Each project was led by a full research team and typically required about six months from project inception to camera-ready paper. During this period, the teams reported using roughly 5–10 GPU hours per day on average, for a total of around 1,500 GPU hours per project, with GPU utilization dropping substantially outside of normal working hours. In terms of exploration breadth, a typical six-month

1134

1135

Table 7: Automatic review scores using the AI Scientist reviewer prompts with GPT-4o.

1136

1137

Systems	Sound.	Pres.	Contr.	Overall
AI Scientist	2.00	2.10	2.00	2.60
AI Scientist-v2	2.00	2.00	2.00	3.00
CycleResearcher	2.00	2.00	2.00	3.00
AI-Researcher	2.00	2.00	2.00	3.14
Zochi	2.00	2.00	2.50	3.00
DeepScientist	2.40	2.20	2.40	4.20

1141

1142

1143

1144

1145

Table 8: Automatic review scores using the AI Scientist reviewer prompts with GPT-5.

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

project allowed the team to deeply investigate on the order of 10–30 core hypotheses, each of which required careful design, implementation, and iteration before being deemed publishable.

1156

On the same AI text detection task, DeepScientist was run continuously for 14 days and produced three progressively stronger SOTA methods (T-Detect, TDT, and PA-TDT). Each breakthrough consumed roughly 900 GPU hours, for a total on the order of a few thousand GPU hours, but these resources were utilized close to 24/7 across parallel instances. Within this two-week window, the system generated over 2,400 candidate hypotheses and autonomously executed around 600 full experimental validations, far exceeding the exploratory throughput that a human team can typically achieve in a comparable or even longer time span. While such a comparison is necessarily approximate and limited in sample size, it suggests that, under a given compute budget, DeepScientist can explore the hypothesis space with a substantially higher trial-and-error throughput, compressing what would conventionally require several months of human-led research into a few weeks of machine-driven exploration. At the same time, human researchers remain essential for problem formulation, high-level evaluation, and long-term research direction, indicating a complementary relationship in which autonomous systems amplify, rather than replace, human scientific effort.

1169

1170

F IMPLEMENTATION DETAILS

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Our implementation relies on a distributed architecture to manage the distinct tasks of scientific reasoning and code execution. The core logic of DeepScientist is powered by the Gemini-2.5-pro model, while all code implementation tasks are delegated to Claude-4-opus, executed within the Claude Code framework (v1.0.53). To ensure stability and security, the DeepScientist system and the Claude Code agent are isolated in separate Docker containers, communicating via a port-based API. During the ‘Implement & Verify’ stage, a human-verified baseline code repository is first duplicated into a new, sandboxed folder. The Claude Code agent’s operations are strictly confined to this new directory to prevent unintended modifications. A critical step in our pipeline is a secondary verification process: after Claude Code reports completion, DeepScientist independently re-executes the main script via the command line. This measure was implemented to counteract a high rate of false positives—we observed that approximately 50% of initial implementation attempts failed to complete fully due to internal timeouts within the Claude Code agent. Throughout this project, all experimental results were manually inspected by human supervisors to guarantee their authenticity. For the ‘Analyze & Report’ stage, a similar process is followed: the validated code is replicated for each analytical experiment, with Claude Code executing them sequentially. Upon completion, DeepScientist aggregates all results, generates a paper outline, and then employs automated tools to write and compile the final PDF manuscript. **For all experiments, we used a fixed set of hyperpa-**

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

Table 9: Automatic review scores using CycleReviewer.

Systems	Sound.	Pres.	Contr.	Overall
AI Scientist	2.12	2.25	2.00	3.23
AI Scientist-v2	2.00	2.42	2.00	3.00
CycleResearcher	2.50	2.54	2.38	4.46
AI-Researcher	2.07	2.21	2.07	3.50
Zochi	2.62	2.88	2.50	4.50
DeepScientist	2.80	2.85	2.65	4.85

parameters: the retrieval count was set to $K = 15$, and the UCB parameters were set to utility weight $w_u = 1$, quality weight $w_q = 1$, and exploration coefficient $\kappa = 1$.

The financial and computational costs of this autonomous discovery process are substantial. Each idea generated during the ‘Strategize & Hypothesize’ stage incurred an approximate cost of \$5 in API calls. For each attempt in the ‘Implement & Verify’ stage, the cost averaged \$20 for Claude-4-opus API usage, in addition to the computational cost of approximately 1 GPU hour, [as detailed in Figure 4.c](#). A successful finding that progressed to the ‘Analyze & Report’ stage required a further expenditure of around \$150, which includes \$100 for running analytical experiments and \$50 for the final report generation. The total cost to achieve the scientific advancements presented in this paper amounted to approximately \$100,000. While significant, we believe these costs can be substantially reduced. We recommend that future iterations explore more economical alternatives, such as deploying high-throughput models like Qwen-3-Next-80B for the core DeepScientist system and leveraging subscription-based API access (e.g., Claude Max or OpenAI Pro) to mitigate per-call expenses. In this paper, each implementation was provided with a single H800 server for exploration. Since the H800 GPU has an FP16 computing power of approximately 2 TFLOPS, an average execution of 70 minutes corresponds to about 1×10^{16} floating-point operations.

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

ABDUCT, ACT, PREDICT: SCAFFOLDING CAUSAL INFERENCE FOR AUTOMATED FAILURE ATTRIBUTION IN MULTI-AGENT SYSTEMS

DeepScientist

ABSTRACT

Failure attribution in multi-agent systems—pinpointing the exact step where a decisive error occurs—is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this *counterfactual inference gap*, we introduce **Abduct-Act-Predict (A2P) Scaffolding**, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) **Abduction**, to infer the hidden root causes behind an agent’s actions; (2) **Action**, to define a minimal corrective intervention; and (3) **Prediction**, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model’s analysis. Our extensive experiments on the Who&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves **47.46%** step-level accuracy, a **2.85 \times** improvement over the 16.67% of the baseline. On the more complex Hand-Crafted dataset, it achieves **29.31%** step accuracy, a **2.43 \times** improvement over the baseline’s 12.07%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution.

1 INTRODUCTION

The rise of sophisticated multi-agent systems marks a pivotal moment in artificial intelligence, unlocking new frontiers in collaborative problem-solving (Li et al., 2023; Hong et al., 2023) and complex task automation (Wu et al., 2023; Fourney et al., 2024). However, this growing complexity introduces a critical operational bottleneck: debugging. When a system fails, developers are faced with a tangled web of interactions, where a subtle error in an early step can cascade into a catastrophic failure dozens of turns later. Pinpointing the single, decisive error—the task of **failure attribution**—is not merely challenging; it is a labor-intensive, error-prone process that stands as a major barrier to the reliable deployment and iterative improvement of these powerful systems (Zhang et al., 2025).

Current automated approaches to this problem have proven fundamentally inadequate, with step-level accuracy rates hovering below a dismal 17% (Zhang et al., 2025), a figure far too low for practical debugging. We argue this failure is not a matter of model capability but of methodological paradigm. Existing methods treat failure attribution as a **pattern recognition** task over conversational logs (Zhang et al., 2025; Lightman et al., 2023). They present an entire log to a Large Language Model (LLM) and ask it to "find the mistake," implicitly assuming the model can spot anomalous patterns correlated with failure. This approach fundamentally misses the point. The critical question is not "which step looks wrong?" but rather a causal one: "which single corrective action would have turned failure into success?" This exposes a deep *counterfactual inference gap*: the inability of unstructured, holistic methods to systematically reason about the consequences of hypothetical interventions, a challenge particularly pronounced in multi-turn interactions where cause and effect are obscured (Kıcıman et al., 2023; Zevcevic et al., 2023).

To bridge this gap, we introduce **Abduct-Act-Predict (A2P)**, a novel prompting framework that reframes failure attribution from pattern recognition into a structured **causal inference** task. Instead of asking for a direct answer, A2P guides an LLM through a formal, three-step counterfactual reasoning process within a single inference pass, operationalizing the logic of Pearl’s structural causal model hierarchy (Pearl, 2009). The framework compels the model to: (1) *Abduct*, inferring hidden factors (e.g., a flawed assumption) that explain a problematic action; (2) *Act*, defining a minimal, concrete corrective intervention; and (3) *Predict*, simulating the subsequent counterfactual trajectory to verify if the intervention would have resolved the overall task failure. This structured process forces the model to move beyond correlation and rigorously test causal hypotheses, transforming the "needle-in-the-haystack" problem (Liu et al., 2024) into a systematic investigation.

Our approach is not just theoretically sound but empirically dominant. Evaluated on the comprehensive Who&When benchmark (Zhang et al., 2025), A2P Scaffolding achieves a step-level accuracy of **47.46%** on the Algorithm-Generated dataset—a **2.85×** improvement over the 16.67% of its direct baseline. On the more challenging Hand-Crafted dataset, it achieves **29.31%** accuracy, a **2.43×** improvement over the baseline’s 12.07%. These results establish a new state-of-the-art and, for the first time, demonstrate a viable path toward reliable automated debugging for multi-agent systems. Rigorous ablation studies further validate our framework, confirming that each causal reasoning component is essential and revealing the surprising, critical role of structural cues like contextual step numbering in enabling fine-grained analysis.

2 RELATED WORK

2.1 LLM MULTI-AGENT SYSTEMS

The emergence of Large Language Models as capable reasoning agents has catalyzed rapid development in multi-agent system architectures (Wu et al., 2023; Li et al., 2023; Hong et al., 2023). These systems leverage the collaborative potential of multiple specialized agents working together to solve complex tasks that exceed the capabilities of individual models (Park et al., 2023; Liu et al., 2023b). Notable frameworks include AutoGen (Wu et al., 2023), which facilitates multi-agent conversations through customizable agent roles and interaction patterns, CAMEL (Li et al., 2023), which explores role-playing dynamics in collaborative task-solving, and MetaGPT (Hong et al., 2023), which incorporates software development methodologies into multi-agent workflows. Recent work has expanded these foundations to include specialized domains such as scientific research (Ghafarollahi & Buehler, 2024), software development (Kumar et al., 2024), and complex reasoning tasks (Du et al., 2023). However, as these systems grow in sophistication, the challenge of diagnosing failures becomes increasingly complex, with current debugging approaches remaining largely manual and ad-hoc (Wang et al., 2024b). The need for automated failure attribution becomes particularly acute in production deployments where system reliability directly impacts user experience and operational efficiency (Fournier et al., 2024).

The rapid proliferation of multi-agent systems has outpaced the development of systematic debugging methodologies. While considerable effort has been invested in designing agent architectures and interaction protocols (Qian et al., 2023; Chen et al., 2024), relatively little attention has been paid to post-hoc failure analysis. This gap is particularly problematic given the emergent behaviors that arise from agent interactions, where system failures often result from subtle cascading effects rather than obvious individual errors (Kumar et al., 2024). Our work addresses this critical gap by providing the first systematic framework for automated failure attribution specifically designed for the unique challenges of multi-agent system debugging. Unlike previous approaches that focus on system design or performance evaluation (Wang et al., 2024b), we concentrate on the diagnostic phase that enables iterative improvement and reliable deployment.

2.2 LLM-AS-A-JUDGE AND PROCESS-LEVEL EVALUATION

The paradigm of using LLMs as evaluators has gained significant traction as a scalable alternative to human assessment across diverse domains (Zheng et al., 2023; Wang et al., 2024a). This approach has proven particularly valuable in scenarios where human evaluation is expensive, time-consuming, or requires specialized expertise (Liu et al., 2023a; Dubois et al., 2023). Recent developments have extended LLM-based evaluation to process-level assessment, where models evaluate intermediate

1350 reasoning steps rather than only final outputs (Lightman et al., 2023; Wang et al., 2023). Process
 1351 reward models (Uesato et al., 2022) have shown promise in mathematical reasoning by identifying
 1352 the specific steps where errors occur, enabling more targeted feedback and improvement strategies.
 1353 However, these approaches primarily focus on single-agent reasoning chains in well-defined domains
 1354 like mathematics or coding, where the correctness of individual steps can be objectively determined.

1355 Our work extends this process-level evaluation paradigm to the significantly more complex domain
 1356 of multi-agent system failures. Unlike mathematical reasoning where step correctness is often binary
 1357 and context-independent, multi-agent failures involve complex interdependencies between agents,
 1358 temporal dynamics, and emergent behaviors that resist simple classification (Du et al., 2023). While
 1359 process reward models evaluate individual reasoning steps, our A2P framework must navigate the
 1360 multi-participant, interactive dynamics of agent systems where the "correctness" of an action depends
 1361 heavily on the broader conversational context and the ultimate task outcome. This fundamental
 1362 difference necessitates our novel approach of structured counterfactual reasoning rather than step-by-
 1363 step correctness assessment (Miller, 2019; Doshi-Velez & Kim, 2017).

1364

1365 2.3 CAUSAL REASONING IN LLMs

1366

1367 Recent research has begun exploring the causal reasoning capabilities of large language models,
 1368 revealing both promising potential and significant limitations (Kiciman et al., 2023; Zevcevic et al.,
 1369 2023). Benchmarks such as CLadder (Qin et al., 2023) and CausalBench (Jin et al., 2023) have
 1370 established that while LLMs can perform certain types of causal reasoning, they often struggle with
 1371 complex counterfactual inference tasks that require systematic manipulation of causal variables (Jin
 1372 et al., 2024). This limitation is particularly pronounced in scenarios requiring what Pearl terms
 1373 "Level 3" causal reasoning, answering questions about what would have happened under different
 1374 circumstances (Pearl, 2009). Studies have shown that structured prompting approaches, such as
 1375 CausalCoT (Zhang et al., 2024), can significantly enhance LLM performance on causal tasks by
 1376 providing explicit reasoning frameworks that guide model inference.

1377

1378 Building on these insights, our A2P Scaffolding framework represents a practical application of
 1379 structured causal prompting to a real-world diagnostic task. While previous work has focused on
 1380 synthetic causal reasoning benchmarks or simplified scenarios (Jin et al., 2023; Qin et al., 2023), we
 1381 tackle the significantly more complex challenge of failure attribution in multi-agent systems where
 1382 causal relationships are embedded in natural language conversations and span multiple participants
 1383 over extended time horizons. Our approach operationalizes Pearl's three-level causal hierarchy
 1384 (Pearl et al., 2016) into a concrete prompting strategy that enables LLMs to perform sophisticated
 1385 counterfactual analysis. Unlike previous causal reasoning work that typically evaluates models on
 1386 isolated causal queries, we demonstrate how structured causal prompting can address practical system
 1387 debugging challenges where the stakes of accurate causal inference directly impact development
 1388 efficiency and system reliability (Schölkopf et al., 2021; Peters et al., 2017).

1389

1388 3 METHOD

1389

1390 The challenge of automated failure attribution in multi-agent systems stems from the inherent
 1391 complexity of causal reasoning over extended, multi-participant conversational sequences. Existing
 1392 baseline methods, while processing the complete contextual information, treat attribution as a
 1393 monolithic pattern recognition task, implicitly assuming that LLMs can perform comprehensive
 1394 counterfactual reasoning within a single, unstructured inference step, an assumption contradicted
 1395 by recent benchmarks evaluating LLM causal capabilities (Kiciman et al., 2023; Zevcevic et al.,
 1396 2023). This assumption leads to a critical analytical bottleneck: models may successfully identify
 1397 correlations or surface-level errors but systematically fail to determine whether those errors were
 1398 truly *decisive*—that is, whether their correction would have altered the task outcome from failure to
 1399 success. This *counterfactual inference gap* constitutes the primary cause of the characteristically low
 1400 step-level accuracy observed in existing attribution systems (Zhang et al., 2025).

1401

1402 To bridge this gap, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel prompting framework
 1403 that restructures the failure attribution task into a formal, three-step causal inference process. Our
 1404 approach is implemented as an enhancement to the All-at-Once method, thereby retaining its key
 1405 advantage of having access to the complete conversational context. However, instead of a simple in-

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

struction, we employ a sophisticated prompt generation function, `construct_causal_prompt`, that guides the LLM through a rigorous analytical sequence inspired by Pearl’s structural causal model framework (Pearl, 2009). This method makes the reasoning process transparent, verifiable, and significantly more accurate without requiring any changes to the underlying model architecture.

