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Abstract

Ensembling different large language models001
(LLMs) to unleash their complementary po-002
tential and harness their individual strengths003
is highly valuable. Nevertheless, vocabulary004
discrepancies among various LLMs have con-005
strained previous studies to either selecting or006
blending completely generated outputs. This007
limitation hinders the dynamic correction and008
enhancement of outputs during the generation009
process, resulting in a limited capacity for ef-010
fective ensemble. To address this issue, we011
propose a novel method to Ensemble LLMs012
via Vocabulary Alignment (EVA). EVA bridges013
the lexical gap among various LLMs, enabling014
meticulous ensemble at each generation step.015
Specifically, we first learn mappings between016
the vocabularies of different LLMs with the as-017
sistance of overlapping tokens. Subsequently,018
these mappings are employed to project output019
distributions of LLMs into a unified space, fa-020
cilitating a fine-grained ensemble. Finally, we021
design a filtering strategy to exclude models022
that generate unfaithful tokens. Experimental023
results on commonsense reasoning, arithmetic024
reasoning, machine translation, and data-to-text025
generation tasks demonstrate the superiority of026
our approach compared with individual LLMs027
and previous ensemble methods conducted on028
complete outputs. Further analyses confirm029
that our approach can leverage knowledge from030
different language models and yield consistent031
improvement.032

1 Introduction033

Large language models (LLMs) have demonstrated034

impressive performance across various natural lan-035

guage processing tasks (Anil et al., 2023; Touvron036

et al., 2023; Chiang et al., 2023). These models,037

spanning diverse datasets, architectures, and train-038

ing methodologies, exhibit different strengths and039

weaknesses (Jiang et al., 2023). Therefore, ensem-040

bling these LLMs to unleash their complementary041

potential and harness their individual strengths is042

Each train travels 80 miles on the first day and 150 miles on 
the second day, totaling 230 miles covered by each train.

The first train covers 80 miles, the second 150 miles, 
totaling 230 miles. As they're heading opposite ways, their 
equal speeds average at 115 miles per day.

Both trains cover a total of 460 miles over two days: 160 
miles on the first day and 300 miles on the second day. 
Hence, the answer is 460 miles.

Question: Both trains traveled 80 miles west on the first day and 150 miles 
north on the second day. How far did each train travel per day?

ChatGLM 

TigerBot

EVA

Figure 1: Motivation of EVA. For the problem of train
travel distance, both TigerBot and ChatGLM provide
wrong answers. Ensembling over completely generated
outputs cannot derive the correct answer. EVA achieves
correct answers by performing fine-grained ensemble
at each generation step, allowing each token to benefit
from the ensemble.

highly valuable (Jiang et al., 2023; Lu et al., 2023; 043

Shnitzer et al., 2023). 044

Previous studies typically concentrate on the en- 045

semble of completely generated outputs, which 046

involve either ranking multiple outputs to select 047

the best one (Lu et al., 2023; Shnitzer et al., 2023) 048

or incorporating additional fusion models to blend 049

these outputs (Jiang et al., 2023). Therefore, these 050

methods usually lead to ensemble outcomes con- 051

fined to the space of several completely generated 052

outputs. As shown in Figure 1, for the problem of 053

train travel distance, both TigerBot and ChatGLM 054

provide incorrect reasoning processes, resulting in 055

wrong answers. Ensembling over completely gen- 056

erated outputs cannot produce correct answer if all 057

the candidate complete outputs are wrong. 058

One potential solution to this problem involves 059

incorporating ensembling into the generation pro- 060

cess of LLMs. As indicated by Zhang et al. (2023), 061

early errors in LLMs tend to snowball, leading to 062

subsequent errors that might not have otherwise 063

occurred. Ensembling during generation helps pre- 064

vent the generation of inaccurate tokens at each 065
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Figure 2: The EVA framework. EVA consists of two steps. (a) Firstly, we establishes alignment between the
vocabularies of different models. (b) Next, we project the output distributions of different LLMs into a unified space
using the established vocabulary alignment and exclude unfaithful tokens to perform fine-grained ensemble.

