Scanning Tunneling Microscopy (STM) Image Segmentation Using Unsupervised and Few-shot Learning

Nikola Kolev^(1,5), Emily Hoffman^(1,5), Geoff Thornton^(1,5), Max Trouton^(1,5), Filippo Federici^(2,3), David Gao^(1,3,4), Steven Schofield^(1,5), Taylor Stock^(1,5), Neil Curson^(1,5)

(1) University College London, (2) Aalto University, (3) Nanolayers Research Computing LTD, (4) Norwegian Institute of Science and **Technology, (5) London Centre for Nanotechnology**

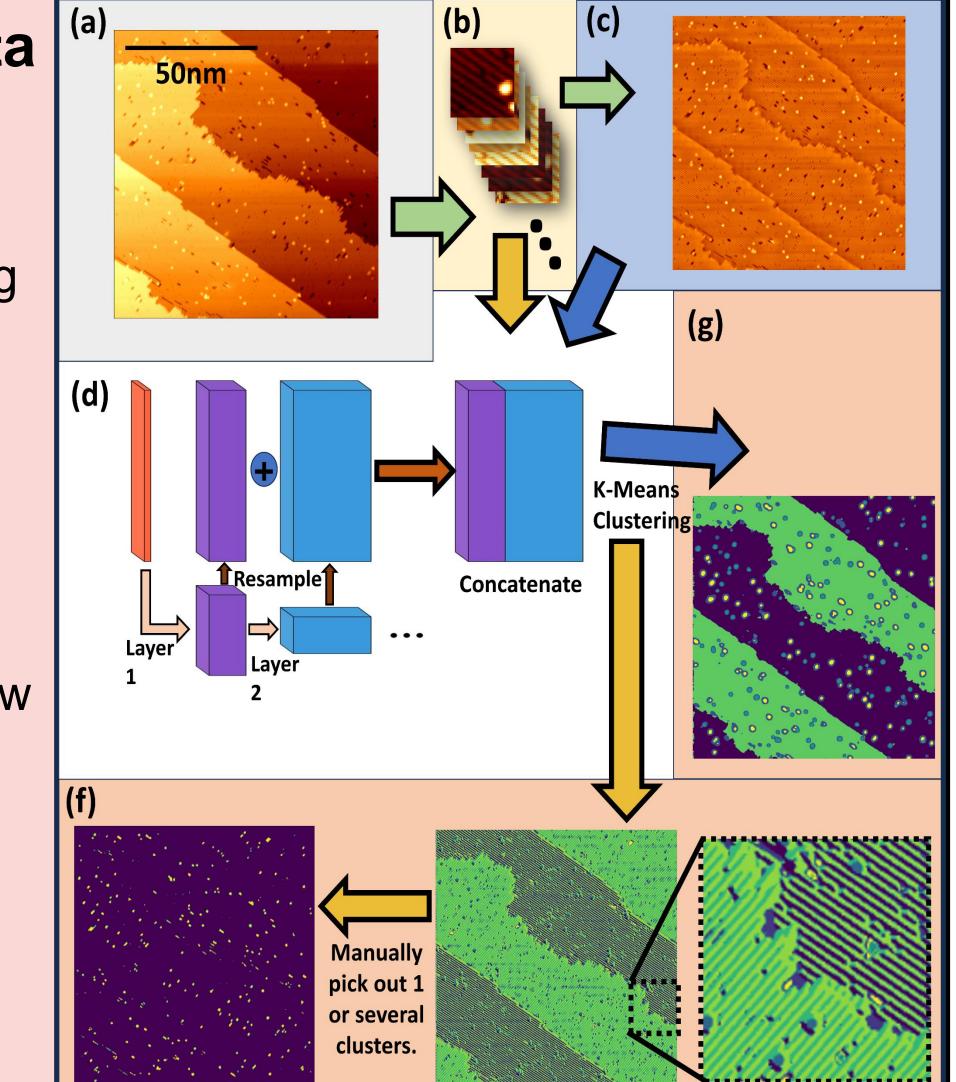
- Scanning tunneling microscopy (STM) is a powerful technique for imaging surfaces with atomic resolution, providing invaluable insights into surface structure and physical and chemical processes occurring on surfaces. A regular task of STM image analysis is detecting and labelling features of interest against the background of the unperturbed surface. Performing this segmentation manually is a labor-intensive task, requiring significant human effort.
- We propose an automated approach to the segmentation of STM images that leverages few-shot learning and unsupervised learning to remove the requirement for large manually annotated datasets.

