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• Scanning tunneling microscopy (STM) is a powerful technique for imaging surfaces with atomic resolution, providing invaluable insights into surface 

structure and physical and chemical processes occurring on surfaces. A regular task of STM image analysis is detecting and labelling features of interest 

against the background of the unperturbed surface. Performing this segmentation manually is a labor-intensive task, requiring significant human effort.

• We propose an automated approach to the segmentation of STM images that leverages few-shot learning and unsupervised learning to remove the 

requirement for large manually annotated datasets. 

(2) – UNet & Automated Labelling of training data

• UNet is used to produce a binary map of the all the defects 

on the surface (like the one shown in f).

• We want to reduce the time spent manually labelling training 

data for the UNet:

• Use a pretrained network (FCNResnet101) to extract 

feature vectors for each pixel.

• These are then clustered using k-means clustering to 

produce a segmented image.

• By varying the resolution of the input, we can change how 

detailed the segmentation is: higher resolution highlights 

features such as atomic rows and defects, lower 

resolution focuses more on phase domains.

• These images are then augmented, and extra 

experimental noise is added to train a UNet. In this way, 

we get a more robust, and faster, segmentation network.

(4i) – Si(001):H:AsH3
• Surface is of especial 

significance for the 

semiconductor and quantum 

computing industry [1][2]. 

• FSL allows for flexibility to 

implement new dopant atom 

precursor types with as little as 

one new labelled data point.

• Models are trained and tested 

on data from the same surface.

(4ii) – Ge(001):AsH3 

and TiO2

(3) – FSL networks
• We test multiple few-shot 

learning (FSL) networks.

• The prototypical, matching, 

relation, and simple shot 

(conv4) all have a Conv4 

backbone and are trained 

using episodes on subject 

specific data.

• We test a simple shot 

network with a pretrained 

(non-subject specific) 

Resnet18 backbone.

• Are the embeddings 

useful/meaningful?  - We 

compare to the accuracy of 

KNN on the bare pixels.

Results for all tables are 

accuracies averaged 

over 100 episodes and 

with 95% confidence 

interval.

(1) STM imaging

Classification on TiO2(110) data. TiO2(110) data has only filled state 

images. Trained on defects from non-TiO2(110) data.

Classification on Ge(001):AsH3 data. Trained on defects from 

non-Ge(001):AsH3 data.

• The technique offers greater flexibility compared to previous supervised methods, being easier to adapt to an unseen surface while maintaining high accuracy, 

reaching up to 90%. This will make it useful for research which is constantly studying new substrates and adsorbates.

• Right hand column of tables shows accuracy of classification of the networks. It demonstrates the effectiveness of our approach on three distinct surfaces: 

Si(001):H:AsH3, Ge(001):AsH3, and TiO2(110). We show that our model exhibits strong generalization capabilities, adapting well to unseen surfaces with only as little 

as one additional labeled data point after initial training.

• Different FSL-networks are tested, with the prototypical performing the best overall. The relation network shows signs of overfitting.

• Currently, no standardized dataset to use for benchmarking exists within the STM community. We believe this would be a worth while, but time consuming, venture.

• An ablation study (not included) showed simple manipulations to the data to generate new classes allowed for a better feature embedding and therefore accuracy.

Model Training Set Acc (2-way, 1-shot)

Prototypical Si & Ge defects 70.03±0.03%

Matching Si defects 61.60±0.02%

Relation Si defects 30.93%±0.03%

Simple shot (conv4) Si defects 54.47±0.02%

Simple shot (Resnet18) ImageNet 65.03±0.02%

KNN (K=1) on bare pixels TiO2 defects 57.40±0.03%

Model Training Set Acc (4-way, 1-

shot)

Prototypical Si defects 95.567±0.013%

Matching Si defects 94.950±0.009%

Relation Si defects 93.400%±0.014%

Simple shot 

(conv4)

Si defects 92.933±0.010%

Simple shot 

(Resnet18)

ImageNet 66.873±0.030%

KNN (K=1) on bare 

pixels

Si defects 76.567±0.020%

Model Training Set Acc (4-way, 1-shot)

Prototypical Si defects 61.25±0.02%

Matching Si defects 61.61±0.02%

Relation Si defects 25.07%±0.01%

Simple shot (conv4) Si defects 48.18±0.01%

Simple shot (Resnet18) ImageNet 43.00±0.02%

KNN (K=1) on bare pixels Ge defects 46.64.±0.02%

• A microscopy technique used 

to image conducting surfaces 

with atomic resolution. It can 

also manipulate single 

atoms on the surface.

• Each pixel in an image 

represents the height of the 

density of electron states at 

that point. We can measure 

either the filled or empty 

states, producing 2 channels.

Images of the 

Si(001) surface 

with different 

defects (the size 

of a few atoms) 

highlighted.
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