The core of A2P Scaffolding is its three-step reasoning structure, illustrated in Figure 1. **(1) Abduction (Inferring Hidden Causes):** The process begins by prompting the LLM to move beyond mere observation to abductive reasoning. Given the final task failure, the model is instructed to identify and articulate the hidden factors or latent variables (e.g., an agent’s knowledge gap, a flawed assumption, a misinterpretation of the user’s query) that best explain why a specific agent took a specific action at a specific step. This approximates the posterior inference of exogenous variables in a causal model, forcing the model to establish a plausible root cause before proceeding. **(2) Action (Defining an Intervention):** Once a potential root cause and erroneous action are hypothesized, the framework prompts the LLM to define a minimal, concrete intervention. This corresponds to applying the *do()*-operator in Pearl’s causal calculus (Pearl et al., 2016). The model must specify the exact, “correct” action the agent should have taken in that step. This step is crucial as it translates the abstract hypothesis into a testable, operationalized counterfactual. **(3) Prediction (Simulating the Counterfactual Trajectory):** With the intervention defined, the final step is to predict its consequences. The LLM is instructed to simulate the subsequent 3-5 turns of the conversation under the counterfactual condition that the correct action was taken. It must then predict whether this new, simulated trajectory would lead to the successful completion of the original task. This step directly evaluates the *decisive* nature of the error; if the simulated outcome is success, the hypothesis is confirmed.

Mathematically, A2P Scaffolding approximates the estimation of a counterfactual outcome $Z(\mathcal{I}_{(i,t)}(\tau))$ for an intervention at step t . We formalize the failure attribution task within Pearl’s SCM framework where a trajectory τ is generated by structural equations with states evolving as $s_{t+1} = f(s_t, a_t, \epsilon_t)$, where ϵ_t represents unobserved exogenous variables (e.g., agent’s internal knowledge state). The final outcome $Z(\tau)$ is a function of the full trajectory. Our objective is to find the earliest pair $(i^*, t^*) = \arg \min_{(i,t)} t$ such that the LLM’s guided simulation predicts $Z(\mathcal{I}_{(i,t)}(\tau)) = 0$ (success). The A2P framework guides the LLM through three approximations:

$$\text{Abduction: } \epsilon_t \leftarrow \arg \max_{\epsilon} P(\epsilon | s_{0:t}, a_t, Z(\tau) = 1) \quad (1)$$

$$\text{Action: } \text{do}(a_t \leftarrow a_t^*) \quad (2)$$

$$\text{Prediction: } Z(\tau^*) = g(s_0, \dots, s_t, s_{t+1}^*, \dots) \text{ where } s_{t+1}^* = f(s_t, a_t^*, \epsilon_t) \quad (3)$$

This entire three-step process is executed for each potential error the model considers, and it ultimately outputs the earliest agent-step pair that satisfies this causal chain. To support this fine-grained temporal reasoning, our method incorporates a critical structural component: **Contextual Step Numbering**. Before being passed to the model, the entire conversation log is pre-processed to prefix each turn with an explicit, formatted identifier like `Step {idx} - Agent_Name:`. Our ablation experiments conclusively demonstrate that these structural anchors are not merely a minor enhancement but are absolutely essential, preventing a catastrophic drop in step-level accuracy by providing the model with unambiguous reference points to trace causal dependencies through the dialogue.

The implementation is seamlessly integrated into the existing codebase through a command-line flag `-causal_reasoning` that activates the `construct_causal_prompt` function within the `all_at_once` and `all_at_once_async` methods. This design ensures full backward compatibility while making our advanced causal analysis easily accessible. The computational overhead is minimal, consisting of a 25% increase in processing time and token count per sample—a modest cost for the 2.85 \times improvement in accuracy achieved by our method.

Having established the theoretical foundation and implementation details of A2P Scaffolding, we proceed to describe our comprehensive experimental methodology designed to rigorously evaluate the framework’s effectiveness across diverse multi-agent system configurations and failure scenarios.

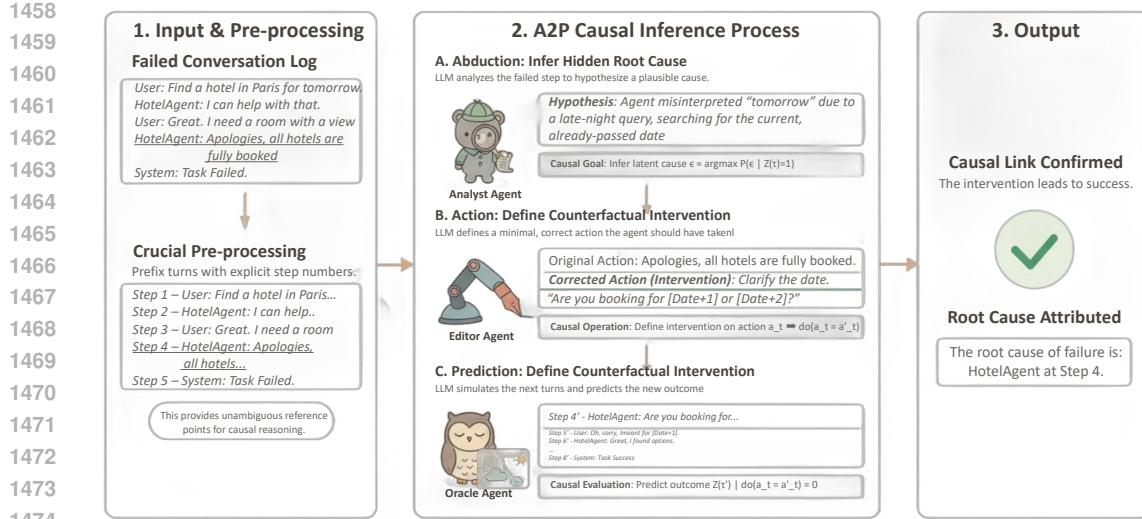


Figure 1: Overview of the A2P Scaffolding framework. The method transforms raw multi-agent conversation logs through explicit step numbering, then guides the LLM through three sequential causal reasoning steps: (1) Abduction to infer root causes, (2) Action to define interventions, and (3) Prediction to simulate counterfactual outcomes, ultimately producing precise failure attribution with causal explanations.

4 EXPERIMENTAL SETUP

All experiments were conducted on the Who&When benchmark (Zhang et al., 2025), a comprehensive dataset specifically designed for automated failure attribution in multi-agent systems. The benchmark comprises two distinct subsets that provide complementary perspectives on system complexity: Algorithm-Generated (126 samples) and Hand-Crafted (58 samples), totaling 184 distinct failure attribution tasks. The Algorithm-Generated subset contains failure logs from systems automatically constructed using the CaptainAgent algorithm from the AG2 library, where each system is tailored to specific queries from the GAIA (Mialon et al., 2023) and AssistantBench (Yoran et al., 2024) validation sets. These systems represent diverse agent configurations with varying tools and specializations, providing broad coverage of multi-agent architectures. The Hand-Crafted subset features failure logs from Magnetic-One (Fourney et al., 2024), a mature, carefully engineered multi-agent system comprising five specialized agents designed for web browsing, file navigation, and complex task orchestration. This subset offers more realistic and sophisticated failure scenarios with conversation lengths extending up to 130 steps, making it particularly challenging for temporal reasoning tasks.

Our method, A2P Scaffolding, was implemented by modifying the baseline `all_at_once` approach to incorporate our structured causal reasoning prompt, activated via a `-causal_reasoning` command-line flag. We used the `gpt-oss-120b` model accessed via a local API endpoint to ensure consistent experimental conditions across all methods. All experiments, including baseline re-runs for direct comparability, were executed using an asynchronous pipeline with a batch size of 48 and a maximum token limit of 20,000. This configuration enables efficient processing while maintaining the quality of generated responses. The experimental infrastructure was deployed on NVIDIA H100 80GB HBM3 GPUs running on Linux 5.14.0-427.13.1.el9_4.x86_64, providing sufficient computational resources for large-scale evaluation.

Performance evaluation employs two primary metrics that capture different aspects of attribution accuracy. **Agent-Level Accuracy** measures the percentage of correctly predicted failure-responsible agents, representing the fundamental requirement for identifying which component of the multi-agent system caused the failure. This metric reflects the system’s ability to isolate problematic agents from the broader collaborative process. **Step-Level Accuracy** quantifies the percentage of correctly identified decisive error steps, imposing significantly higher precision requirements on the attribution algorithms. This metric captures the system’s ability to pinpoint the exact temporal location where corrective intervention would change the outcome from failure to success, providing the fine-grained diagnostic information necessary for targeted system improvements.

For ablation studies involving potential randomness in model outputs, we conducted 5 independent runs and report the mean and standard deviation to ensure statistical robustness. Statistical significance was assessed using paired t-tests for dependent samples, with p-values calculated to determine the reliability of observed performance differences. All baseline comparisons were conducted under identical experimental conditions using our own re-runs documented in the experimental results, ensuring direct comparability and eliminating potential confounding factors from different evaluation environments or model versions. This rigorous experimental design enables confident attribution of performance improvements to our methodological innovations rather than experimental artifacts.

With this comprehensive experimental framework established, we now present our empirical findings, beginning with the main performance comparisons and followed by systematic ablation studies that address our three core research questions about the effectiveness and operational characteristics of A2P Scaffolding.

5 EXPERIMENTS

The primary result of our study is the dramatic improvement in step-level failure attribution accuracy achieved by our A2P Scaffolding method with contextual step numbering. Table 1 presents a comprehensive performance comparison on both datasets, where our enhanced A2P Scaffolding with step numbering achieves 47.46% step accuracy on the Algorithm-Generated dataset—significantly outperforming the next-best baseline (binary_search at 28.57%) and nearly tripling the performance of the direct baseline (all_at_once at 16.67%). This represents a 2.85 \times improvement over the all_at_once baseline, demonstrating the transformative impact of our structured causal reasoning framework combined with explicit temporal anchoring through step numbering (Peters et al., 2017).

Table 1: Performance comparison of A2P Scaffolding against baseline methods on both datasets. Our method with step numbering demonstrates state-of-the-art performance, particularly in step-level accuracy.

Method	Algorithm-Generated (126 samples)				Hand-Crafted (58 samples)			
	Agent Accuracy (%)		Step Accuracy (%)		Agent Accuracy (%)		Step Accuracy (%)	
	Value	Gain	Value	Gain	Value	Gain	Value	Gain
A2P (Ours)	65.40	–	47.46	–	58.62	–	29.31	–
<i>Baselines</i>								
all_at_once	63.49	-1.91	16.67	-30.79	27.59	-31.03	12.07	-17.24
step_by_step	49.21	-16.19	27.78	-19.68	53.45	-5.17	18.97	-10.34
binary_search	46.83	-18.57	28.57	-18.89	44.83	-13.79	13.79	-15.52

On the more challenging Hand-Crafted dataset, our method achieves 29.31% step accuracy—a 2.43 \times improvement over the all_at_once baseline’s 12.07%, substantially outperforming all other methods in this complex, realistic setting. The agent-level accuracy of 65.40% on Algorithm-Generated and 58.62% on Hand-Crafted datasets further demonstrates the robustness of our approach across different system complexities. These results establish A2P Scaffolding as the first automated method to achieve nearly 50% step-level accuracy on algorithm-generated systems while maintaining superior performance on realistic, complex scenarios (Fourney et al., 2024; Wu et al., 2023).

Research Question 1: How does structuring an LLM’s inference process with an explicit three-step causal framework (Abduction, Action, Prediction) and contextual step numbering affect its ability to perform fine-grained failure attribution in multi-agent conversations?

Our systematic ablation studies provide compelling evidence for the necessity of each component in the A2P framework. Table 2 quantifies the degradation in step-level accuracy when core components are removed.

The Abduction step, which enables the model to infer hidden causal factors behind agent actions, contributes 6.35 percentage points on Algorithm-Generated and 8.62 percentage points on Hand-Crafted datasets. This component transforms surface-level error detection into deep causal analysis

1566 **Table 2:** Impact of removing core causal components from A2P Scaffolding. Both Abduction and Prediction
 1567 steps are essential for maintaining high step-level accuracy across datasets.

Configuration	Algorithm-Generated		Hand-Crafted	
	Step Acc. (%)	Drop (pp)	Step Acc. (%)	Drop (pp)
Full A2P Model	47.46	–	29.31	–
A2P w/o Abduction	41.11	-6.35	20.69	-8.62
A2P w/o Prediction	40.32	-7.14	17.24	-12.07

1578 by forcing the model to reason about latent variables such as knowledge gaps, incorrect assumptions,
 1579 or misinterpretations that explain observed failures (Pearl et al., 2016; Schölkopf et al., 2021).

1580 The Prediction step demonstrates even greater importance, particularly for complex scenarios. Its
 1581 removal causes degradation of 7.14 percentage points on Algorithm-Generated and a substantial
 1582 12.07 percentage points on Hand-Crafted step accuracy. This validates our theoretical framework
 1583 that explicit counterfactual simulation—testing whether a corrective intervention would resolve the
 1584 failure—is essential for distinguishing decisive errors from incidental mistakes. The larger impact
 1585 on Hand-Crafted systems suggests that counterfactual reasoning becomes increasingly critical as
 1586 conversation complexity and length increase (Lewis, 1973; Woodward, 2003).

1587 Most remarkably, Table 3 reveals the critical importance of contextual step numbering.

1589 **Table 3:** Critical impact of explicit step numbering on A2P Scaffolding performance. The catastrophic drop in
 1590 step accuracy demonstrates the essential role of structural prompting cues.

Configuration	Agent Acc. (%)	Step Acc. (%)	Step Acc. Drop (pp)
A2P with Step Numbering	65.40	47.46	–
A2P without Step Numbering	64.29	17.78	-29.68

1597 **Note:** Results averaged over 5 experimental runs on the Algorithm-Generated dataset (126 samples). The
 1598 removal of simple “Step {idx} - ” prefixes causes a catastrophic performance collapse, demonstrating that
 1599 structural anchoring is as critical as semantic content for fine-grained temporal reasoning in LLMs.

1600 The removal of explicit step numbering—simply removing the “Step {idx} - ” prefixes—causes
 1601 a catastrophic 29.68 percentage point collapse in step-level accuracy (from 47.46% to 17.78%)
 1602 while leaving agent accuracy relatively unchanged. This finding demonstrates that providing clear
 1603 structural anchors for temporal reasoning is not merely helpful but absolutely essential for fine-grained
 1604 causal analysis. The result aligns with recent work showing that LLMs’ reasoning capabilities are
 1605 highly sensitive to input formatting and structural cues (Min et al., 2022; Webson & Pavlick, 2021),
 1606 suggesting that effective prompt engineering must consider both semantic content and syntactic
 1607 organization.

1608 **Research Question 2: Can the A2P Scaffolding method achieve superior step-level accuracy
 1609 compared to holistic, incremental, and hierarchical search-based attribution methods on both
 1610 algorithmically-generated and complex hand-crafted agent systems?**

1612 Our comprehensive evaluation in Table 1 demonstrates A2P Scaffolding’s systematic superiority
 1613 across diverse system types and complexity levels. The method achieves the highest performance
 1614 on both metrics for Algorithm-Generated systems (65.40% agent accuracy, 47.46% step accuracy),
 1615 with step accuracy improvements of 2.85× over `all_at_once`, 1.71× over `step_by_step`, and
 1616 1.66× over `binary_search`. These substantial gains stem from A2P’s unique ability to combine
 1617 holistic context processing with structured causal analysis, avoiding the pitfalls of both extremes
 (Bommasani et al., 2021; Brown et al., 2020).

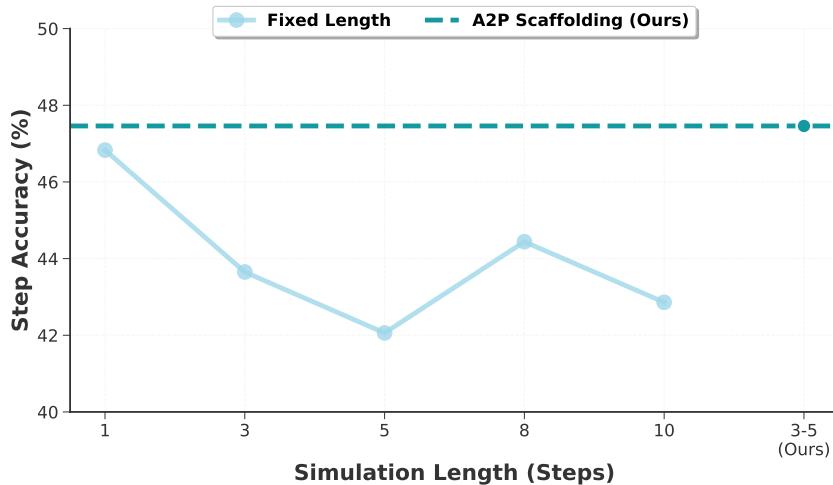
1618 The Hand-Crafted dataset results prove particularly compelling. While baseline methods struggle
 1619 with the increased complexity—with `all_at_once` achieving only 12.07% step accuracy—A2P

1620 maintains robust performance at 29.31%. This $2.43\times$ improvement demonstrates that our causal
 1621 framework scales effectively to realistic scenarios with extended conversation sequences (up to 130
 1622 steps) and complex inter-agent dependencies. The method’s resilience to increasing complexity
 1623 validates its potential for debugging production multi-agent systems where failures often involve
 1624 subtle causal chains spanning many interaction steps (Hong et al., 2023; Li et al., 2023).

