
Guarantees for Self-Play in Multiplayer Games via
Polymatrix Decomposability

Revan MacQueen
Department of Computing Science

University of Alberta / Amii

revan@ualberta.ca

James R. Wright
Department of Computing Science

University of Alberta / Amii

james.wright@ualberta.ca

Abstract

Self-play is a technique for machine learning in multi-agent systems where a
learning algorithm learns by interacting with copies of itself. Self-play is useful
for generating large quantities of data for learning, but has the drawback that
the agents the learner will face post-training may have dramatically different
behavior than the learner came to expect by interacting with itself. For the special
case of two-player constant-sum games, self-play that reaches Nash equilibrium
is guaranteed to produce strategies that perform well against any post-training
opponent; however, no such guarantee exists for multiplayer games. We show
that in games that approximately decompose into a set of two-player constant-sum
games (called constant-sum polymatrix games) where global ϵ-Nash equilibria are
boundedly far from Nash equilibria in each subgame (called subgame stability), any
no-external-regret algorithm that learns by self-play will produce a strategy with
bounded vulnerability. For the first time, our results identify a structural property of
multiplayer games that enable performance guarantees for the strategies produced
by a broad class of self-play algorithms. We demonstrate our findings through
experiments on Leduc poker.

1 Introduction

Self-play is one of the most commonly used approaches for machine learning in multi-agent systems.
In self-play, a learner interacts with copies of itself to produce data that will be used for training.
Some of the most noteworthy successes of AI in the past decade have been based on self-play; by
employing the procedure, algorithms have been able to achieve super-human abilities in various
games, including Poker (Moravcik et al., 2017; Brown & Sandholm, 2018, 2019), Go and Chess
(Silver et al., 2016, 2018), Starcraft (Vinyals et al., 2019), Diplomacy (Paquette et al., 2019), and
Stratego (Perolat et al., 2022).

Self-play has the desirable property that unbounded quantities of training data can be generated
(assuming access to a simulator). But using self-play necessarily involves a choice of agents for the
learner to train with: copies of itself. Strategies that perform well during training may perform poorly
against new agents, whose behavior may differ dramatically from that of the agents that the learner
trained against.

The problem of learning strategies during training that perform well against new agents is a central
challenge in algorithmic game theory and multi-agent reinforcement learning (MARL) (Matignon
et al., 2012; Lanctot et al., 2017). In particular, a self-play trained agent interacting with agents
from an independent self-play instance—differing only by random seed—can lead to dramatically
worse performance (Lanctot et al., 2017). The self-play-based DORA (Bakhtin et al., 2021) performs
well aginst copies of itself in the game of no-press Diplomacy, but poorly against human-like agents

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(Bakhtin et al., 2022). Self-play has also been known to perform poorly against new agents in
games with highly specialized conventions (Hu et al., 2020), such as Hanabi (Bard et al., 2020). In
training, one instance of a self-play algorithm may learn conventions that are incompatible with the
conventions of another instance.

There are special classes of games where the strategies learned through self-play generalize well to
new agents. In two-player, constant-sum games there exist strong theoretical results guaranteeing
the performance of a strategy learned through self-play: Nash equilibrium strategies are maxmin
strategies, which will perform equally well against any optimal opponent and can guarantee the value
of the game against any opponent.

a b
a 1, 1 0, 0
b 0, 0 1, 1

Figure 1: A simple coordination game

We lose these guarantees outside of two-player constant-
sum games. For example, consider the simple two-player
coordination game of Figure 1. If both players choose
the same action, both receive a utility of 1, otherwise they
receive 0. Suppose the row player learned in self-play to
choose a (which performs well against another a-player).
Similarly, column learned to play b. If these two players
played against each other, both agents would regret their actions. Upon the introduction of a new
agent who did not train with a learner, despite a and b being optimal strategies during training, they
fail to generalize to new agents. As this example demonstrates, equilibrium strategies in general are
vulnerable: agents are not guaranteed the equilibrium’s value against new agents–even if the new
agent’s also play an equilibrium strategy.

In multiplayer, general-sum games, no-regret self-play is no longer guaranteed to produce Nash
equilibra—instead, algorithms converge to a mediated equilibrium, where a mediator recommends
actions to each player (Von Stengel & Forges, 2008; Farina et al., 2019, 2020; Morrill et al., 2021b).
The mediator can represent an external entity that makes explicit recommendations, such as traffic
lights mediating traffic flows. More commonly in machine learning, correlation can arise through the
shared history of actions of learning agents interacting with each other (Hart & Mas-Colell, 2000).
If a strategy learned in self-play were played against new agents, these new agents may not have
access to the actions taken by other agents during training, so agents would no longer be able to
correlate their actions. In fact, even if all agents play a decorrelated strategy from the same mediated
equilibrium, the result may not be an equilibrium.1

Despite the problems of vulnerability and loss of correlation, self-play has shown promising results
outside of two-player constant-sum games. For example, algorithms based on self-play have out-
performed professional poker players in multiplayer Texas hold ’em, despite the lack of theoretical
guarantees (Brown & Sandholm, 2019).

We seek to understand what structure in multiplayer games will allow self-play to compute a good
strategy. We show that any multiplayer game can be projected into the set of two-player constant-sum
games between each pair of players, called constant-sum polymatrix games. The closer a game is to
this space, the less the problem of correlation affects the removal of a mediator. We identify a second
important property, called subgame stability, where global ϵ-Nash equilibria are boundedly far from
Nash equilibria in each two-player subgame. We show that if a multiplayer, general-sum game is
close to a subgame stable constant-sum polymatrix game, this is sufficient for strategies learned via
self-play to generalize to new agents, as they do in two-player constant-sum games.

