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ABSTRACT

The Storage Location Assignment Problem(SLAP) is one of the essential prob-
lems within the domain of logistics. The objective is to dynamically allocate op-
timal storage locations to incoming items, aiming to maximize warehouse space
utilization and operational efficiency. Prior research primarily focused on offline
scenarios with predetermined goods arrival times. A smaller portion explored
real-time allocation using heuristic algorithms based on manual rules and search
methods. However, these methods suffer from inadequate solution quality and
efficiency, particularly for large-scale problems. We draw inspiration from the
partitioned, multi-layered, and modularized layout commonly adopted in most
large-scale storage spaces to overcome this limitation. Building upon this inspira-
tion, we propose a novel hierarchical optimization framework to solve large-scale
SLAPs better via reinforcement learning. Specifically, we designed a two-level
model: (1) a higher-level model learns to determine which block to choose, and
(2) a lower-level model learns to select the final storage location under the con-
straints of the selected blocks in the upper level. We have designed a policy net-
work based on attention mechanisms for SLAP to achieve better performance. To
verify the effectiveness of the proposed framework, we collected a large amount of
real historical data from the terminal operating system of Ningbo-Zhoushan Port
and built a realistic container terminal simulator. Besides, we conducted exten-
sive offline simulations and online testing using the simulator based on real data
and validated the superior performance of our framework compared to existing
benchmark methods.

1 INTRODUCTION

The Storage Location Assignment Problem (SLAP) concerns the allocation of products into a stor-
age space and the optimization of the material handling costs or storage space utilization. As a
standing and fundamental problem, SLAP can be applied in a wide range of logistical scenarios
where a group requires temporary occupancy of a warehouse storage space, such as raw material
warehouses, distribution centers, ports, and parking lots. Warehouse operations systems typically
follow a sequential process, as illustrated in Figure 1, which includes the steps of reception, storage,
order picking, and dispatch. In addition, SLAP, as an operational decision, plays a crucial role in
optimizing the accommodation and picking process, affecting aspects such as batch definition, clas-
sification, routing, and order sequencing. The objective of SLAP is to minimize storage and costs
while maximizing warehouse space utilization and operational efficiency.

SLAPs can be exceedingly difficult to solve as they are NP-hard combinatorial optimization prob-
lems. The main challenge of SLAP is the uncertainty of item arrival times, which makes it impossi-
ble to make arrangements in advance in an offline manner. Besides, SLAP involves several complex
constraints and considerations that can be divided into five categories: capacity and conditions of
the warehouse, characteristics of the products, configuration of the operation, and market and logis-
tics resources. The most crucial category to consider is the capacity and physical conditions of the
warehouse, which are related to the physical dimensions of the storage locations and the distribution
of the storage area layout.
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Various manual strategies such as ”shortest path,” ”minimum centroid,” and ”first-in-first-out” have
been proposed, showing promising results in simple scenarios. These strategies are ineffective in
accommodating the complexity and uncertainties of real warehouse operations. Moreover, certain
strategies that prioritize local optimizations may neglect the interconnectedness with other param-
eters. Furthermore, numerous studies have utilized traditional operations research (OR) or meta-
heuristic methods, such as intelligent optimization algorithms, to address SLAPs. These methods
are typically associated with high computational costs, often resulting in suboptimal solutions within
given time constraints. Additionally, their design heavily relies on intricate domain knowledge.
Recently, learning-based methods have shown the potential of high computational efficiency and
competitive solutions. These studies primarily focus on small-scale SLAPs, considering fewer con-
straints than the large-scale SLAPs discussed in this paper. However, learning-based methods also
have demonstrated potential in large-scale SLAPs with superior performance.

Figure 1: Warehouse operations systems are configured through the following se-
quential processes: (1) Reception: Receiving goods and materials into the warehouse
from suppliers or others. (2) Storage: Organizing and placing the goods and ma-
terials into appropriate locations within the warehouse optimize space and improve
efficiency. (3) Order picking: Retrieving requested goods and materials from their
storage locations in the warehouse to fulfill orders. (4) Dispatch: Preparing and ship-
ping the completed orders to their designated destination.

In this paper, we propose a novel optimization framework based on hierarchical reinforcement learn-
ing, namely H-SLAP, for solving large-scale SLAPs. Considering most large-scale storage spaces,
e.g., three-dimensional warehouses adopt a partitioned, multi-layered, and modularized layout, we
decompose SLAP into several sub-problems. We model the SLAP as an item-select problem, which
contains two reinforcement learning (RL) agents. The higher-level agent functions as a block se-
lector, responsible for choosing a block based on the distribution of stored goods. In contrast, the
lower-level agent works as a location selector, which selects a specific storage location under the
block constraints given by the block selector. We design a novel set of rewards to evaluate the
rationality of storage positions in this task. To verify the effectiveness of the framework, we con-
ducted offline and online evaluation experiments on a real port, which is a typical warehouse with a
three-dimensional. We collected real historical data from the terminal operating system of Ningbo-
Zhoushan Port and built a realistic container terminal simulator. The main contributions are con-
cluded as follows:

• We systematically explore the storage location assignment task, and propose a novel hierarchical
reinforcement learning framework. To the best of our knowledge, we are the first to bring a prac-
tical hierarchical reinforcement learning framework for the storage location assignment problem.

• To verify the effectiveness of the framework proposed in this paper, we constructed a simulation
system using real port data and open-sourced it here for interested researchers to use.