step, thereby reducing misleading cues for subse-066

quent token generation. However, such an ensem-067

ble approach is unfeasible for LLMs due to vocab-068

ulary discrepancies. As illustrated in Figure 2, the069

three LLMs use distinct vocabularies, leading to070

different output distributions over tokens. This di-071

vergence hinders the straightforward token-level072

ensemble at each generation step.073

To tackle this issue, we propose a simple yet074

effective method named Ensemble via Vocabulary075

Alignment (EVA), facilitating the fine-grained en-076

semble of LLMs at each generation step. EVA077

stems from a straightforward observation: although078

various LLMs have distinct vocabularies, they com-079

monly share a significant number of overlapping080

tokens. By leveraging these tokens as bridges, EVA081

can achieve vocabulary alignment. Specifically, for082

vocabularies VQ1 , VQ2 used in LLM-Q1 and LLM-083

Q2, we first extract embeddings of the overlapping084

tokens and learn a mapping matrix to project these085

embeddings into a shared space. Subsequently,086

by computing similarity scores between tokens in087

these vocabularies, we derive the semantic projec-088

tion W ∈ R|VQ1 |×|VQ2 |. This enables the projec-089

tion of output distributions from LLM-Q1 to LLM-090

Q2 and generates reasonable tokens based on the091

fused distribution of these LLMs at each inference092

step. Finally, we further enhance our approach by093

devising a filtering strategy capable of excluding094

models that generate unfaithful tokens.095

Our method successfully overcomes the vocab-096

ulary discrepancy between different LLMs and fa-097

cilitates fine-grained ensemble during generation. 098

Significantly, our method necessitates solely an 099

additional projection matrix W , eliminating the 100

necessity of extra fusion models or supervised 101

training corpora. We evaluate our method on vari- 102

ous NLP tasks, including Commonsense Reason- 103

ing, Arithmetic Reasoning, Machine Translation, 104

and Data-to-Text Generation. Experimental results 105

demonstrate the superiority of our approach com- 106

pared with individual LLMs and previous ensemble 107

methods conducted on complete outputs. Further 108

analyses confirm that our approach can leverage 109

knowledge from different language models and 110

yield consistent improvement. 111

Briefly, our contributions can be summarized as 112

follows: 113

• We propose a novel LLM ensemble method 114

to achieve fine-grained ensemble at each gen- 115

eration step. Our method aims to bridge the 116

lexical gap between LLMs, thereby unleash- 117

ing their complementary potentials. 118

• We devise an effective filtering strategy to 119

exclude models generating unfaithful tokens, 120

preventing underperforming models from mis- 121

leading the overall judgment. 122

• Empirical results demonstrate the effective- 123

ness and superiority of our method, which 124

significantly improves overall performance on 125

various natural language processing tasks. 126
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Figure 3: The rate of overlapping tokens between dif-
ferent LLMs vocabularies. The models are arranged in
ascending order based on vocabulary size. Each cell
represents the proportion of shared tokens between the
horizontal and vertical models, relative to the vocabu-
lary size of the vertical model.