Throughout this work, we take an algorithm-agnostic approach by assuming only that self-play
is performed by a regret minimizing algorithm. This is accomplished by analyzing directly the
equilibria that no-regret algorithms converge to—namely coarse correlated equilibria. As a result,
our analysis applies to a broad class of game-theoretically-inspired learning algorithms but also to
MARL algorithms that converge to coarse correlated equilibria (Marris et al., 2021; Liu et al., 2021;
Jin et al., 2021), since any policy can be transformed into a mixed strategy with Kuhn’s Theorem
(Kuhn, 1953). For the remainder of this work, when we say “self-play" we are referring to self-play
using a no-regret algorithm.

Decomposition-based approaches have been used in prior work to show convergence of fictitious
play to Nash equilibria in two-player games (Chen et al., 2022) and evolutionary dynamics (Tuyls
et al., 2018). Cheung & Tao (2020) decompose games into zero-sum and cooperative parts to analyse

1Please refer to the Appendix A for an example

2

the chaotic nature of Multiplicative Weights and Follow-the-Regularized-Leader. We focus less on
the convergence of algorithms per se, and focus instead on the generalization of learned strategies to
new agents. We are, to the best of our knowledge, the first to do so.

After defining our structural properties and proving our main results, we conclude with experiments
on Leduc poker to elucidate why self-play performs well in multiplayer poker. Our results suggest
that regret-minimization techniques converge to a subset of the game’s strategy space that is well-
approximated by a subgame stable constant-sum polymatrix game.

2 Background

Normal Form Games A normal form game is a 3 tuple G = (N,P, u) where N is a set of players,
P =×i∈N

Pi is a joint pure strategy space and Pi is a set of pure strategies for player i. Let n = |N |.
Pure strategies are deterministic choices of actions in the game. We call ρ ∈ P a pure strategy profile.
u = (ui)i∈N is a set of utility functions where ui : P→ R. A player i can randomize by playing a
mixed strategy, a probability distribution si over i’s pure strategies. Let Si = ∆(Pi) be the set of
player i’s mixed strategies (where ∆(X) denotes the set of probability distributions over a domain
X), and let S =×i∈N

Si be the set of mixed strategy profiles. We overload the definition of utility
function to accept mixed strategies as follows: ui(s) =

∑
ρ∈P

(∏
i∈N si(ρi)

)
ui(ρ). We use ρ−i

and s−i to denote a joint assignment of pure (resp. mixed) strategies to all players except for i, thus
s = (si, s−i). We use P−i and S−i to denote the sets of all such assignments.

Hindsight Rationality The hindsight rationality framework (Morrill et al., 2021b) conceptualizes
the goal of an agent as finding a strategy that minimizes regret with respect to a set of deviations Φ. A
deviation ϕ ∈ Φ is a mapping ϕ : Si → Si that transforms a learner’s strategy into some other strategy.
Regret measures the amount the learner would prefer to deviate to ϕ(si): ui(ϕ(si), s−i)−ui(si, s−i).
An agent is hindsight rational with respect to a set of deviations Φ if the agent does not have positive
regret with respect to any deviation in Φ, i.e. ∀ϕ ∈ Φ, ui(ϕ(si), s−i) − ui(si, s−i) ≤ 0. Let
µ ∈ ∆(P) be a distribution over pure strategy profiles and (Φi)i∈N be a choice of deviation sets for
each player.
Definition 2.1 (ϵ-Mediated Equilibrium (Morrill et al., 2021b)). We say m = (µ, (Φi)i∈N) is an
ϵ-mediated equilibrium if ∀i ∈ N,ϕ ∈ Φi we have Eρ∼µ [ui(ϕ(ρi), ρ−i)− ui(ρ)] ≤ ϵ. A mediated
equilibrium is a 0-mediated equilibrium.

Learning takes place in an online learning environment. At each iteration t, a learning agent i chooses
a strategy sti while all other agents choose a strategy profile st−i. No-Φ-regret learning algorithms
ensure that the maximum average positive regret tends to 0:

lim
T→∞

1

T

(
max
ϕ∈Φ

T∑
t=1

ui(ϕ(s
t
i), s

t
−i)− ui(s

t
i, s

t
−i)

)
→ 0.

If all agents use a no-regret learning algorithms w.r.t. a set of deviations Φi, the empirical distribution
of play converges to a mediated equilibrium. Formally, let µ̂ ∈ ∆(P) be the empirical distribution of
play, where the weight on ρ ∈ P is µ̂(ρ) .

=
∑T

t=1

(∏
i∈N sti(ρi)

)
. As T →∞, µ̂ converges to µ of a

mediated equilibrium (µ, (Φi)i∈N).

Different sets of deviations determine the strength of a mediated equilibrium. For normal-form games,
the set of swap deviations, ΦSW , are all possible mappings ϕ : Pi → Pi. We may apply a swap devi-
ation ϕ to a mixed strategy si by taking its pushforward measure: [ϕ(si)](ρi) =

∑
ρ′
i∈ϕ−1(ρi)

si(ρ
′
i),

where ϕ−1(ρi) = {ρ′i ∈ Pi | ϕ(ρ′i) = ρi}. The set of internal deviations ΦI , which replace a
single pure strategy with another, offer the same strategic power as swap deviations (Foster & Vohra,
1999). Formally, ΦI = {ϕ ∈ ΦSW | ∃ρi, ρ′i : [ϕ(ρi) = ρ′i] ∧ [∀ρ′′i ̸= ρi, ϕ(ρ

′′
i) = ρ′′i]}. The set of

external deviations, ΦEX , is even more restricted: any ϕ ∈ ΦEX maps all (mixed) strategies to some
particular pure strategy; i.e. ΦEX = {ϕ ∈ ΦSW | ∃ρi : ∀ρ′i, ϕ(ρ′i) = ρi}. The choice of (Φi)i∈N

determines the nature of the mediated equilibrium—provided the learning algorithm for player i is
no-Φi-regret (Greenwald et al., 2011). For example, if all players are hindsight rational w.r.t. ΦEX ,
then µ̂ converges to the set of coarse correlated equilibria (CCE) (Moulin & Vial, 1978) and if all
players are hindsight rational w.r.t. ΦI then µ̂ converges to the set of correlated equilibria (Aumann,
1974).