• We designed a policy network based on an attention mechanism that effectively utilizes the in-
formation relationships among items, resulting in impressive performance in large-scale storage
location assignment tasks.

• We conducted extensive offline and online evaluation experiments, model analyses, and ablation
tests, demonstrating that H-SLAP significantly improves optimization objectives compared to
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existing methods. Additionally, the hierarchical framework reduces the computational complexity
from the original M*N to M+N, thereby enhancing training efficiency.

2 RELATED WORK

Storage Location Assignment: The Storage Location Assignment Problem (SLAP) involves allo-
cating products to storage spaces (Reyes et al. (2019)). In terms of complexity, (Frazelle (1989))
classifies SLAP as NP-Hard, considering the variations caused by the number of products and ware-
house storage characteristics. Traditional approaches primarily rely on various optimization meth-
ods, such as mixed-integer programming models (Yang et al. (2015)), heuristic algorithms and pro-
cedures (Battini et al. (2015)), meta-heuristics like taboo search (Zhang et al. (2021) Kübler et al.
(2020) Yang et al. (2021) Otto et al. (2017)), simulation based on discrete events (Pan et al. (2012)),
class-based policies and rules (Ene et al. (2016)), and multi-criteria methods like Electre III (Fontana
& Nepomuceno (2017)).

Learning-based Method for SLAP: Recent research has explored the feasibility of using Deep
Reinforcement Learning (DRL) for various variations of the dynamic storage location assignment
problem. (Kim et al. (2020)) addressed Dynamic SLAP(DSLAP) in a ship block stockyard, aiming
to minimize block rearrangement. (Waubert de Puiseau et al. (2022)) studied a different DSLAP
variation where a DRL agent assigned pallets to zones upon arrival. Both studies reported significant
improvements with DRL compared to existing methods.

RL for Combinatorial Optimization: Numerous studies have demonstrated the effectiveness of
RL in COPs. For instance, (Cappart et al. (2021)) combined RL and constraint programming meth-
ods to address the Traveling Salesman Problem, exhibiting favorable performance in terms of so-
lution quality and computation time. Additionally, RL-based approaches also contribute to solving
the problem of medical resource allocation(Hao et al. (2021)), hybrid flow shop scheduling(Ni et al.
(2021)), the three-dimensional bin packing problem (Zhao et al. (2021)), facility location prob-
lems(Wang et al. (2023)), electricity pricing(Chung et al. (2020)) and urban subway network ex-
pansion(Wei et al. (2020)). By harnessing the learning and adaptive capabilities of RL algorithms,
optimal solutions can be discovered in intricate and evolving problem domains.

3 PROBLEM FORMULATION

In this paper, we focus on the SLAP in three-dimensional warehouses, which typically con-
sist of racks, stacker cranes, transportation equipment (including automated vehicles), and load-
ing/unloading platforms. In our case, we have chosen the port as the scenario for modeling. For
the containers arriving at the port in real time, it is necessary to arrange appropriate and reasonable
storage spaces to improve the efficiency of subsequent loading and shipping operations.

In a container terminal yard with hundreds of thousands of storage positions, each storage position
has an identification number id represented as (a, b, r, t), where a denotes the block number, and
(b, r, t) represent the bay number, row number, and tier number respectively. In practical applica-
tions, a feasible storage position should satisfy the following constraints:

• Prohibition of Suspension: Containers must not be suspended in mid-air.
• Height Restriction: It is not allowed to exceed the maximum stacking height Ltier specified for

the storage area.
• Cargo Reshuffling: A certain number of empty slots shall be reserved in each bay for cargo

reshuffling.
• Size Constraint: Only containers of the same dimensions can be stacked together in the same

stack.

Based on the principle of the highest efficiency, stacker load balancing principle and transportation
equipment path optimization principle, the storage layout of n container storage locations corre-
sponding to a ship can be quantitatively measured by the following five indicators, Detailed indica-
tors are shown in Appendix A.1:

R =

5∑
i=1

(ωi ∗ ri), r = {requilibrium, rdistance, rblock num, rreshuffle, rconcentration} (1)

3



Under review as a conference paper at ICLR 2024

In addition, the main challenge of SLAP in a terminal’s container yard is that the sequence of incom-
ing containers is uncertain, preventing the pre-planning of suitable container positions. Real-time
algorithms based on models have low execution efficiency and, with the increase of the number
of containers and the scale of the container yard, the complexity of obtaining an optimal solution
increases exponentially. It is difficult to obtain a good solution within an acceptable time frame.

4 METHODOLOGY

4.1 OVERALL FRAMEWORK

In this paper, we propose a novel hierarchical reinforcement learning-based optimization framework,
consisting of two steps, as shown in Figure 2. In Step 1, after obtaining the information on ship
berth allocation, we utilize a simulated annealing algorithm (Wang et al. (2022)) for coarse-grained
container yard pre-planning order to reduce the number of available slots. The detailed algorithm
flow can be found in Appendix A.3. Due to the large number of feasible storage positions (up
to tens of thousands) after pre-planning, the large discrete action space makes it difficult to apply
reinforcement learning methods. Therefore, in Step 2, we design two-level agents, with information
available in the subsequent chapters. Section 4.2 introduces the reinforcement learning formulation
and policy network architecture, while Section 4.3 presents the hierarchical training algorithm.

