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Abstract

The robustness of deep cooperative multi-agent reinforcement learning (MARL)
is of great concern and limits the application to real-world risk-sensitive tasks.
Adversarial attack is a promising direction to study and improve the robustness of
MARL but is largely under-studied. Previous work focuses on deploy-time attacks
which may exaggerate attack performance because the MARL learner even does
not anticipate the attacker. In this paper, we propose training-time attacks where the
learner is allowed to observe and adapt to poisoned experience. For the stealthiness
of attacks, we contaminate action sampling and restrict the attack budget so that
non-adversarial agents cannot distinguish attacks from exploration noise. We
derive two specific attack methods by modeling the influence of action-sampling
on experience replay and further on team performance. Experiments show that
our methods significantly undermine MARL algorithms by subtly disturbing the
exploration-exploitation balance during the learning process.

1 Introduction

Deep multi-agent reinforcement learning (MARL) has achieved prominent progress in imitating many
aspects of human cooperation such as policy decentralization [43, 38, 41, 29, 51], communication [20,
50], and organization [47, 48]. Despite these achievements, a common concern about existing
cooperative MARL algorithms is their robustness. Recent research reports that they are sensitive
to hyper-parameter settings [16], vulnerable to large variance [23], or have delicate convergence
property [45]. The lack of robustness largely limits the application of MARL methods to risk-sensitive
systems with a high demand on security.

Adversarial attack provides opportunities of evaluating, understanding, and further improving the
robustness of MARL algorithms. Existing studies on this topic typically learn two policies simultane-
ously in the training stage: a target policy that solves the multi-agent task and an adversarial policy.
The adversarial policy attacks the learned target policy at test (or deployment) time by choosing a
victim agent and manipulating their action selection. Lin et al. [26] train the adversarial policy to
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distinguish the action that reduces the team return most significantly, then the observation of the
victim agent is contaminated after deploying so that it chooses this target action. Pham et al. [35]
adopt a model-based approach and contaminate the observation to misguide the victim agent to select
actions leading the team to pre-defined low-rewarding states.

However, in these deploy-time attacks, the target policy is trained without knowing that there is
an adversarial attacker. In this situation, the unanticipated attacker may have exaggerated attack
performance—an algorithm that is resilient to the attacks can also be dramatically undermined.
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Figure 1: Deploy-time attacks cannot fully reveal an algorithms’
robustness: if we allow adaption, the attacked algorithm quickly
gets immune to the attack. Left: attack by Lin et al. [26]. Right:
attack by choosing actions with the worst individual Q-value.

For example, we find that agents
become immune to deploy-time
attacks when allowed to observe
and learn from the poisoned expe-
rience. In Fig. 1, we show the test
win rates of MARL agents (trained
by QMIX [38]) on a map of the
SMAC benchmark [39]. QMIX
agents first learn for 1M timesteps
without any attack. Then deploy-
time attacks begin, and we find that
QMIX performance drops signifi-
cantly. We then allow the attacks to also appear at the training time so that agents observe the
poisoned experience. In this case, we can see that the attack gradually loses its effectiveness.

To more thoroughly reveal the algorithms’ robustness, this paper proposes, to the best of our knowl-
edge, the first training-time attack method for cooperative MARL agents. Our method corrupts the
learning process of the target model and keeps silent at test or deployment time. The aim is to find
attack methods that can effectively undermine the performance of the learned policies when the
agents anticipate an adversarial attacker.

The training setting of cooperative MARL presents unique constraints on training-time attack model.
Parameter sharing [38, 3, 25] is a widely used paradigm where agents share local information,
parameters, and gradients. This sharing scheme means that we cannot inadvertently contaminate the
observation, change the local policy parameters, or modify local gradients of the victim without being
detected by other agents. For the stealthiness of the attack, we keep these possibly shared components
intact but instead make use of the typically independent exploration noise (e.g., ϵ-greedy) and perturb
the victim’s action selection. The idea is to limit the attack so that normal agents cannot distinguish
the attack from the exploration noise.

Given the limited attack budget, we derive two specific attack methods for perturbing the action
selection. The derivation of both methods explicitly models the influence of the attacked action
selection on the experience replay and further on the model updates. The first method derives the
perturbations that increase the variance of model update gradients the most. The second method
calculates the perturbations that reduce the team returns the most significantly after one model update.

We test our method on the SMAC [39] and MPE [29] benchmark and find it significantly undermines
the learning performance on all the tested tasks. Visualizations of attacked gradients suggest that
our attack methods may affect the learning performance by disturbing the exploration-exploitation
balance. Moreover, we analyze the difference between the two attack methods and investigate the
influence of the limitation of attack budgets on the performance of our attack methods.