3

A special case of mediated equilibria are Nash equilibria. If some mediated equilibrium m =
(µ, (Φi)i∈N) is a product distribution (i.e. µ(ρ) =

∏
i∈N si(ρ) ∀ρ ∈ P) and Φi ⊇ ΦEX ∀i ∈ N

then µ is a Nash equilibrium. Similarly, an ϵ-mediated equilibrium is an ϵ-Nash equilibrium if µ is a
product distribution and Φi ⊇ ΦEX ∀i ∈ N .

In sequential decision making scenarios (often modelled as extensive form games), the set of
deviations is even more rich (Morrill et al., 2021b). All of these deviation classes—with the exception
of action deviations (Selten, 1988) (which are so weak they do not even imply Nash equilibria in
two-player constant-sum games, see appendix)—are stronger than external deviations. This means
that the equilibria of any algorithm that minimizes regret w.r.t. a stronger class of deviations than
external deviations still inherit all the properties of CCE (for example Hart & Mas-Colell (2000);
Zinkevich et al. (2008); Celli et al. (2020); Steinberger et al. (2020); Morrill et al. (2021a)). Thus, we
focus on CCE since the analysis generalizes broadly. Moreover, CCE can be computed efficiently,
either analytically (Jiang & Leyton-Brown, 2011) or by a learning algorithm. When we refer to CCE,
we use the distribution µ to refer to the CCE, since Φ is implicit.

3 Vulnerability

The choice of other agents during learning affects the strategy that is learned. Choosing which agents
make good “opponents" during training is an open research question (Lanctot et al., 2017; Marris
et al., 2021). One common approach, self-play, is to have a learning algorithm train with copies
of itself as the other agents. If the algorithm is a no-Φ-regret algorithm, the learned behavior will
converge to a mediated equilibrium; this gives a nice characterization of the convergence behavior of
the algorithm.

However, in general the strategies in a mediated equilibrium are correlated with each other. This means
that in order to deploy a strategy learned in self-play, an agent must first extract it by marginalizing
out other agent’s strategies. This new marginal strategy can then be played against new agents with
whom the agent did not train (and thus correlate).

Definition 3.1 (Marginal strategy). Given some mediated equilibrium (µ, (Φi)
N
i=1), let sµi be the

marginal strategy for i, where sµi (ρi)
.
=
∑

ρ−i∈P−i
µ(ρi, ρ−i). Let sµ be a marginal strategy profile,

where each ∀i ∈ N plays sµi .

Once a strategy has been extracted via marginalization, learning can either continue with the new
agents (and potentially re-correlate), or the strategy can remain fixed.2 We focus on the case where
the strategy remains fixed. In doing so we can guarantee the performance of this strategy if learning
stops, but also the show guarantees about the initial performance of a strategy that continues to learn;
this is especially important in safety-critical domains.

Given a marginal strategy sµi , we can bound its underperformance against new agents that behave
differently from the (decorrelated) training opponents by a quantity which we call vulnerability.

Definition 3.2 (Vulnerability). The vulnerability of a strategy profile s for player i with respect to
S′
−i ⊆ S−i is

Vuli
(
s, S′

−i

) .
= ui(s)− min

s′−i∈S′
−i

ui(si, s
′
−i).

Vulnerability gives a measure of how much worse s will perform with new agents compared to its
training performance under pessimistic assumptions—that −i play the strategy profile in S′

−i that is
worst for i. We assume that −i are not able to correlate their strategies.

Thus, if a marginal strategy profile sµ is learned through self-play and Vuli
(
sµ, S′

−i

)
is small, then

sµi performs roughly as well against new agents −i playing some strategy profile in S′
−i. S

′
−i is used

to encode assumptions about the strategies of opponents. S′
−i = S−i means opponents could play

any strategy, but we could also set S′
−i to be the set of strategies learnable through self-play if we

believe that opponents would also be using self-play as a training procedure.

2The strategy learned in self-play prior to online learning has been called a blueprint strategy (Brown &
Sandholm, 2019).

4

Some games have properties that make the vulnerability low. For example, in two-player constant-
sum games the marginal strategies learned in self-play generalize well to new opponents since any
Nash equilibrium strategy is also a maxmin strategy (von Neumann, 1928).

4 Guarantees via Polymatrix Decomposability

Multiplayer games are fundamentally more complex than two-player constant-sum games (Daskalakis
& Papadimitriou, 2005; Daskalakis et al., 2009). However, certain multiplayer games can be decom-
posed into a graph of two-player games, where a player’s payoffs depend only on their actions and
the actions of players who are neighbors in the graph (Bergman & Fokin, 1998). In these polymatrix
games (a subset of graphical games (Kearns et al., 2013)) Nash equilibria can be computed efficiently
if player’s utilities sum to a constant (Cai & Daskalakis, 2011; Cai et al., 2016).

Definition 4.1 (Polymatrix game). A polymatrix game G = (N,E,P, u) consists of a set N of
players, a set of edges E between players, a set of pure strategy profiles P, and a set of utility
functions u = {uij , uji | ∀(i, j) ∈ E} where uij , uji : Pi × Pj → R are utility functions associated
with the edge (i, j) for players i and j, respectively.

We refer to the normal-form subgame between (i, j) as Gij = ({i, j},Pi × Pj , (uij , uji)). We use
ui to denote the global utility function ui : P → R where ui(ρ) =

∑
(i,j)∈E uij(ρi, ρj) for each

player. We use Ei ⊆ E to denote the set of edges where i is a player and |Ei| to denote the number
of such edges.

Definition 4.2 (Constant-sum polymatrix). We say a polymatrix game G is constant-sum if for some
constant c we have that ∀ρ ∈ P,

∑
i∈N ui(ρ) = c.