Figure 2: Hierarchical Optimization Framework

4.2 HIERARCHICAL REINFORCEMENT LEARNING

4.2.1 RL FORMULATION

In this section, we formulate the Block Select Process and Slot Select Process as MDPs separately.
The elements of this MDP are as follows:

A. High Level: Block Selector

State sht : sht consists of n blocks’ feature and each block feature contains the distance between the
block and the berth, the number of containers on the same route in the block, the total number of
containers/block capacity in the block, the number of empty bays (20TEU), the remaining capacity
of 20TEU container spaces, the remaining capacity of 40TEU container spaces, and the quantity of
containers of various weight grades (The containers here refer to the containers that have the same
route as the containers to be allocated at the position.) in the block.

Action aht : The action aht is defined as the block bi ∈ B selected at step t.

Reward Function r(sht , a
h
t ): The high-level reward rh is measured by block-equilibrium, block-

berth distance, and Block Num(Zhen et al. (2022) Feng et al. (2022)). Due to the sparse nature of
the rewards and the fact that accurate values are only obtained after all containers have been stored in
the yard, we specifically designed some immediate reward functions (see Appendix A.2) to ensure
that the agent can quickly learn and update its strategies. The high-level agent also receives rewards
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from the lower-level agent. It can adjust its policy-making strategy based on the performance and
reward information from the lower-level agent.

B. Low Level: Slot Selector

State slt: slt consists of n slots’ feature and each slot feature contains the information about the
incoming container, the bay-row-tier information of the slot, the number of containers the column,
the number of containers on the same route in the stack, the weight of containers in each tier, and
whether they are on the same route.

Action alt: The action alt is defined as the slot si ∈ bi selected at step t. Here, bi is the block of
action selection at the high level.

Reward Function r(slt, a
l
t): The low-level reward rl is measured by reshuffle rate and concentration.

Just like the High-Level Reward Function, we have also designed some immediate reward functions
(See Appendix A.2) to help the Low-Level agent quickly learn the optimal strategy.

4.2.2 POLICY NETWORK ARCHITECTURE

Figure 3: Policy network. It takes the block/slot state st as input and generates the
probability distribution to select a block/slot.

We use a sequence-to-sequence framework similar to the Pointer Network (Vinyals et al. (2015)) as
our Policy Network. The advantage of this framework is that the model’s output points to the input
content. Our input consists of variable-length sequences of block/slot features, and the output is an
index pointing to the input sequence. The specific structure is as follows:

Embedding: Firstly, the input sequence features are encoded through Embedding and fed into the
Encoder.

Encoder: We choose to use an LSTM as the encoder. The embedded sequence is input to the
encoder, which produces the hidden layer Encoder outputs, hidden state vector, and cell state vector.

Decoder: We choose to use an LSTM(Shi et al. (2015)) unit as the decoder. The zero vector with
the same dimension as the Encoder outputs, along with the hidden state and cell state, is inputted
into the decoder. The output is a new hidden state vector and cell state vector, which are summed
and inputted into the Attention layer.

Attention: In this layer, we perform attention calculation using the hidden layer of the Encoder and
the hidden state vector of the Decoder, as shown in Equation 2. We directly use the attention weight
information as the probability distribution of positional importance.

ui
j = vT tanh(W1ej +W2di) j ∈ (1, ..., n) (2)
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Here, ej represents the hidden layer output of the encoder at time step j, and di represents the hidden
state output of the decoder at time step i. W1 , W2, vT are training parameters.

Mask: To allow the model to have a better understanding of the placement situation of the decoding
head, certain illegal placements in the input sequence cannot be chosen. Therefore, we use a mask-
ing approach where we replace the non-selectable positions with −∞ based on the input masking
sequence:

umask =

{
ui, maski = 0

−∞, maski ̸= 0
(3)

Softmax: By applying softmax to the masked position vector ui (Equation 4, we obtain the proba-
bility distribution of the masked positional importance. By applying softmax to the masked position
vector u (Equation 4), we obtain the probability distribution of the masked positional importance.

p(C,P ) = softmax(umask) (4)

4.3 SOFT ACTOR-CRITIC TRAINING

In this section, our objective is to train the hierarchical policy network with network parameters θ1
and θ2 to maximize the expected cumulative rewards in equations (6) and (7). Both the high-level
and lower-level policy networks are trained using the Soft Actor Critic (SAC) algorithm, in which
the actor is synonymous with our policy network. In the high level, the actor outputs a probabil-
ity distribution over actions (i.e., blocks), while in the lower level, the actor outputs a probability
distribution over actions (i.e., slots). The critic is responsible for evaluating the expected cumu-
lative rewards of allocating subsequent containers to block-level and slot-level, respectively. This
evaluation helps to reduce training variance.