2 Vocabulary Overlap Phenomenon127

2.1 Impact of Vocabulary Distinction128

Current LLMs accomplish various tasks through129

language generation, where LLMs receive the input130

prompt and generate succeeding tokens. Suppose131

the input tokens are x1, · · · , xi−1, LLMs decode132

the next token xi based on the conditional distri-133

bution p(·|x≤i) ∈ R|V | over the corresponding vo-134

cabulary.135

However, different LLMs usually independently136

learn sentencepiece (Kudo and Richardson, 2018)137

models from different training corpora, leading to138

different vocabularies. For instance, the vocabulary139

size of LLaMA is 32,000, whereas ChatGLM has a140

vocabulary length of 125,696. Such a discrepancy141

makes the output distributions of different models142

noncomparable, thereby impeding direct ensem-143

bling, as commonly practiced in conventional clas-144

sification tasks.145

2.2 Overlap between Vocabularies146

Although different LLMs have distinct vocabu-147

laries, given that these diverse vocabularies are148

learned from comparable corpora collected from149

the web, a substantial number of overlapping to-150

kens naturally emerge. To illustrate this phe-151

nomenon, we record the rate of overlapping to-152

kens between vocabularies of LLMs. As shown153

in Figure 3, the number of overlapping tokens is154

adequate. For example, TigerBot and LLaMA have155

53% overlapping tokens. Intuitively, these overlap- 156

ping tokens play a crucial role as a bridge to project 157

diverse output distributions into a shared space and 158

establish the corresponding relations, facilitating 159

the ensemble of LLMs. 160

3 Our Method 161

EVA comprises two key components: cross-model 162

vocabulary alignment (Section 3.1) and LLMs en- 163

semble (Section 3.2). The framework is shown in 164

Figure 2, (a) cross-model vocabulary alignment es- 165

tablishes the relations between tokens of distinct vo- 166

cabularies. (b) LLMs ensemble projects the output 167

distributions into the same space via the established 168

vocabulary relations and achieves fine-grained en- 169

sembling at each generation step. 170

Considering a set of N large language models 171

denoted as M = {Q1, Q2, · · · , QN−1, P}, where 172

P represents the chosen pivot model. We empiri- 173

cally select the model with the largest vocabulary 174

as the pivot model P . 175

3.1 Cross-Model Vocabulary Alignment 176

3.1.1 Vocabulary Projection 177

As shown in the upper part of Figure 2(a), We first 178

utilize the overlapping tokens as supervised labels 179

to map token embeddings from different models 180

to a common vector space. Taking N = 2 as an 181

example, let VP and VQ represent the vocabularies 182

of the pivot model and the non-pivot model, and 183

EP and EQ be the word embedding matrices of 184

the respective models. The training objective is to 185

find transformation matrices UQP such that: 186

UQP = argmin
UQP

∑
i

∑
j

Dij

∥∥∥EQ
i∗ UQP −EP

j∗

∥∥∥2
(1) 187

where D is the overlapping dictionary of VQ and 188

VP , and Dij = 1 indicates that the i-th word in VQ 189

and the j-th word in VP are identical. We utilize 190

the supervised setting of the open-source toolkit 191

VecMap1 to achieve the training process. This in- 192

volves applying normalization, whitening, orthog- 193

onal mapping, re-weighting, and de-whitening op- 194

erations to the word embeddings (Artetxe et al., 195

2018). The optimal UQP minimizes the Euclidean 196

distance between identical words from different 197

model vocabularies in the mapped common space. 198

Subsequently, we establish vocabulary mappings 199

between models based on the similarity relation- 200

1https://github.com/artetxem/vecmap
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ships between tokens:201

WQP = SIM
(
EQUQP ,E

P
)

(2)202

Specifically, we adopt the cross-domain similar-203

ity local scaling (CSLS) (Lample et al., 2018) score204

as the token similarity from VQ to VP and derive205

the similarity matrix WQP ∈ R|VQ|×|VP |.206

3.1.2 Noise Reduction207

Since the similarity matrix obtained above is ex-208

cessively large and contains substantial noise, we209

calculate the alignment across various similarity in-210

tervals (as shown in Table 1, with detailed analysis211

in Appendix A) and devise three steps to reduce212

noise and retain the pertinent and concise align-213

ment information.214

Step-1: Top-t Truncation. The complete sim-215

ilarity matrix is redundant, as each token should216

only align with a small subset of other tokens. Thus,217

for each token in VQ, we retain top-t tokens in VP218

that exhibit the highest similarity to it.219

WQP
ij =

{
WQP

ij , WQP
ij ∈ top- t

(
WQP

i∗

)
0 otherwise

(3)220

Step-2: Threshold Truncation. When the simi-221

larity between two tokens is too low, aligning them222

becomes meaningless. Therefore, we set a thresh-223

old to discard the portion of similarity scores that224

are below the threshold.225

WQP
ij =

{
WQP

ij , WQP
ij ≥ threshold

0 otherwise
(4)226

Step-3: Variance Truncation. Through the ob-227

servation of Table 1, we found that tokens without228

actual meaning exhibit similar and high similarity229

scores with multiple tokens, which cannot repre-230

sent the semantic similarity. We use variance to231

determine and eliminate this noise, taking into ac-232

count the number of non-zero similarity scores as233

well to avoid low variance resulting from insuffi-234

cient quantity.235

WQP
ij =

{
0, Var

(
WQP

i∗

)
≤σ, count

(
WQP

i∗ ̸=0
)
≥c

WQP
ij otherwise

(5)236

Following these three processes, we obtain a237

sparse and efficient mapping matrix WQP , which238

is only about 1MB. This matrix maps the output239

distribution of the non-pivot model to the pivot240

model.241

Range Description Percentage Examples

0.6 ~ 1.0
Completely Alignment 0.90 _your → _your 

Meaningless Alignment 0.77 <0x0D> → <0xF9>

0.4 ~ 0.6
Semantic Alignment 0.40 _use → _uses

With Minor Inconsistencies 0.51 _use → _Use

0.1 ~ 0.4
Partial Alignment 0.32 _use → _utilize

Cross-Lingual Alignment 0.32 _use → 使用的

0.0 ~ 0.1 Mis-Alignment
0.03 hex → 菱形

0.08 ică → 겐

54.3%
0.4%

11.9%

16.4%

17.1%

Table 1: Statistics of token alignment from LLaMA
to Baichuan. Similarity scores are divided into four
subsets based on alignment performances. We intend to
retain the pairs highlighted in green and discard those
highlighted in red.