Constant-sum polymatrix (CSP) games have the desirable property that all CCE factor into a product
distribution; i.e., are Nash equilibria (Cai et al., 2016). We give a relaxed version:

Proposition 4.3. If µ is an ϵ-CCE of a CSP game G, sµ is an nϵ-Nash of G.

This means no-external-regret learning algorithms will converge to Nash equilibria, and thus do not
require a mediator to enable the equilibrium. However, they do not necessarily have the property of
two-player constant-sum games that all (marginal) equilibrium strategies are maxmin strategies (Cai
et al., 2016). Thus Nash equilibrium strategies in CSP games have no vulnerability guarantees. Cai
et al. (2016) show that CSP games that are constant sum in each subgame are no more or less general
than CSP games that are constant sum globally, since there exists a payoff preserving transformation
between the two sets. For this reason we focus on CSP games that are constant sum in each subgame
without loss of generality. Note that the constant need not be the same in each subgame.

4.1 Vulnerability on a Simple Constant-Sum Polymatrix Game

We next demonstrate why CSP games do not have bounded vulnerability on their own without
additional properties. Consider the simple 3-player CSP game called Offense-Defense (Figure 2a).
There are 3 players: 0, 1 and 2. Players 1 and 2 have the option to either attack 0 (a0) or attack the
other (e.g. a1); player 0, on the other hand, may either relax (r) or defend (d). If either 1 or 2 attacks
the other while the other is attacking 0, the attacker gets β and the other gets −β in that subgame.
If both 1 and 2 attack 0, 1 and 2 get 0 in their subgame and if they attack each other, their attacks
cancel out and they both get 0. If 0 plays d, they defend and will always get 0. If they relax, they
get −β if they are attacked and 0 otherwise. Offense-Defense is a CSP game, so any CCE is a Nash
equilibrium.

Note that ρ = (r, a2, a1) is a Nash equilibrium. Each i ∈ {1, 2} are attacking the other j ∈
{1, 2} \ {i}, so has expected utility of 0. Deviating to attacking 0 would leave them open against
the other, so a0 is not a profitable deviation, as it would also give utility 0. Additionally, 0 has no
incentive to deviate to d, since this would also give them a utility of 0.

However, ρ is not a Nash equilibrium of the subgames—all i ∈ {1, 2} have a profitable deviation in
their subgame against 0, which leaves 0 vulnerable in that subgame. If 1 and 2 were to both deviate
to a0, and 0 continues to play their Nash equilibrium strategy of r, 0 would lose 2β utility from their
equilibrium value; in other words, the vulnerability of player 0 is 2β.

5

4.2 Subgame Stability

However, some constant-sum polymatrix games do have have bounded vulnerability; we call these
subgame stable games. In subgame stable games, global equilibria imply equilibria at each pairwise
subgame.

Definition 4.4 (Subgame stable profile). Let G be a polymatrix game with global utility functions
(ui)i∈N . We say a strategy profile s is γ-subgame stable if ∀(i, j) ∈ E, we have (si, sj) is a γ-Nash
of Gij ; that is uij(ρi, sj)−uij(si, sj) ≤ γ ∀ρi ∈ Pi and uji(ρj , si)−uji(sj , si) ≤ γ ∀ρj ∈ Pj

For example, in Offense-Defense, (r, a2, a1) is β-subgame stable; it is a Nash equilibrium but is a
β-Nash of the subgame between 0 and 1 and the subgame between 0 and 2.

Definition 4.5 (Subgame stable game). Let G be a polymatrix game. We say G is (ϵ, γ)-subgame
stable if for any ϵ-Nash equilibrium s of G, s is γ-subgame stable.

Subgame stability connects the global behavior of play (ϵ-Nash equilibrium in G) to local behavior in
a subgame (γ-Nash in Gij). If a polymatrix game is both constant-sum and is (0, γ)-subgame stable
then we can bound the vulnerability of any marginal strategy.

Theorem 4.6. Let G be a CSP game. If G is (0, γ)-subgame stable, then for any player i ∈ N and
CCE µ of G, we have Vuli (sµ, S−i) ≤ |Ei|γ.

Theorem 4.6 tells us that using self-play to compute a marginal strategy sµ on constant-sum polymatrix
games will have low vulnerability against worst-case opponents if γ is low. Thus, these are a set of
multiplayer games where self-play is an effective training procedure.

Proof idea. Since G is a CSP game, sµ is a Nash equilbrium. Since G is (0, γ)-subgame stable,
(sµi , s

µ
j) is a γ-Nash equilibrium in each subgame, which bounds the vulnerability in each subgame.

This is because

min
s−i∈S−i

ui(s
µ
i , s−i) =

∑
(i,j)∈Ei

min
sj∈Sj

uij(s
µ
i , sj)

since players j ̸= i can minimize i’s utility without coordinating, as G is a polymatrix game.

We give an algorithm for finding the minimum value of γ such that a CSP game is (0, γ)-subgame
stable in Appendix D.1.

0

1 2

1
a0 a2

2
a0 0 ��
a1 � 0

2
a0 a1

0
d 0 0
r �� 0

1
a0 a2

0
d 0 0
r �� 0

(a)

2

d

0

...
1

...

2
0

0
0
0
0


f c

1

f c

 0
β
−β/2
−β/2


f  0

−β/2
−β/2
β


c  0

−β
β
0


f  0

−β
β/2
β/2


c

(b)

Figure 2: (a) Offense-Defense, a simple CSP game. We only show payoffs for the row player, column
player payoffs are zero minus the row player’s payoffs. (b) Bad Card: a game that is not overall CSP,
but the subset of strategies learnable by self-play are. At the terminals, we show the dealers utility
first, followed by players 0, 1 and 2, respectively.

6

4.3 Approximate Constant-Sum Polymatrix Games

Most games are not factorizable into CSP games. However, we can take any game G and project it
into the space of CSP games.