When incoming containers arrive, the high-level agent obtains the state sht , mask mh
t , action aht ,

and reward rht according to 4.3.1 A. Under the constraint of the high-level action aht , the lower-level
agent obtains the state slt, mask ml

t, action alt, and reward rlt according to Section 4.3.1 B. After
incoming containers complete their action, we obtain the new states sht+1 and slt+1, and two new
transitions eht = (sht ,m

h
t , a

h
t , r

h
t , s

h
t+1) and elt = (slt,m

l
t, a

l
t, r

l
t, s

l
t+1) are generated and saved to

the replay buffer. It is worth noting that in the lower level, we adopt a similar approach to distributed
reinforcement learning, where the agents in each block share a set of parameters θ and maintain
their transitions, that is, in the transition corresponding to the last st+1 when there are no more
incoming containers in a certain block, done is set to True. We store the transitions into buffer
Dh = {eht1, eht2, . . .} and Dl = {elt1, elt2, . . .} during the running of simulator. During the training,
we apply Q-learning updates on uniformly sampled transitions (s,m, a, r, s′) ∼ U(D) from the
replay buffer. The model updates at iteration l uses the following loss function:

L (ϕi, D) = E(s,m,a,r,s′,d)∼D

[
(Qϕi

(s, a)− y (r, s′,m′, d))
2
]

(5)

where the target is given by:

y (r, s′,m′, d) = r + γ(1− d)

(
min
k=1,2

Qϕtarg,ik (s
′, ã′)− α log πθi (ã

′ | s′,m′)

)
,

ā′ ∼ πθi (· | s′,m′)

(6)

The training details are shown in Algorithm 2 in Appendix A.4.
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5 EXPERIMENTS

5.1 EXPERIMENTS SETTINGS

We start by designing a simulator to investigate the contributions of the proposed framework. The
details of the simulator can be found in Appendix B. To ensure a better distinction in performance
across different-sized routes, we considered two scales of export container route data: 572 contain-
ers and 1000 containers. The dataset for 572 containers consists of 13 container zones with nearly
10,000 container slots, while the dataset for 1000 containers includes 20 container zones with ap-
proximately 20,000 container slots. During the training process, we shuffle the order of container
arrivals to better simulate the randomness and variability of actual operations. In the testing phase,
we use a test set that is shuffled in a manner consistent with the size of the training set. More detailed
information about the dataset can be found in the appendix.

The experimental settings for the baselines and our method are as follows: we first train the models
on each type of training dataset and then evaluate them on corresponding test datasets of the same
scale. For single-level methods, containers are directly selected from all available container slots.
In the case of layered methods, the high-level agent selects the container zone, and then the lower-
level agent chooses the container slot within the selected zone. Both the higher-level and lower-level
agents are trained simultaneously. For other methods, such as expert policies and random methods,
we directly evaluate them on different test datasets of varying scales. The experimental results
are obtained by running each algorithm ten times to obtain the mean and variance values of the
optimization objective.

5.2 BASELINES

We implement several competitive models as baselines. The implementation details of each method
are in Appendix D.

Random: Randomly assigns slot positions from the available options, and serves as a blank control
group.

Expert Strategy1: We use the immediate reward defined in Appendix A.2 as a significant criterion
for sorting, whereby storage locations with higher immediate rewards are given absolute priority.

Expert Strategy2: We define four different priority criteria for stack selection and randomly choose
one slot with the highest priority. These four priorities in descending order are stack with the same
attribute on the top container, stack with lighter weight on the top container, empty stack, and other
stacks.

Expert Strategy3: We address this problem in two steps: First, we select the block with the fewest
number of containers with the same vessel. Second, we define four different priority criteria and
randomly choose one slot with the highest priority in the selected block. These four priorities in
descending order are stack with containers of the same attributes, stack with lighter containers,
empty stack, and other stacks.

Single-SAC (Christodoulou (2019)): A non-hierarchical reinforcement learning method, which the
policy network from Chapter 4.2.2 is utilized to select the with the highest score, and the training
framework applies SAC.

5.3 COMPARISON WITH BASELINES

We evaluated the trained models and expert policies based on simulation environment and used
multiple tests to reduce the impact of randomness. The complete results are shown in Appendix E.1
Table 5. Tables 1 show that our method consistently outperforms all baselines on all datasets (higher
overall objectives are better). On some datasets, the expert policy performs extremely poorly, which
is because greedy strategies, such as not considering the future placement of boxes, often lead to
local optima, improving only box flipping without improving concentration or vice versa., Table 1
shows that Single-SAC performs much worse than the expert policy, due to the large action space
in large-scale storage space scenarios, making it difficult to explore positive training trajectories.
In contrast, our hierarchical framework greatly reduces the action space, and the high-level agents
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can allocate the internal states of the box area, while the lower-level agents can place the boxes in
the appropriate positions and consider future situations better. The cooperation between these two
levels of agents also makes our method better in future planning.

As an example, we visualized the results of storage location allocation for 572 containers in Exper-
iment 1 (Figure 4. Figure 4(a) illustrates the distribution at the block level, while Figure 4(b) shows
the distribution within each block. More results can be found in the appendix E.2.

Experiment Method Block-equilibrium ↓ Block Num ↓ Reshuffle rate ↓ Concentration ↓ Yard-berth distance ↑ Objective ↑

572-1

Random 0.3482 5 0.1204 0.1114 0.9725 -59.3828
Expert Strategy1 0.0369 0 0.1273 -0.0328 1.0 36.8411
Expert Strategy2 0.5933 0 1.6945 -0.0650 0.875 -178.5391
Expert Strategy3 0.0032 5 1.7382 -0.0368 0.9709 -171.9125

Single-SAC 0.3549 5 0.0471 0.0471 0.9803 -112.3187
Hierarchical-SAC-MLP 0.5776 0 1.6701 -0.0554 1.0 -169.2379

Hierarchical-SAC(Ours) 0.0401 0 0.0418 -0.0171 1.0 43.5078

300-1

Random 0.3250 5 0.1003 0.1225 0.9824 -55.6716
Expert Strategy1 0.2452 0 0.1772 -0.0498 1.0 12.7313
Expert Strategy2 0.2787 0 1.5518 -0.0598 1.0 -127.0680
Expert Strategy3 0.0060 5 1.4481 -0.0331 0.9753 -143.3403

