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ABSTRACT

Recent studies on SGC, PageRank and S2GC have demonstrated that several
graph diffusion techniques are straightforward, quick, and effective for tasks in
the graph domain like node classification. Even though these techniques do not
even need labels, they can nevertheless produce more discriminating features than
raw attributes for downstream tasks with different classifiers. These methods are
data-independent and thus primarily rely on some empirical parameters on poly-
nomial bases (e.g., Monomial and Chebyshev), which ignore the homophily of
graphs and the attribute distribution. They are more insensitive to heterophilous
graphs due to the low-pass filtering. Although there are many approaches focus-
ing on GNNs based on heterophilous graphs, these approaches are dependent on
label information to learn model parameters. In this paper, we study the ques-
tion: are labels a necessity for GNNs with heterophilous graphs? Based on this
question, we propose a framework of self-representation on graphs related to the
Least Squares problem. Specifically, we use Generalized Minimum RESidual
(GMRES) method, which finds the least squares solution over Krylov subspaces.
In theoretical analysis, without label information, we enjoy better features with
graph convolution. The proposed method, like previous data-independent meth-
ods, is not a deep model and is, therefore, quick, scalable, and simple. We also
show performance guarantees for models on real and synthetic data. On a bench-
mark of real-world datasets, empirically, our method is competitive with existing
deep models for node classification.

1 INTRODUCTION

With the development of deep learning, CNNs have been widely used in different applications. A
convolutional neural network (CNN) is exploits the shift-invariance, local connectivity, and compo-
sitionality of image data. As a result, CNNs extract meaningful local features for various image-
related problems. Although CNNs effectively capture hidden patterns on the Euclidean grid, there
is an increasing number of applications where data is represented in the form of non-Euclidean grid,
e.g. in the graph domain.

GNNs redefine the convolution on the graph in two different ways: spatial and spectral. Spatial-
based methods decompose the convolution operation into an aggregation function and a transforma-
tion function. The aggregation function is used to aggregate neighbourhood node information by the
mean function, which is somewhat similar to the box filter in traditional image processing. Some
representative methods in this category are Message Passing Neural Networks (MPNN (Gilmer
et al., 2017)), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), etc. Spectral
methods are based on Graph Fourier Transformation (GFT). They try to learn a filtering function
on the eigenvalues (or graph kernel, heat kernel, etc.) These methods usually use approximations in
order to simplify the amount of computation, e.g. Chebyshev polynomials and Monomial polyno-
mials are used by ChebNet (Defferrard et al., 2016)), GDC (Klicpera et al., 2019), SGC (Wu et al.,
2019), S2GC (Zhu & Koniusz, 2021). Although spatial and spectral methods effectively extend the
convolution operator to the graph domain, they usually suffer from oversmoothing on heterophily
graph because they follow the homophily assumption, thus severely affect the node classification
task as shown in Figure 1.
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(a) K = 2

(b) K = 8

Figure 1: Results on the contextual SBM using SGC, S2GC and PR (PageRank) with number of
hops K = 2, 8. ‘Raw’ shows the error when no filtering method is applied. All methods only work
well in homophilous networks.

However, graphs are not always homophilic: they show the opposite property in some connected
node groups. This makes it harder for existing homophilic GNNs to learn from general graph-
structured data, which leads to a significant drop in performance on heterophilous graphs. There are
many GNNs for a graph with heterophily. Their motivation mainly focuses on improving feature
propagation and features transformation. Non-local neighbor extension usually is used for incor-
porating high-order neighbor information (Abu-El-Haija et al., 2019; Zhu et al., 2020; Jin et al.,
2021) or discovering potential neighbours (Liu et al., 2021; Yang et al., 2021; Zheng et al., 2022).
Adaptive message aggregation is a good way to reduce the heterophilous edges (Veličković et al.,
2017; Suresh et al., 2021). Inter-layer combination provide a more flexible way to learn graph con-
volution (Xu et al., 2018; Zhu et al., 2020; Chien et al., 2021). However, all of these approaches are
designed for semi-supervised node classification, which is usually transductive (labels for training).