Definition 4.7 (δ-constant sum polymatrix). A game G is δ-constant sum polymatrix (δ-CSP) if there
exists a CSP game Ǧ with global utility function ǔ such that ∀i ∈ N, ρ ∈ P, |ui(ρ) − ǔi(ρ)| ≤ δ.
Given G, we denote the set of such CSP games as CSPδ(G).

Proposition 4.8. In a δ-CSP game G the following hold.

1. Any CCE of G is a 2δ-CCE of any Ǧ ∈ CSPδ(G).

2. The marginal strategy profile of any CCE of G is a 2nδ-Nash equilibrium of any Ǧ ∈
CSPδ(G).

3. The marginal strategy profile of any CCE of G is a 2(n+ 1)δ-Nash equilibrium of G.

From (3) we have that the removal of the mediator impacts players utilities by a bounded amount in
δ-CSP games. We give a linear program in Appendix D.2 that will find the minimum δ such that G is
δ-CSP and returns a CSP game Ǧ ∈ CSPδ(G).

Combining δ-CSP with (ϵ, γ)-subgame stability lets us bound vulnerability in any game.

Theorem 4.9. If G is δ-CSP and ∃Ǧ ∈ CSPδ(G) that is (2nδ, γ)-subgame stable and µ is a CCE of
G, then

Vuli (sµ, S−i) ≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ.

Theorem 4.9 shows that games which are close to the space of subgame stable CSP (SS-CSP)
games are cases where the marginal strategies learned through self-play have bounded worst-case
performance. This makes them suitable for any no-external-regret learning algorithm.

5 Vulnerability Against Other Self-Taught Agents

Theorem 4.9 bounds vulnerability in worst-case scenarios, where −i play any strategy profile to
minimize i’s utility. In reality, however, each player j ∈ −i has their own interests and would only
play a strategy that is reasonable under these own interests. In particular, what if each agent were
also determining their own strategy via self-play in a separate training instance. How much utility
can i guarantee themselves in this setup?

While no-external-regret learning algorithms converge to the set of CCE, other assumptions can be
made with additional information about the type of regret being minimized. For example, no-external-
regret learning algorithms will play strictly dominated strategies with vanishing probability and CFR
will play dominated actions with vanishing probability (Gibson, 2014). These refinements can tighten
our bounds, since the part of the game that no-regret learning algorithms converge to might be closer
to a CSP game than the game overall.

Consider the game shown in Figure 2b, called “Bad Card”. The game starts with each player except
the dealer putting β/2 into the pot. A dealer player d—who always receives utility 0 regardless of
the strategies of the other players—then selects a player from {0, 1, 2} to receive a “bad card”, while
the other two players receive a “good card”. The player who receives the bad card has an option to
fold, after which the game ends and all players receive their ante back. Otherwise if this player calls,
the other two players can either fold or call. The pot of β is divided among the players with good
cards who call. If one player with a good card calls, they win the pot of β. If both good card players
call then they split the pot. If both players with good cards fold, then the player with the bad card
wins the pot.

As we shall soon show, Bad Card does not have a CSP decomposition—in fact it does not have any
polymatrix decomposition. Since Bad Card is an extensive-form game without chance, each pure
strategy profile leads to a single terminal history. Let P(z) be the set of pure strategy profiles that
play to a terminal z. In order for Bad Card to be polymatrix, we would need to find subgame utility
functions such that ∀ρ ∈ P, u0(ρ) = u0,d(ρ0, ρd) + u0,1(ρ0, ρ1) + u0,2(ρ0, ρ2). Equivalently, we

7

could write ∀z ∈ Z, ρ ∈ P(z), u0(z) = u0,d(ρ0, ρd) + u0,1(ρ0, ρ1) + u0,2(ρ0, ρ2) where Z is the
set of terminals. A subset of these constraints results in an infeasible system of equations.

Consider the terminals in the subtree shown in Figure 2b: z1 = (0, c, c, c), z2 = (0, c, c, f),
z3 = (0, c, f, c) and z4 = (0, c, f, f). Let ρci be any pure strategy that plays c in this subtree and ρfi
be any strategy that plays f in this subtree for player i. In order for Bad Card to decompose into a
polymatrix game we would need to solve the following infeasible system of linear equations:

u0(z
1) = u0,d(ρ

c
0, 0) + u0,1(ρ

c
0, ρ

c
1) + u0,2(ρ

c
0, ρ

c
2) = −β

u0(z
2) = u0,d(ρ

c
0, 0) + u0,1(ρ

c
0, ρ

c
1) + u0,2(ρ

c
0, ρ

f
1) = −β

u0(z
3) = u0,d(ρ

c
0, 0) + u0,1(ρ

c
0, ρ

f
1) + u0,2(ρ

c
0, ρ

c
2) = −β

u0(z
4) = u0,d(ρ

c
0, 0) + u0,1(ρ

c
0, ρ

f
1) + u0,2(ρ

c
0, ρ

f
2) = β

Thus, Bad Card is not a CSP game, although it is a β-CSP game. However, if we prune out dominated
actions (namely, those in which a player folds after receiving a good card), the resulting game is
indeed a 0-CSP game.

Let M(A) be the set of mediated equilibria than an algorithm A converges to in self-play. For
example, if A is a no-external-regret algorithm,M(A) is the set of CCE without strictly dominated
strategies in their support. Let S(A) .

= {sµ | (µ, (Φi)i∈N) ∈M(A)} be the set of marginal strategy
profiles ofM(A), and let Si(A) .