Hierarchical-SAC(Ours) 0.0423 0 0.0969 -0.0381 1.0 39.8773

1000-1

Random 0.4734 6 0.1859 0.0669 0.9512 -85.0726
Expert Strategy1 0.0384 0 0.1689 -0.0496 1.0 33.9667
Expert Strategy2 0.6298 0 2.2920 -0.0685 0.875 -241.5824
Expert Strategy3 0.0081 6 1.6325 -0.0460 0.9375 -172.5890

Hierarchical-SAC(Ours) 0.0619 0 0.0979 -0.0131 0.9780 34.2254

Table 1: Experimental results under different datasets

(a) Block-level perspective (b) Slot-level perspective

Figure 4: Visualization results of dataset 572 (Hierarchical-SAC)

5.4 ABLATION STUDIES

Effect of Two Levels of Model: The results in Table 2 show that our proposed H-SLAP frame-
work significantly reduces computational complexity and lowers the requirements for GPU memory
compared to directly selecting storage positions from all possible positions. In a 16G GPU memory
environment, the batch of a single-layer approach can reach a maximum of 2, while the batch size of
a hierarchical approach can be set to a maximum of 32. Additionally, as shown in figure 5, reducing
the action space through action hierarchy lowers the cost of exploration, enabling the hierarchical
approach to converge more quickly to an optimal strategy compared to a single-layer approach.

Method cost time(s/episode) ↓ batch size ↑
Single-SAC 1051.69 2

Hierarchical-SAC(Ours) 162.53 32

Table 2: Comparison of cost time between Hierarchical and Single SAC

Effect of Our Policy Network: We conducted ablation tests to validate the effectiveness of our de-
signed policy network. Table 3 shows the results of various ablation settings. We found that attention
and LSTM are indispensable. Here, we replaced LSTM and attention with fully connected layers
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Figure 5: Comparison of convergence rewards between Hierarchical and Single SAC

and sigmoid as part of the ablation settings. The policy network utilizes the attention mechanism to
learn the probability distribution of selecting positions, allowing the network to focus on different
parts of the input sequence and make better choices.

Task Block-equilibrium ↓ Block Num ↓ Reshuffle rate ↓ Concentration ↓ Yard-berth distance ↑ Objective ↑
Hierarchical-SAC(Ours) 0.0401 0 0.0418 -0.0171 1.0 43.5078
- attention 0.2024 0 0.1465 -0.0258 1.0 17.6788
- LSTM & attention 0.5776 0 1.6701 -0.0554 1.0 -169.2379

Table 3: Ablation tests on dataset 572

Generalization: To validate the generalizability of our method, we tested the lower-level model
trained on a dataset of 572 containers on a larger-scale dataset. As shown in Table 4, the lower-level
model trained on 572 containers exhibited similar performance to the models trained on datasets of
300 and 1000 containers. This indicates that our method can quickly generalize to new problems of
varying scales without the need for retraining.

Dataset Model Block-equilibrium ↓ Block Num ↓ Reshuffle rate ↓ Concentration ↓ Yard-berth distance ↑ Objective ↑

300-1 Trained on 300 0.0423 0 0.0969 -0.0381 1.0 39.8773
Trained on 572 0.0891 0 0.0903 -0.0364 1.0 35.6967

300-2 Trained on 300 0.0490 0 0.1070 -0.0414 1.0 38.5395
Trained on 572 0.0824 0 0.0668 -0.0364 1.0 38.7068

1000-1 Trained on 1000 0.0619 0 0.0979 -0.0131 0.9780 34.2254
Trained on 572 0.0619 0 0.0880 -0.0216 0.9779 36.0557

1000-2 Trained on 1000 0.0614 0 0.0853 -0.0099 0.9779 35.2111
Trained on 572 0.0589 0 0.0952 -0.0211 0.9777 35.5832

Table 4: Generalization verification

6 CONCLUSION

In this paper, we investigate the problem of storage location assignment and model it as an item
selection problem. We propose a novel hierarchical reinforcement learning method to learn the
location selection policy. We utilize a container storage allocation simulator based on real port
data and conduct extensive experiments under various settings. The results demonstrate that our
method consistently outperforms the baseline methods. Furthermore, compared to other reinforce-
ment learning-based approaches, our proposed method achieves better performance and convergence
while significantly reducing computational complexity.

There are several future directions for our work. Firstly, we currently adopt a first come, first served
strategy for allocation. In the future, we plan to expand our approach by temporarily storing contain-
ers in a shared waiting buffer before allocating storage locations as a group. This will help to reduce
performance loss caused by future uncertainty. Secondly, we will validate our proposed framework
in more warehouse environments in the future.
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A APPENDIX

A.1 DETAIL OF INDICATORS

Notation

i, j Serial number of container

Cs,v
p,w A set of containers with service s, vessel v, port of discharge p, weight class

w

Av A set of blocks where there are containers with vessel v

n As,v length of As,v

b, r, t Serial number of bay, stack, tier

dbera,b Distance between bay (a, b) and berth ber

dbera the distance between blocka in berthber

La Limits tiers in block a

Ta,b,r The number of container types in the stack (a, b, r)

NTa,b,r The maximum number of containers of a certain type in the stack (a, b, r)∑
a,b,r,t x

i,a
b,r,t the total number of containers in the yard

xi,a
b,r,t xi,a

b,r,t=1 if containeri in slot (a, b, r, t) and containeri is not belong to init
containers, else 0

ubas the expected quantity of vessels in blocka

ubs the expected quantity of blocks for vessels
refi the reshuffle num after slot containeri
kas kas=1 if container of vessels slot in blocka else 0

N block limit
s the limit of Block Num for vessel s

The final metrics are presented as follows, where the specific symbol meanings are shown in Table
A.1.