2 Problem Formulation

We focus on fully cooperative multi-agent tasks that can be modelled as a Dec-POMDP [34]
consisting of a tuple G=⟨I, S,A, P,R,Ω, O, n, γ⟩, where I is the finite set of n agents, γ ∈ [0, 1)
is the discount factor, and s ∈ S is the true state of the environment. At each timestep, each
agent i receives an observation oi ∈ Ω drawn according to the observation function O(s, i). We
mainly study policy gradient methods. Each agent i has a policy πθi , parameterized by θi, that
recommends a probability distribution over the action space A given local action-observation history
τi ∈ T ≡ (Ω × A)∗ × Ω. The agent draws an action ai ∈ A from the distribution. Individual
actions form a joint action a ∈ An, which leads to a next state s′ according to the transition function
P (s′|s,a), a reward r = R(s,a) shared by all agents. Agents learn their polices to collectively
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maximize the global team performance:

J(θ) = Es∼P,a∼πθ
[

∞∑
t=0

γtR(st,at)|s0], (1)

where πθ is the joint policy and θ is its parameters. The joint action-value function is defined as
Qπ

tot(s,a)=Es0:∞,a0:∞ [
∑∞

t=0 γ
tR(st,at)| s0=s,a0=a,π].

The centralized training with decentralized execution (CTDE) paradigm [8, 49] is popular for its
ability to maintain decentralized execution while addressing learning non-stationarity. For policy-
based learning, training a centralized critic with decentralized actors is an efficient approach that
exploits the CTDE paradigm. MADDPG [29] learns deterministic policies updated by the gradients:

g = Eτ ,a∼D[
∑
i

∇θiπi(τi)∇aiQ
π
tot(s,a)|ai=πi(τi)],

where D is a replay buffer. COMA [9] updates stochastic policies using the gradients:

g = Eπ[
∑
i

∇θi log πi(ai|τi)Aπ
i (s,a)],

where Aπ
i (s,a) = Qπ

tot(s,a)−
∑

a′
i
Qπ

tot(s, (a-i, a
′
i)) is a counterfactual advantage (a-i is the joint

action other than agent i) that assigns credit and reduces gradient variance.

MADDPG and COMA use a joint critic, through which the suboptimality of one agent’s policy can
propagate and negatively affect policy learning of other agents. DOP [51] solves this centralized-
decentralized mismatch issue by learning a centralized but factored critic:

Qπ
tot(s,a;ϕ) =

∑
iki(τ )Q

π
i (τ , ai;ϕi) + b(τ ),

where ϕ is the parameters of the critic and τ is the joint observation. DOP also uses this decomposed
critic to enable off-policy learning for stochastic policies and credit assignment for deterministic
policies.

3 Attack model and methods

In this section, we introduce our TRaining-time Attack Model and methods (TRAM) for cooperative
multi-agent reinforcement learning. Similar to previous work on deploy-time attack, we allow attacks
for one of the cooperative agents and expect that the attack is stealthy. Without loss of generality, we
suppose that, among agents 1, 2, . . . , n, the k-th one is the poisoned.

3.1 Attack model

Training-time attacks disturb the learning process of an MARL policy and do not interfere after the
policy is deployed or is being tested. Since in many cooperative MARL algorithms agents share
their parameters and local information, we do not contaminate local parameters, observations, and
gradients. Rather, we adopt a sampling-based attack model: given the output of the local policy πk,
we perturb the action selection and limit the perturbations so that other agents would confuse the
attack with the exploration noise.

Formally, we denote the perturbed action distribution of agent k by π′
k. The global policy when agent

k is adversarial is:

π′(a|τ ) = π′
k(ak|τk)Πi̸=kπi(ai|τi). (2)

To limit attacks, we (1) restrict the attack frequency. Each timestep, the poisoned agent has a
probability fA to be adversarial (samples its action from π′

k), and in other situations, it is non-
adversarial (uses πk). Moreover, we (2) limit the KL divergence between π′

k and πk: DKL(π
′
k∥πk) =∑

a π
′
k(a|τk) log

π′
k(a|τk)

πk(a|τk) within a threshold, KLU . In this way, from the perspective of other agents,
the log likelihood that an agent is abnormal due to attack:

L =fA
∑
a

π′
k(a|τk) log πk(a|τk) + (1− fA)

∑
a

πk(a|τk) log πk(a|τk)

=− fAH(π′
k, πk)− (1− fA)H(πk) = −fAH(π′

k)− fADKL(π
′
k∥πk)− (1− fA)H(πk),

(3)

3



where H(·, ·) and H(·) stands for cross entropy and entropy, is also greater than a pre-defined
threshold. The question is how to obtain π′

k that effectively undermines the team cooperation
performance under the restricted attack budget.

Suppose that πk is the softmax of the logits lk. The attacker computes a perturbation vector δ of
the same dimension as lk and adds it to lk. Let l′k = δ + lk. Then π′

k is calculated as softmax(l′k).
In this paper, we propose two methods to derive δ. In Sec. 3.2, we introduce a method that tries to
increase the variance of gradients for model updates. In Sec. 3.3, we introduce a method that tries to
decrease the expected return after one model update. In both methods, we write δ = β · δ̂ where β is
a scaling factor controlling the attack strength and δ̂ is a unit vector in the direction of the adversarial
attack. Our methods first compute δ̂. Then we select a β so that the log likelihood (Eq. 3) does not
exceed the threshold (discussed in detail in Appendix B). In the derivation of our methods, we use
ρ(s,a) = Eπ̃[

∑T
t=0

1st=s,at=a

T ], where T is the episode horizon, to denote the distribution of the
state-action pair (s, a) during experience collection using the attacked policy π̃ = fAπ

′+(1−fA)π.