In this paper, first we review the connection between GNNs and the Label Propagation (LP) with
Laplacian regularization (Zhou et al., 2003). The closed-form solution only depends on a parame-
ter balancing smoothing and fitting error. This results in low-pass filter methods for homophilious
graphs such as PageRank and S2GC, which cannot work well on heterophilous graphs. Based on
the Taylor expansion of the closed form solution, we reformulate label propagation with Laplacian
regularization to Residual Minimization in Krylov subspace. We further generalize the residual
minimization in the Krylov subspace into a more generalized Polynomial Approximation. Then
we discuss other possible bases such as Chebshev polynomials. In theoretical analysis, we try to
explore whether high-order (second-order in this paper) or multi-scale graph convolutions are able
to improve the performance given raw attributes without labels. In experiments with synthetic data,
we show performance in line with our theoretical expectations. On the real-world benchmarks, our
method is competitive with other graph convolution techniques in homophilous graphs and outper-
forms them (even some GNNs methods with transductive learning) on heterophilous graphs.

Our contributions are: 1.) We reveal the labels are not necessary for graph neural networks on
heterophilous graphs. The linear graph convolution is powerful on heterophilous graphs and ho-
mophilous graph, and outperforms GNNs for heterophilous graphs on semi-supervised node classi-
fication. 2.) We propose a framework of Feature (or Label) Propagation by parameterizing spectral
graph convolution as residual minimization in Krylov subspace. We further reformulate residual
minimization problem into Polymonimial Approximation, which can yield Chebshev and Berstein
bases to overcome the Runge phenomenon. 3.) In theory, we prove second-order graph convolu-
tion is better than first-order graph convolution on heterophilous graphs and multi-scale (single and
second-order) can provide better results with some combinations of parameters. 4.) Compared with
other methods of label-dependent GNNs under heterophily, our method is competitive in real-world
benchmarks. The proposed method outperforms other low-pass graph convolution without learning.
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2 RELATED WORKS

Data-independent Spectral Graph Convolution Hammond et al. (2011) introduced Chebyshev
polynomial to estimate wavelets in graph signal processing. Based on this polynomial approxima-
tion, ChebNet was proposed for combining neural network and the graph convolution operator. Un-
like ChebNet using Chebyshev polynomial, Diffusion Convolutional Neural Network (DCNN (At-
wood & Towsley, 2016)) use the normalized adjacent matrix as polynomial bases to approximate
any graph filters. Simplifying Graph Convolution (SGC (Wu et al., 2019)) are a special case of
DCNN: only k-th power of normalized adjacent matrix is selected. Graph Diffusion Convolution
(GDC (Klicpera et al., 2019)) shown two other special cases based on normalized adjacent matrix:
heat kernel and PageRank kernel. It should be noted that GDC re-normalizes the given kernel like a
normalized adjacent matrix. Thus, in this paper, we use PageRank kernel such as APPNP (Klicpera
et al., 2018). Simple Spectral Graph Convolution (S2GC (Zhu & Koniusz, 2021)) is based on a
modified Markov diffusion kernel (Fouss et al., 2012). Although these methods are effective on
node classification, fixed parameters ignore the graph property of homophily/heterophily, and node
attributes in different dimensions. These drawbacks limit such methods on heterophilous graphs.

Learnable graph convolutions Chebyshev polynomials are used by ChebNet (Defferrard et al.,
2016) to approximate the graph convolutions. In theory, one can learn any kind of filter (Balcilar
et al., 2021). With Cayley polynomials, CayleyNet (Levie et al., 2018) learns the graph convo-
lutions and produces a variety of graph filters. Low-pass or high-pass filters can be derived from
graph convolutions. GPR-GNN (Chien et al., 2021) employs the Monomial basis to approximate
these filters. Through the family of Auto-Regressive Moving Average filters (Narang et al., 2013),
ARMA (Bianchi et al., 2021) learns the rational graph convolutions. The graph convolutions are
approximated in BernNet (He et al., 2021), which also learns graph filter using the Bernstein basis.
Although these methods achieve good performance on different datasets, the learnable parameters
of the graph convolution kernel depend only on the label information, which leads to overfitting due
to too few or unbalanced labels.

Graph Neural Networks for Heretophily Graphs are not always homophilic. The opposite is
true on connected node groups. This makes it harder for existing homophilic GNNs to learn from
general graph-structured data, which leads to a significant drop in performance on heterophilous
graphs. Increasing Homophilic Edges (HoE) and decreasing Heterophilic Edges (HeE) are two
mainly ways to improve feature propagation. HoE refers to edges connecting two nodes of the same
class while HeH means edges connecting two nodes of different classes. The strategies of increasing
increasing HoE include using two-hop (or higher) neighbours and discovering new neighbours with
feature similarity. Decreasing Heterophilic Edges (HeE) assigns the weights on edges to reduce the
impact from potential heterophilous edges. At each message passing step, H2GCN (Zhu et al., 2020)
aggregates data from higher-order neighbors. In order to offer theoretical guarantee, H2GCN con-
firms that when one-hop neighbors’ labels are conditionally independent, two-hop neighbors tend
to include more nodes belonging to the same class. The generalised PageRank is used with graph
convolutions in GPR-GNN (Chien et al., 2021) to jointly maximise the extraction of node features
and topological information for both homophilous and heterophilous graphs. These methods are
based on transductive learning. Without label information they cannot learn a useful model. Graph
convolution based methods such as SGC, S2GC and PageRank do not need labels at all.