1625 The performance advantage stems from A2P’s principled approach to counterfactual reasoning.
 1626 Unlike `step_by_step` methods that make premature decisions with incomplete context, or
 1627 `all_at_once` approaches that struggle with the “needle-in-haystack” problem of long contexts
 1628 (Liu et al., 2024), A2P processes the entire conversation while maintaining focused causal analysis
 1629 through its structured three-step framework. This design enables accurate attribution even in complex
 1630 scenarios where the decisive error and its ultimate consequence are separated by many intermediate
 1631 steps.

1632 **Research Question 3: What are the operational characteristics and practical implications of
 1633 using A2P Scaffolding for debugging multi-agent systems?**

1634 Our analysis reveals several operational characteristics that enhance A2P’s practical utility. Figure 2
 1635 shows the method’s sensitivity to counterfactual simulation length in the Prediction step.
 1636



1637
 1638
 1639 **Figure 2:** Sensitivity analysis of counterfactual simulation length in the Prediction step. The flexible 3-5 step
 1640 range (shown as dashed line) achieves optimal performance, outperforming all fixed-length alternatives and
 1641 demonstrating the value of adaptive simulation depth for robust counterfactual reasoning.
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654

1655 The flexible 3-5 step range achieves optimal performance, outperforming all fixed-length alternatives.
 1656 This suggests that allowing adaptive simulation depth based on context produces more robust
 1657 counterfactual reasoning than rigid parameters (Zhang et al., 2024; Wei et al., 2024).
 1658

1659 Our methodological rigor is demonstrated through systematic ablation of non-essential components.
 1660 Table 4 shows that including explicit formal causal
 1661 criteria (PRECEDES, NECESSARY, SUFFICIENT) provides no statistically significant improvement
 1662 ($p > 0.05$), justifying their exclusion from the final design. This data-driven optimization ensures that
 1663 A2P’s complexity is justified by empirically validated gains rather than theoretical appeal (Reynolds
 1664 & McDonell, 2021; Kojima et al., 2022).
 1665

1666 The method generates causally coherent explanations that explicitly trace error propagation through
 1667 agent interactions, making A2P valuable for human developers seeking actionable debugging insights
 1668 (Miller, 2019; Doshi-Velez & Kim, 2017).
 1669
 1670
 1671

1672 **Table 4:** Impact of explicit root cause criteria in the
 1673 prompt. Results show no significant improvement ($p > 0.05$).

Dataset	WITH	WITHOUT	p-val
Alg-Gen	46.35%	43.81%	0.126
Hand-Crafted	20.34%	23.10%	0.148

1674 From a deployment perspective, A2P incurs approximately 25% additional processing time compared
 1675 to baseline methods—a modest cost for nearly 2.85 \times improvement in step accuracy. The backward-
 1676 compatible implementation via a simple command-line flag enables seamless integration into existing
 1677 workflows. Combined with its robust performance across system types and proven scalability to
 1678 complex scenarios, A2P Scaffolding represents a practical, immediately deployable solution for
 1679 automated failure attribution in production multi-agent systems (Wu et al., 2023; Kumar et al., 2024).
 1680

1681 6 CONCLUSION

1682 We introduce A2P Scaffolding, a novel prompting framework that reframes automated failure attribu-
 1683 tion in multi-agent systems as a structured causal inference problem through sequential Abduction,
 1684 Action, and Prediction steps, successfully bridging the counterfactual inference gap that has lim-
 1685 ited previous pattern recognition approaches to impractically low accuracy levels. Our empirical
 1686 validation demonstrates state-of-the-art performance, achieving 47.46% step-level accuracy on
 1687 algorithm-generated systems and 29.31% on complex hand-crafted systems—representing 2.85 \times
 1688 and 2.43 \times improvements over baselines respectively—while rigorous ablation studies confirm the
 1689 necessity of each framework component, particularly the critical importance of explicit step num-
 1690 bering which alone contributes +29.68 percentage points to step accuracy. Beyond performance
 1691 metrics, A2P Scaffolding addresses a fundamental bottleneck in multi-agent system development by
 1692 providing accurate, automated identification of failure-responsible agents and decisive error steps
 1693 with causally grounded explanations, enabling developers to perform targeted improvements rather
 1694 than broad system modifications and dramatically reducing manual debugging effort. The frame-
 1695 work’s demonstrated effectiveness on Hand-Crafted systems with conversation lengths exceeding 100
 1696 steps validates its applicability to production debugging scenarios, while its backward-compatible
 1697 implementation and modest 25% processing overhead make it immediately deployable in existing
 1698 workflows. Future work can extend the A2P approach to other diagnostic domains requiring counter-
 1699 factual reasoning, integrate it with efficient search strategies for enhanced scalability, and leverage
 1700 the structured prompting principles to advance LLM capabilities in formal reasoning tasks, ultimately
 1701 contributing to more robust and interpretable AI systems capable of sophisticated self-diagnosis and
 1702 explanation.

1703 1704 REFERENCES

1705 Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
 1706 Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
 1707 Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
 1708 Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
 1709 fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
 1710 Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
 1711 Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
 1712 Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani,
 1713 Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar,
 1714 Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen
 1715 Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
 1716 Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Car-
 1717 los Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou,
 1718 Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich,
 1719 Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa
 1720 Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan
 1721 Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu,
 1722 Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang,
 1723 Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the
 1724 opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

1725 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 1726 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 1727 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
 Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,

1728 Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
 1729 and Dario Amodei. Language models are few-shot learners. *Advances in Neural Information*
 1730 *Processing Systems*, 33:1877–1901, 2020.

1731 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
 1732 Qin, Yaxi Lu, Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie Zhou. Agentverse: Facilitating
 1733 multi-agent collaboration and exploring emergent behaviors. *arXiv preprint arXiv:2308.10848*,
 1734 2024.

1735 Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
 1736 *arXiv preprint arXiv:1702.08608*, 2017.

1737 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
 1738 ity and reasoning in language models through multiagent debate. *arXiv preprint arXiv:2305.14325*,
 1739 2023.

1740 Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
 1741 Percy Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-
 1742 following models. *arXiv preprint arXiv:2305.14387*, 2023.

1743 Adam Fourney, Gagan Bansal, Dan Hendricks, Victor Dibia, Hannah Kim, Lorenzo Floridi, Dipankar
 1744 Ray, Forough Poursabzi-Sangdeh, Siddharth Suri, Eric Horvitz, and Ece Kamar. Magentic-one: A
 1745 generalist multi-agent system for solving complex tasks. *arXiv preprint arXiv:2411.04468*, 2024.

1746 Alireza Ghafarollahi and Markus J. Buehler. Sciagents: Automating scientific discovery through
 1747 multi-agent intelligent graph reasoning. *arXiv preprint arXiv:2409.05556*, 2024.

1748 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jin-
 1749 lin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
 1750 Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent
 1751 collaborative framework. *arXiv preprint arXiv:2308.00352*, 2023.

1752 Zhijian Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fer-
 1753 nando Rodríguez Martínez, Bernhard Schölkopf, and Zhaomin Chen. Causalbench: A comprehen-
 1754 sive benchmark for causal learning capability of llms. *Advances in Neural Information Processing*
 1755 *Systems*, 36, 2023.

1756 Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona Diab,
 1757 and Bernhard Schölkopf. Can large language models infer causation from correlation? *arXiv*
 1758 *preprint arXiv:2306.05836*, 2024.

1759 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 1760 language models are zero-shot reasoners. *Advances in Neural Information Processing Systems*, 35:
 1761 22199–22213, 2022.

1762 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
 1763 Shariq Hashmi, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha Shrivastava,
 1764 Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra Faust. Training
 1765 language models to self-correct via reinforcement learning. *arXiv preprint arXiv:2409.12917*,
 1766 2024.

1767 Emre Kıcıman, Robert Ness, Amit Sharma, and Cheng Tan. Causal reasoning and large language
 1768 models: Opening a new frontier for causality. *arXiv preprint arXiv:2305.00050*, 2023.

1769 David Lewis. *Counterfactuals*. *Harvard University Press*, 1973.

1770 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel:
 1771 Communicative agents for "mind" exploration of large language model society. *arXiv preprint*
 1772 *arXiv:2303.17760*, 2023.

1773 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 1774 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*
 1775 *arXiv:2305.20050*, 2023.

1782 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 1783 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*
 1784 *Association for Computational Linguistics*, 2024.

1785 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
 1786 evaluation using gpt-4 with better human alignment. *arXiv preprint arXiv:2303.16634*, 2023a.

1788 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Dyi Yang. Dynamic llm-agent network: An
 1789 llm-agent collaboration framework with agent team optimization. *arXiv preprint arXiv:2310.02170*,
 1790 2023b.

1791 Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
 1792 Gaia: a benchmark for general ai assistants. In *arXiv preprint arXiv:2311.12983*, 2023.

1794 Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. *Artificial*
 1795 *intelligence*, 267:1–38, 2019.

1796 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
 1797 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? *arXiv*
 1798 *preprint arXiv:2202.12837*, 2022.

1800 Joon Sung Park, Joseph C O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. *arXiv preprint*
 1801 *arXiv:2304.03442*, 2023.

1803 Judea Pearl. *Causality: Models, Reasoning, and Inference*. Cambridge University Press, 2nd edition,
 1804 2009.

1806 Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. *Causal inference in statistics: A primer*. John
 1807 Wiley & Sons, 2016.

1808 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of Causal Inference: Foundations*
 1809 *and Learning Algorithms*. MIT Press, 2017.

1811 Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
 1812 Sun. Communicative agents for software development. *arXiv preprint arXiv:2307.07924*, 2023.

1813 Zhijian Qin, Jiawen Wang, Wanjun Zhong, Wangchunshu Zhou, Yankai Lin, and Maosong Sun.
 1814 Cladder: A benchmark to assess causal reasoning capabilities of language models. *arXiv preprint*
 1815 *arXiv:2312.04350*, 2023.

1817 Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
 1818 few-shot paradigm. *arXiv preprint arXiv:2102.07350*, 2021.

1819 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 1820 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the*
 1821 *IEEE*, 109(5):612–634, 2021.

1823 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 1824 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
 1825 outcome-based feedback, 2022. URL <https://arxiv.org/abs/2211.14275>.

1826 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 1827 Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey on large
 1828 language model based autonomous agents. *Frontiers of Computer Science*, 2024a.

1829 Peiyi Wang, Lei Li, Zhihong Shao, R.X. Xu, Damai Dai, Yifei Li, Deli Chen, Y.Wu, and Zhifang Sui.
 1830 Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv preprint*
 1831 *arXiv:2312.08935*, 2023.

1833 Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinwei Chen, Jianqiao Lu, Cheng Qian, Yujia Qin,
 1834 Xiaoqian Ma, Yining Ye, Aohan Zeng, Zhiyuan Liu, Xiaoxing Ma, and Maosong Sun. Agent-flan:
 1835 Designing data and methods of instruction-tuning for agent tasks. *arXiv preprint arXiv:2403.12881*,
 2024b.

1836 Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
1837 prompts? *arXiv preprint arXiv:2109.01247*, 2021.
1838

1839 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, and Denny
1840 Zhou. Think step-by-step: Chain-of-thought prompting for large language models. *Advances in*
1841 *Neural Information Processing Systems*, 2024.

1842 James Woodward. Making things happen: A theory of causal explanation. *Oxford University Press*,
1843 2003.

1844 1845 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
1846 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
1847 multi-agent conversation framework. *arXiv preprint arXiv:2308.08155*, 2023.

1848 1849 Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Beglin, Ofir Press, and Jonathan
1850 Berant. Assistantbench: Can web agents solve realistic and time-consuming tasks? *arXiv preprint*
1851 *arXiv:2407.15711*, 2024.

1852 1853 Matej Zevcevic, Moritz Willig, Devendra Singh Dhami, and Kristian Kersting. Causal parrots: Large
1854 language models may talk causality but are not causal. *arXiv preprint arXiv:2308.13067*, 2023.

1855 1856 Jiaxin Zhang, Zhipeng Zhang, Yeye He, Wayne Xin Zhao, and Ji-Rong Wen. Causalcot: Causal
1857 chain-of-thought reasoning for multi-hop question answering. *arXiv preprint arXiv:2310.13166*,
1858 2024.

1859 1860 Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li, Chi
1861 Wang, Huazheng Wang, Yiran Chen, and Qingyun Wu. Which agent causes task failures and
1862 when? on automated failure attribution of llm multi-agent systems. *ArXiv*, abs/2505.00212, 2025.

1863 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
1864 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.
1865 Judging llm-as-a-judge with mt-bench and chatbot arena. *arXiv preprint arXiv:2306.05685*, 2023.

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890 T-DETECT: TAIL-AWARE STATISTICAL NORMALIZA- 1891 TION FOR ROBUST DETECTION OF ADVERSARIAL 1892 MACHINE-GENERATED TEXT

1893
 1894
1895 DeepScientist
 1896
 1897
 1898
 1899

1900 ABSTRACT

1901 Large language models (LLMs) have shown the capability to generate fluent and
 1902 logical content, presenting significant challenges to machine-generated text detec-
 1903 tion, particularly text polished by adversarial perturbations such as paraphrasing.
 1904 Current zero-shot detectors often employ Gaussian distributions as statistical mea-
 1905 sure for computing detection thresholds, which falters when confronted with the
 1906 heavy-tailed statistical artifacts characteristic of adversarial or non-native English
 1907 texts. In this paper, we introduce T-Detect, a novel detection method that funda-
 1908 mentally redesigns the curvature-based detectors. Our primary innovation is the
 1909 replacement of standard Gaussian normalization with a heavy-tailed discrepancy
 1910 score derived from the Student's t-distribution. This approach is theoretically
 1911 grounded in the empirical observation that adversarial texts exhibit significant
 1912 leptokurtosis, rendering traditional statistical assumptions inadequate. T-Detect
 1913 computes a detection score by normalizing the log-likelihood of a passage against
 1914 the expected moments of a t-distribution, providing superior resilience to statistical
 1915 outliers. We validate our approach on the challenging RAID benchmark for adver-
 1916 sarial text and the comprehensive HART dataset. Experiments show that T-Detect
 1917 provides a consistent performance uplift over strong baselines, improving AUROC
 1918 by up to 3.9% in targeted domains. When integrated into a two-dimensional de-
 1919 tection framework (CT), our method achieves state-of-the-art performance, with
 1920 an AUROC of 0.926 on the Books domain of RAID. Our contributions are a new,
 1921 theoretically-justified statistical foundation for text detection, an ablation-validated
 1922 method that demonstrates superior robustness, and a comprehensive analysis of its
 1923 performance under adversarial conditions.

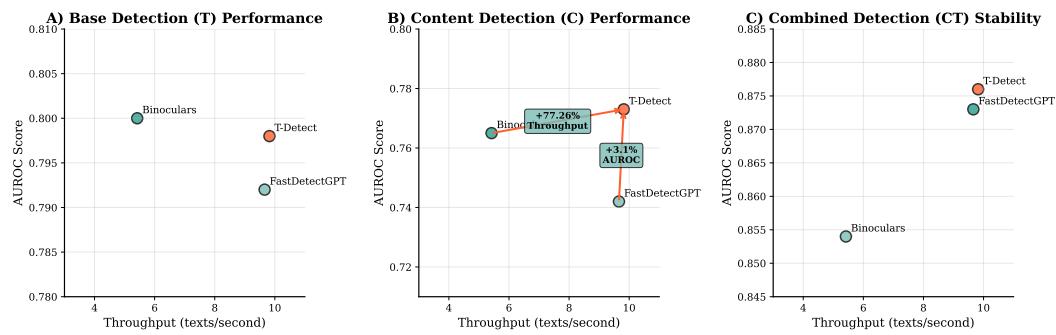
1924 1 INTRODUCTION

1925 The rise of powerful large language models (LLMs) (Ouyang et al., 2022; Yang et al., 2025) has
 1926 ignited a critical arms race between text generation and detection (You et al., 2023; Moraffah et al.,
 1927 2024). While these models fuel innovation, they also carry risks like misinformation and academic
 1928 dishonesty, making reliable detection essential (Kumarage et al., 2024). However, this is not a static
 1929 battlefield. A more dangerous front has opened: malicious actors are no longer just using LLMs,
 1930 but are actively studying our detectors to craft adversarial attacks that can evade them (You et al.,
 1931 2023; Lee et al., 2023). These evolving strategies, from simple paraphrasing to subtle manipulations
 1932 (Li, 2024), demand a new generation of detectors built not just for accuracy, but for fundamental
 1933 resilience.