3.2 Variance-based attack

The idea of the first attack method is to increase the variance of policy gradients. Intuitively, gradients
with larger variance will render the learning process unstable.

Given the buffer with the sample density ρ and the local policy parameters θt, the gradient for
updating the policy is

∑
s,a ρ(s,a)A(s,a)(∇θt logπθt(a|τ ))⊤. This gradient can be regarded as a

multivariate random variable. The covariance matrix of this multivariate random variable is:

Σ =
∑
s,a

ρ(s,a)A2(s,a) (∇θt logπθt(a|τ ))⊤ (∇θt logπθ(a|τ ))

− (
∑
s,a

ρ(s,a)A(s,a)∇θt logπθt(a|τ ))⊤ · (
∑
s,a

ρ(s,a)A(s,a)∇θt logπθt(a|τ ))
(4)

For increasing the gradient variance, we can maximize the trace of Σ:

tr(Σ) =
∑
s,a

ρ(s,a)A2(s,a) ∥∇θt logπθt(a|τ )∥2 −

∥∥∥∥∥∑
s,a

ρ(s,a)A(s,a)∇θt logπθt(a|τ )

∥∥∥∥∥
2

.

The second term ∥
∑

s,a ρ(s,a)A(s,a)∇θt logπθt(a|τ )∥2 is the norm of gradients for θ. In most
widely used neural network optimization methods like RMSProp, Adam, etc., the gradients are
normalized. Since we aim to maximize tr(Σ), this second term can be ignored, and the objective we
propose to maximize becomes the trace of the auto-correlation matrix of θ’s gradient:

R =
∑
s,a

ρ(s,a)A2(s,a) (∇θt logπθt(a|τ ))⊤ (∇θt logπθ(a|τ )) , (5)

tr(R) =
∑
s,a

ρ(s,a)A2(s,a) ∥∇θt logπθt(a|τ )∥2 . (6)

To maximize tr(R), we calculate its gradients with respect to the adversarial vector δ at the point
of the intact policy, i.e., δ̂ = Normalize(∇δtr(R)|δ=0). Because that δ influences ρ, and further
influences R, ∇δtr(R) can be computed as:

∇δtr(R) =
∑
s,a

∇δρ(s,a)A
2(s,a) ∥∇θt logπθt(a|τ )∥2 . (7)

We expand ∇δρ(s,a) by the chain rule:

∇δρ(s,a) = ∇π̃ρ(s,a)∇δπ̃. (8)

It follows that π̃(a|τ ) = ρ(s,a)∑
a′ ρ(s,a′) . Since the gradient ∇δtr(R) will be normalized when calculat-

ing δ̂ and π̃(a|τ ) ∝ ρ(s,a), we can approximate the first term in Eq. 8 as 1.And for ∇δπ̃,

∇δπ̃(a|τ ) =
∂π̃(a|τ )
∂π′(a|τ )

∇δπ
′(a|τ ) = fA∇δ(π

′
k(ak|τk))Πi ̸=kπi(ai|τi). (9)
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And

∂π′
k(a|τk)
∂δ(a′)

= 1a=a′π′
k(a|τk)− π′

k(a|τk)π′
k(a

′|τk). (10)

where δ(a′) is the a′-th element in δ. (Recall that δ is a vector of the same dimension as πk.)

By incorporating Eq. 8, 9, and 10 into Eq. 7, we get the expression for calculating variance-based
adversarial vectors.

3.3 J-based attack

For the second method, we want the attack to minimize the team performance J (Eq. 1) after
one model update. Specifically, given the local policy parameters at timestep t, θt, we derive the
adversarial gradient to minimize J(θt+1). Since the attack gradient δ influences the empirical sample
distribution ρ, which further influences θt+1, we write θt+1 as a function of δ, i.e. θt+1(δ).

To minimize J(θt+1(δ)), we perform one step of gradient descent from the intact policy, i.e.,
δ̂ = Normalize(−∇δJ(θ

t+1(δ0))|δ0=0). The question then is how to calculate ∇δJ(θ
t+1(δ)).