3 METHODS

In this section, we review the classical Label Propagation with Laplacian Regularization (Zhou
et al., 2003) and show the relationship between his iterative solution and the existing GNNs. Then,
by analyzing the closed form of LP, we formulate the label propagation to residual minimizing in
Krylov subspace to learn parameters for graph convolution. To overcome the Runge phenomenon,
we reformulate residual minimizing problem in Krylov subspace to a more general polymonimial
approximation problem, which helps introduce other kinds of bases such as Chebyshev and Berstein
polynomials.

3.1 PRELIMINARIES

Let G = (V,E) be a simple and connected undirected graph with n nodes and m edges. We use
{1, · · · , n} to denote the node index of G, whereas dj denotes the degree of node j in G. Let
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A be the adjacency matrix and D be the diagonal degree matrix. Let Ã = A + In denote the
adjacency matrix with added self-loops and the corresponding diagonal degree matrix D̃, where
In ∈ Rn×n is an identity matrix. Finally, let X ∈ Rn×d denote the node feature matrix, where
each node v is associated with a d-dimensional feature vector xv . To facilitate the definition of
dimension-independent objective functions, we use y ∈ Rn×1 to denote 1D node features.

Label Propagation with Laplacian Regularization. A classical regularization framework for
label (or feature) propagation (Zhou et al., 2003) includes two components: a fitting term with least
square and a smoothing term with Laplacian regularization.The fitting term controls the target so it
is not far away to the original point. The smoothing term encourages the connected elements have
similar scale. The loss function associated with f ∈ Rn×1 is defined as:

E(f) = 1

2

 n∑
i,j=1

Aij

∥∥∥∥∥ 1√
Dii

fi −
1√
Djj

fj

∥∥∥∥∥
2

+ µ

n∑
i=1

∥fi − yi∥2
 , (1)

where µ > 0 is the regularization parameter. Differentiating E(f) with respect to f , we have
∂Q

∂f

∣∣∣∣
f=f∗

= f∗ −Af∗ + µ (f∗ − y) = 0. (2)

Although there exist a closed-form based on Eq. 2, for large graphs the inverse of I − αA is not
practically-feasible to compute, and instead iterative approximations are preferable. To this end, we
may set f (0) = y, and then proceed to iteratively descend in the direction of the negative gradient:

f (t+1) = αAf (t) + (1− α)f (0), (3)

where α = 1
1+µ . If we define y = f(X;θ) and replace A with Ã, Eq. 3 equates to principled GNN

layers, such as those used by GCN (Kipf & Welling, 2016), APPNP (Klicpera et al., 2018).

3.2 LABEL PROPAGATION WITH RESIDUAL MINIMIZING OVER KRYLOV SUBSPACE

In this section, we reformulate the closed-form solution of label propagation with Laplacian reg-
ularization (Zhou et al., 2003) to a more generalized model based on a Residual Minimizing over
Krylov Subspace to solve for the parameters for graph convolution.

Let us remind the closed-form solution Eq. 1: f = (1−α)(I −αA)−1y. If we put the closed-form
solution into the fitting term of Eq. 1, we have:

min
f

∥y − f∥2 = min
α

∥y − (1− α)(I − αA)−1y∥2 = min
w∈Rr

∥αy −A

r∑
i=0

wiA
iy∥2, (4)

where wi = (1 − α)αi. We could rescale y by 1 − (1 − α) to eliminate the parameter β. Please
note r < rank(A). Then we obtain a more compact form:

min
w∈Rr−1

∥y −A

r∑
i=0

wiA
iy∥2 = min

x∈Kr(A,b)
∥y −Ax∥2, (5)

where the set of vectors Kr(A,y) =
{
y,Ay,A2y, . . . ,Ar−1y

}
is called the order-r Krylov ma-

trix, and the subspace spanned by these vectors is called the order-r Krylov subspace. Based on this
we obtain a denoised signal as f = Ax.