= {si | s ∈ S(A)} be the set of i’s marginal strategies from S(A).
Now, consider if each player i learns with their own self-play algorithm Ai. Let AN

.
= (A1, ...An)

be the profile of learning algorithms, then let S×(AN)
.
= ×i∈N

Si(Ai) and S×
−i(AN)

.
=

×j∈−i
Sj(Aj). Summarizing, if each player learns with a no-Φi-regret learning algorithm Ai,

they will converge to the set of M(Ai) equilibria. The set of marginal strategies from this set
of equilibria is Si(Ai) and the set of marginal strategy profiles is S(Ai). If each player plays a
(potentially) different learning algorithm, S×(AN) is the set of possible joint match-ups if each
player plays a marginal strategy from their own algorithm’s set of equilibria and S×

−i(AN) is the set
of profiles for −i.
Definition 5.1. We say a game G is δ-CSP in the neighborhood of S′ ⊆ S if there exists a CSP
game Ǧ such that ∀s ∈ S′ we have |ui(s)− ǔi(s)| ≤ δ. We denote the set of such CSP games as
CSPδ(G,S′).
Definition 5.2. We say a polymatrix game G is γ-subgame stable in the neighborhood of S′ if
∀s ∈ S′,∀(i, j) ∈ E we have that (si, sj) is a γ-Nash of Gij .

These definitions allow us to prove the following generalization of Theorem 4.9.

Theorem 5.3. For any i ∈ N , if G is δ-CSP in the neighborhood of S×(AN) and ∃Ǧ ∈
CSPδ(G,S×(AN)) that is γ-subgame stable in the the neighborhood of S(Ai) , then for any
s ∈ S(Ai)

Vuli
(
s, S×

−i(AN)
)
≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ.

An implication of Theorem 5.3 is that if agents use self-play to compute a marginal strategy from
some mediated equilibrium and there is an SS-CSP game that is close to the original game for these
strategies, then this is sufficient to bound vulnerability against strategies learned in self-play.

6 Computing an SS-CSP Decomposition in a Neighborhood

How might one determine if a game is well-approximated by an SS-CSP game? In addition to the
algorithms presented in Appendix D, we give an algorithm, SGDecompose, that finds an SS-CSP
decomposition for a game in a given neighborhood of strategy profiles. Pseudocode is given in
Algorithm 1. SGDecompose could be used to test whether a game is well-approximated by an
SS-CSP game before potentially analytically showing this property holds. We will use this algorithm
in the following section to decompose Leduc poker.

As input, SGDecompose receives a neighborhood of strategies S′ and the set of match-ups between
strategies in S′, given by S× .

=×i∈N
S′
i. The idea is to compute a CSP game Ǧ that minimizes

8

a loss function with two components: how close Ǧ is to G in the neighborhood of S× and how
subgame stable Ǧ is for the neighborhood of S′. First, Lδ is the error between the utility functions of
G and Ǧ (u and ǔ, respectively); it is a proxy for δ in δ-CSP. The loss for a single strategy profile s is

Lδ (s; ǔ, u)
.
=
∑
i∈N

|ǔi(s)− ui(s)| .

The other component of the overall loss function, Lγ , measures the subgame stability. First, we
define Lγ

ij , which only applies to a single subgame. Let sij = (si, sj) be a profile for a subgame and
s∗ij = (s∗i , s

∗
j) is a profile of deviations for that subgame. The Lγ

ij loss for this subgame is

Lγ
ij(sij , s

∗
ij ; ǔ)

.
=max (ǔij(s

∗
i , sj)− ǔij(sij), 0) + max

(
ǔji(si, s

∗
j)− ǔji(sij), 0

)
.

Then, given a strategy profile s and deviation profile s∗ for all players N , we have

Lγ (s, s∗; ǔ)
.
=

∑
(i,j)∈E

Lγ
ij(sij , s

∗
ij ; ǔ).

SGDecompose repeats over a number of epoches T . At the start of an epoch, we compute a best-
response (for example, via sequence-form linear programming in extensive-form games) to each
strategy s′i in S′ in each subgame; the full process is shown in Algorithm 4 in the appendix. After
computing these best-responses for the current utility function of Ǧ, SGDecompose fits ǔ to be
nearly CSP in the neighborhood of S× and subgame stable in the neighborhood of S′. Since S× is
exponentially larger than S′, we partition it into batches, then use batch gradient descent.3

We use the following batch loss function, which computes the average values of Lδ and Lγ over the
batch then weights the losses with λ. Let Sb denote a batch of strategy profiles from S× with size B,

L(Sb, S′, S∗; ǔ, u)
.
=

λ

B

∑
s∈Sb

Lδ(s; ǔ, u) +
(1− λ)

|S′|
∑
s∈S′

∑
s∗∈S∗

Lγ(s, s∗; ǔ).

We use this loss function to update ǔ, which is guaranteed to a be a valid utility function for a CSP
game via its representation, see Appendix F for details. In Appendix F, we give the procedure in
terms of a more efficient representation of polymatrix decompositions for extensive-form games,
which we call poly-EFGs; which we describe in Appendix E.

Algorithm 1 SGDecompose

Input: G, S′, hyperparameters η, T , λ, B
Initialize ǔ to all 0
S× ←×i∈N

Ŝi

for t ∈ 1...T do
S∗ ← getBRs(Ǧ, S′)
B ← partition of S× into batches of size B
for Sb ∈ B do
g ← ∇ǔL(Sb, S′, S∗; ǔ, u)
ǔ← ǔ− η · g

∥g∥ 2
{update ǔ using normalized gradient; this helps with stability}

end for
end for
{Lastly, output δ and γ}
δ ← maxs∈S× |ui(s)− ǔi(s)|
γ ← maxs∈S′ maxi ̸=j∈N×N (ǔij(BRij(sj), sj)− ǔij(si, sj))
return ǔ, γ, δ

7 Experiments

Approaches using regret-minimization in self-play have been shown to outperform expert human
players in some multiplayer games, the most notable example being multiplayer no-limit Texas hold
’em (Brown & Sandholm, 2019), despite no formal guarantees.

3One could also partition S′ into batches if it were too large.

9

Conjecture 7.1. Self-play with regret minimization performs well in multiplayer Texas hold ’em
because “good" players (whether professional players or strategies learned by self-play) play in a part
of the games’ strategy space that is close to an SS-CSP game (i.e. low values of γ, δ).