3.2 LLMs Ensemble 242

As shown in Figure 2(b), given the mapping matrix 243

(e.g., W 12 and W 32) from non-pivot models (Q1 244

and Q3) to the pivot model (Q2), we align the out- 245

put distribution of non-pivot models at the current 246

time step with the pivot model. 247

pℓ (· | x<i) = qℓ (· | x<i)W
ℓρ ∀ℓ ̸= ρ. (6) 248

where ρ is the identifier for the pivot model, 249

qℓ (· | x<i) and pℓ (· | x<i) separately denote the 250

original output distribution of the ℓ-th model in M 251

and its corresponding mapping in the unified space. 252

A straightforward ensemble approach involves 253

deriving the succeeding token by averaging the 254

mapped output distributions of all models: 255

p (· | x<i) =
1

N

N∑
ℓ=1

pℓ (· | x<i) (7) 256

However, this approach is susceptible to outliers, 257

which can mislead overall judgments. Hence, we 258

devise a filtering strategy to enforce a requisite 259

consistency among tokens generated by diverse 260

models. Specifically, if the top-1 token predicted by 261

a model falls outside the top-n tokens predicted by 262

any other model, it is excluded from the ensemble. 263

p(· |x<i)=
1∑N

ℓ=1I (ℓ)

N∑
ℓ=1

I (ℓ)·pℓ(· |x<i) (8) 264

265

I (ℓ)=

1 if top-1 (pℓ) ∈
⋃
o ̸=ℓ

top-n (po)

0 otherwise
(9) 266

As shown in Figure 2(b), When we directly aver- 267

age the probability distributions of the three models, 268
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Machine Translation Data-to-Text
Flores-Zh-En Flores-En-Zh E2E

System BLEU ChrF BLEU ChrF ROUGE-L

LLaMA2-7B-Chat 24.49 52.37 13.99 22.78 33.58
ChatGLM2-6B 24.17 51.71 23.77 31.14 40.57
Baichuan2-7B-Chat 29.18 56.63 30.56 35.95 30.61
InternLM-7B-Chat 22.59 51.81 23.58 31.18 41.11
TigerBot-7B-Chat-V3 26.81 54.34 30.59 35.58 20.37
Vicuna-7B-V1.5 26.37 53.83 20.61 28.98 37.08
ChineseAlpaca2-7B 28.54 54.42 27.66 33.87 38.24

MBR (Farinhas et al., 2023) 30.72(+1.54) 56.97(+0.34) 31.29(+0.70) 36.84(+0.89) 41.47(+0.36)
PairRanker (Jiang et al., 2023) 29.73(+0.55) 56.58(- 0.05) 29.45(- 1.41) 35.25(- 0.70) 38.90(- 2.21)
LLM-Blender (Jiang et al., 2023) 27.18(+1.54) 53.89(+0.34) - - 43.62(+2.51)

EVA (ours) 31.16(+1.98) 57.77(+1.14) 32.68(+2.09) 38.16(+2.21) 42.62(+1.51)

Table 2: Main results of machine translation and data-to-text tasks. Best results are highlighted in bold and the
model employed within the ensemble is underlined for distinction. LLM-Blender is not trained on Chinese corpora,
thus unable to produce meaningful translations from English to Chinese.