Relation to GPR-GNN (Chien et al., 2021). GPR-GNN first extracts hidden state features with a
MLP for each node and then uses Generalized PageRank (GPR) to propagate them. The GPR-GNN
process can be mathematically described as:

P̂ = softmax(Z),Z =

K∑
k=0

γkH
(k),H(k) = ÃH(k−1),H(0) = f (X;θ) , (6)

where softmax(Zi,:) = eZij∑c
j=1 eZij

. Although Generalized PageRank looks similar to the purpose

of our approach, we notice three key differences: (1) The GPR learns generalized graph convolution
on logits rather than features (or attributes). (2) The parameters in GPR only depend on labels
rather than internal information of the graph and the corresponding attributes. (3) There is no global
optimal solution for GPR-GNN because of the feature extraction with a MLP.
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3.3 POLYNOMIAL APPROXIMATION WITH CONSTRAINTS

The Eq. 5 also solves an approximation problem. The only difference being that the space of poly-
nomials is now Pr = { polynomials p of degree ≤ r with pr(0) = 1}. Expressed in terms of
polynomial coefficients, we have a constraint of w0 = 1. Here is how Eq. 5 can be reduced to the
polynomial approximation in Pr. The iterate x can be written as x = qr(A)y, where qr is a poly-
nomial of degree r − 1; its coefficients are the entries of the vector w of Eq. 5 . The corresponding
residual r = y − Ax is r = (I −Aqr(A))y. If we define pr(z) = 1 − zqr(z), which is the
polynomial, we have r = pr(A)y for some polynomial pr ∈ Pr. Thus, we can reformulate Eq. 5
as:

min
x∈Kr(A,b)

∥y −Ax∥2 = min
pr∈Pr,pr(0)=1

∥pr(A)y∥2, (7)

where Pr is the set of all polynomials pr of degree at most r such that pr(0) = 1.

Chebyshev polynomials are frequently employed in digital signal processing and graph signal fil-
tering to approximate a variety of functions. The analytical functions may be approximated by a
minimax polynomial using the truncated Chebyshev expansions. Consequently, a truncated expan-
sion expressed in terms of Chebyshev polynomials can minimize the loss function as follows:

min
w∈Rr

∥
r−1∑
i=0

wiTi(L̂)y∥2, (8)

where L̂ = 2L/λmax − I denotes the scaled Laplacian matrix. λmax is the largest eigenvalue of L
and wk denote the Chebyshev coefficients. The Chebyshev polynomials can be recursively defined
as Tk(x) = 2xTk−1(x) − Tk−2(x), with T0(x) = 1 and T1(x) = x. Although Chebyshev poly-
nomials have many great properties such as relieving the Runge phenomenon, they underperform in
GNNs. How to solve this problem is beyond the scope of this paper.

3.4 THEORETICAL ANALYSIS

We study our method in the contextual stochastic block model (cSBM) (Deshpande et al., 2018),
which is a generative model for random graphs. For the purposes of theoretical analysis, we take
into account a CSBM model with two classes, c0 and c1. The generated graphs in this instance have
nodes made up of two distinct sets, C0 and C1, which represent the two classes, respectively. An
intra-class probability p and an inter-class probability q are used to produce edges. In particular, an
edge is constructed to connect any two nodes in the graph with probability p if they belong to the
same class, and q otherwise. For each node i, its initial associated features xi ∈ Rl are sampled
from a Gaussian distribution xi ∼ N(µ, σI), where µ = µk ∈ Rl for i ∈ Ck with k ∈ {0, 1}.
Hence, we denote a graph generated from such an cSBM model as G ∼ cSBM(µ1,µ2, p, q), and
the features for node i obtained after a first-order graph convolution as h1

i and h2
i with second-order

graph convolution.

Ma et al. (2022) propose a very interesting problem ‘Is homophily a necessity for graph neural
networks?’ A very useful property has been proven that first-order graph convolution can provide
a better features if the deg(i) > (p+q)2

(p−q)2 is met, which demonstrates that the node degree deg(i)

and the distinguishability (measured by the Euclidean distance) of the neighborhood distributions
both affect graph convolution performance. This condition often happens in practice. Thus, we
are interested whether or not the higher-order graph convolution still enjoy such a property. As
the proposed method could be regarded as a multi-scale graph convolution, it is important to know
whether there are existing parameters that make the multi-scale graph convolution better than single
graph convolution.