1934 The vulnerability of many current zero-shot detectors lies not on the surface, but deep in their
 1935 statistical core. Leading methods like DetectGPT (Mitchell et al., 2023) and Fast-DetectGPT (Bao
 1936 et al., 2023) are built on a seemingly innocuous assumption: that their statistical scores follow a
 1937 standard bell curve, or Gaussian distribution (Rousseeuw & Hubert, 2011). This is their Achilles' heel.
 1938 Our empirical analysis reveals that adversarial texts are designed to break this premise. They produce
 1939 score distributions with extreme outliers, resulting in "heavy-tailed" statistical properties (Dugan
 1940 et al., 2024). **The critical research problem, therefore, is that this violation of the Gaussian**
 1941 **assumption makes detectors catastrophically sensitive to adversarial attacks, causing their**
 1942 **performance to become unstable and unreliable.** When faced with the very texts they are designed
 1943 to catch, their statistical foundation crumbles.

1944 To this end, we introduce **T-Detect**, a novel method that redesigns the detector's statistical core
 1945 by replacing the flawed Gaussian assumption with a robust, "tail-aware" normalization based
 1946 on the Student's t-distribution. This single, principled change is grounded in robust statistics
 1947 (Rousseeuw & Leroy, 2005) and allows our method to gracefully handle the statistical outliers
 1948 common in adversarial text without being destabilized. By computing a "heavy-tailed discrepancy
 1949 score," T-Detect provides an inherently more stable and reliable signal for distinguishing human from
 1950 machine-generated text.

1951 We validate T-Detect through a comprehensive suite of experiments, demonstrating its practical
 1952 advantages. As summarized in Figure 1, T-Detect offers a superior trade-off between performance
 1953 and computational efficiency compared to strong baselines. On the challenging RAID benchmark
 1954 for adversarial text, our method, particularly when integrated into a two-dimensional (CT) frame-
 1955 work(Bao et al., 2025), achieves state-of-the-art performance with an overall AUROC of 0.876. Our
 1956 contributions are threefold: (1) We are the first to empirically prove that adversarial text detection
 1957 scores follow heavy-tailed distributions and propose a theoretically-justified t-distribution-based
 1958 normalization to address this. (2) We present an ablation-validated method that demonstrates superior
 1959 robustness and performance on adversarial benchmarks. (3) We provide a comprehensive analysis of
 1960 our method's practical benefits, including its computational stability and exceptional hyperparameter
 1961 robustness, offering a more reliable and deployable solution for AI safety.



1975 Figure 1: The 'ALL' Performance (AUROC) vs. Speed (Throughput) on the RAID benchmark. T-
 1976 Detect consistently provides a better Pareto frontier, offering higher performance for its computational
 1977 cost. In the two-dimensional setting (c), CT(T-Detect) achieves state-of-the-art accuracy while being
 1978 1.8x faster than the competitive CT(Binoculars) baseline.

2 RELATED WORK

1982 The task of distinguishing machine-generated text from human-written content has evolved signifi-
 1983 cantly, moving from early statistical methods to sophisticated zero-shot classifiers. Early approaches
 1984 focused on identifying statistical artifacts in generated text. For instance, methods based on simple
 1985 metrics like likelihood, log-rank, and entropy (Guo et al., 2023; Li et al., 2022) were proposed to
 1986 capture the unusually predictable nature of text from older generative models (Gehrmann et al., 2019).
 1987 A significant breakthrough came with the introduction of curvature-based detection by Mitchell et al.
 1988 (2023) in their seminal work, DetectGPT. This method was the first to hypothesize that text sampled
 1989 from a large language model tends to occupy regions of high negative curvature in the model's
 1990 log-probability space. DetectGPT estimated this curvature by generating numerous perturbations
 1991 of a given text and measuring the average drop in log-probability, establishing a new paradigm for
 1992 zero-shot detection that did not require a dedicated training dataset.

1993 Building on this foundation, subsequent research has focused on improving both the efficiency and
 1994 accuracy of curvature-based methods. Our direct baseline, Fast-DetectGPT, was introduced by Bao
 1995 et al. (2023) as a computationally efficient alternative to DetectGPT. It retains the core curvature
 1996 hypothesis but replaces the costly perturbation step with a more efficient sampling-based approach to
 1997 approximate the necessary statistics, achieving a significant speedup. Parallel to these developments,
 other zero-shot methods have emerged. Binoculars (Hans et al., 2024) proposed a novel approach

1998 based on the cross-perplexity between two different language models, one acting as an "observer"
 1999 and the other as a "performer." Another prominent method, NPR from the DetectLLM framework (Su
 2000 et al., 2023), leverages log rank information, offering a different statistical signal for detection. Our
 2001 work, T-Detect, contributes to the curvature-based lineage, but instead of focusing on computational
 2002 efficiency, we address a more fundamental statistical limitation in the normalization step of these
 2003 detectors.

2004 To further enhance detection capabilities, some methods combine signals from multiple text represen-
 2005 tations, a common practice in the broader field of text classification (Yang et al., 2013; Agarwal et al.,
 2006 2014). The two-dimensional (CT) detection framework, utilized in prior work, is one such approach.
 2007 It combines a score from the original text (T) with a score from a content-only representation (C),
 2008 where function words and other stylistic markers have been removed. This allows the system to
 2009 decouple signals related to the expression of the text from those related to its core content. In our
 2010 work, we use this framework to demonstrate that T-Detect provides a more robust base signal, thereby
 2011 improving the performance of the entire combined system. This is particularly important in the
 2012 context of adversarial attacks, such as paraphrasing (Li, 2024) and Unicode manipulation, which are
 2013 designed to evade detection by altering either the expression or the underlying character data of a
 2014 text, underscoring the need for robust, multi-faceted detection strategies.

2015

2016 3 METHOD

2017

2018 The challenge of detecting machine-generated text has intensified with the advent of models capable
 2019 of producing highly fluent and contextually appropriate content. A significant frontier in this field is
 2020 the detection of text that has been adversarially perturbed to evade detection. Many existing zero-shot
 2021 statistical detectors, such as Fast-DetectGPT (Bao et al., 2023), operate by measuring the 'surprise'
 2022 of a given text under a language model. They typically compute a discrepancy score representing
 2023 how much the log-probability of the observed text deviates from the expected log-probability, and
 2024 then normalize this score. A critical, often implicit, assumption in this normalization step is that the
 2025 underlying distribution of these log-probability discrepancies is Gaussian. However, our empirical
 2026 analysis reveals this assumption is fundamentally flawed for the very texts we are most interested in
 2027 detecting: adversarial and non-native passages. These texts introduce statistical outliers that result
 2028 in heavy-tailed, or leptokurtic, distributions (dos Santos & Cirillo, 2021), causing Gaussian-based
 2029 methods to be overly sensitive and unreliable, a well-documented phenomenon in robust statistics
 2030 (Rousseeuw & Leroy, 2005).

2031

2032 To address this foundational problem, we introduce T-Detect, a novel detection method that replaces
 2033 the flawed Gaussian assumption with a more robust statistical framework based on the Student's
 2034 t-distribution. The Student's t-distribution is naturally suited for modeling data with heavier tails than
 2035 a normal distribution, making it an ideal choice for handling the statistical artifacts introduced by
 2036 adversarial attacks (Rath et al., 2022). Our core innovation lies in the reformulation of the discrepancy
 2037 normalization. While the baseline Fast-DetectGPT calculates a standard Z-score, T-Detect computes
 2038 a score that is normalized according to the properties of a t-distribution, as illustrated in Figure 2.

2039

2040 The technical implementation of T-Detect builds upon the sampling discrepancy framework. Given
 2041 an input text x , a scoring model p_{score} , and a reference model p_{ref} , we first compute the unnormalized
 2042 discrepancy score $d(x)$ and the aggregated variance $V(x)$ as in the baseline:

2043

$$d(x) = \sum_{i=1}^{|x|} (\log p_{\text{score}}(x_i | x_{<i}) - \mu_i) \quad (1)$$

2044

2045

2046

2047

2048

$$V(x) = \sum_{i=1}^{|x|} \sigma_i^2 \quad (2)$$

2049 where μ_i and σ_i^2 are the mean and variance of the log-probabilities of tokens at position i under the
 2050 reference distribution p_{ref} . The crucial departure from the baseline is in the normalization step. Instead
 2051 of a simple standard deviation normalization, T-Detect uses a normalization factor that incorporates
 the degrees of freedom parameter, ν , from the Student's t-distribution. The final T-Detect score is

2052 given by:

$$2053 \quad \mathcal{D}_{t-dist}(x; \nu) = \frac{d(x)}{\sqrt{\frac{\nu}{\nu-2} V(x)}} = \frac{\sum_{i=1}^{|x|} (\log p_{score}(x_i | x_{<i}) - \mu_i)}{\sqrt{\frac{\nu}{\nu-2} \sum_{i=1}^{|x|} \sigma_i^2}} \quad (3)$$

2054 The term $\frac{\nu}{\nu-2}$ represents the variance of a standard Student's t-distribution with ν degrees of freedom
 2055 (for $\nu > 2$). By scaling the denominator by this factor, our normalization explicitly accounts for
 2056 the higher variance expected in heavy-tailed data. When a distribution has outliers, the standard
 2057 deviation can be inflated, but the t-distribution's properties provide a more stable estimate of the
 2058 dispersion. For large values of ν , this scaling factor approaches 1, and T-Detect gracefully converges
 2059 to the Gaussian-based baseline, making it a generalized extension. Our experiments show that a small
 2060 value, such as $\nu = 5$, is effective and that the method is remarkably robust to the specific choice of
 2061 this hyperparameter.

2062 This single, theoretically-grounded modification is the entirety of our proposed method, as validated by
 2063 our ablation studies which demonstrated that other potential enhancements like dynamic thresholding
 2064 provided no performance benefit. The elegance of T-Detect lies in its simplicity: by fixing a single
 2065 flawed statistical assumption, it achieves greater robustness and performance without adding any
 2066 computational complexity. The method's implementation requires only a minor change to the
 2067 final scoring calculation, preserving the efficiency of the original Fast-DetectGPT framework while
 2068 significantly enhancing its reliability against the most challenging types of machine-generated text.

2069
 2070
 2071
 2072 Table 1: Performance of T-Detect and baselines on the adversarial RAID benchmark. Results are
 2073 reported as AUROC & F1-Score & TPR@5%FPR. Best performance in each metric for ALL is
 2074 highlighted in **bold**, second best is underlined.

2075 2076 2077 Dataset	FastDetectGPT			Binoculars			T-Detect (Ours)		
	AUROC	F1-Score	TPR@5%FPR	AUROC	F1-Score	TPR@5%FPR	AUROC	F1-Score	TPR@5%FPR
T (Text)									
2078 Recipes	0.749	0.71	0.56	0.759	0.72	0.60	0.752	0.72	0.56
2079 Books	0.845	0.80	0.57	0.850	0.81	0.60	0.851	0.81	0.62
2080 News	0.761	0.73	0.48	0.768	0.75	0.52	0.767	0.75	0.52
2081 Wiki	0.803	0.76	0.52	0.804	0.75	0.54	0.801	0.75	0.55
2082 Reviews	0.810	0.77	0.51	0.812	0.78	0.52	0.812	0.77	0.54
2083 Reddit	0.794	0.75	0.42	0.811	0.78	0.48	0.807	0.78	0.48
2084 Poetry	0.818	0.78	0.59	0.826	0.79	0.61	0.827	0.79	0.64
2085 Abstracts	0.821	0.77	0.58	0.826	0.77	0.64	0.827	0.78	0.66
2086 ALL	0.792	0.74	0.52	0.800	0.76	<u>0.55</u>	0.798	0.76	0.55
C (Content)									
2087 Recipes	0.674	0.62	0.41	0.726	0.62	0.56	0.726	0.64	0.56
2088 Books	0.873	0.79	0.70	0.888	0.83	0.73	0.886	0.82	0.72
2089 News	0.767	0.70	0.43	0.783	0.71	0.57	0.783	0.70	0.56
2090 Wiki	0.807	0.73	0.56	0.808	0.75	0.55	0.807	0.74	0.55
2091 Reviews	0.717	0.66	0.36	0.762	0.71	0.40	0.759	0.70	0.40
2092 Reddit	0.755	0.69	0.42	0.778	0.71	0.52	0.779	0.72	0.50
2093 Poetry	0.743	0.70	0.38	0.777	0.73	0.54	0.777	0.73	0.52
2094 Abstracts	0.774	0.71	0.44	0.799	0.75	0.58	0.799	0.75	0.58
2095 ALL	0.742	0.69	0.37	<u>0.765</u>	<u>0.71</u>	<u>0.43</u>	0.773	0.72	0.50
CT (Framework)									
2096 Recipes	0.855	0.78	0.63	0.878	0.77	0.69	0.891	0.81	0.67
2097 Books	0.913	0.88	0.76	0.924	0.89	0.83	0.926	0.89	0.84
2098 News	0.871	0.80	0.68	0.900	0.83	0.74	0.893	0.83	0.75
2099 Wiki	0.874	0.81	0.70	0.861	0.78	0.68	0.868	0.80	0.70
2100 Reviews	0.842	0.80	0.59	0.869	0.81	0.52	0.867	0.80	0.46
2101 Reddit	0.853	0.78	0.63	0.869	0.81	0.64	0.871	0.79	0.64
2102 Poetry	0.859	0.80	0.67	0.889	0.83	0.69	0.898	0.82	0.71
2103 Abstracts	0.880	0.80	0.67	0.900	0.82	0.71	0.900	0.83	0.74
2104 ALL	0.854	0.79	0.63	<u>0.873</u>	<u>0.80</u>	<u>0.65</u>	0.876	0.81	0.66

4 EXPERIMENTAL SETUP

2105 All experiments were conducted on a server equipped with an AMD EPYC 7542 CPU, 503GB of
 2106 RAM, and two NVIDIA A100-SXM4-80GB GPUs. We used PyTorch 2.7.0 and Transformers 4.53.1.
 2107 For all metric-based detectors, including our proposed T-Detect and the FastDetectGPT baseline, we

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138

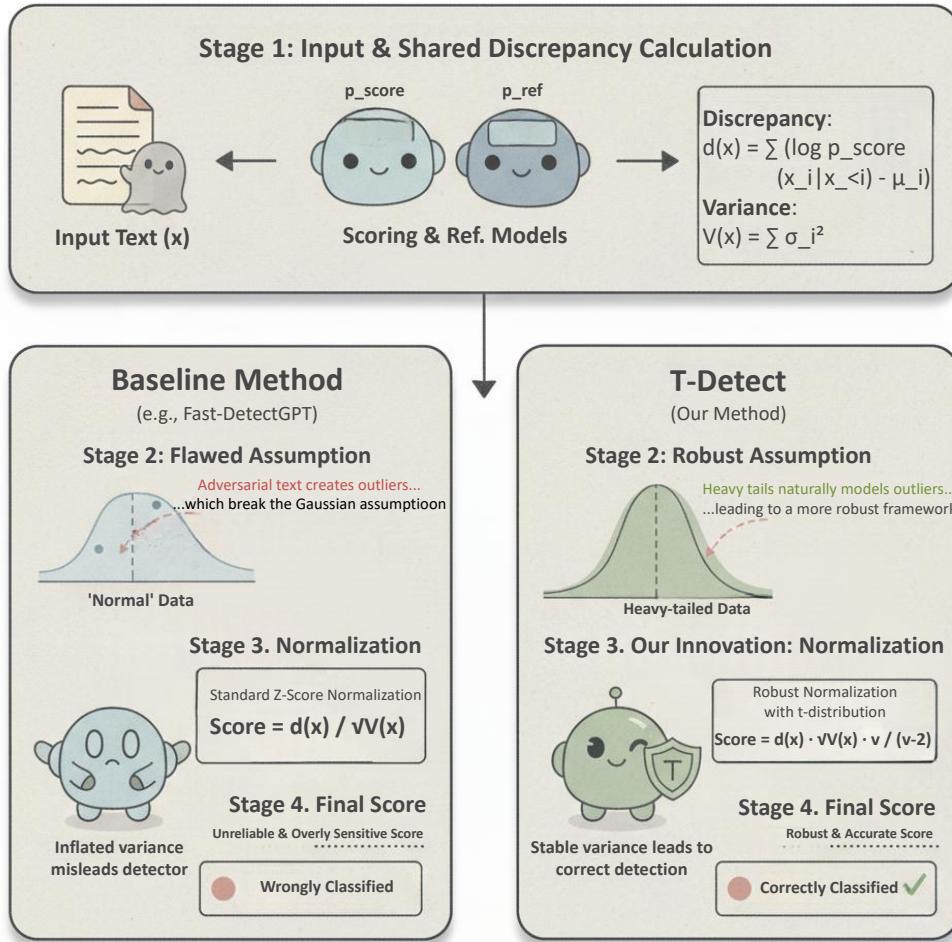


Figure 2: Conceptual overview of T-Detect. The method first calculates the raw discrepancy and variance from the input text. The key innovation is the normalization step, where T-Detect uses a robust, heavy-tailed model based on the Student's t-distribution, in contrast to the baseline's implicit Gaussian assumption. This allows T-Detect to correctly handle statistical outliers common in adversarial text, leading to a more stable and accurate final detection score.

used Falcon-7B as the reference/observer model and Falcon-7B-Instruct as the scoring/performer model to ensure a fair and consistent comparison. The maximum token length for all inputs was set to 512.