By the Taylor expansion of J(θt+1(δ)), we have:

J(θt+1(δ)) ≈ J(θt) +∇θtJ(θt)(θt+1(δ)− θt). (11)

Assuming that the policy and parameters do not change much in one model update, we can ignore the
higher-order terms in the Taylor expansion. Therefore

∇δJ(θ
t+1(δ)) ≈ ∇δ[J(θ

t) +∇θtJ(θt)(θt+1(δ)− θt)] = ∇θtJ(θt)∇δ(θ
t+1(δ)− θt). (12)

Since

θt+1 = θt + απ

∑
s,a

ρ(s,a)A(s,a)(∇θt logπθt(a|τ ))⊤,

where απ is the learning rate for policies and A(s,a) is the advantage function, we have

∇δJ(θ
t+1(δ)) ≈ ∇θtJ(θt)∇δ[απ

∑
s,a

ρ(s,a)A(s,a)(∇θt logπθt(a|τ ))⊤],

= ∇θtJ(θt)[απ

∑
s,a

A(s,a)(∇θt logπθt(a|τ ))⊤(∇δρ(s,a))].
(13)

The first term of Eq. 13 (∇θtJ(θt)) is the classic policy gradients. However, it can not be obtained
when calculating δ because δ is computed before sampling. Therefore, we use the policy gradient at
the previous timestep to approximate this term. This approximation is reasonable when the policy
does not change much in one model update.

The second term of Eq. 13 can be calculated in a similar way to the case of variance-based attack. By
incorporating Eq. 8, 9, and 10 into Eq. 13, we get the adversarial vector δ for J-based attack

4 Experiments

In this section, we design experiments to answer the following questions. (1) How do J-based
and variance-based attacks influence the team cooperation performance? How do these two attack
methods compare to each other? (Sec. 4.1) (2) How do the attack frequency and KL constraints
influence the attack? (Sec. 4.2) We also show visualizations of the attack gradients to shed light on
how our methods work.

We use DOP as the target MARL algorithm in this section and leave the experiments of attacking
other MARL algorithms in Appendix D. We evaluate TRAM on the benchmark of SMAC2 [39] and
MPE [29]. All hyperparameters for training DOP agents are the same on all maps and are consistent
with the default setting recommended by the authors [51]. Hyperparameter settings of our methods

2Our experiments are based on the PyMARL framework, which uses SC2.4.6.2.6923. Note that performance
is not always comparable among versions.
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Figure 2: Performance of our methods compared against a random attack baseline on SMAC maps.
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Figure 3: Performance of our methods compared against a random attack baseline on MPE tasks.

can be found in Appendix A. To ensure fair evaluation, we carry out all our experiments with five
random seeds, and the average performance is shown with a 95% confidence interval.

We use three fully cooperative tasks for the MPE benchmark. In Spread, three agents are expected to
cover three randomly initialized landmarks. For Gather, three agents will be collectively rewarded if
they arrive at the single randomly initialized landmark simultaneously. In Formation, a team reward
is given to the team if the four members form a square centered at a random landmark.

4.1 Attack performance on SMAC and MPE

We compare the two proposed attack methods against a training-time attack baseline that randomly
generates the attack gradient δ. For our methods and the baseline algorithm, we set the attack
frequency fA to 1 and KLU to 6. For all maps, all adversarial methods attack one agent. We attack a
Zealot in the map 2s3z and 3s5z and attack the Colossus in map 1c3s5z.

From the results shown in Fig. 2 and Fig. 3, we can see that the proposed methods can significantly
undermine the learning of DOP agents, while the random attack baseline has a much weaker attack
performance. For example, on the map 2s_vs_1sc and 10m_vs_11m, both DOP and the random
attack baseline attack can learn a satisfactory policy for solving the task, but when attacked by
TRAM, the win rates drop to 0. Such a performance gap can be observed consistently across the
SMAC and MPE benchmark, highlighting the effectiveness of our method. Generally, variance-based
TRAM is more effective than J-based TRAM. For example, on 3m and 6m, variance-based attack is
very effective while J-based attack only slightly influences the performance of DOP.

Why is our method more effective? To understand the observed experimental results, we compare
the log likelihood of being attacked when the attack frequency (fA=1) and KL upper (KLU=6)
bound are fixed. Results are shown in Table 1. In this table, all values are greater than the pre-defined
likelihood threshold, and a smaller value means more salient attack behaviors. We can see that
variance-based attack has the smallest values among all the tested methods while the random attack
has the largest. The reason is that the adversarial gradients’ direction selected by the random attack
method is not effective. Even when there are no limits on the attack frequency and the KL bound,
the attack behaviors still can not be significant enough. By contrast, variance-based TRAM selects a
better attack direction and thus can make a better use of the limited attack budget, which explains its
superior performance.
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Table 1: Variance-based TRAM makes a better use of the limited attack budget: under a fixed
attack frequency and a fixed KL bound, the log likelihood of being attacked is shown. With all log
likelihoods within the detectable threshold, var-based TRAM has the most salient attack behavior.

3m 6m 2s3z 2s_vs_1sc 1c3s5z 3s5z 10m_vs_11m
Var-based TRAM −3.87 −4.32 −3.41 −3.36 −3.30 −3.08 −4.25
J-based TRAM −2.43 −2.88 −1.65 −3.08 −1.35 −1.26 −2.89
Random attack −1.53 −2.28 −1.76 −2.45 −0.75 −1.26 −1.53

(a) J-based TRAM tends to enlarge the the probability
of the most likely action.

(b) Variance-based TRAM tends to reduce the proba-
bility of the most likely action.