the ensemble result is _Typ. Upon incorporating269

the filtering strategy with n = 3, the top-1 token270

for model Q1 is _Des, which is not within the top-3271

tokens of Q2 or Q3, hence excluded from ensem-272

ble. On the contrary, the top-1 token of Q2 is _Typ,273

falling within the top-3 tokens of Q1 and Q3. The274

top-1 token of Q3 is und, within the top-3 tokens275

of Q2. Consequently, we ensemble only Q2 and276

Q3, resulting in the correct output und.277

4 Experimental Settings278

4.1 Datasets279

We evaluate our proposed ensemble method from280

the perspective of natural language generation281

(NLG) and reasoning. For NLG, we choose ma-282

chine translation (Flores-101 Chinese↔English)283

(Goyal et al., 2022) and data-to-text generation284

task (E2E) (Novikova et al., 2017). For common-285

sense reasoning, we employ Natrual Question (NQ)286

(Kwiatkowski et al., 2019) and TriviaQA (Joshi287

et al., 2017) for evaluation. For arithmetic rea-288

soning, we adopt GSM8K (Cobbe et al., 2021),289

AddSub (Hosseini et al., 2014) and ASDiv (Miao290

et al., 2020) for evaluation.2291

4.2 Candidate LLMs292

We select seven open-source chat LLMs of ap-293

proximately 7B size as the candidate LLMs for294

the ensemble as follows: LLaMA2-7B-Chat (Tou-295

vron et al., 2023), ChatGLM2-6B (Zeng et al.,296

2022), Baichuan2-7B-Chat (Baichuan, 2023),297

2Please refer to the appendix B for details of the tasks.

InternLM-7B-Chat (Team, 2023), TigerBot-7B- 298

Chat-V33, Vicuna-7B-V1.5 (Chiang et al., 2023), 299

ChineseAlpaca2-7B (Cui et al., 2023). 300

These models originate from distinct institutions 301

and have different vocabularies. Each model is 302

aligned by supervised instruction tuning and lever- 303

ages large-scale, high-quality data to establish a 304

powerful knowledge base, thus performing well on 305

public benchmarks. 306

4.3 Baselines 307

We compare EVA with existing selection-based 308

methods and fusion-based methods. 309

MBR Farinhas et al. (2023) use the average sim- 310

ilarity between one output and the rest to select 311

the best output. We utilize BERTScore to measure 312

the similarity between two outputs to adapt across 313

different tasks. 314

PairRanker Jiang et al. (2023) employ a special- 315

ized pairwise comparison method to distinguish 316

subtle differences between candidate outputs. 317

LLM-Blender Jiang et al. (2023) utilize a 3b- 318

parameter model fine-tuned on an instruction 319

dataset to merge the ranking outcomes from Pair- 320

Ranker and generate the final output. 321

4.4 Implement Details 322

Configurations. For each task, we selected the 323

top-performing four models out of seven for the 324

ensemble. We employ greedy decoding in all 325

3https://github.com/TigerResearch/TigerBot
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Commonsense Reasoning Arithmetic Reasoning

System NQ TriviaQA GSM8K AddSub ASDiv

LLaMA2-7B-Chat 28.59 62.77 24.64 55.05 55.02
ChatGLM2-6B 14.93 31.77 30.78 49.54 60.52
Baichuan2-7B-Chat 24.07 55.62 29.95 55.05 58.74
InternLM-7B-Chat 17.20 44.05 32.30 62.39 58.58
TigerBot-7B-Chat-V3 11.33 23.87 27.29 24.77 41.75
Vicuna-7B-V1.5 26.84 61.21 18.88 44.04 44.17
ChineseAlpaca2-7B 22.58 50.86 13.12 23.85 28.64

MBR (Farinhas et al., 2023) 28.61(+0.02) 63.75(+0.98) 36.47(+4.17) 58.72(-3.67) 61.00(+0.48)
PairRanker (Jiang et al., 2023) 29.81(+1.22) 63.24(+0.47) 39.58(+7.28) 58.72(-3.67) 62.62(+2.10)
LLM-Blender (Jiang et al., 2023) 32.19(+3.60) 62.77(+0.00) 34.80(+2.50) 58.72(-3.67) 59.71(-0.81)

EVA (ours) 30.64(+2.05) 64.29(+1.52) 42.91(+10.61) 64.22(+1.83) 65.05(+4.53)

Table 3: Main results of commonsense reasoning (measured by Exact Match) and arithmetic reasoning tasks
(measured by Accuracy). Best results are highlighted with bold and the model employed within the ensemble is
underlined for distinction.