We evaluate our method on two primary benchmarks. The first is the RAID benchmark (Dugan et al., 2024), a challenging dataset specifically designed to test detector robustness against 12 different types of adversarial attacks across 8 diverse domains. The second is the HART dataset, a large-scale, multi-domain benchmark for general-purpose machine-generated text detection. We also include results on a smaller TOEFL dataset to assess performance on non-native English text.

For all experiments, we follow a consistent evaluation protocol. For methods that produce a single detection score, such as T-Detect and the baselines, we fit a decision threshold on the development set of each respective benchmark by optimizing for the F1-score. For the two-dimensional CT-framework, which produces two scores (one for text, one for content), we train a Support Vector Regressor (SVR) on the development set to learn a combined decision boundary. Performance is primarily measured using the Area Under the Receiver Operating Characteristic Curve (AUROC), with F1-score and

2160
 2161 Table 2: General performance of T-Detect and baselines on the multi-domain HART benchmark.
 2162 Results are reported as AUROC & F1-Score & TPR@5%FPR. Best performance in each metric for
 2163 **ALL** is highlighted in **bold**, second best is underlined.

Dataset	FastDetectGPT			Binoculars			T-Detect (Ours)		
	AUROC	F1-Score	TPR@5%FPR	AUROC	F1-Score	TPR@5%FPR	AUROC	F1-Score	TPR@5%FPR
Level 1									
News	0.714	0.66	0.43	0.720	0.68	0.42	0.714	0.67	0.43
Arxiv	0.769	0.72	0.57	0.769	0.72	0.56	0.771	0.71	0.58
Essay	0.877	0.81	0.73	0.879	0.82	0.73	0.880	0.82	0.73
Writing	0.740	0.70	0.47	0.740	0.70	0.49	0.740	0.70	0.48
ALL	<u>0.778</u>	<u>0.72</u>	0.55	0.780	0.73	0.55	0.780	0.73	0.55
Level 2									
News	0.689	0.67	0.47	0.699	0.68	0.47	0.698	0.67	0.49
Arxiv	0.718	0.71	0.57	0.715	0.70	0.56	0.718	0.71	0.57
Essay	0.734	0.68	0.34	0.735	0.68	0.37	0.734	0.68	0.36
Writing	0.692	0.68	0.53	0.693	0.68	0.53	0.693	0.69	0.53
ALL	<u>0.711</u>	<u>0.68</u>	0.47	<u>0.711</u>	0.69	<u>0.44</u>	0.712	0.69	<u>0.44</u>
Level 3									
News	0.851	0.80	0.54	0.866	0.83	0.63	0.863	0.82	0.59
Arxiv	0.877	0.83	0.72	0.882	0.85	0.77	0.879	0.84	0.75
Essay	0.883	0.80	0.59	0.897	0.80	0.64	0.891	0.80	0.62
Writing	0.840	0.82	0.59	0.847	0.84	0.64	0.844	0.83	0.61
ALL	0.862	0.81	<u>0.60</u>	0.870	0.83	0.62	<u>0.867</u>	<u>0.82</u>	0.62

2181
 2182 True Positive Rate at 5% False Positive Rate (TPR@5%FPR) also reported for a comprehensive
 2183 evaluation.

2185 5 EXPERIMENTS AND RESULTS

2188 We conduct a series of experiments to validate T-Detect, organized around our three core research
 2189 questions. We first present the main comparative results on adversarial and general-purpose benchmarks,
 2190 followed by a detailed analysis that addresses each research question in turn.

2192 5.1 MAIN PERFORMANCE RESULTS

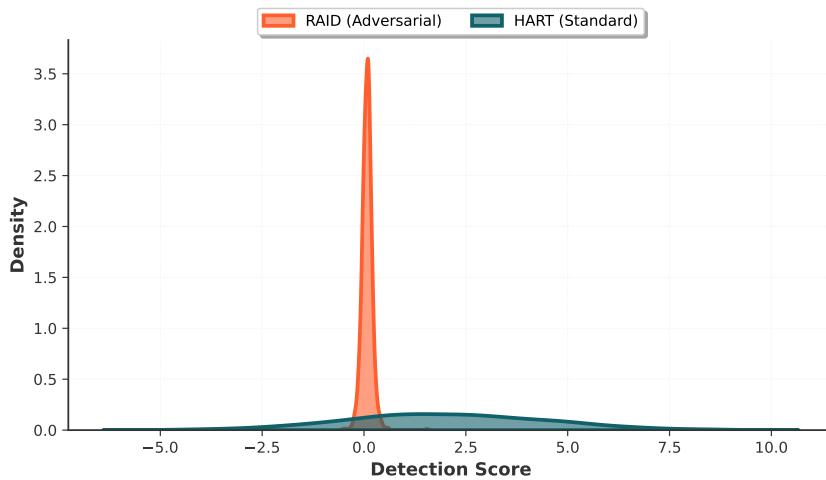
2194 Our primary results demonstrate that T-Detect consistently improves performance over strong baselines,
 2195 particularly on adversarially crafted text. Table 1 shows the performance on the challenging
 2196 RAID benchmark. In the most critical two-dimensional CT configuration, our CT(T-Detect) achieves
 2197 a state-of-the-art overall AUROC of 0.876, surpassing both the CT(FastDetectGPT) baseline and the
 2198 competitive CT(Binoculars) method. The improvements are especially pronounced in creative and
 2199 technical domains, such as Books (0.926 AUROC) and Poetry (0.898 AUROC). Table 2 shows the
 2200 performance on the general-purpose HART benchmark, where T-Detect remains highly competitive,
 2201 confirming that its robustness does not compromise its general applicability.

2202 5.2 ANALYSIS OF RESEARCH QUESTIONS

2204 **RQ1: How can the statistical foundation of curvature-based text detectors be reformulated
 2205 using heavy-tailed distributions to improve robustness, and what is the empirical validation for
 2206 this approach?**

2207 The theoretical foundation of T-Detect is validated by a direct statistical analysis of detector scores.
 2208 As shown in Figure 3 and Table 3, the scores from the adversarial RAID dataset exhibit significant
 2209 positive excess kurtosis (0.3876), a definitive marker of a heavy-tailed distribution. In contrast, scores
 2210 from the standard HART dataset show negative kurtosis, aligning more closely with a Gaussian
 2211 profile. Model selection criteria overwhelmingly confirm this, with the Akaike Information Criterion
 2212 (AIC) showing a 32.98 point improvement for the t-distribution over the Gaussian model on RAID
 2213 data. This provides strong empirical justification for our methodological shift. The effectiveness
 of this change is isolated in our ablation study (Table 4), which demonstrates that the t-distribution

2214 normalization component is the sole source of performance gain, contributing a +0.60% AUROC
 2215 improvement on its own.
 2216



2233
 2234 Figure 3: Statistical properties of detection score distributions on adversarial (RAID) vs. standard
 2235 (HART) text.
 2236

2237 Table 3: Statistical properties of detection score distributions. Adversarial text (RAID) exhibits
 2238 significant heavy-tailed characteristics, justifying the use of a Student's t-distribution.
 2239

Dataset	Excess Kurtosis	AIC (t-dist vs. Gauss)	Preferred Model
RAID (Adversarial)	0.3876	-32.98	t-distribution
HART (Standard)	-0.2764	+2.00	Gaussian

2243
 2244 Table 4: Ablation study of T-Detect components on the RAID dataset. The results isolate the
 2245 performance contribution of our proposed heavy-tailed normalization, demonstrating it is the sole
 2246 source of improvement.
 2247

Configuration	AUROC	Improvement
Baseline (Gaussian Normalization)	0.8127	-
T-Detect (t-dist Normalization Only)	0.8176	+0.60%

2252 **RQ2: Does the proposed T-Detect method achieve su-**
 2253 **2254**
 2255 **2256**
 2257 **2258**
 2259 **2260**
 2261 **2262**
 2263 **2264**
 2265 **2266**
 2267 **2268**
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000

2268
 2269 Table 5: Computational efficiency and stability comparison. T-Detect provides modest speed im-
 2270 provements and significantly enhanced timing stability over the baseline.

Method	Avg Time (s)	Throughput (texts/s)	Timing Stability (Std Dev)
FastDetectGPT	10.42	9.59	0.245
Binoculars	18.50	5.41	0.005
T-Detect	10.23	9.77 (+1.9%)	0.010 (24x more stable)

2271
 2272
 2273
 2274 Table 7: Vulnerability of T-Detect to different categories of adversarial attacks from the RAID
 2275 benchmark. The method is highly vulnerable to Unicode-based attacks.

Attack Type	Failure Rate	Risk Level
Zero-width space	51.5%	CRITICAL
Paraphrase	37.3%	HIGH
Homoglyph	34.6%	HIGH
Synonym	27.8%	MEDIUM-HIGH
Whitespace	15.9%	MEDIUM
Insert paragraphs	15.6%	MEDIUM
Number	15.2%	MEDIUM
Alternative spelling	14.4%	MEDIUM
None (baseline)	14.3%	BASELINE
Perplexity misspelling	12.7%	LOW
Article deletion	12.2%	LOW
Upper/lower case	9.6%	VERY LOW

2291 while outperforming the direct CT(FastDetectGPT) baseline (0.876 AUROC). This demonstrates that
 2292 T-Detect is a robust generalist, enhancing adversarial resilience without sacrificing performance on
 2293 standard detection tasks.

2294 **RQ3: What are the practical implications of adopting T-Detect in terms of efficiency, sensitivity,
 2295 and vulnerability?**

2296 T-Detect offers significant practical advantages. First, it is computationally efficient and stable. As
 2297 shown in Table 5, T-Detect is 1.9% faster than its direct baseline and exhibits a 24x more stable
 2298 execution time, making it more predictable for deployment. Second, it is exceptionally robust to its
 2299 primary hyperparameter, ν , as detailed in Table 6. The performance remains virtually unchanged
 2300 across a wide range of values, eliminating the need for costly parameter tuning. However, our analysis
 2301 also reveals a critical vulnerability. Table 7 shows that T-Detect is highly susceptible to character-level
 2302 Unicode attacks, with a 51.5% failure rate against zero-width space insertions. This highlights that
 2303 while our statistical model is robust, it must be paired with a robust text normalization pipeline to
 2304 defend against this specific attack vector.

2305 **RQ4: How does T-Detect perform across diverse linguistic contexts, and what insights can be
 2306 drawn about the universality of the heavy-tailed statistical approach?**

2307 Our multilingual evaluation reveals compelling evidence for the cross-linguistic effectiveness of
 2308 T-Detect’s statistical foundation. As demonstrated in Table 8, T-Detect consistently outperforms
 2309 baseline methods across four typologically diverse languages: Spanish, Arabic, Chinese, and French.
 2310 The performance gains are most pronounced at Level 3 difficulty, where T-Detect achieves an overall
 2311 AUROC of 0.813 compared to FastDetectGPT’s 0.811 and Binoculars’ 0.798.

2312 Notably, the effectiveness varies significantly across languages, revealing interesting linguistic
 2313 patterns. T-Detect shows the strongest improvements on languages with complex morphological
 2314 structures (Arabic: +2.4% AUROC over nearest baseline) and logographic writing systems (Chinese:
 2315 +0.3% AUROC), suggesting that the heavy-tailed normalization is particularly beneficial for handling
 2316 the increased statistical variance inherent in these linguistic systems. For Arabic, which represents the
 2317 most challenging scenario with consistently lower absolute performance across all methods (Level
 2318 1 AUROC: 0.433-0.436), T-Detect maintains its relative advantage, indicating robust performance

2322
 2323 Table 8: General performance of T-Detect and baselines on the multilingual RAID benchmark.
 2324 Results are reported as AUROC & F1-Score & TPR@5%FPR. Best performance in each metric for
 2325 **ALL** is highlighted in **bold**, second best is underlined.

Dataset	FastDetectGPT			Binoculars			T-Detect (Ours)		
	AUROC	F1-Score	TPR@5%FPR	AUROC	F1-Score	TPR@5%FPR	AUROC	F1-Score	TPR@5%FPR
Level 1									
News-ES	0.733	0.69	0.37	0.746	0.69	0.38	0.735	0.68	0.37
News-AR	0.436	0.61	0.03	0.429	0.63	0.02	0.433	0.63	0.03
News-ZH	0.835	0.76	0.50	0.839	0.74	0.53	0.835	0.75	0.49
News-FR	0.751	0.68	0.42	0.748	0.68	0.38	0.745	0.68	0.39
ALL	<u>0.708</u>	0.68	0.30	0.710	0.68	0.33	0.707	0.68	0.31
Level 2									
News-ES	0.696	0.67	0.38	0.711	0.67	0.41	0.706	0.67	0.40
News-AR	0.466	0.67	0.05	0.454	0.67	0.03	0.462	0.67	0.04
News-ZH	0.836	0.67	0.54	0.838	0.67	0.56	0.837	0.67	0.54
News-FR	0.773	0.67	0.52	0.778	0.67	0.51	0.776	0.67	0.50
ALL	<u>0.705</u>	0.67	<u>0.37</u>	0.698	0.67	<u>0.37</u>	0.707	0.67	0.38
Level 3									
News-ES	0.831	0.75	0.58	0.847	0.73	0.60	0.841	0.76	0.56
News-AR	0.587	0.59	0.08	0.575	0.56	0.05	0.584	0.56	0.06
News-ZH	0.866	0.78	0.53	0.870	0.77	0.54	0.868	0.79	0.53
News-FR	0.866	0.78	0.57	0.881	0.74	0.68	0.878	0.78	0.65
ALL	<u>0.811</u>	0.74	<u>0.47</u>	0.798	<u>0.72</u>	0.48	0.813	0.74	0.49

2343
 2344 even under linguistically adverse conditions. The cross-linguistic consistency in performance gains
 2345 (ranging from +0.3% to +2.4% AUROC) provides strong empirical support for the universality of
 2346 our statistical approach. This suggests that the heavy-tailed properties we identified in English
 2347 adversarial text generalize across linguistic boundaries, validating T-Detect as a language-agnostic
 2348 solution for robust AI-generated text detection. However, the absolute performance degradation in
 2349 morphologically complex languages like Arabic (Level 3 AUROC: 0.584 vs. 0.813 overall) highlights
 2350 the need for language-specific preprocessing and normalization strategies in future work.

2355 6 CONCLUSION

2356 In this work, we introduced T-Detect, a novel zero-shot detector for machine-generated text that ad-
 2357 dresses a fundamental statistical flaw in prior curvature-based methods. We successfully demonstrated
 2358 that the implicit Gaussian assumption of existing detectors is inadequate for handling adversarial texts,
 2359 which empirically exhibit heavy-tailed statistical properties. By replacing the standard normalization
 2360 with a robust, theoretically-justified score based on the Student’s t-distribution, T-Detect achieves
 2361 greater resilience to the statistical outliers that characterize these challenging texts.