To better evaluate the effectiveness of our method, we study the linear classifiers with the largest
margin based on {xi, i ∈ V},

{
h1
i , i ∈ V

}
and

{
h2
i , i ∈ V

}
compare their performance. Here we

define relation among xi, h1
i and h2

i as follows:

h1
i =

1

deg(i)

∑
j∈N (i)

xj and h2
i =

1

deg(i)

∑
j∈N (i)

h1
j , (9)

where N (i) denotes the neighbors of node i.
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For a graph G ∼ cSBM(µ1,µ2, p, q), we can approximately regard that for each node i, its neigh-
bor’s labels are independently sampled from a neighborhood distribution Dyi

, where yi denotes
the label of node i. Specifically, the neighborhood distributions corresponding to c0 and c1 are
Dc0 =

[
p

p+q ,
q

p+q

]
and Dc1 =

[
q

p+q ,
p

p+q

]
, respectively. Based on the neighborhood distributions,

the features obtained from Graph Convolution follow the Gaussian distributions:

h1
i ∼ N

(
pµ0 + qµ1

p+ q
,

I√
deg(i)

)
,h2

i ∼ N

(
deg(i)(

p2µ0 + 2pqµ1 + q2µ1

p+ q
), I

)
, for i ∈ C0,

h1
i ∼ N

(
qµ0 + pµ1

p+ q
,

I√
deg(i)

)
,h2

i ∼ N

(
deg(i)(

p2µ1 + 2pqµ0 + q2µ0

p+ q
), I

)
, for i ∈ C1.

(10)
Proposition 1. (Ma et al., 2022) (Ec0 [xi] ,Ec1 [xi]) and (Ec0 [hi] ,Ec1 [hi]) share the same
middle point. Ec0 [xi]− Ec1 [xi] and Ec0 [hi] − Ec1 [hi] share the same direction. Specifi-
cally, the middle point m and the shared direction w are as follows: m = (µ0 + µ1) /2, and
w = (µ0 − µ1) / ∥µ0 − µ1∥2.

This proposition follows from direct calculations. Given that the feature distributions of these two
classes are systematic to each other (for both xi and hi ), the hyperplane that is orthogonal to w
and goes through m and defines the decision boundary of the optimal linear classifier for both types
of features. We denote this decision boundary as P =

{
x | w⊤x−w⊤ (µ0 + µ1) /2

}
. Next, to

evaluate how higher-order graph convolution affects the classification performance, we compare the
probability that this linear classifier misclassifies a certain node based on the features after first-order
graph convolution and after the second-order graph convolution. We summarize the results in the
following theorem.
Theorem 3.1. Consider a graph G ∼ cSBM(µ0,µ1, p, q). For any node i in this graph, the linear
classifier defined by the decision boundary P has a lower or equivalent probability to misclassify
h2
i than h1

i when deg(i) > (p+ q)2/(p− q)2.

Proof. We only prove this for nodes from classes c0 since the case for nodes from classes c1 is
symmetric and then the proof follows. For a node i ∈ C0, we have the follows

P
(
h1
i is mis-classified

)
= P

(
w⊤h1

i + b ≤ 0
)

for i ∈ C0, and

P
(
h2
i is mis-classified

)
= P

(
w⊤h2

i + b ≤ 0
)

for i ∈ C0,
(11)

where w and b = −w⊤ (µ0 + µ1) /2 is the parameters of the decision boundary P . We have

P
(
w⊤h1

i + b ≤ 0
)
= P

(
w⊤
√
deg(i)h1

i +
√
deg(i)b ≤ 0

)
and

P
(
w⊤h2

i + b ≤ 0
)
= P

(
w⊤
√

deg(i)h2
i +

√
deg(i)b ≤ 0

)
.

(12)

We denote the scaled version of h1
i and h2

i as h′
i =

√
deg(i)h1

i and h′′
i =

√
deg(i)h2

i respectively.
Then, h′

i and h′′
i follow

h′
i =

√
deg(i)h1

i ∼ N

(√
deg(i) (pµ0 + qµ1)

p+ q
, I

)
, for i ∈ C0, and

h′′
i = deg(i)h2

i ∼ N

(
deg(i)(

p2µ0 + 2pqµ1 + q2µ1

p+ q
), I

)
, for i ∈ C0.

(13)

Now, since h′
i and h′′

i share the same variance, to compare the misclassification probabilities, we
only need to compare the distance from their expected value to their corresponding decision bound-
ary. Specifically, the two distances are:

dish′
i
=

√
deg(i)(p− q)

(p+ q)
·
∥µ0 − µ1∥2

2
, anddish′′

i
=

deg(i)(p− q)2

(p+ q)2
·
∥µ0 − µ1∥2

2
. (14)

The larger the distance is the smaller the misclassification probability is. Hence, when dish′
i
<

dish′′
i

, h′′
i has a lower probability to be misclassified than h′

i and xi. Comparing the two distances,
we conclude that when deg(i) > (p+ q)2/(p− q)2, h′′

i has a lower probability to be misclassified
than h′

i.
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(a) Graph Convolution (GC) (b) Graph Convolution based Methods.