Figure 4: Examples of TRAM attack on 3m. We show game screenshots, the policy before attacks,
and the normalized adversarial vector δ̂ computed by TRAM.

How does our method interfere with the learning process? To understand how the proposed attack
methods work, we present the replays of our methods on the SMAC map 3m in Fig. 4 and investigate
how the attacked agent’s policy is affected.

J-based attack. Fig. 4(a) shows two frames from two different trajectories during learning when one
Marine is attacked by J-based TRAM. We show the policy before the attack and the attack gradient
δ̂. From these results, we can see that, for this map, the probability of the most likely action is further
enlarged. In this way, J-based TRAM prevents exploration and thereby hurts the performance.

Variance-based attack. Fig. 4(b) shows two frames from two different trajectories during learning
when one Marine is attacked by variance-based TRAM. Again, we show the intact policy and the
adversarial gradient δ̂ computed by the variance-based method. From these results, we observe
that the probability of the most likely action is dramatically reduced. In this way, variance-based
TRAM makes the attacked agent exploit less and explore more. The drawback is that it will be harder
to make full trajectories of good quality for training.

4.2 Influence of attack budgets

In this sections, we carry out experiments on SMAC maps to study the influence of the limited attack
budget on the performance of out method. Specifically, we compare the performance under different
attack frequencies and KL-divergence upper bound.

We first fix the KL upper bound KLU=6 and test with attack frequencies 0.4, 0.6, 0.8, and 1.0 in
Fig. 5. It can be observed that better attack performance can be obtained with a higher attack frequency
for all attack methods. Random attacks are less affected by the frequency, while the performance of
variance-based TRAM varies the most with the frequency. We then fix the attack frequency fA=1 and
test with KL divergence thresholds 2, 4, and 6. Results are shown in Fig. 6. Again, we observe that a
loose budget leads to better attack performance. Compared to attack frequency, KL upper bounds
have a more significant influence on the performance. Moreover, J-based TRAM is less affected
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Figure 5: Performance of our methods and the random attack baseline under different attack frequen-
cies. For these experiments, KLU = 6. Because curves are distinguished by transparencies, we
ignore the confidence intervals in this figure. We show them in Fig. 11.
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Figure 6: Performance of our methods and the random attack baseline under different KL-divergence
upper bounds. For these experiments, fA = 1. Because curves are distinguished by transparencies,
we ignore the confidence interval here. We display them in Fig. 12.

compared to variance-based TRAM. These results again indicate that the attack direction selected by
variance-based TRAM makes a better use of the attack budget.

5 Related Work

In this section, we introduce attack methods for deep learning, reinforcement learning, and multi-agent
reinforcement learning that are related to our work.

Attacks for deep learning The attacks in deep neural networks occur at inference or training stages.
Inference-stage attacks include adversarial attack [44, 32], model inversion attack [10], membership
inference attack [40], model extraction attacks [19], adversarial reprogramming [7], etc. The training-
stage attacks include poisoning training data [31] through injecting visible backdoors [12] or invisible
backdoors [4], modifying networks [6, 13], etc. In this work, we focus on the training-time attack
counterpart in the domain of cooperative multi-agent reinforcement learning.
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Attacks for reinforcement learning Reinforcement learning (RL) is vulnerable to adversarial
attacks, where an imperceptible perturbation is added to one of the RL’s components (such as states,
actions, rewards, or models) to cause malfunctions. The adversary can attack the state observations
through perturbing the sensors or environments [2, 18, 27, 22, 5, 30, 37]. The adversary can also
control the actuators to perturb the actions [24, 28] or even flip the rewards [15]. Furthermore, the
adversary can poison the model parameters [21, 17, 1]. There is also a generic attack framework [42].
Our method perturbs the logits of policy and differs by working under a cooperative MARL setting.

Attacks for competitive two-agent reinforcement learning Previous works under this setting
[11, 14, 46] first train a victim agent and then fix the victim and train an adversarial agent to
undermine the victim’s performance by changing the adversarial agent’s behavior. The attack is
performed by training the adversarial agent to maximize its reward in a zero-sum game[11], both
maximize its reward and minimize the victim agent’s reward for non zero-sum game[14], or learn
several trigger actions to exploit the weakness of the victim agent[46]. These works differ from ours
because (1) we consider a cooperative MARL setting and the number of agents may be larger than
two; and (2) we train the attack policy and other agents’ policy simultaneously.

Attacks for cooperative multi-agent reinforcement learning Previous attack methods in this
area mainly focus on the centralized training with decentralized execution (CTDE) scheme where
agents can access global information during training and make individual decisions based on local
information when executing. Prior works study several aspects of the deploy-time attack. For example,
Lin et al. [26] and Pham et al. [35] study how to attack an agent’s observations at deployment time to
reduce the team’s return. Nisioti et al. [33] consider the adversary that randomly selects attacking
timesteps in the deployment time and performs adversarial selections of some agents to manipulate
their actions. Phan et al. [36] consider unexpected failures of some agents at deployment time. To the
best of our knowledge, we are the first to present a training-time attack to complement the study of
attacking methods for the robustness evaluation of cooperative MARL.