(1) STM imaging

• A microscopy technique used to image conducting surfaces with **atomic resolution**. It can also manipulate single atoms on the surface.

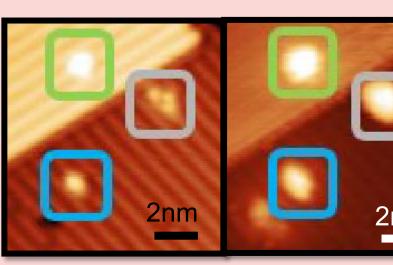
(2) – UNet & Automated Labelling of training data

- UNet is used to produce a **binary map** of the all the defects on the surface (like the one shown in f).
- We want to **reduce** the time spent **manually** labelling training data for the UNet:



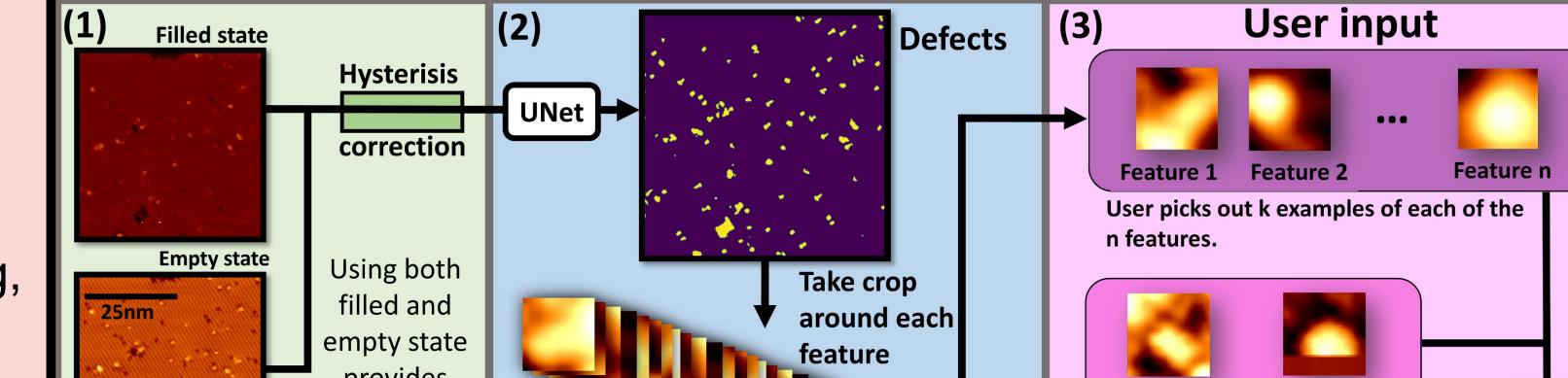
Each pixel in an image represents the height of the density of electron states at that point. We can measure either the filled or empty states, producing 2 channels.

Images of the Si(001) surface with different defects (the size of a few atoms) highlighted.



- (3) FSL networks
 We test multiple few-shot learning (FSL) networks.
- The prototypical, matching, relation, and simple shot

- Use a pretrained network (FCNResnet101) to extract feature vectors for each pixel.
- These are then clustered using k-means clustering to produce a segmented image.
- By varying the resolution of the input, we can change how **detailed** the segmentation is: higher resolution highlights features such as atomic rows and defects, lower resolution focuses more on phase domains.
- These images are then augmented, and **extra** experimental noise is added to train a UNet. In this way, we get a more **robust**, and **faster**, segmentation network.



- $(4i) Si(001):H:AsH_3$
- Surface is of especial significance for the semiconductor and quantum **computing** industry [1][2].
- FSL allows for flexibility to implement new dopant atom precursor types with as little as one new labelled data point.