While multiplayer no-limit Texas hold ’em is too large to directly check the properties developed in
this work, we use a smaller poker game, called Leduc poker (Southey et al., 2012), to suggest why
regret-minimization “works" in multiplayer Texas hold ’em. Leduc poker was originally developed
for two players but was extended to a 3-player variant by Abou Risk & Szafron (2010); we use the
3-player variant here. The game has 8 cards, two rounds of betting, one private and one public card.

We first use a self-play algorithm to learn strategies, then use SGDecompose to see if this part
of Leduc Poker is close to an SS-CSP game. We give a summary of results here, please refer to
Appendix G for full details. We use CFR+ (Tammelin, 2014; Tammelin et al., 2015) as a self-play
algorithm to compute a set of approximate marginal strategies.4 CFR+ was chosen because of
its improved efficiency over CFR. CFR+ is a deterministic algorithm, so we use different random
initializations of CFR+’s initial strategy in order to generate a set of CCE. We will use 30 runs of
CFR+ as input to SGDecompose; and have 30 runs of SGDecompose (i.e. we trained CFR+ 900
times in total in self-play). This will give us a value of δ and γ for each run.

We found that Leduc poker was well-approximated by an SS-CSP game in the neighborhood of
strategies learned by CFR+. In particular, across runs, Leduc poker was on average (with standard
errors) δ = 0.009± 0.00046-CSP and γ = 0.004± 0.00016-subgame stable in the neighborhood of
CFR+-learned strategies. How well do these values bound vulnerability with respect to other CFR-
learned strategies? For each of the runs, we computed the vulnerability with respect to the strategies
of that run, by evaluating each strategy against each other and taking the maximum vulnerability.
We compare these values to the upper bounds implies by the values of δ and γ for each run and
Theorem 5.3. We found the computed values of δ and γ do a good job of upper bounding the
vulnerability. Across the runs, the bounds are at minimum 1.89 times the vulnerability, at maximum
3.05 times the vulnerability and on average 2.51 times as large, with a standard error of 0.049.

We repeated these experiments with a toy hanabi game—where strategies learned in self-play are
highly vulnerable—which we found to have much higher values of δ and γ; details are in Appendix H.

It was previously believed that CFR does not compute an ϵ-Nash equilibrium on 3-player Leduc
for any reasonable value of ϵ. Abou Risk & Szafron (2010) found CFR computed a 0.130-Nash
equilibrium. We found that CFR+ always computed an approximate Nash equilbrium with ϵ ≤ 0.013.
Appendix G.2 shows that CFR also computes an approximate Nash equilbrium with ϵ ≤ 0.017.

8 Conclusion

Self-play has been incredibly successful in producing strategies that perform well against new
opponents in two-player constant-sum games. Despite a lack of theoretical guarantees, self-play
seems to also produce good strategies in some multiplayer games (Brown & Sandholm, 2019). We
identify a structural property of multiplayer, general-sum game that allow us to establish guarantees
on the performance of strategies learned via self-play against new opponents. We show that any game
can be projected into the space of constant-sum polymatrix games, and if there exists a game with
this set with high subgame stability (low γ), strategies learned through self-play have bounded loss of
performance against new opponents.

We conjecture that Texas hold ’em is one such game. We investigate this claim on Leduc poker,
and find that CFR+ plays strategies from a part of the strategy space in Leduc poker that is well-
approximated by a subgame stable constant-sum polymatrix game. This work lays the groundwork for
guarantees for self-play in multiplayer games. However, there is room for algorithmic improvement
and efficiency gains for checking these properties in very large extensive-form games.

4We use the OpenSpiel implementation (Lanctot et al., 2019).

10

Acknowledgements

Computation for this work was provided by the Digital Research Alliance of Canada. Revan
MacQueen was supported by Alberta Innovates and NSERC during completion of this work. This
work was funded in part by an NSERC Discovery Grant. James R. Wright holds a Canada CIFAR
AI Chair through the Alberta Machine Intelligence Institute. Thank you to Dustin Morrill, Michael
Bowling and Nathan Sturtevant for helpful conversations and feedback, and the anonymous reviewers
for valuable comments.

References
Abou Risk, N. and Szafron, D. Using counterfactual regret minimization to create competitive

multiplayer poker agents. International Conference on Autonomous Agents and Multiagent
Systems, 2010.

Aumann, R. J. Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1(1):67–96, 1974.

Bakhtin, A., Wu, D., Lerer, A., and Brown, N. No-press diplomacy from scratch. Advances in Neural
Information Processing Systems, 34:18063–18074, 2021.

Bakhtin, A., Wu, D. J., Lerer, A., Gray, J., Jacob, A. P., Farina, G., Miller, A. H., and Brown, N.
Mastering the game of no-press diplomacy via human-regularized reinforcement learning and
planning. arXiv preprint arXiv:2210.05492, 2022.

Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot, M., Song, H. F., Parisotto, E., Dumoulin, V.,
Moitra, S., Hughes, E., Dunning, I., Mourad, S., Larochelle, H., Bellemare, M. G., and Bowling,
M. The hanabi challenge: A new frontier for ai research. Artificial Intelligence, 2020.

Bergman, L. and Fokin, I. On separable non-cooperative zero-sum games. Optimization, 44(1):
69–84, 1998.

Brown, N. and Sandholm, T. Superhuman AI for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418–424, 2018.

Brown, N. and Sandholm, T. Superhuman AI for multiplayer poker. Science, 365(6456):885–890,
2019.

Cai, Y. and Daskalakis, C. On minmax theorems for multiplayer games. ACM-SIAM Symposium on
Discrete algorithms, 2011.

Cai, Y., Candogan, O., Daskalakis, C., and Papadimitriou, C. Zero-sum polymatrix games: A
generalization of minmax. Mathematics of Operations Research, 41(2):648–655, 2016.

Celli, A., Marchesi, A., Farina, G., and Gatti, N. No-regret learning dynamics for extensive-form
correlated equilibrium. Neural Information Processing Systems, 2020.