experiments since it generally produces higher-326

quality outputs. To mitigate the impact of long-tail327

noise accumulation, we perform top-k truncation328

on the original output distributions of each candi-329

date model.330

Hyperparameters. Unless otherwise stated, the331

same hyper-parameters are used in all experiments.332

Concerning the three steps mentioned in Sec-333

tion 3.1.1, we empirically set t = 10, threshold =334

0.1, sigma = 0.0001 and c = 5 based on observa-335

tions. For top-k truncation on the output distribu-336

tions, we always set k = 320 for the main results337

in the paper, which is quite robust across various338

tasks. Due to variations in task characteristics, we339

empirically set n = 40 for NLG tasks and n = 3340

for reasoning tasks in our experiments.341

Prompting. For machine translation tasks, we342

utilize a 4-shot in-context learning setting, whereas343

for other tasks, we conduct zero-shot inference.344

Additionally, we include a chain of thought prompt345

in arithmetic reasoning tasks. We adhere to the346

specific format required by each chat model and347

employ task-specific prompts.348

5 Experimental Results349

The main results on NLG tasks and reasoning tasks350

are shown in Table 2 and Table 3, respectively.351

EVA demonstrates superiority. Our proposed352

EVA consistently outperforms individual models353

and selection-based ensemble methods across all354

types of tasks, showcasing its cross-task versatility.355

Especially in the GSM8K task, EVA achieves a356

significant 10.61 improvement compared with the 357

best-performing individual model, ChatGLM2-6B. 358

Remarkably, EVA also outperforms LLM-Blender, 359

which leverages an additional 3b-parameter fusion 360

model, on six out of eight tasks, demonstrating the 361

effectiveness of our approach. We attribute this 362

success to the EVA which conducts fine-grained 363

ensembles at each generation step, ensuring pre- 364

cision in token generation and thereby mitigating 365

subsequent errors in the generation of following 366

tokens. 367

LLMs have diverse strengths and weaknesses. 368

Additionally, observing the performance of individ- 369

ual models on each task, we find that no models 370

participate in every task ensemble. However, each 371

model contributes to at least three task ensembles. 372

This highlights the distinct knowledge possessed 373

by each LLM and emphasizes the significance of 374

ensembling LLMs. 375

6 Analysis 376

6.1 Effect of Model Filtering Intensity 377

Recall in Section 3.2, we introduced the hyperpa- 378

rameter n as a way to control how strict our model 379

filtering is. In this section, we investigate the sen- 380

sitivity of our method to n. As shown in Table 4, 381

all tasks, except for arithmetic reasoning, are not 382

sensitive to n. Any variations within these ranges 383

lead to reasonable performance. For E2E tasks, a 384

looser filtering approach results in better text flexi- 385

bility, leading to slight performance improvements. 386

Notably, arithmetic reasoning tasks exhibit unique 387

behavior. Tighter filtering significantly improved 388
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Arithmetic Reasoning Commonsense Reasoning Machine Translation Data-to-Text

System GSM8K AddSub ASDiv NQ TriviaQA Zh-En En-Zh E2E

EVAn=40 31.39 58.72 61.33 30.86 64.59 31.16 32.68 42.62
EVAn=20 31.54 59.63 60.68 30.61 64.48 31.20 32.78 42.64
EVAn=10 35.03 59.63 63.27 30.83 64.41 31.13 32.78 42.59
EVAn=5 37.30 62.39 65.86 30.75 64.26 31.01 32.67 42.00
EVAn=3 42.91 64.22 65.05 30.64 64.29 31.13 32.64 41.98

Table 4: Effect of model filtering intensity.

Flores-Zh-En

Input 他补充道：“我们现在有 4个月大没有糖尿病的老鼠，但它们曾经得过该病。”

Output prefix He added, "We have 4-month-

Continuations old mice that have never had diabetus, but they have had it in the past."

Next token distribution ’old’, ’olds’, ’ old’, ’Old’, ’older’, ’ Old’, ’OLD’, ’ olds’, ’旧’, ’olding’, ...

GSM8K

Input Janet\u2019s ducks lay 16 eggs...How much in dollars does she make every day at the farmers’ market?

Output prefix First, we need to determine how many eggs Janet has left after she eats three for breakfast and bakes

Continuations four muffins...The answer: 10.

Next token distribution ’ four’, ’ muff’, ’ the’, ’ some’, ’ ’, ’ a’, ’ three’, ’ her’, ’ for’, ’ two’, ...