Figure 2: Distribution of the feature values on a highly heterophilous synthetic graph before and
after using different graph convolution based methods.

Figure 3: Results on the contextual SBM using graph convolutions with first-order (GC), second-
order (GC2), third-order (GC3) and fouth-order (GC4). Two different combination of graph convo-
lutions have been considered: the difference between first two-order (GCdiff1) and the difference
between even orders and odd orders (GCdiff2).
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Theorem 3.2. When p < q (heterophilous graphs) the presence of the parameters w1 < 0 and
w2 > 0 allows w1h

1
i+w2h

2
i to have a lower probability to be misclassified than h2

i when w2
1

(1−w2)2
>

deg(i)(p−q)2

(p+q)2 . Please refer to the appendix for proof.

4 EXPERIMENTS

4.1 RESULT ON CSBM SYNTHETIC

Synthetic data In order to test the ability of graph convolution based methods with arbitrary levels
of homophily and heterophily, we use cSBMs (Deshpande et al., 2018) to generate synthetic graphs.
We consider the case with two equal-size classes and take into account cSBM with n = 1000, two
communities C0 and C1, feature means µ0 = 1 and µ1 = −1, and noise variance σ = 1. Then there
are 500 nodes in each community, which we will refer to as ”positive” and ”negative,” respectively.
Standard normal noise is applied to the feature means of the nodes in the ”positive” community,
which is 1, and the ”negative” community, which is −1. With the expected degree of all nodes set
to 10 (i.e., 2(p + q)n = 10), we create various graphs by varying the intra- and inter-community
edge probabilities p and q from p > q (highly homophilous, in that ”positive” nodes are much more
likely to connect to other ”positive” nodes than to ”negative” nodes) to q < p (highly heterophilous,
in that ”negative” nodes. We compare our methods with three baseline models: Raw, SGC (Wu
et al., 2019), S2GC (Veličković et al., 2017), PageRank (Page et al., 1999; Klicpera et al., 2018). At
the sametime, we also evaluate first-order graph convolution (GC), second-order graph convolution
(GC2), the sum of graph convolutions and the difference of graph convolutions.

As shown in Figure 1a, we found that some low-pass filters (SGC and APPNP) can have a positive
effect on some heterophilous graphs (p−q

p+q ≈ −1) with a low number of convolutions (second-order).
However this phenomenon rapidly disappears as the number of convolutions increases as shown in
Figure 1b, and when K = 8 it can be seen that all low-pass filters perform much worse than the
original features on synthetic heterophilous graphs. In theoretical analysis, we prove the second-
order graph convolution can provide a more discriminant features than first-order graph convolution
and raw features. As shown in Figure 2a, the distribution of the feature values can qualitatively
state this view. We found that in heterophilous graphs, first-order graph convolution may change
the sign of the features. Thus for methods that use non-negative weights, such as PageRank, S2GC,
this leads to the class centre of the features moving closer to the features’ centre (global centre)
as shown in Figure 2b. And the proposed method is able to keep the distance between two class
centers and reduce the intra-class variance. As shown in Figure 3, we found the second-order graph
convolution is better than the first-order graph convolution in graphs with different heterophilous
score. The difference between second-order and first-order graph convolutions can provide a better
graph convolution in heterophilous graphs while p−q

p+q < −0.6.

4.2 REAL WORLD BENCHMARK

We use 5 homophilous benchmark datasets available from the Pytorch Geometric library, including
the citation graphs Cora, CiteSeer, PubMed (Sen et al., 2008; Yang et al., 2016) and the Amazon
co-purchase graphs Computers and Photo (McAuley et al., 2015; Shchur et al., 2018). We also use 5
heterophilous benchmark datasets tested in (Pei et al., 2020), including Wikipedia graphs Chameleon
and Squirrel, the Actor co-occurrence graph, and webpage graphs Texas and Cornell from WebKB.
We summarize the dataset statistics and results in Table 1 and 2.