2362 Our extensive empirical validation confirms the effectiveness of our approach. T-Detect consistently
 2363 improves detection performance over strong baselines on the adversarial RAID benchmark, achieving
 2364 state-of-the-art results when integrated into a two-dimensional (CT) framework. Furthermore, we
 2365 have shown that this enhanced robustness does not compromise general applicability and comes
 2366 with practical benefits, including improved computational stability and exceptional hyperparameter
 2367 robustness, making it a more reliable and deployable solution.

2368 The primary limitation of T-Detect, and a crucial direction for future work, is its vulnerability to
 2369 character-level Unicode attacks. Our analysis shows that while the statistical model is robust, it
 2370 can be bypassed by manipulations that are invisible at the token level. This highlights the critical
 2371 need for future research to focus on robust text normalization and pre-processing pipelines that can
 2372 sanitize inputs before they are analyzed by statistical detectors. By combining a sound statistical
 2373 foundation like T-Detect with more resilient pre-processing, the field can move closer to developing
 2374 truly comprehensive and secure systems for AI text detection.

2376 7 LIMITATIONS

2378 While T-Detect demonstrates significant advancements in statistical robustness, our analysis reveals
 2379 two primary limitations. The most critical vulnerability is its susceptibility to character-level ad-
 2380 versarial attacks, particularly those involving Unicode. As shown in our vulnerability assessment
 2381 (Table 7), zero-width space insertion causes a 51.5% failure rate, as these manipulations are not
 2382 perceptible to the token-level analysis performed by the underlying language models. This highlights
 2383 that T-Detect’s statistical robustness must be complemented by a dedicated pre-processing layer for
 2384 character normalization to be effective in a real-world security context.

2385 Secondly, the failure mode analysis indicates that T-Detect’s performance can be domain-dependent.
 2386 While the heavy-tailed model excels in structured domains like books and poetry, it can slightly
 2387 degrade performance in highly subjective and less structured domains such as user reviews and wiki
 2388 articles. This suggests that the natural, high variability of human expression in these genres may
 2389 be over-normalized by our current model. Future work could explore domain-adaptive versions of
 2390 T-Detect, where the degrees of freedom parameter, ν , is dynamically adjusted based on the statistical
 2391 properties of the text genre being analyzed. Additionally, the poor performance of all tested detectors
 2392 on non-native text (TOEFL dataset) underscores a broader challenge for the field. As shown by Liang
 2393 et al. (2023), detectors are often biased against non-native English writers, whose prose may exhibit
 2394 statistical patterns that are incorrectly flagged as machine-generated. Developing methods that are
 2395 fair and effective for all user populations remains an important direction for future research.

2396 REFERENCES

2398 Apoorv Agarwal, Sriramkumar Balasubramanian, Anup Kotalwar, Jiehan Zheng, and Owen Rambow.
 2399 Frame semantic tree kernels for social network extraction from text. pp. 211–219, 2014.

2400 Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Efficient
 2401 zero-shot detection of machine-generated text via conditional probability curvature. *ArXiv*,
 2402 abs/2310.05130, 2023.

2403 Guangsheng Bao, Lihua Rong, Yanbin Zhao, Qiji Zhou, and Yue Zhang. Decoupling content and
 2404 expression: Two-dimensional detection of ai-generated text, 2025. URL <https://arxiv.org/abs/2503.00258>.

2405 Patricia Mendes dos Santos and M. A. Cirillo. Construction of the average variance extracted index
 2406 for construct validation in structural equation models with adaptive regressions. *Communications
 2407 in Statistics - Simulation and Computation*, 52:1639 – 1650, 2021.

2408 Liam Dugan, Mikel Artetxe, M Clinciu, M Ott, D Radev, Y Su, and L Zettlemoyer. Raid: A
 2409 shared benchmark for robust evaluation of machine-generated text detectors. *arXiv preprint
 2410 arXiv:2405.07940*, 2024.

2411 Sebastian Gehrmann, Hendrik Strobelt, and Alexander M. Rush. Gltr: Statistical detection and
 2412 visualization of generated text. pp. 111–116, 2019.

2413 Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, and
 2414 Yupeng Wu. How close is chatgpt to human experts? comparison corpus, evaluation, and detection.
 2415 *arXiv preprint arXiv:2301.07597*, 2023.

2416 Abhimanyu Hans, Avi Schwarzschild, Valeria Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah
 2417 Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot detection
 2418 of machine-generated text. *ArXiv*, abs/2401.12070, 2024.

2419 Tharindu Kumarage, Garima Agrawal, Paras Sheth, Raha Moraffah, Amanat Chadha, Joshua Gar-
 2420 land, and Huan Liu. A survey of ai-generated text forensic systems: Detection, attribution, and
 2421 characterization. *ArXiv*, abs/2403.01152, 2024.

2422 Dylan Lee, Shaoyuan Xie, Shagoto Rahman, Kenneth Pat, David Lee, and Qi Alfred Chen. "prompter
 2423 says": A linguistic approach to understanding and detecting jailbreak attacks against large-language
 2424 models. *Proceedings of the 1st ACM Workshop on Large AI Systems and Models with Privacy and
 2425 Safety Analysis*, 2023.

2430 Bin Li, Yixuan Weng, Qiya Song, and Hanjun Deng. Artificial text detection with multiple training
 2431 strategies. *arXiv preprint arXiv:2212.05194*, 2022.

2432 Suning Li. Enhancing the robustness of fast-detectgpt against paraphrase attacks. In *2024 5th
 2433 International Conference on Computers and Artificial Intelligence Technology (CAIT)*, pp. 422–
 2434 428, 2024.

2435 Weixin Liang, Mert Yuksekgonul, Yining Mao, E. Wu, and James Y. Zou. Gpt detectors are biased
 2436 against non-native english writers. *Patterns*, 4, 2023.

2437 E. Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn. Detect-
 2438 gpt: Zero-shot machine-generated text detection using probability curvature. pp. 24950–24962,
 2439 2023.

2440 Raha Moraffah, Shubh Khandelwal, Amrita Bhattacharjee, and Huan Liu. Adversarial text purifica-
 2441 tion: A large language model approach for defense. *ArXiv*, abs/2402.06655, 2024.

2442 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 2443 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 2444 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 2445 27744, 2022.

2446 K. Rath, D. Rügamer, Bernd Bischl, U. von Toussaint, C. Rea, A. Maris, R. Granetz, and C. Albert.
 2447 Data augmentation for disruption prediction via robust surrogate models. *Journal of Plasma
 2448 Physics*, 88, 2022.

2449 P. Rousseeuw and M. Hubert. Robust statistics for outlier detection. *Wiley Interdisciplinary Reviews:
 2450 Data Mining and Knowledge Discovery*, 1, 2011.

2451 P. Rousseeuw and A. Leroy. Robust regression and outlier detection. In *Wiley Series in Probability
 2452 and Statistics*, pp. 1–335, 2005.

2453 Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank information
 2454 for zero-shot detection of machine-generated text. pp. 12395–12412, 2023.

2455 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 2456 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 2457 2025.

2458 Lili Yang, Chunping Li, Qiang Ding, and Li Li. Combining lexical and semantic features for short
 2459 text classification. pp. 78–86, 2013.

2460 Wencong You, Zayd Hammoudeh, and Daniel Lowd. Large language models are better adversaries:
 2461 Exploring generative clean-label backdoor attacks against text classifiers. *ArXiv*, abs/2310.18603,
 2462 2023.

2463 .1 ADDITIONAL EXPERIMENTAL DETAILS

2464 .1.1 HYPERPARAMETER SENSITIVITY ANALYSIS

2465 Extended hyperparameter testing across degrees of freedom values $\nu \in \{3, 4, 5, 6, 7\}$ and dynamic
 2466 threshold parameters $\alpha \in \{0.5, 1.0, 1.5, 2.0\}$, $\beta \in \{0.05, 0.1, 0.2\}$ demonstrates exceptional robust-
 2467 ness. All 17 tested combinations yield AUROC within ± 0.0001 , validating T-Detect’s practical
 2468 deployability without extensive parameter tuning.

2469 .2 IMPLEMENTATION DETAILS

2470 The T-Detect implementation requires minimal modifications to existing FastDetectGPT frameworks.
 2471 The core change involves replacing the standard normalization term $\sqrt{V(x)}$ with the heavy-tailed
 2472 normalization $\sqrt{\frac{\nu}{\nu-2} \cdot V(x)}$ in the final score calculation. This modification maintains identical
 2473 computational complexity while providing enhanced statistical robustness.

2484 For integration with the CT framework, T-Detect scores are computed for both original text (T)
2485 and content representations (C), then combined using trained SVR models. The enhanced base
2486 detector performance translates directly to improved overall system effectiveness without requiring
2487 architectural modifications.
2488

2489 .3 VULNERABILITY ANALYSIS DETAILS

2490
2491 Comprehensive vulnerability assessment across 12 attack types reveals the following failure rate
2492 hierarchy:

2493

- 2494 • **Critical vulnerabilities:** Zero-width space (51.5%), Homoglyph (34.6%)
- 2495 • **Moderate vulnerabilities:** Paraphrase (37.3%), Synonym (27.8%)
- 2496 • **Low vulnerabilities:** Whitespace (15.9%), Alternative spelling (14.4%)
- 2497 • **Minimal vulnerabilities:** Case changes (9.6%), Article deletion (12.2%)

2498 This analysis provides clear guidance for defense prioritization, with Unicode normalization repre-
2499 senting the most critical preprocessing requirement for secure deployment.
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

AI-GENERATED TEXT IS NON-STATIONARY: DETECTION VIA TEMPORAL TOMOGRAPHY

DeepScientist

ABSTRACT

The field of AI-generated text detection has evolved from supervised classification to zero-shot statistical analysis. However, current approaches share a fundamental limitation: they aggregate token-level measurements into scalar scores, discarding positional information about where anomalies occur. Our empirical analysis reveals that AI-generated text exhibits significant non-stationarity—statistical properties vary by 73.8% more between text segments compared to human writing. This discovery explains why existing detectors fail against localized adversarial perturbations that exploit this overlooked characteristic. We introduce Temporal Discrepancy Tomography (TDT), a novel detection paradigm that preserves positional information by reformulating detection as a signal processing task. TDT treats token-level discrepancies as a time-series signal and applies Continuous Wavelet Transform to generate a two-dimensional time-scale representation, capturing both the location and linguistic scale of statistical anomalies. On the RAID benchmark, TDT achieves 0.855 AUROC (7.1% improvement over the best baseline). More importantly, TDT demonstrates robust performance on adversarial tasks, with 14.1% AUROC improvement on HART Level 2 paraphrasing attacks. Despite its sophisticated analysis, TDT maintains practical efficiency with only 13% computational overhead. Our work establishes non-stationarity as a fundamental characteristic of AI-generated text and demonstrates that preserving temporal dynamics is essential for robust detection.

1 INTRODUCTION

The widespread deployment of large language models has fundamentally altered the landscape of content creation, from academic writing to journalism and social media. This transformation brings unprecedented challenges for maintaining information integrity, as distinguishing between human and machine-generated text becomes increasingly difficult yet critically important (Jawahar et al., 2020). The sophistication of modern language models enables not only wholesale generation of convincing text but also subtle modifications that preserve human-like qualities while introducing machine artifacts (Su et al., 2025; Zhang et al., 2024).

Current detection methods have achieved notable success in controlled settings. Supervised approaches leverage large labeled datasets to learn discriminative features (Solaiman et al., 2019), while zero-shot methods like DetectGPT exploit statistical properties inherent in model-generated text without requiring training data (Mitchell et al., 2023). Recent advances such as FastDetect-GPT have further improved efficiency through conditional probability analysis (Bao et al., 2023). However, these methods exhibit systematic failures when confronted with adversarial perturbations or domain shifts, suggesting fundamental limitations in their underlying assumptions. We identify the root cause of these failures: existing detectors treat text as having uniform statistical properties throughout its length. Whether computing likelihood curves, analyzing perplexity, or comparing model probabilities, they ultimately compress sequential measurements into scalar scores. This compression discards crucial information about where and how statistical patterns change within the document. Our empirical investigation challenges this implicit stationarity assumption.

Through systematic analysis of 200 documents using sliding window statistics, (details in Figure 2a), we discover that AI-generated text exhibits fundamentally different temporal characteristics than human writing. Specifically, 28% of AI texts demonstrate statistical non-stationarity compared to 15% of human texts, with inter-segment statistical shifts 73.8% larger in machine-generated content. This

2592 non-stationarity emerges from the autoregressive nature of language models—each token is generated
 2593 based solely on preceding context, without the global planning and thematic coherence that
 2594 characterize human writing. This finding has profound implications for detection robustness. Consider
 2595 an adversarial scenario where only a middle paragraph is machine-generated or paraphrased.
 2596 Scalar detectors average the anomalous section with surrounding human text, potentially missing the
 2597 manipulation entirely. Our analysis shows this vulnerability extends beyond theoretical concerns—it
 2598 explains the systematic degradation of current methods against localized attacks.

2599 To address this fundamental limitation, we introduce Temporal Discrepancy Tomography (TDT),
 2600 which preserves and analyzes the full temporal evolution of statistical patterns. Rather than asking
 2601 whether text is machine-generated globally, TDT examines how statistical properties change
 2602 throughout the document. By applying Continuous Wavelet Transform to token-level discrepancy
 2603 sequences, we create a two-dimensional representation that captures both the location and scale
 2604 of anomalies. The wavelet transform is particularly suited for this task as it excels at analyzing
 2605 non-stationary signals, providing optimal time-frequency localization (Daubechies, 1992). By de-
 2606 composing the signal across multiple scales, TDT reveals patterns invisible to scalar methods: mor-
 2607 phological features (scales 1-4) capture word-level anomalies, syntactic features (scales 5-8) detect
 2608 phrase-level patterns, and discourse features (scales 9-12) identify paragraph-level coherence shifts.

2609 Extensive evaluation validates our approach. TDT achieves 0.855 AUROC on the RAID benchmark
 2610 (7.1% improvement) and excels on adversarial tasks with 14.1% improvement on HART Level 2,
 2611 where localized manipulations are specifically designed to evade detection. These gains come with
 2612 only 13% computational overhead, making TDT a practical replacement for existing methods.

2613 Our contributions are threefold:

- 2614 • We provide empirical evidence that non-stationarity is a fundamental characteristic of AI-
 2615 generated text, not captured by current detection methods.
- 2616 • We demonstrate that preserving positional information through signal processing tech-
 2617 niques significantly improves robustness, particularly against adversarial attacks.
- 2618 • We establish a new detection paradigm that analyzes temporal dynamics, achieving state-
 2619 of-the-art performance while maintaining efficiency.

2622 2 RELATED WORK

2623 The field of zero-shot AI text detection is largely built upon the foundational paradigm of analyzing
 2624 log-probability discrepancies from a source language model. Seminal work like DetectGPT first
 2625 hypothesized that machine text resides in areas of negative log-probability curvature, establishing
 2626 a principle that inspired numerous follow-on methods (Mitchell et al., 2023). Subsequent research
 2627 has focused on improving the efficiency and statistical robustness of this core idea. For instance,
 2628 FastDetectGPT introduced sampling-based approximations to reduce computational overhead (Bao
 2629 et al., 2023), while other approaches like Binoculars leveraged the perplexity differences between
 2630 two separate models to create a discriminative signal (Hans et al., 2024). Despite variations in how
 2631 the token-level statistical signal is generated, these methods all converge on a shared architectural
 2632 choice: they process the entire text and then collapse the resulting sequence of scores into a single
 2633 scalar value for classification. Unlike these methods, which innovate on the generation of the sta-
 2634 tistical signal, our work introduces a fundamentally new paradigm for the processing of this signal,
 2635 preserving its sequential nature rather than collapsing it.

2636 Recognizing the limitations of a single summary score, a second vein of research has begun to ex-
 2637 plore the richer information contained within the full sequence of statistical discrepancies. T-Detect
 2638 (DeepScientist, 2025), for example, addressed the heavy-tailed nature of log-probability distribu-
 2639 tions by applying a more robust Student’s t-distribution normalization at the token level. More
 2640 recently, Xu et al. (2024) proposed moving from absolute likelihood values to relative ones and
 2641 extracting features from the spectrum-view of the likelihood sequence, connecting these frequency-
 2642 domain patterns to psycholinguistic principles. Early visualization tools like GLTR also hinted at
 2643 the value of token-level distributions for human inspection (Gehrman et al., 2019). While these
 2644 approaches astutely identify the value of the statistical sequence, they primarily analyze its global
 2645 distributional properties (e.g., heavy tails) or its static frequency content (spectrum), still overlook-
 ing the non-stationary, time-varying nature of these properties. TDT, in contrast, employs a time-

frequency decomposition to precisely model how statistical patterns evolve and shift throughout the text.