• Block Equilibrium: During the loading process, multiple container areas will simultane-
ously carry out the container lifting operation to balance the workload among different areas
{N0, N1, ..., Ni}. This practice is advantageous in terms of improving equipment utilization and
preventing congestion.∑

a∈Av

|
∑
b,r,t

∑
i∈Cv

xi,a
b,r,t −

∑
a∈Av

∑
b,r,t

∑
i∈Cv x

i,a
b,r,t

n Av
| (7)

• Yard-berth Distance: According to the order of berths, each berth corresponds to a specific area.
Stacking containers in the designated based on berths can improve management, efficiency, and
safety.

1−
∑

a,b,r,t,i d
ber
a,b ∗ x

i,a
b,r,t

max(dbera,b ) ∗
∑

a,b,r,t x
i,a
b,r,t

(8)

• Block Num: The distribution of export containers on a vessel among different container areas
depends on the total container volume

∑
(v), as scattered storage locations can negatively impact

management and container lifting operations.{
n Av −N block limit

s n Av > N block limit
s

0 otherwise
(9)

Here, (t2− t1) means the level gap between coni and conj , and (yi,t1,j,t2a,b,r − zi,t1,j,t2a,b,r ) = 1 means
the position relationship of any pair of containers in the same stack does not conform to the
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priority constraint. yi,t1,j,t2a,b,r = 1 if containeri in slot(a, b, r, t1), containerj in slot(a, b, r, t2)
else equals 0. zi,t1,j,t2a,b,r = 1 if yi,t1,j,t2a,b,r = 1, and the position relation between coni and conj does
not conform to weight constraint, otherwise equals 0.

• Reshuffle Rate: After the given stowage plan for a vessel, a fixed sequence of container lifting in
the container yard S = {C0, C1, ..., Cn} will be generated. If the sequence of lifting containers
from top to bottom does not match the sequence S, re-stowage is necessary to extract containers
of lower levels but with an earlier sequence. At this time, the container lifting equipment may
become invalid and therefore have to wait or conduct re-stowage operations first.∑

a,b,r,i,j,ti<t2
(yi,t1,j,t2a,b,r − zi,t1,j,t2a,b,r ) ∗ (t2 − t1)∑

a,b,r,t x
i,a
b,r,t

(10)

• Concentration: The concentration considers the number of types of containers in each column
T{a, b, r} as well as the number of each type len(T{a, b, r}). Ideally, the attributes of contain-
ers in each column should be exactly the same. During loading, the containers with the same
attributes have adjacent lifting order and can be interchanged, which can effectively reduce re-
stowage and limit the back-and-forth movement of container lifting, thus improving concentra-
tion. ∑

a,b,r(k1 ∗
Ta,b,r−1∑

t x
i,a
b,r,t

+ k2 ∗ (1− NTa,b,r

La
))∑

a,b,r,t x
i,a
b,r,t

(11)

A.2 DETAIL OF IMMEDIATE REWARD FUNCTION

• Block Equilibrium:

ri,ablockEquilibrium = −1 ∗ ln(1 +max(0,
∑
b,r,t,i

xi,a
b,r,t − ubas)) (12)

• Yard-berth Distance:

rber,aberth−block =

{
0.5 if dbera = 0

−1 ∗ dbera

(13)

• Reshuffle Rate:

riweightdiff =

{
0.5 if refi−1 = refi

refi−1 − refi
(14)

• Concentration:

riconcentration =

{
−0.1 if

∑
r,t,i x

i,a
b,r,t = 1∑

t s
i,a
b,r,t

(15)

The definition of si,ab,r,t is as follows.

si,ab,r,t =

{
1 if containeri in stack(a,b,r), containerj in stack(a,b,r) with same vessel

−1 if containeri in stack(a,b,r), containerj in stack(a,b,r) with different vessel
(16)

• Block Num:

riblockoverflow =

{
−1 ∗max(0,

∑
a k

a
s − ubs) if container of vessels slot in blocka firstly

0

(17)

A.3 DETAIL OF SA-INITIALBLOCKS

In practical scenarios at traditional terminals, each shipping route is associated with a predefined
set of container blocks. Containers for a specific route are typically stored within the corresponding
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designated block range. This approach significantly reduces the action space for the higher-level
agent’s block selection.

To automate the selection of container blocks for each shipping route, we employ the simulated
annealing (SA) algorithm instead of manual block range selection.

Given the remaining capacity of each container block and the number of containers for the target
shipping routes, the SA algorithm allocates blocks to each route based on their capacity require-
ments. Additionally, to provide a reasonable exploration space for the higher-level agent, we intro-
duce a multiplier by multiplying the number of containers for the target routes. This results in a
larger block range, enhancing redundancy and facilitating effective exploration. During the alloca-
tion process, we consider three primary indicators: berth-block suitability, block concentration, and
quantity balance. The SA algorithm follows a specific process, as presented in the Algorithm 1.

algorithm 1 SA-InitialBlocks

Input: vessels V , the available slots for each container block B{b1, b2, ...bs}. yard container blocks
size s. Simulated annealing parameters end temperature τend, cool rate φ, iterations of each
temperature ζend.