6 Conclusion

In this paper, we propose training-time attacks and expect that they can provide a new perspective
of studying the robustness of cooperative MARL algorithms. We propose a model for training-
time MARL attacks where the possibly shared components, such as parameters, gradients, and
observations, remain intact, but the action selection is attacked under the cover of exploration noise.
To effectively utilize the restricted attack budget, we derive two attack methods that decreases the
expected team return and increases the gradient variance, respectively. While we do not see obvious
negative societal impacts of our method, for future works, we plan to investigate attacks for value-
based cooperative MARL methods and for the critic learning in the policy-based learning domain. It
is also important to develop novel, secure MARL defense schemes.
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A Hyperparameters and Infrastructures

For all experiments on the SMAC benchmark, we use the default reward and observation settings. For
our method, we set the discount factor γ to 0.99 for all experiments. We use RMSprop with α = 0.99
and no momentum or weight decay for the optimization of both the critic and actors. The learning
rate for the critic is 0.0001 and the learning rate for actors is 0.0005. The critic and actors have the
same network architecture as DOP [51]. 16 episodes are sampled from the on-policy buffer each time
to train both the critic and actors. The on-policy buffer has a buffer size of 32. We run 4 parallel
environments to collect data. ϵ-greedy is used during exploration. We let ϵ first anneal linearly from
1.0 to 0.05 over 500k time steps and then keep constant for the rest of the training. All experiments
are conducted on NVIDIA GEFORCE RTX 3090 GPUs and Intel Xeon Gold 6248R CPUs. We use 1
GPU for each experiment.

B Choice of β

When computing δ̂, we select a β such that DKL(π
′
k∥πk) ≤ KLU . In this way, L = −fAH(π′

k)−
fADKL(π

′
k∥πk) − (1 − fA)H(πk) ≥ −fAH(π′

k) − fAKLU − (1 − fA)H(πk) can be bounded.
There can be multiple values of β such that DKL(π

′
k∥πk) ≤ KLU is satisfied. We set β to the largest

one. To find such a β, we first prove in Lemma. B.1 that DKL(π
′
k∥πk) monotonically increases as β

increases.
Lemma B.1. Let N be the number of actions, i.e. N = |A|. Suppose the policy π is the softmax of
the logits l, and δ̂ is a vector of the same dimension as l. Let π′(β) = softmax(l + βδ̂). Then for
β ≥ 0, dDKL(π

′(β)∥π)
dβ ≥ 0.

Proof. Let Z =
∑N

a=1 exp(l(a)), Z
′(β) =

∑N
a=1 exp(l(a) + βδ̂(a)), then

dDKL(π
′(β)∥π)

dβ
=

d

dβ
[

N∑
a=1

exp(l(a) + βδ̂(a))

Z ′(β)
log

exp(l(a) + βδ̂(a))/Z ′(β)

exp(l(a))/Z
] (14)

=

N∑
a=1

d

dβ
(
exp(l(a) + βδ̂(a))

Z ′(β)
) log

exp(l(a) + βδ̂(a))/Z ′(β)

exp(l(a))/Z
+

N∑
a=1

exp(l(a) + βδ̂(a))

Z ′(β)

d

dβ
(log

exp(l(a) + βδ̂(a))/Z ′(β)

exp(l(a))/Z
). (15)

Because

d

dβ
(
exp(l(a) + βδ̂(a))

Z ′(β)
) =

exp(l(a) + βδ̂(a))δ̂(a)

Z ′(β)
− exp(l(a) + βδ̂(a))

Z ′(β)2
dZ ′(β)

dβ
(16)

and

d

dβ
(log

exp(l(a) + βδ̂(a))/Z ′(β)

exp(l(a))/Z
) =

d

dβ
log(

exp(l(a) + βδ̂(a))

Z ′(β)
) (17)

=

d
dβ exp(l(a) + βδ̂(a))

exp(l(a) + βδ̂(a))
−

d
dβZ

′(β)

Z ′(β)
(18)

=δ̂(a)−
d
dβZ

′(β)

Z ′(β)
, (19)

by incorporating Eq. 16 and 19 into Eq. 15, we have

dDKL(π
′(β)∥π)

dβ
(20)

=

N∑
a=1

[
exp(l(a) + βδ̂(a))δ̂(a)

Z ′(β)
− exp(l(a) + βδ̂(a))

Z ′(β)2
dZ ′(β)

dβ
][log

exp(l(a) + βδ̂(a))/Z ′(β)

exp(l(a))/Z
]+
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N∑
a=1

exp(l(a) + βδ̂(a))

Z ′(β)
[δ̂(a)−

d
dβZ

′(β)

Z ′(β)
] (21)

=

N∑
a=1

exp(l(a) + βδ̂(a))

Z ′(β)
[δ̂(a)− 1

Z ′(β)

dZ ′(β)

dβ
][βδ̂(a) + log

Z

Z ′(β)
]+

N∑
a=1

exp(l(a) + βδ̂(a))