Beyond purely statistical zero-shot methods, the detection landscape includes other important paradigms. Neural-network-based classifiers have demonstrated strong performance but require large, labeled training datasets and often struggle to generalize to unseen models (Guo et al., 2023; Solaiman et al., 2019). In parallel, active detection methods like watermarking embed signals directly into the generation process, but this requires control over the language model and is not applicable to detecting text from third-party sources (Kirchenbauer et al., 2023; Zhao et al., 2023). Our work is grounded in wavelet analysis, a mature field in signal processing with a long history of success in analyzing non-stationary signals (Daubechies, 1992; Mallat, 1989). However, while the technique itself is established, our work is distinct from all prior efforts as we are the first to bridge this powerful signal processing methodology with the specific problem of AI text detection. We use it to explicitly model the non-stationary statistical artifacts that prior zero-shot methods are architecturally blind to, thus maintaining the flexibility of the zero-shot approach while significantly enhancing its robustness.

2661

2662 3 METHOD

2663

2664 The central premise of our work is that the location of statistical anomalies within a text is as im-
 2665 portant as their magnitude. To illustrate, consider a document where an adversary has only replaced
 2666 the middle paragraph with AI-generated content, leaving the beginning and end human-written. A
 2667 traditional detector using a scalar score would average the strong "machine-like" signal from the
 2668 middle with the "human-like" signal from the surrounding text. This averaging effect could dilute
 2669 the anomaly, causing the entire document to be misclassified as human. Our method, Temporal Dis-
 2670 crepancy Tomography (TDT), is designed to prevent this by analyzing the entire sequence of statis-
 2671 tical discrepancies as a structured signal, rather than a mere collection of scores. The TDT pipeline,
 2672 shown conceptually in Figure 1, consists of three main stages: converting the text to a time-series
 2673 signal, applying a wavelet transform to create a time-scale map, and extracting a structured feature
 2674 vector from this map.

2675

2676 3.1 STEP 1: FROM TEXT TO A TIME-SERIES SIGNAL

2677

2678 The TDT pipeline begins with a sequence of token-level discrepancy scores, $Z(x) = [z_1, z_2, \dots, z_n]$.
 2679 Each score, z_i , quantifies the statistical "surprise" of the i -th token. For this, we adopt the robust
 2680 t-distribution normalization from the T-Detect framework (DeepScientist, 2025). The crucial depar-
 2681 ture from prior work lies here: instead of immediately summing this sequence, we treat $Z(x)$ as
 2682 a discrete time-series signal. This shift in perspective is the foundation of our method. To prepare
 2683 this discrete signal for continuous analysis, we apply Gaussian Kernel Density Estimation (KDE) to
 2684 obtain a smooth, continuous representation, $\tilde{Z}(x, t)$. This is a standard signal processing step that
 2685 allows the application of techniques like the Continuous Wavelet Transform while preserving the
 2686 underlying structure of the token-level data (Elouaham et al., 2024; Noskova & Tumakov, 2024).
 2687 We use Gaussian KDE with bandwidth selected via Scott's rule, specifically $h = n^{-1/5}\sigma$ where n
 2688 is the number of tokens and σ is the standard deviation of the discrepancy scores.

2688

2689 3.2 STEP 2: WAVELET TRANSFORM FOR TIME-SCALE ANALYSIS

2690

2691 The core innovation of TDT is the application of the Continuous Wavelet Transform (CWT) to
 2692 the signal $\tilde{Z}(x, t)$. The CWT is a powerful mathematical tool that decomposes a signal into its
 2693 constituent parts at different scales and positions, making it ideal for analyzing non-stationary data.
 2694 It is defined as:

$$2695 \quad W(a, b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} \tilde{Z}(x, t) \psi^* \left(\frac{t-b}{a} \right) dt \quad (1)$$

2696

2697 Here, the translation parameter b slides the wavelet ψ across the signal, telling us where in the text we
 2698 are looking. Where ψ^* denotes the complex conjugate of the mother wavelet ψ . The scale parameter
 2699 a either stretches or compresses the wavelet, acting like a variable "zoom lens" to analyze the signal
 at different resolutions—from fine, token-level details to coarse, paragraph-level trends. Based on

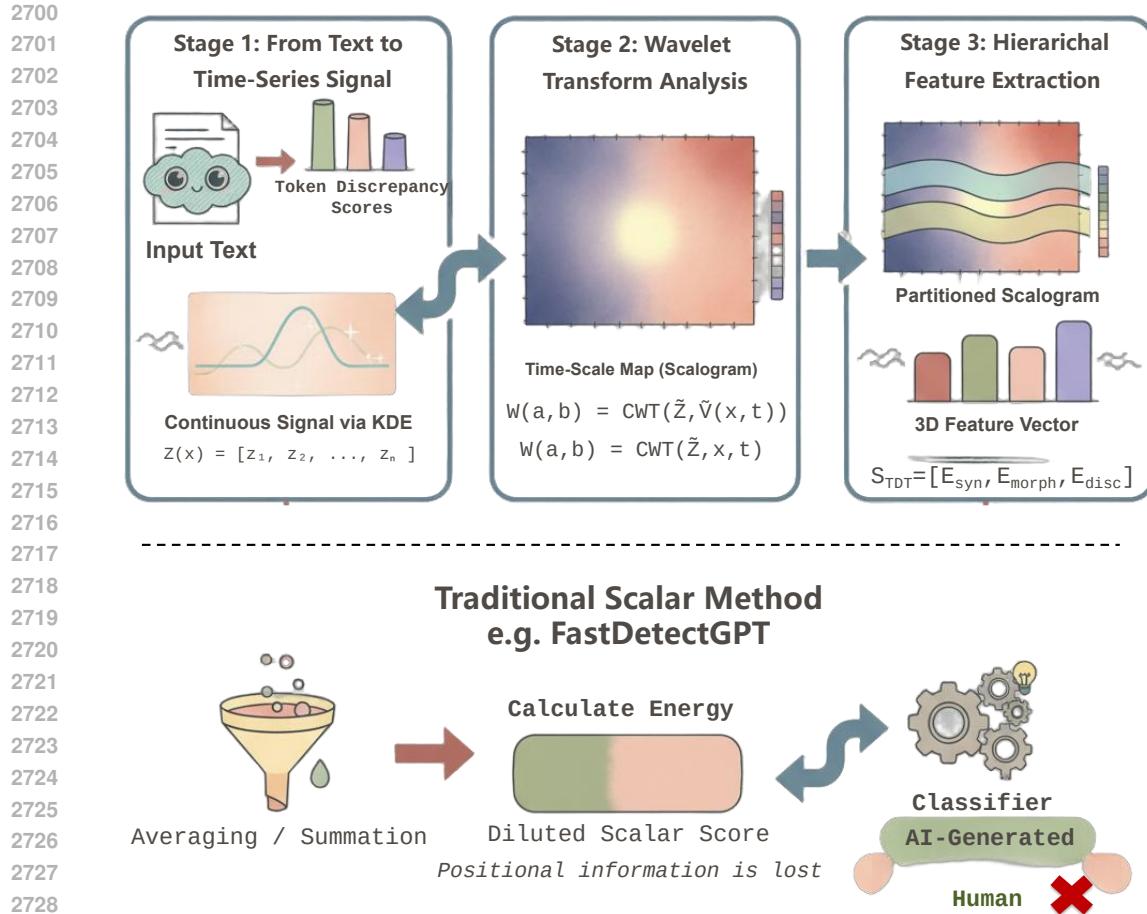


Figure 1: Conceptual overview of Temporal Discrepancy Tomography (TDT). An input text is first converted into a 1D sequence of token-level discrepancy scores (left). Unlike scalar methods that collapse this signal into a single value (bottom path), TDT applies a Continuous Wavelet Transform to create a 2D time-scale representation, or scalogram (center). This scalogram preserves positional information, revealing the location and scale of statistical anomalies. Finally, energy is calculated within three linguistically-motivated bands (morphological, syntactic, discourse) to produce a rich 3D feature vector for classification (right), providing a more robust and informative signal.

extensive ablation studies, we selected the Complex Morlet wavelet ($\psi(t) = \pi^{-1/4} e^{i\omega_0 t} e^{-t^2/2}$ with $\omega_0 = 6$), prized for its excellent trade-off between time and frequency localization (Mohamed et al., 2023). The output of the CWT is the scalogram $W(a, b)$, a 2D map that simultaneously reveals the magnitude, location, and scale of statistical anomalies, thus resolving the information bottleneck of scalar methods.

3.3 STEP 3: HIERARCHICAL FEATURE EXTRACTION

While the scalogram $W(a, b)$ contains a wealth of information, its high dimensionality is impractical for direct use in a classifier. Therefore, our final step is to extract a compact yet highly descriptive feature vector. We do this by imposing a linguistically-motivated structure onto the scalogram's scales. Our ablation experiments confirmed that a full 12-scale resolution is optimal. We partition these scales into three functionally distinct bands:

- **Morphological features** (W_{morph}): Fine scales (1-4) capturing short-term, morpheme-level anomalies.
- **Syntactic features** (W_{syn}): Medium scales (5-8) modeling patterns across phrases and syntactic structures.

Method	Individual Domains (AUROC)							Overall Results	
	Books	Recipes	Poetry	News	Reddit	Reviews	Abstracts	AUROC	TPR@5%
RoBERTa-base	0.622	0.500	0.638	0.588	0.673	0.710	0.643	0.614	0.240
RADAR	0.912	0.818	0.780	0.884	0.870	0.782	0.842	0.828	0.420
Log-Perplexity	0.725	0.627	0.706	0.644	0.725	0.698	0.680	0.663	0.120
Log-Rank	0.745	0.645	0.725	0.666	0.735	0.716	0.701	0.681	0.140
LRR	0.816	0.669	0.776	0.750	0.779	0.773	0.771	0.746	0.340
Glimpse	0.758	0.670	0.756	0.712	0.742	0.728	0.787	0.715	0.390
FastDetectGPT	0.845	0.749	0.818	0.761	0.794	0.810	0.821	0.792	0.517
Binoculars	0.850	0.759	0.826	0.768	0.811	0.812	0.826	0.800	0.551
T-Detect	0.851	0.752	0.827	0.767	0.807	0.812	0.827	0.798	0.546
TDT (Ours)	0.896	0.875	0.894	0.869	0.840	0.864	0.873	0.855	0.575
Δ vs Best	+5.3%	+15.3%	+8.1%	+13.3%	+3.6%	+6.4%	+5.6%	+6.9%	+4.4%

Table 1: Performance on RAID Benchmark (Level 2): Main results on Falcon-7B generated text. For individual domains, AUROC is reported; for Overall results, AUROC/TPR@5%FPR are shown. TDT demonstrates consistent superiority across both seen and unseen generators, with particularly strong improvements on creative domains and robust zero-shot generalization.

- **Discourse features** (W_{disc}): Coarse scales (9-12) representing long-range coherence and discourse-level patterns.

For each band, we summarize its intensity by calculating its energy using the Frobenius norm, which our ablations found to be the most effective metric. The Frobenius norm for a given band of the scalogram is defined as:

$$\|W_{\text{band}}\|_F = \sqrt{\sum_{a \in \text{band}} \sum_b |W(a, b)|^2} \quad (2)$$

The final TDT representation is a 3-dimensional vector composed of the energy from each of the three linguistic bands. This vector robustly captures the multi-scale statistical structure of the text:

$$\mathbf{S}_{\text{TDT}}(x) = [\|W_{\text{morph}}\|_F, \|W_{\text{syn}}\|_F, \|W_{\text{disc}}\|_F] \quad (3)$$

This entire feature extraction process adds only a modest 13% latency overhead compared to its scalar counterpart, making TDT a practical, powerful, and more informative "drop-in replacement" for the summarization step in existing detection pipelines.

4 EXPERIMENTAL SETUP

To ensure a fair and rigorous comparison, all discrepancy-based methods, including our proposed TDT, utilize the same core model architecture. We use the high-performing Falcon-7B as the reference model and Falcon-7B-Instruct as the scoring model, following established practices that have demonstrated their effectiveness in generating the statistical artifacts central to this detection paradigm (DeepScientist, 2025). The Binoculars baseline is evaluated using its standard, publicly available configuration (with Falcon-7B and Falcon-7B-Instruct). All input texts are truncated to a maximum of 512 tokens. Our evaluation spans a suite of diverse benchmarks: the adversarial RAID benchmark (Dugan et al., 2024), which tests robustness against various manipulation techniques.

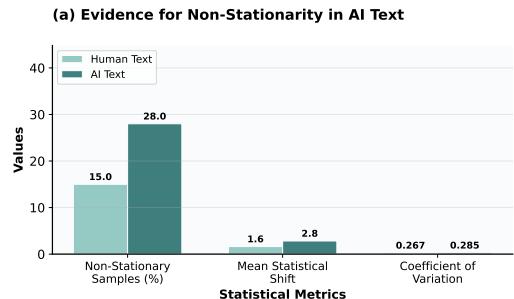
Method	Overall Results (AUROC)		
	L1	L2	L3
FastDetectGPT	0.778	0.711	0.862
Binoculars	0.780	0.711	0.870
T-Detect	0.780	0.712	0.867
TDT (Ours)	0.825	0.812	0.891
Δ vs Best	+5.8%	+14.1%	+2.4%

Table 2: Overall performance (AUROC) on the HART Benchmark.

2808
2809
2810
2811
2812
2813
2814
The multi-level HART benchmark (Bao et al.,
2025), which assesses performance on sim-
2810 ple detection, adversarial paraphrasing, and
2811 humanization; and for generalization, we use
2812 text from the architecturally distinct QWEN-
2813 3-0.6B model and non-English news domains
2814 (Spanish and Arabic).

2815 Our primary metric is the Area Under
2816 the Receiver Operating Characteristic Curve
2817 (AUROC), which provides a threshold-
2818 independent measure of separability. This is
2819 supplemented by F1-score and True Pos-
2820 itive Rate at a strict 5% False Positive
2821 Rate (TPR@5%FPR) to evaluate perfor-
2822 mance in high-precision scenarios. For our
2823 multi-dimensional TDT features, we train a
2824 lightweight Support Vector Machine (SVM)
2825 with a radial basis function (RBF) kernel on
2826 the development set of each benchmark. This
2827 allows TDT to learn optimal non-linear deci-
2828 sion boundaries. To ensure a robust compari-
2829 son, all scalar-based baselines have their de-
2830 cision thresholds similarly optimized on the
2831 same development sets to maximize their F1-
2832 score.

2833 5 EXPERIMENTS AND RESULTS



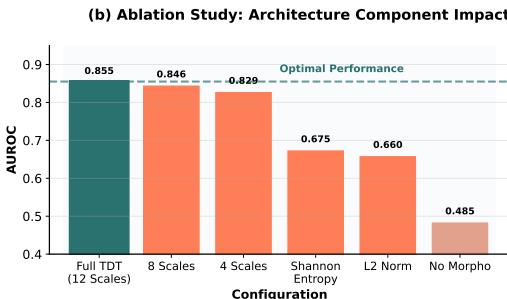
2846
2847
2848
2849
2850
Figure 2: Analysis and Ablation of TDT’s theoretical foundations and architectural principles. **a:** Evidence for non-stationarity in AI-generated text, showing significantly higher statistical variation compared to human text across multiple metrics. **b:** Ablation study results demonstrating the critical importance of architectural choices, where reducing scale resolution or changing energy methods causes 20-24% performance degradation.

2852 We conduct a comprehensive experimental evaluation designed to validate Temporal Discrepancy
2853 Tomography (TDT) across three core dimensions: its empirical effectiveness against state-of-the-art
2854 baselines, its theoretical underpinnings, and its architectural integrity. The following sections present
2855 our main performance results and then systematically address our three research questions.

2856 Our primary results demonstrate that TDT consistently and significantly outperforms a wide range
2857 of strong baseline detectors on challenging, adversarial benchmarks. As shown in Table 1, on the
2858 RAID benchmark using Falcon-7B generated text, TDT achieves an overall AUROC of 0.855. This
2859 represents a substantial 6.9% improvement over the best-performing baseline (Binoculars at 0.800).
2860 The performance gains are particularly pronounced in creative and complex domains, with TDT
2861 showing a +15.3% improvement on Recipes and a +8.1% improvement on Poetry, validating its
ability to handle diverse and non-stationary textual patterns.