Output: Container allocation for each vessel in each container block C(c12 represents the number of
containers allocated to vessel 1 in container block 2, corresponding to the number of available
slots in each container block).

1: Generate a random solution by assigning random container quantities Cv
b to each container

block S for each vessel V. This solution is denoted as X.
2: τ := τstart, ζ := 1.
3: while τ > τend do
4: while ζ < ζend do
5: Randomly select v, b, b2, c.
6: Cv

b+ = c, Cv
b2− = c. /* This generates a new neighbor solution Xnew. */

7: ∆Z = Z(X)−Z(Xnew). /* function Z calculates Berth-Block Correspondence, Block
Concentration Container, and Quantity Balance of the solution */

8: if ∆Z > 0 then
9: X = Xnew /* Accept the new solution*/

10: else
11: Accept Xnew with a probability e

α∆Z
τ

12: end if
13: ζ+ = 1,τ∗ = φ
14: end while
15: end while
16: return Xbest

A.4 DETAIL OF HIERARCHICAL-SAC TRAINING PROCESS

Algorithm 2 shows the training process of hierarchical Soft Actor Critic.

B SIMULATOR

B.1 STATIC YARD ENVIRONMENT CONFIGURATION

The terminal yard in the simulator replicates the layout of 68 container zones and 18 berths at
Meishan Terminal in Ningbo-Zhoushan Port. The specifications, spatial relationships, and actual
stacking areas of each container zone exactly match those of the real yard. To recreate the original
storage conditions at a specific moment, we utilized historical records from the Ningbo-Zhoushan
Port’s Terminal Operating System (TOS) between June 2022 and December 2022.

B.2 MAIN FEATURES OF THE SIMULATOR

The simulator can dynamically allocate available empty container slots that meet the requirements of
Prohibition of Suspension, Height Restriction, Cargo Reshuffling, and Size Constraint for upcoming
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algorithm 2 Hierarchical reinforcement Learning Training with SAC(Discrete)

Input: Training episode M; Initial policy parameters θh,θl, Q-function parameters ϕh0, ϕh1,
ϕl0, ϕl1.

Output: Trained discrete models
1: ϕtarg,h0 ← ϕh0, ϕtarg,h1 ← ϕh1, ϕtarg,l0 ← ϕl0, ϕtarg,l1 ← ϕl1 ▷ Equalise target and local

network weights
2: Rh, Rl ← ∅ ▷ Initialise empty replay buffers
3: for each iteration do
4: for each environment step do
5: ah ∼ πθh(· | s,m) ▷ Sample action from the high level policy
6: al ∼ πθl(· | sah

,mah
) ▷ Sample action from the low level policy

7: s′,m′, s′b,m
′
b, rh, rl, d ∼ p(s′, s′ah

| s, sah
, ah, al) ▷ Get transition from the

environment
8: Rh ← Rh ∪ {(s,m, ah, rh, s

′,m′, d)} ▷ Store the transition in the high level buffer
9: Rl ← Rl ∪ {(sah

,mah
, al, rl, s

′
ah
,m′

ah
, d)}▷ Store the transition in the low level buffer

10: end for
11: for i = high or low level do
12: for each gradient step do
13: ϕik ← ϕik − λQ∇̂ϕik

J (ϕik) for k ∈ {0, 1} ▷ Update the Q-function parameters
14: θi ← θi − λπ∇̂θiJπ(θi) ▷ Update policy weights
15: αi ← αi − λ∇̂αiJ(αi) ▷ Update temperature
16: ϕtarg,ik ← τϕtarg,ik + (1− τ)ϕik for k ∈ {0, 1} ▷ Update target network weights
17: end for
18: end for
19: end for
20: return θh, θl, ϕh0, ϕh1, ϕl0, ϕl1

container arrivals. Upon selecting a slot for placement, the simulator updates the storage status
accordingly. It can monitor the storage status of each position in the yard, and calculate real-time
yard performance metrics, such as estimated workload in different container zones during vessel
loading operations and the number of rehandles for each container stack, to provide instant feedback
for algorithms.

B.3 SIMULATOR ACCELERATION

Despite replicating a large number of container slots in the simulator, reaching tens of thousands,
it achieves fast calculations at the millisecond level for tasks such as available slot screening, zone
feature computation, slot feature computation, and yard stacking metric calculation. This efficiency
is achieved through two aspects. Firstly, the simulator benefits from caching critical yard storage
information. Secondly, during the container entry process, the simulator only performs real-time
local updates of cached information.

B.4 VISUALIZATION AND INTERACTION OF THE SIMULATOR

We developed a visual interface for the simulator using Unity3D. The simulator supports both online
and offline demonstration capabilities. In offline demonstration mode, historical records of container
entry and slot selection can be replayed to analyze storage effectiveness and algorithm performance.
In online demonstration mode, the visual interface synchronizes with the execution progress of
the algorithm, allowing users to interactively control the progress of container loading and storage
through the frontend interface.