Table 5: Examples of the distribution of the next token for GSM8K and Flores-Zh-En tasks.

the performance on the GSM8K, AddSub, and AS-389

Div datasets.390

We believe that these differences in sensitivity391

arise from the nature of the tasks. The outputs392

of tasks other than arithmetic reasoning exhibit a393

certain level of determinism (specific answers to394

questions, sentences conveying the same seman-395

tics in the target language, or restaurant reviews396

containing specific information). Hence, the out-397

put distributions of different models will demon-398

strate strong consistency. As illustrated in Table 5,399

in the case of Chinese→English translation task,400

models exhibit marginal differences in predicting401

the next token. As a result, the filtering strategy402

has minimal impact here. In contrast, arithmetic403

reasoning tasks generate a series of intermediate404

reasoning steps. Since the same answer can be de-405

rived from multiple distinct reasoning paths, the406

output tokens exhibit inconsistency. As shown in407

Table 5, there is a significant semantic difference408

between the distributions of the next token in the409

GSM8K task. Employing tighter filtering here can410

effectively eliminate models generating unfaithful411

tokens.412

To verify our hypothesis, we conduct further413

experimental analysis on tasks with the highest sen-414

sitivity (GSM8K) and lowest sensitivity (Machine415

Translation). Since tokens are very fine-grained 416

units, spelling variations can directly represent se- 417

mantic differences. Hence, We specifically define 418

diversity as the average edit distance between the 419

top-n tokens and the top-1 token generated by a 420

model. We conducted a statistical analysis on the 421

outputs at 10,000 positions in both datasets. As 422

depicted in Figure 4, across various top-n ranges, 423

the edit distance for the GSM8K task consistently 424

exceeds that of Flores, confirming our hypothesis. 425

6.2 Effect of Number of Ensemble Models 426

As shown in Figure 5, we demonstrate the changes 427

in ensemble performance on the GSM8K dataset as 428

the number of ensemble models increases. We 429

observe that even as the performance of newly 430

added models gradually decreases, EVA consis- 431

tently brings further improvements, which indi- 432

cates that EVA effectively unleashes the comple- 433

mentary potential of different models by unifying 434

the vocabulary space. Moreover, this confirms that 435

different models possess distinct knowledge. The 436

knowledge within underperforming models is not 437

entirely covered by better-performing ones, leaving 438

space for further enhancement via ensembling. 439
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indicates the output token diversity.

7 Related Work440

Ensemble learning is a widely adopted technique to441

improve performance on a given task and provide442

robust generalization by leveraging multiple com-443

plementary systems. Existing ensemble methods444

can be divided into two categories: selection-based445

ensemble and generation-based ensemble.446

Selection-based Ensemble Selection-based ensem-447

ble methods select the best output from multiple448

outputs. Shnitzer et al. (2023) employs bench-449

mark datasets to learn a router model responsible450

for selecting the best LLM out of a collection of451

models for a given task. FrugalGPT (Chen et al.,452

2023) calls LLMs sequentially until a dedicated453

scoring model deems the generation acceptable to454

effectively and efficiently leverage different LLMs.455

Ravaut et al. (2022a);Liu and Liu (2021);Liu et al.456

(2022) train dedicated scoring or ranking mod-457

els for text summarization. Farinhas et al. (2023)458

demonstrated that minimum Bayes risk decoding459

is an effective ensemble method for LLM-based460

machine translation.461

However, such methods are limited by the out-462

put quality of the candidate models and are unable463

to generate outputs superior to those of existing464

models. Nevertheless, the distinctions among can-465

didates could be quite subtle. A model’s output466

might outperform one part compared to another467

model’s output yet lag behind in other parts. Se-468

lecting among existing answers limits the release469

of the complementary potential of the ensemble.470

Fusion-based Ensemble Compared to selection-471

based methods, fusion-based ensemble approaches472

bypass the limitation of existing complete outputs,473

often yielding superior outputs. Jiang et al. (2023)474

presents a general ensemble framework utilizing475

a pair ranker to filter the top K optimal outputs,476

InternLM ChatGLM Baichuan TigerBot
Systems
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Figure 5: Effect of number of ensemble models. The
orange bars represent the performance of individual
models, while the green line denotes the result of en-
sembling multiple models, denoted by their initials.