Z ′(β)
[δ̂(a)− 1

Z ′(β)

dZ ′(β)

dβ
] (22)

=β

N∑
a=1

exp(l(a) + βδ̂(a))

Z ′(β)
[δ̂(a)− 1

Z ′(β)

dZ ′(β)

dβ
]δ̂(a)+

[log
Z

Z ′(β)
+ 1]

N∑
a=1

exp(l(a) + βδ̂(a))

Z ′(β)
[δ̂(a)− 1

Z ′(β)

dZ ′(β)

dβ
]. (23)

Let π′(a;β) = exp(l(a)+βδ̂(a))
Z′(β) , then

1

Z ′(β)

dZ ′(β)

dβ
=

N∑
a=1

exp(l(a) + βδ̂(a))δ̂(a)

Z ′(β)
=

N∑
a=1

π′(a;β)δ̂(a). (24)

Incorporating Eq. 24 to Eq. 23, we have

dDKL(π
′(β)∥π)

dβ
=β

N∑
a=1

π′(a;β)[δ̂(a)−
N∑

a′=1

π′(a′;β)δ̂(a′)]δ̂(a)+

[log
Z

Z ′(β)
+ 1]

N∑
a=1

π′(a;β)[δ̂(a)−
N∑

a′=1

π′(a′;β)δ̂(a′)] (25)

=β[(

N∑
a=1

π′(a;β)δ̂(a)2)− (

N∑
a=1

π′(a;β)δ̂(a))2] (26)

=β[(

N∑
a=1

π′(a;β)δ̂(a)2)(

N∑
a=1

π′(a;β))− (

N∑
a=1

π′(a;β)δ̂(a))2]. (27)

By Cauchy–Schwarz inequality, (
∑N

a=1 π
′(a;β)δ̂(a)2)(

∑N
a=1 π

′(a;β))− (
∑N

a=1 π
′(a;β)δ̂(a))2 ≥

0. Because β ≥ 0, dDKL(π
′(β)∥π)

dβ ≥ 0.

Based on this lemma, we can use a binary search algorithm to find the desired β with efficiency.
The algorithm is shown in Alg. 1. In this algorithm, we use two hyperparameters, BSN1 and
BSN2, to control the number of iterations of the binary search algorithm. In our experiments, we set
BSN1 = 55 and BSN2 = 15.

C Experimental Settings

In this section, we describe the detailed settings of MPE tasks in our experiments.

Spread: There are 3 agents and 3 landmarks in a 5× 5 grid. Agents need to occupy all 3 landmarks
at the same time. Agents can observe both its location and the relative location of other agents and all
landmarks. For each landmark i, let di be the distance from the nearest agent. The reward is −

∑
di

subtracting the number of collisions.

Gather: There are 3 agents and 1 landmark in a 5× 5 grid. Agents need to gather at the landmark
simultaneously to get a reward. Agents can observe both its location and the relative location of other
agents and the landmark. The reward is the sum of the negative distance between every agent and the
landmark.

Formation: There are 4 agents and 1 landmark in a 5 × 5 grid. Agents need to form a square
whose center is the landmark. Agents can observe both its location and the relative location of other
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Algorithm 1 Find β by Binary Search

Input: lk, δ̂, KLU , BSN1, BSN2

Output: β
1: πk := softmax(lk)
2: l := 0, r := 1, bsn := 0
3: for i = 1 to BSN1 do
4: π′

k := softmax(lk + rδ̂)
5: bsn := i− 1
6: if DKL(π

′
k∥πk) > KLU then

7: Break
8: end if
9: r := r ∗ 2

10: end for
11: for i = 1 to BSN2 + bsn do
12: m := l+r

2

13: π′
k := softmax(lk +mδ̂)

14: if DKL(π
′
k∥πk) > KLU then

15: r := m
16: else
17: l := m
18: end if
19: end for
20: return l

agents and the landmark. For each agent i, let di be the distance from the landmark, and αi be the
angle formed by the x-axis and the segment connecting it and the landmark. When calculating the
reward, we first rearrange the order of agents so that αi ≤ αi+1. Let βi = αi − i 2π4 . The reward is
−
∑4

i=1(|βi − β̄|+ |di − d̄|), where β̄ = 1
4

∑4
i=1 βi and d̄ = 1

4

∑4
i=1 di.

D More Experimental Results

Influence of the attack frequency and the KL-divergence upper bound: We provide more
experiments under different attack budgets in Fig. 7 and Fig. 8. From these results, we can see that
better attack performance can be obtained with a higher attack frequency or a larger KL upper bound
for our methods. By contrast, random attacks are less affected. These results are in line with our
observation in the main text that our method find a better attack direction.
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Figure 7: Performance of our methods and the random attack baseline under different attack frequen-
cies on the map 2s_vs_1sc. For these experiments, KLU = 6.