C DATASETS

The dataset used in the simulator was extracted from the real historical data of Meishan Terminal
in Ningbo-Zhoushan Port’s Terminal Operating System (TOS) from October 2022 to December
2022. We selected a large-scale export container route from this period. To adapt to the simulator
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environment, we excluded special containers that require separate storage areas, such as dangerous
goods and refrigerated storage containers. For information security purposes, we retained only
certain attributes of the containers, including container number, flow direction, route, size, discharge
port, weight, status, storage position, entry time, and exit time. Based on the actual yard division
criteria, we categorized the containers into 12 weight levels.

D IMPLEMENTATION OF BASELINE

The experiment was conducted in PyTorch. The hardware we used was a Windows 10 machine with
a 12th Gen Intel(R) Core(TM) i5-12490F (@4.6GHz) CPU and an NVIDIA GeForce RTX 3060
GPU. The SAC models for the high-level agent and lower-level agent both consisted of a single
embedding layer, an LSTM network based on the pointer network, an Attention module, and a mask
module. The discount factor was set to 0.99, and the target entropy was set to -1 for both agents. The
learning rate for SAC was set to 0.0001 for the actor, critic, and α in the higher level, and 0.00005
for all in the lower level. We used the Adam optimizer for all the optimizers used in our experiments.

E EXPERIMENT RESULT

E.1 SUPPLEMENTAL EXPERIMENTAL RESULTS

Experiment Method Block-equilibrium ↓ Block Num ↓ Reshuffle rate ↓ Concentration ↓ Yard-berth distance ↑ Objective ↑

300-1

Expert Strategy1 0.2452 0 0.1772 -0.0498 1.0 12.7313

Expert Strategy2 0.2787 0 1.5518 -0.0598 1.0 -127.0680

Expert Strategy3 0.0060 5 1.4481 -0.0331 0.9753 -143.3403

Random 0.3250 5 0.1003 0.1225 0.9824 -55.6716

Hierarchical-SAC(Ours) 0.0423 0 0.0969 -0.0381 1.0 39.8773

300-2

Expert Strategy1 0.2976 0 0.1739 -0.0548 1.0 8.3277

Expert Strategy2 0.2787 0 1.4816 -0.0598 1.0 -120.0445

Expert Strategy3 0.0060 5 1.7491 -0.0381 0.9753 -172.9389

Random 0.2307 5 0.1137 0.1197 0.9811 -47.3620

Hierarchical-SAC(Ours) 0.0423 0 0.0668 -0.0397 1.0 43.0546

572-1

Expert Strategy1 0.0369 0 0.1273 -0.0328 1.0 36.8411

Expert Strategy2 0.5933 0 1.6945 -0.0650 0.875 -178.5391

Expert Strategy3 0.0032 5 1.7382 -0.0368 0.9709 -171.9125

Random 0.3482 5 0.1204 0.1114 0.9725 -59.3828

Hierarchical-SAC(Ours) 0.0401 0 0.0418 -0.0171 1.0 43.5078

572-2

Expert Strategy1 0.2976 0 0.1739 -0.0548 1.0 8.3277

Expert Strategy2 0.5933 0 2.1937 -0.0650 0.875 -228.4518

Expert Strategy3 0.0032 5 1.6736 -0.0333 0.9709 -165.8043

Random 0.3584 5 0.1221 0.1042 0.9757 -59.6955

Hierarchical-SAC(Ours) 0.0423 0 0.0668 -0.0397 1.0 43.0546

1000-1

Expert Strategy1 0.0384 0 0.1689 -0.0469 1.0 33.9667

Expert Strategy2 0.6298 0 2.2920 -0.0685 0.875 -241.5824

Expert Strategy3 0.0081 6 1.6325 -0.0460 0.9375 -172.5890

Random 0.4734 6 0.1859 0.0669 0.9512 -85.0726

Hierarchical-SAC(Ours) 0.0619 0 0.0979 -0.0131 0.9780 34.2254

1000-2

Expert Strategy1 0.0476 0 0.1859 -0.0456 1.0 31.2039

Expert Strategy2 0.6298 0 2.3764 -0.0685 0.875 -250.0280

Expert Strategy3 0.0081 6 1.7151 -0.0446 0.9375 -180.9898

Random 0.4266 6 0.1734 0.0717 0.9521 -79.5739

Hierarchical-SAC(Ours) 0.0614 0 0.0817 -0.0130 0.9780 35.8906

Table 5: Complete results of different methods on test datasets

E.2 VISUALIZATION OF RESULTS
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(a) Block-level perspective (b) Slot-level perspective

Figure 6: Visualization results of dataset 1000 (Hierarchical-SAC)

(a) Block-level perspective (b) Slot-level perspective

Figure 7: Visualization results of dataset 300 (Hierarchical-SAC)

(a) Block-level perspective (b) Slot-level perspective

Figure 8: Visualization results of dataset 572 (Expert Strategy2)

17


	Introduction
	Related Work
	Problem Formulation
	METHODOLOGY
	Overall Framework
	Hierarchical Reinforcement Learning
	RL Formulation
	Policy Network Architecture

	Soft Actor-Critic Training

	Experiments
	Experiments Settings
	Baselines
	Comparison with Baselines
	Ablation Studies

	Conclusion
	Appendix
	Detail of indicators
	Detail of Immediate Reward Function
	Detail of SA-InitialBlocks
	Detail of Hierarchical-SAC Training Process

	Simulator
	Static Yard Environment Configuration
	Main Features of the Simulator
	Simulator Acceleration
	Visualization and Interaction of the Simulator

	Datasets
	Implementation of Baseline
	Experiment Result
	Supplemental Experimental Results
	Visualization of Results