followed by a fusion model to merge and generate 477

the final output. Furthermore, Izacard and Grave 478

(2021) enhances question answering by amalga- 479

mating retrieved text, while Ravaut et al. (2022b) 480

applies generative fusion methods to text summa- 481

rization. However, a fusion model typically needs 482

to have a size comparable to the base model. For 483

instance, Jiang et al. (2023) employs a 3B-sized 484

model as a fusion model, significantly elevating the 485

training and inference costs. 486

Our proposed EVA conducts fine-grained ensem- 487

ble at each generation step, not only obtaining new 488

results distinct from individual model outputs but 489

also incurring almost negligible training costs for 490

mapping vocabularies. Furthermore, our approach 491

exhibits strong performance without the need for 492

training on specific task datasets, demonstrating 493

excellent generalization capabilities. 494

8 Conclusion 495

In this paper, we propose a novel ensemble method 496

named EVA, which effectively bridges the lexical 497

gap between different LLMs and facilitates fine- 498

grained ensemble at each generation step. Com- 499

pared to ensemble methods that select or fuse com- 500

pletely generated results, EVA provides intermedi- 501

ate ensemble results to candidate models, enabling 502

them to benefit from higher-quality output prefixes, 503

thereby unleashing their complementary potentials. 504

Experimental results on NLG tasks and reasoning 505

tasks demonstrate the effectiveness of our approach, 506

which significantly improves overall performance 507

on various natural language processing tasks. 508
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Limitation509

Due to the inherent nature of the ensemble, our ap-510

proach, like previous ensemble methods, requires511

performing inference N times when ensembling512

N models. However, we want to argue that those513

inferences can be executed in parallel because they514

are totally independent.515
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.628
2017. The e2e dataset: New challenges for end-to-629
end generation. In Proceedings of the 18th Annual630
SIGdial Meeting on Discourse and Dialogue, pages631
201–206.632
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A Effectiveness of Vocabulary Projection675

We observe the results of vocabulary projection be-676

tween different models and analyze the relationship677

between similarity scores and projection phenom-678

ena. In Table 1, we illustrate the observed results679

using the projection from LLaMA2-7B-Chat (Tou-680

vron et al., 2023) to Baichuan2-7B-Chat (Baichuan,681

2023) as an example. For token pairs with simi-682

larity scores between 0.6 and 1, most of them are683

completely aligned. It should be noted that some684

special tokens demonstrate high similarity but lack685

semantic meaning in their alignment, clustering686

around a similarity score of 0.77. As the simi-687

larity decreases to the range of 0.4 to 0.6, minor688

inconsistencies that do not affect semantics begin689

to appear, such as singular and plural forms, up-690

percase and lowercase distinctions. Furthermore,691

as the similarity reduces to 0.1 to 0.4, phenomena692

shift towards partial alignment and cross-lingual693

alignment. When the similarity drops below 0.1,694

the majority of alignments are meaningless. Over-695

all, approximately 82% of the vocabulary achieved696

meaningful mappings, indicating the effectiveness697

of our vocabulary projection.698

B Datasets699

GSM8K is a multi-step arithmetic reasoning700

dataset (Cobbe et al., 2021), consists of high qual-701

ity linguistically diverse grade school math word702

problems created by human problem writers. Eval-703

uation metrics are Accuracy.704

AddSub consists of addition–subtraction word705

problems(Hosseini et al., 2014). Evaluation metrics706

are Accuracy.707

ASDiv is a diverse (in terms of both language708

patterns and problem types) English math word709

problem corpus(Miao et al., 2020). Evaluation met-710

rics are Accuracy.711

Natural Questions (NQ) is a question answer-712

ing dataset in which questions consist of real713

anonymized, aggregated queries issued to the714

Google search engine (Kwiatkowski et al., 2019).715

Following OpenCompass (Contributors, 2023), we716

repurposed the validation set for testing purposes.717

Evaluation metrics are Exact Match.718

TriviaQA contains questions authored by trivia719

enthusiasts (Joshi et al., 2017). Again, we use the720

validation as test. Evaluation metrics are Exact721

Match.722

Flores101 is a widely used benchmark dataset 723

for machine translation (Goyal et al., 2022). Here 724

we use the Chinese-English split and English- 725

Chinese split for evaluation. Evaluation metrics 726

are BLEU (Post, 2018) and ChrF (Popović, 2015). 727

E2E is a data-to-text dataset (Novikova et al., 728

2017). The input is a set of key-value attribute pairs, 729

and the output is a description of the restaurant. 730

Evaluation metrics are ROUGE-L4. 731

4https://github.com/GrittyChen/NLG-evaluation
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