Results on real-world datasets. We use accuracy (the micro-F1 score) as the evaluation met-
ric along with a 95% confidence interval. The relevant results are summarized in Table 2 . For
homophilous datasets, we provide results for sparse splitting ( 2.5%/2.5%/95% splits as train-
ing/validation/test data) as same as the definition in Chien et al. (2021), which is different with
the original setting used in (Kipf & Welling, 2016); (Shchur et al., 2018). For the heterophilous
datasets, we adopt dense splitting ( 60%/20%/20% splits as training/validation/test data) which is
used in (Pei et al., 2020). We apply our SGC, S2GC and PageRank implementations to these datasets
and present the mean test accuracy over 10 randomly split data sets. We also provide a baseline on
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Table 1: Statistics and results on homophilous datasets: Mean accuracy (%) ± 95% confidence
interval. As expected due to design, on homophilous datasets, our method is only comparable to
other graph convolution based methods because the low-pass filtering is all we need in this situation.

CORA CITESEER PUBMED COMPUTER PHOTO
Nodes 2708 3327 19717 13752 7650
Edges 5278 4552 44324 245861 119081
Features 1433 3703 500 767 745
Classes 7 6 3 10 8
H(G) 0.825 0.718 0.792 0.802 0.849
Raw 55.09 ± 1.81 60.30 ± 1.55 77.79 ± 0.95 76.07 ± 0.57 82.97 ± 0.58
SGC 78.16 ± 1.32 70.18 ± 1.00 73.90 ± 2.22 87.14 ± 0.45 92.03 ± 0.51

S2GC 78.57 ± 1.64 70.34 ± 1.04 82.89 ± 0.46 86.94 ± 0.51 92.89 ± 0.58
PageRank 77.65 ± 1.70 70.51 ± 1.05 75.05 ± 1.38 87.40 ± 0.46 92.95 ± 0.57
Ours 74.94 ± 1.38 66.86 ± 0.86 78.72 ± 0.97 86.72 ± 0.50 91.74 ± 0.33
MLP 50.34 ± 0.48 52.88 ± 0.51 80.57 ± 0.12 70.48 ± 0.28 78.69 ± 0.30
GCN 75.21 ± 0.38 67.30 ± 0.35 84.27 ± 0.01 82.52 ± 0.32 90.54 ± 0.21
GAT 76.70 ± 0.42 67.20 ± 0.46 83.28 ± 0.12 81.95 ± 0.38 90.09 ± 0.27
SAGE 70.89 ± 0.54 61.52 ± 0.44 81.30 ± 0.10 83.11 ± 0.23 90.51 ± 0.25
JKNet 73.22 ± 0.64 60.85 ± 0.76 82.91 ± 0.11 77.80 ± 0.97 87.70 ± 0.70
GCN-Cheby 71.39 ± 0.51 65.67 ± 0.38 83.83 ± 0.12 82.41 ± 0.28 90.09 ± 0.28
GeomGCN 20.37 ± 1.13 20.30 ± 0.90 58.20 ± 1.23 NA NA
APPNP 79.41 ± 0.38 68.59 ± 0.30 85.02 ± 0.09 81.99 ± 0.26 91.11 ± 0.26
GPRGNN 79.51 ± 0.36 67.63 ± 0.38 85.07 ± 0.09 82.90 ± 0.37 91.93 ± 0.26

Table 2: Statistics and results on heterophilous benchmark datasets: Mean accuracy (%) ± 95%
confidence interval. As expected due to design, our methods all meet or exceed the performance of
raw features and are not affected by the heterophilous property like other graph convolution methods.

CHAMELEON SQUIRREL ACTOR TEXAS CORNELL
Nodes 2277 5201 7600 183 183
Edges 31421 198493 26752 295 280
Features 2325 2089 932 1703 1703
Classes 5 5 5 5 5
H(G) 0.247 0.217 0.215 0.057 0.301
Raw 49.56 ± 0.88 34.16 ± 0.74 36.28 ± 0.77 86.49 ± 2.88 86.49 ± 2.88
SGC 57.70 ± 1.62 44.98 ± 1.28 30.07 ± 0.76 55.68 ± 5.71 54.32 ± 6.41