We also show the log likelihood of being abnormal due to attacks for our methods and the random
attack baseline under different attack frequencies and KL-divergence upper bounds in Table 2 and
Table 3. A larger likelihood value in these tables indicates that the attacked policy is more like
the intact policy. From these results, we can draw a similar conclusion as in the main text that our
methods make a better use of the limited attack budget.
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Figure 8: Performance of our methods and the random attack baseline under different KL-divergence
upper bounds on the map 2s_vs_1sc. For these experiments, fA = 1.

Table 2: Log likelihood under different attack frequencies. For these experiments, KLU = 6.
map 2s3z 3m 6m 2s_vs_1sc

Frequency 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
Var-based TRAM −1.24 −1.90 −2.31 −3.41 −1.23 −1.76 −2.13 −3.87 −1.12 −2.21 −3.01 −4.32 −1.89 −2.79 −3.27 −3.36
J-based TRAM −0.72 −0.96 −1.27 −1.65 −0.80 −1.13 −1.67 −2.43 −1.03 −1.42 −1.81 −2.88 −0.98 −1.34 −1.82 −3.08
Random attack −0.74 −1.03 −1.35 −1.76 −0.77 −1.05 −1.28 −1.53 −0.97 −1.35 −1.75 −2.28 −1.09 −1.53 −1.96 −2.45

Attacking other MARL algorithms: We change the attack target algorithm from DOP to another
policy-based MARL algorithm, COMA [9] and show the result of both our methods and random
attack on several SMAC maps in Fig. 9. From these results we can see that on COMA, Var-based
TRAM is more effective than J-based TRAM, and random attack is the weakest attack.

TRAM on higher dimensional environments: We compare our methods with the random attack
baseline (all attacking DOP) on two environments with higher dimension, 15m and 20m, to justify the
scalability of our methods. The result is shown in Fig. 10. Var-based TRAM has the most significant
influence, and J-based TRAM also undermines the performance a lot. The random attack baseline
has little influence on DOP and even slightly improves the training performance on 20m.

Results with confidence intervals of experiments under different attack budgets In Fig. 5 and
Fig. 6, because curves are distinguished from each other by transparencies and showing confidence
intervals may make some curves unclear, we hide the confidence intervals. We show these two figures
with confidence intervals in Fig. 11 and Fig. 12.

E Limitations and Future Directions

In our work, we make an approximation for the first term of Eq. 8, ∇π̃ρ(s,a). This can lead to
an inaccurate value of δ̂ computed by our methods. This might be exaggerated especially for long-
horizon tasks, because a contaminated action may change the experience distribution of all following
timesteps. One way to alleviate this issue can be training an FDM (forward dynamics model) for the
environment to accurately model the change of state-action distribution caused by policy changes.

Another limitation of our method is that in both attack methods, we use the critic (or advantage
function A) and the policy π to compute δ̂. This makes an additional assumption that the agents’
critic and policy should be known. In some realistic scenarios where this information is not available,
our attack methods will not be effective. One way to solve this issue can be using imitation learning
to approximate the policy and the advantage function.

The two methods proposed in this work are actually maximizing one optimization goal:

Eρ(s,a|δ)[|g(s,a)−∇θtJ(θt)|2] = Eρ(s,a|δ)[|g(s,a)|2 − 2g(s,a)⊤∇θtJ(θt) + |∇θtJ(θt)|2]

Table 3: Log likelihood under different KL upper bounds. For these experiments, fA = 1.
map 2s3z 3m 6m 2s_vs_1sc
KLU 2 4 6 2 4 6 2 4 6 2 4 6

Var-based TRAM −2.09 −2.50 −3.41 −2.43 −3.74 −3.87 −2.82 −4.20 −4.32 −3.01 −3.23 −3.36
J-based TRAM −1.13 −1.65 −1.65 −1.53 −2.48 −2.43 −1.68 −2.76 −2.88 −1.67 −3.06 −3.08
Random attack −1.21 −1.54 −1.76 −1.26 −1.58 −1.53 −1.26 −2.16 −2.28 −1.74 −2.38 −2.45
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Figure 9: Performance of our methods and a random attack baseline attacking COMA on SMAC
maps.
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Figure 10: Performance of our methods and a random attack baseline (attacking DOP) on higher
dimensional environments.

, where g(s,a) = A(s,a)∇θt logπθt(a|τ ) and ρ(·|δ) follows the same definition as ρ(·) in the
main text (just to emphasize the influence of δ to ρ). The variance-based method increases the first
term (Eρ(s,a|δ)[|g(s,a)|2]) on the right hand side (RHS), the J-based method decreases the second
term (Eρ(s,a|δ)[g(s,a)

⊤∇θtJ(θt)]), and the third term (Eρ(s,a|δ)[|∇θtJ(θt)|2]) is not affected by
δ. Intuitively, maximizing this optimization goal increases the expected distance between the
contaminated and the original policy gradients. Therefore, another future direction could be to
investigate the attack when our methods are incorporated.
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Figure 11: Include confidence intervals of Fig. 5.
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Figure 12: Include confidence intervals of Fig. 6..
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