- We test a simple shot network with a pretrain (non-subject specific Resnet18 backbone.
- Are the embeddings useful/meaningful? compare to the accura KNN on the **bare** pixel

(conv4) all have a Cor backbone and are trai			provides more information			User also has the pick out anomali	
using episodes on sub specific data.	oject (4	Fe	ature 1 ature 2 ature 3	Feature 4Feature 5Feature 6	Feature 7Anomalies	Segmented	FSL network classifies
 We test a simple shot network with a pretrain (non-subject specific Resnet18 backbone. Are the embeddings useful/meaningful? - compare to the accura KNN on the bare pixel 	We cy of						
$(4ii) - Ge(001):AsH_3$	Ν	Model	Trainiı	ng Set	Acc (4-way, 1-shot)	N	Nodel
	Pro	ototypical	Si de	fects	61.25±0.02%	Pro	ototypical
and TiO ₂		atching	Si de		61.61±0.02%	Ma	atching
		elation	Si de		25.07%±0.01%	R	elation
Results for all tables are	Simple	shot (conv4)	Si de	fects	48.18±0.01%	Simple	shot (conv4)
accuracies averaged	Simple sh	Simple shot (Resnet18)		eNet	43.00±0.02%	Simple sh	not (Resnet18)
over 100 episodes and	KNN (K=1)) on bare pixels	Gede	fects	46.64.±0.02%	KNN (K=1)) on bare pixels

Models are trained and tested on data from the same surface.

Model		Training Set	Acc (4-way, 1- shot)		
· · · · · ·		Prototypical	Si defects	95.567±0.013%	
		Matching	Si defects	94.950±0.009%	
		Relation	Si defects	93.400%±0.014%	
		Simple shot (conv4)	Si defects	92.933±0.010%	
. 🖸		Simple shot (Resnet18)	ImageNet	66.873±0.030%	
ø		NN (K=1) on bare pixels	Si defects	76.567±0.020%	
		Training Set	Acc (2-w	ay, 1-shot)	
		Training Set Si & Ge defects		ay, 1-shot) ±0.03%	
			70.03		
		Si & Ge defects	70.03 61.60	±0.03%	
nv4)		Si & Ge defects Si defects	70.03 61.60 30.93%	±0.03% ±0.02%	
nv4)		Si & Ge defects Si defects Si defects	70.03 61.60 30.93% 54.47	±0.03% ±0.02% %±0.03%	
,		Si & Ge defects Si defects Si defects Si defects	70.03 61.60 30.93% 54.47 65.03	±0.03% ±0.02% %±0.03% ±0.02%	

with 95% confidence Classification on Ge(001):AsH₃ data. **Trained on defects from** Classification on TiO₂(110) data. TiO₂(110) data has only filled state interval. non-Ge(001):AsH₃ data. images. Trained on defects from non-TiO₂(110) data.

• The technique offers greater flexibility compared to previous supervised methods, being easier to adapt to an unseen surface while maintaining high accuracy, reaching up to 90%. This will make it useful for research which is constantly studying new substrates and adsorbates.

• Right hand column of tables shows accuracy of classification of the networks. It demonstrates the effectiveness of our approach on three distinct surfaces: Si(001):H:AsH₃, Ge(001):AsH₃, and TiO₂(110). We show that our model exhibits strong generalization capabilities, adapting well to unseen surfaces with only as little as one additional labeled data point after initial training.

• Different FSL-networks are tested, with the prototypical performing the best overall. The relation network shows signs of overfitting.

• Currently, no standardized dataset to use for benchmarking exists within the STM community. We believe this would be a worth while, but time consuming, venture.

• An ablation study (not included) showed simple manipulations to the data to generate new classes allowed for a better feature embedding and therefore accuracy.

[1] Stock, T.J., Warschkow, O., Constantinou, P.C., Li, J., Fearn, S., Crane, E., Hofmann, E.V., Kölker, A., McKenzie, D.R., Schofield, S.R. and Curson, N.J., 2020. Atomic-scale patterning of arsenic in silicon by scanning tunneling microscopy. ACS nano, 14(3), pp.3316-3327.

[2] Stock, T.J., Warschkow, O., Constantinou, P.C., Bowler, D.R., Schofield, S.R. and Curson, N.J., 2024. Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication. Advanced Materials, p.2312282.