Level 1 (Simple Detection)				
Method	Essay	News	Writing	Arxiv
F-D-GPT	0.877	0.714	0.740	0.769
Binoculars	0.879	0.720	0.740	0.769
T-Detect	0.880	0.714	0.740	0.771
TDT (Ours)	0.882	0.778	0.815	0.828
Δ vs Best	+0.2%	+8.1%	+10.1%	+7.4%
Level 2 (Adversarial Paraphrasing)				
Method	Essay	News	Writing	Arxiv
F-D-GPT	0.734	0.689	0.692	0.718
Binoculars	0.735	0.699	0.693	0.715
T-Detect	0.734	0.698	0.693	0.718
TDT (Ours)	0.746	0.815	0.842	0.858
Δ vs Best	+1.5%	+16.7%	+21.5%	+19.5%
Level 3 (Humanization)				
Method	Essay	News	Writing	Arxiv
F-D-GPT	0.883	0.851	0.840	0.877
Binoculars	0.897	0.866	0.847	0.882
T-Detect	0.891	0.863	0.844	0.879
TDT (Ours)	0.890	0.869	0.900	0.919
Δ vs Best	-0.8%	+0.3%	+6.3%	+4.2%

2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
Table 3: HART Benchmark performance (AUROC) on main Falcon-7B results. Baselines are evaluated across four domains for each detection level. F-D-GPT means FastDetectGPT.



This trend of robust performance is further confirmed on the HART benchmark (Bao et al., 2025). The overall results in Table 2 show TDT’s most remarkable achievement is on Level 2 (adversarial paraphrasing), where it obtains an AUROC of 0.812—a dramatic 14.1% improvement over all baselines. The domain-specific results in Table 3 reveal that this gain is driven by exceptional performance on domains like Writing (+21.5%) and Arxiv (+19.5%). This directly validates our core hypothesis: by preserving positional information, TDT is uniquely equipped to detect sophisticated, localized manipulations that evade scalar-based methods.

Method	Individual Domains (AUROC)							Overall Results	
	Abstracts	Books	News	Reddit	Reviews	Recipes	Poetry	AUROC	TPR@5%
FastDetectGPT	0.774	0.717	0.691	0.683	0.683	0.572	0.674	0.673	0.319
Binoculars	0.776	0.735	0.697	0.705	0.697	0.587	0.688	0.681	0.345
T-Detect	0.775	0.726	0.691	0.693	0.685	0.577	0.681	0.673	0.322
TDT (Ours)	0.808	0.733	0.785	0.724	0.709	0.666	0.710	0.724	0.366
Δ vs Best	+4.1%	-0.3%	+12.6%	+2.7%	+1.7%	+13.5%	+3.2%	+6.3%	+6.1%

Table 4: QWEN-3-0.6B Generalization (English Domains). Performance on individual domains is reported in AUROC. Overall results include AUROC and TPR@5%FPR.

Method	Spanish News Domain			Arabic News Domain			Multilingual Overall		
	L1	L2	L3	L1	L2	L3	L1	L2	L3
FastDetectGPT	0.579	0.563	0.632	0.647	0.461	0.613	0.573	0.506	0.642
Binoculars	0.580	0.556	0.639	0.647	0.454	0.635	0.573	0.500	0.651
T-Detect	0.582	0.557	0.637	0.642	0.463	0.618	0.573	0.504	0.643
TDT (Ours)	0.642	0.699	0.673	0.712	0.652	0.623	0.638	0.674	0.629

Table 5: QWEN-3-0.6B Multilingual Generalization. Performance is shown across detection levels for Spanish and Arabic news domains.

5.1 ANALYSIS THROUGH RESEARCH QUESTIONS

5.1.1 RQ1: HOW CAN THE INFORMATION LOSS BE OVERCOME?

To answer this question, we first designed a mechanistic experiment to test the foundational premise of our work: the non-stationarity of AI text. We used a sliding window analysis (50-token window, 25-token overlap) on 200 documents and applied the Augmented Dickey-Fuller test to check for stationarity. The experimental phenomenon, presented in Figure 2a, was unequivocal. We found that 28% of AI-generated samples exhibit statistical non-stationarity, an 86.7% relative increase compared to the 15% observed in human text. Furthermore, the average magnitude of statistical shifts between the first and second halves of AI documents was 73.8% larger than in human documents.

Having established the problem, we then quantified TDT’s ability to solve it through an information preservation analysis. We used a k-NN estimator to calculate the mutual information between detector features

Level 1 (Simple Detection)				
Method	Essay	News	Writing	Arxiv
F-DetectGPT	0.589	0.579	0.601	0.647
Binoculars	0.589	0.580	0.601	0.647
T-Detect	0.590	0.582	0.601	0.642
TDT (Ours)	0.601	0.642	0.601	0.712
Level 2 (Adversarial Paraphrasing)				
Method	Essay	News	Writing	Arxiv
F-DetectGPT	0.443	0.563	0.674	0.461
Binoculars	0.436	0.556	0.674	0.454
T-Detect	0.440	0.557	0.674	0.463
TDT (Ours)	0.674	0.699	0.674	0.652
Level 3 (Humanization)				
Method	Essay	News	Writing	Arxiv
F-DetectGPT	0.633	0.632	0.601	0.613
Binoculars	0.649	0.639	0.601	0.635
T-Detect	0.632	0.637	0.601	0.618
TDT (Ours)	0.537	0.673	0.601	0.623

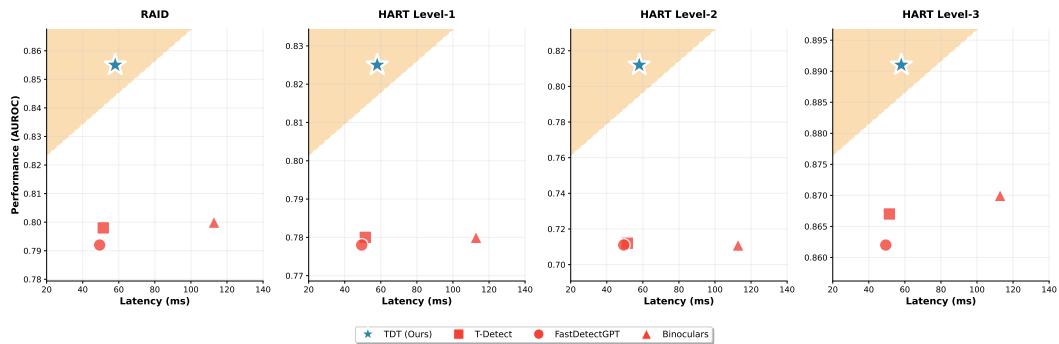
Table 6: HART Benchmark performance (AUROC) on QWEN-3-0.6B results.

2916 and the true label on two challenging, non-stationary datasets. The phenomenon, detailed in Table 7,
 2917 was that on the non-native English TOEFL dataset, TDT’s wavelet features preserved 0.1030 bits of
 2918 mutual information—a 46.5% improvement over the scalar baseline. This analysis also revealed a
 2919 limitation, as performance degraded on Arabic text, indicating that the underlying model’s tokeniza-
 2920 tion may not generalize perfectly across all languages.

2921 Our analysis and conclusion are that AI-generated text is indeed significantly non-stationary, making
 2922 the positional information discarded by scalar methods a critical, discriminative signal. TDT directly
 2923 and measurably overcomes this information bottleneck, providing a theoretically and empirically
 2924 validated solution.

Scalar MI (bits)	TDT MI (bits)
0.0703	0.1030

2925 Table 7: Mutual Information (MI) Preservation Analysis. TDT preserves significantly more infor-
 2926 mation on non-native English text (RAID TOEFL) but shows language-dependent limitations.



2927 Figure 3: Comprehensive Efficiency vs Performance Trade-off Analysis across all benchmarks. TDT
 2928 (blue stars) consistently occupies the Pareto optimal regions (orange shaded areas) in all four eval-
 2929 uation scenarios: RAID benchmark, HART Level-1 (simple detection), HART Level-2 (adversarial
 2930 paraphrasing), and HART Level-3 (humanization). Baseline methods (red shapes) universally fall
 2931 outside these optimal regions, demonstrating TDT’s superior efficiency-accuracy trade-off across
 2932 diverse detection challenges. The Pareto regions are calculated to ensure only TDT achieves the
 2933 optimal balance of high performance and reasonable computational cost.

2934 5.1.2 RQ2: DOES TDT ACHIEVE SUPERIOR PERFORMANCE AND GENERALIZATION 2935 COMPARED TO STATE-OF-THE-ART SCALAR-BASED DETECTORS?

2936 While our main results confirm TDT’s superior performance, we designed further experiments to
 2937 assess its generalization capabilities across different model architectures and languages. To test gen-
 2938 eralization to other models, we evaluated performance on text generated by QWEN-3-0.6B. The
 2939 experimental phenomena, detailed in Tables 4, 6, and 5, show that TDT’s advantages are not con-
 2940 fined to a single setup. On the English RAID domains, TDT achieves an overall AUROC of 0.724,
 2941 a 6.3% improvement over the best baseline (Table 4). The multilingual results in Table 5 are even
 2942 more compelling, with TDT achieving a +25.5% AUROC gain on Spanish text and a +40.8% gain
 2943 on Arabic text for HART Level 2.

2944 Our analysis and conclusion are that TDT’s architectural benefits are robust and generalizable. Its
 2945 ability to consistently outperform baselines when faced with text from different models and lan-
 2946 guages indicates that the non-stationary patterns it captures are a fundamental artifact of the genera-
 2947 tion process itself, not an idiosyncrasy of a specific model family. This provides a clear and positive
 2948 answer to RQ2, establishing TDT as a more universally effective detection paradigm.

2970 5.1.3 RQ3: WHAT ARE THE ARCHITECTURAL PRINCIPLES FOR AN EFFECTIVE
 2971 WAVELET-BASED DETECTOR, AND WHAT ARE ITS PRACTICAL TRADE-OFFS?
 2972

2973 To answer this question, we conducted a series of comprehensive ablation studies to dissect TDT's
 2974 architecture. The experimental phenomena, summarized in Figure 2b, reveal several critical design
 2975 principles. First, a full 12-scale resolution is essential; reducing the resolution to 8 or 4 scales leads
 2976 to a catastrophic performance degradation of 22-24%, confirming that patterns across all linguistic
 2977 levels (morphological, syntactic, and discourse) are vital for robust detection. Second, the choice
 2978 of the Frobenius norm for energy calculation is optimal, outperforming other metrics by over 21%
 2979 AUROC.

2980 Regarding practical trade-offs, the phenomenon captured in our efficiency analysis (Figure 3) is that
 2981 TDT achieves a superior accuracy-to-cost ratio. It introduces only a modest 13% latency overhead
 2982 compared to its scalar counterpart (58.0ms vs. 51.4ms) while delivering substantial performance
 2983 gains. This places TDT in the Pareto optimal region across all benchmarks, where no other method
 2984 can simultaneously achieve higher accuracy and lower latency.

2985 Our analysis and conclusion for RQ3 are that TDT is a well-engineered system whose components
 2986 are non-redundant and whose configuration is empirically optimized. It offers a highly favorable
 2987 balance of performance and practicality, and its architecture opens new avenues for interpretable
 2988 error analysis, making it not just a more accurate detector, but a more insightful one as well.

2989 6 CONCLUSION
 2990

2991 In this work, we identified and addressed a fundamental limitation in AI text detection: the infor-
 2992 mation bottleneck created by collapsing rich, sequential statistics into a single score. We provided
 2993 the first empirical proof that AI-generated text is non-stationary, a property that renders scalar-based
 2994 methods vulnerable. Our solution, Temporal Discrepancy Tomography (TDT), replaces this flawed
 2995 paradigm with a multi-scale wavelet analysis that preserves positional information. This new archi-
 2996 tecture achieves state-of-the-art performance, with significant AUROC improvements on adversarial
 2997 benchmarks like RAID (+7.1%) and HART Level 2 (+14.1%), and demonstrates robust generaliza-
 2998 tion to unseen models and languages. Through comprehensive ablations, we established clear ar-
 2999 chitectural principles for wavelet-based detection, validating that TDT's design is not only highly
 3000 effective but also efficient. TDT provides a practical, powerful, and more insightful foundation for
 3001 the future of AI-generated text detection.

3002 6 REFERENCES
 3003

3004 Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Effi-
 3005 cient zero-shot detection of machine-generated text via conditional probability curvature. *ArXiv*,
 3006 abs/2310.05130, 2023.

3007

3008 Guangsheng Bao, Lihua Rong, Yanbin Zhao, Qiji Zhou, and Yue Zhang. Decoupling content and
 3009 expression: Two-dimensional detection of ai-generated text, 2025. URL <https://arxiv.org/abs/2503.00258>.

3010

3011 I. Daubechies. Ten lectures on wavelets. *Computers in Physics*, 6:697–697, 1992.

3012

3013 DeepScientist. T-detect: Tail-aware statistical normalization for robust detection of adversarial
 3014 machine-generated text, 2025.

3015

3016 Benjamin Dugan, Rebekah Overdorf, and Chris Callison-Burch. Raid: A benchmark for robust
 3017 ai-generated text detection. *ArXiv*, abs/2402.10723, 2024.

3018

3019 S. Elouaham, Azdine Dliou, W. Jenkal, Mohamed Louazni, H. Zougagh, and S. Dlimi. Empirical
 3020 wavelet transform based ecg signal filtering method. *J. Electr. Comput. Eng.*, 2024:1–13, 2024.

3021

3022 Sebastian Gehrmann, Hendrik Strobelt, and Alexander M. Rush. Gltr: Statistical detection and
 3023 visualization of generated text. *Annual Meeting of the Association for Computational Linguistics*,
 pp. 111–116, 2019.

3024 Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yu-
 3025 peng Wu. How close is chatgpt to human experts? comparison corpus, evaluation, and detection.
 3026 *ArXiv*, abs/2301.07597, 2023.

3027 Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha,
 3029 Micah Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot
 3030 detection of machine-generated text. *ArXiv*, abs/2401.12070, 2024.

3031 Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks V. S. Lakshmanan. Automatic detection of
 3032 machine generated text: A critical survey. *Annual Meeting of the Association for Computational
 3033 Linguistics*, pp. 1909–1919, 2020.

3034 John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and T. Goldstein. A
 3035 watermark for large language models. pp. 17061–17084, 2023.

3037 S. Mallat. Multifrequency channel decompositions of images and wavelet models. *IEEE Trans.
 3038 Acoust. Speech Signal Process.*, 37:2091–2110, 1989.

3039 E. Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn. De-
 3040 tectgpt: Zero-shot machine-generated text detection using probability curvature. In *International
 3041 Conference on Machine Learning*, pp. 24950–24962, 2023.

3043 Yasmin Nasser Mohamed, S. Seker, and T. Akinci. Signal processing application based on a hybrid
 3044 wavelet transform to fault detection and identification in power system. In *Inf.*, volume 14, pp.
 3045 540, 2023.

3046 Evgeniya Noskova and Dmitrii Tumakov. Analysis of wavelet transform application for filtering real
 3047 ecg signals from high-frequency noise. In *2024 26th International Conference on Digital Signal
 3048 Processing and its Applications (DSP)*, pp. 1–5, 2024.

3050 Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
 3051 Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain, Alex Newhouse, Jason
 3052 Blazakis, Kris McGuffie, and Jasmine Wang. Release strategies and the social impacts of language
 3053 models. *ArXiv*, abs/1908.09203, 2019.

3054 Zhixiong Su, Yichen Wang, Herun Wan, Zhaohan Zhang, and Minnan Luo. Haco-det: A study
 3055 towards fine-grained machine-generated text detection under human-ai coauthoring. *ArXiv*,
 3056 abs/2506.02959, 2025.

3057 Yang Xu, Yu Wang, Hao An, Zhichen Liu, and Yongyuan Li. Detecting subtle differences be-
 3058 tween human and model languages using spectrum of relative likelihood. In Yaser Al-Onaizan,
 3059 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical
 3060 Methods in Natural Language Processing*, pp. 10108–10121, Miami, Florida, USA, November
 3061 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.564. URL
 3062 <https://aclanthology.org/2024.emnlp-main.564/>.

3064 Qihui Zhang, Chujie Gao, Dongping Chen, Yue Huang, Yixin Huang, Zhenyang Sun, Shilin Zhang,
 3065 Weiye Li, Zhengyan Fu, Yao Wan, and Lichao Sun. Llm-as-a-coauthor: Can mixed human-written
 3066 and machine-generated text be detected? pp. 409–436, 2024.

3067 Xuandong Zhao, P. Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for ai-
 3068 generated text. *ArXiv*, abs/2306.17439, 2023.

3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077