S2GC 50.35 ± 1.51 37.77 ± 0.78 33.99 ± 0.84 71.08 ± 4.74 62.43 ± 6.91
PageRank 58.68 ± 2.14 42.91 ± 0.68 33.27 ± 1.00 61.89 ± 7.03 63.24 ± 6.26
Ours 72.28 ± 0.90 58.98 ± 1.01 36.45 ± 0.79 86.76 ± 3.58 86.49 ± 3.08
MLP 46.72 ± 0.46 31.28 ± 0.27 38.58 ± 0.25 92.26 ± 0.71 91.36 ± 0.70
GCN 60.96 ± 0.78 45.66 ± 0.39 30.59 ± 0.23 75.16 ± 0.96 66.72 ± 1.37
GAT 63.90 ± 0.46 42.72 ± 0.33 35.98 ± 0.23 78.87 ± 0.86 76.00 ± 1.01
SAGE 62.15 ± 0.42 41.26 ± 0.26 36.37 ± 0.21 79.03 ± 1.20 71.41 ± 1.24
JKNet 62.92 ± 0.49 44.72 ± 0.48 33.41 ± 0.25 75.53 ± 1.16 66.73 ± 1.73
GCN-Cheby 59.96 ± 0.51 40.67 ± 0.31 38.02 ± 0.23 86.08 ± 0.96 85.33 ± 1.04
GeomGCN 61.06 ± 0.49 38.28 ± 0.27 31.81 ± 0.24 58.56 ± 1.77 55.59 ± 1.59
APPNP 51.91 ± 0.56 34.77 ± 0.34 38.86 ± 0.24 91.18 ± 0.70 91.80 ± 0.63
GPRGNN 67.48 ± 0.40 49.93 ± 0.53 39.30 ± 0.27 92.92 ± 0.61 91.36 ± 0.70

the precision of logistic regression using the raw attributes without taking into account the graph
convolution.

Table 1 shows that, in general, Our method cannot beat other convolution methods based on low-
pass filtering designs such as SGC, S2GC and PageRank on homophilous datasets. However, our
approach still outperforms some classical GNNs like SAGE, JKNet, GCN-Cheby and GeomGCN.
GPR-GNN achieves the state-of-the-art performance. On heterophilous datasets, our method sig-
nificantly outperforms all the other graph convolution models. On Chameleon and Squirrel, we
outperform other methods. It is worthy to note our approach outperform the GPR-GNN, which use
the same monimial basis as our method. This is a good case to prove that the label is not necessary
for heterophilous graphs. In actor, most methods cannot outperform the corresponding baseline.
Except ours, all graph convolution based methods cannot outperform raw attributes with logistic
regression. Similarly, only APPNP and GPRGNN can outperform raw attributes with MLP. On the
Texas dataset, all methods behave similarly to those on Actor. The only difference is APPNP cannot
outperform the baseline while ours and GPRGNN outperform the baseline method. Conrnell is the
most challenge dataset for all methods, no one can outperform the baseline (Logistic Regression and
MLP) although ours and GPRGNN can have the same performance.
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5 CONCLUSION

From an optimalization perspective we propose an novel framework for label (or feature) propaga-
tion that is not based on Laplacian regularization. This framework extends label propagation from
the least squares problem to polynomial approximation, and sheds light on graph convolution with
heretophilous graphs. We show we can learn (unsupervised setting) a graph convolution that obtains
better features than raw attributes. In synthetic data experiments, we show that our method has bet-
ter properties on heterophilous graphs compared to existing fixed parameter graph convolutions. In
real-world benchmarks, our method even outperforms some methods that use label information.
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Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic
block models. Advances in Neural Information Processing Systems, 31, 2018.

François Fouss, Kevin Francoisse, Luh Yen, Alain Pirotte, and Marco Saerens. An experimental
investigation of kernels on graphs for collaborative recommendation and semisupervised classifi-
cation. Neural networks, 31:53–72, 2012.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272. PMLR, 2017.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
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A APPENDIX

A.1 PROOF OF THEOREM 3.2

Proof. We could add w1 and w2 into Eq. 14 and have:

discomb =
w1

√
deg(i)(p− q)

(p+ q)
·
∥µ0 − µ1∥2

2
+

w2 deg(i)(p− q)2

(p+ q)2
·
∥µ0 − µ1∥2

2

=

(
w1

√
deg(i)(p− q)

(p+ q)
+

w2 deg(i)(p− q)2

(p+ q)2

)
·
∥µ0 − µ1∥2

2
.

(15)

We hope the discomb is larger than dish′′
i

then we need the following inequation:(
w1

√
deg(i)(p− q)

(p+ q)
+

w2 deg(i)(p− q)2

(p+ q)2

)
>

deg(i)(p− q)2

(p+ q)2

w1

√
deg(i)(p− q)

(p+ q)
>

(1− w2) deg(i)(p− q)2

(p+ q)2
.

(16)

We can assume
√

deg(i)(p−q)

(p+q) > 1 and then we have:

w2
1

(1− w2)2
>

deg(i)(p− q)2

(p+ q)2
(17)
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