Chen, Y., Deng, X., Li, C., Mguni, D., Wang, J., Yan, X., and Yang, Y. On the convergence of fictitious
play: A decomposition approach. International Joint Conferences on Artificial Intelligence, 2022.

Cheung, Y. K. and Tao, Y. Chaos of learning beyond zero-sum and coordination via game decompo-
sitions. arXiv preprint arXiv:2008.00540, 2020.

Daskalakis, C. and Papadimitriou, C. H. Three-player games are hard. Electron. Colloquium Comput.
Complex., 2005.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. The complexity of computing a nash
equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

Farina, G., Ling, C. K., Fang, F., and Sandholm, T. Correlation in extensive-form games: Saddle-point
formulation and benchmarks. Neural Information Processing Systems, 2019.

Farina, G., Bianchi, T., and Sandholm, T. Coarse correlation in extensive-form games. AAAI
conference on Artificial Intelligence, 2020.

11

Foster, D. P. and Vohra, R. Regret in the on-line decision problem. Games and Economic Behavior,
29(1):7–35, 1999.

Gibson, R. G. Regret minimization in games and the development of champion multiplayer computer
poker-playing agents. Ph.D. Thesis, 2014.

Greenwald, A., Jafari, A., and Marks, C. No-ϕ-regret: A connection between computational learning
theory and game theory. Games, Norms and Reasons: Logic at the Crossroads, 2011.

Hart, S. and Mas-Colell, A. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 68(5):1127–1150, 2000.

Hu, H., Lerer, A., Peysakhovich, A., and Foerster, J. “other-play” for zero-shot coordination.
International Conference on Machine Learning, 2020.

Jiang, A. X. and Leyton-Brown, K. A general framework for computing optimal correlated equilibria
in compact games. Internet and Network Economics: 7th International Workshop, WINE 2011,
2011.

Jin, C., Liu, Q., Wang, Y., and Yu, T. V-learning–a simple, efficient, decentralized algorithm for
multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

Kearns, M., Littman, M. L., and Singh, S. Graphical models for game theory, 2013.

Kuhn, H. W. Extensive games and the problem of information. Contributions to the Theory of Games,
2(28):193–216, 1953.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Perolat, J., Silver, D., and Graepel,
T. A unified game-theoretic approach to multiagent reinforcement learning. Neural Information
Processing Systems, 2017.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V., Upadhyay, S., Pérolat, J., Srinivasan, S.,
Timbers, F., Tuyls, K., Omidshafiei, S., et al. Openspiel: A framework for reinforcement learning
in games. arXiv preprint arXiv:1908.09453, 2019.

Liu, Q., Yu, T., Bai, Y., and Jin, C. A sharp analysis of model-based reinforcement learning with
self-play. International Conference on Machine Learning, 2021.

Marris, L., Muller, P., Lanctot, M., Tuyls, K., and Graepel, T. Multi-agent training beyond zero-sum
with correlated equilibrium meta-solvers. International Conference on Machine Learning, 2021.

Matignon, L., Laurent, G. J., and Le Fort-Piat, N. Independent reinforcement learners in cooperative
markov games: a survey regarding coordination problems. The Knowledge Engineering Review,
27(1):1–31, 2012.

Moravcik, M., Schmid, M., Burch, N., Lisy, V., Morrill, D., Bard, N., Davis, T., Waugh, K., Johanson,
M., and Bowling, M. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker.
Science, 356(6337):508–513, 2017.

Morrill, D., D’Orazio, R., Lanctot, M., Wright, J. R., Bowling, M., and Greenwald, A. R. Efficient
deviation types and learning for hindsight rationality in extensive-form games. International
Conference on Machine Learning, 2021a.

Morrill, D., D’Orazio, R., Sarfati, R., Lanctot, M., Wright, J. R., Greenwald, A. R., and Bowling, M.
Hindsight and sequential rationality of correlated play. AAAI Conference on Artificial Intelligence,
2021b.

Moulin, H. and Vial, J. Strategically zero-sum games: The class of games whose completely mixed
equilibria cannot be improved upon. International Journal of Game Theory, 7(3):201–221, 1978.

Paquette, P., Lu, Y., Bocco, S. S., Smith, M., O-G, S., Kummerfeld, J. K., Pineau, J., Singh, S.,
and Courville, A. C. No-press diplomacy: Modeling multi-agent gameplay. Neural Information
Processing Systems, 2019.

12

Perolat, J., Vylder, B. D., Hennes, D., Tarassov, E., Strub, F., de Boer, V., Muller, P., Connor, J. T.,
Burch, N., Anthony, T., McAleer, S., Elie, R., Cen, S. H., Wang, Z., Gruslys, A., Malysheva,
A., Khan, M., Ozair, S., Timbers, F., Pohlen, T., Eccles, T., Rowland, M., Lanctot, M., Lespiau,
J.-B., Piot, B., Omidshafiei, S., Lockhart, E., Sifre, L., Beauguerlange, N., Munos, R., Silver, D.,
Singh, S., Hassabis, D., and Tuyls, K. Mastering the game of stratego with model-free multiagent
reinforcement learning. Science, 378(6623):990–996, 2022.

Selten, R. Reexamination of the perfectness concept for equilibrium points in extensive games. In
Models of Strategic Rationality, pp. 1–31. Springer, 1988.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,
Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):
1140–1144, 2018.

Southey, F., Bowling, M. P., Larson, B., Piccione, C., Burch, N., Billings, D., and Rayner, C. Bayes’
bluff: Opponent modelling in poker. arXiv preprint arXiv:1207.1411, 2012.

Steinberger, E., Lerer, A., and Brown, N. Dream: Deep regret minimization with advantage baselines
and model-free learning. arXiv preprint arXiv:2006.10410, 2020.

Tammelin, O. Solving large imperfect information games using cfr+. arXiv preprint arXiv:1407.5042,
2014.

Tammelin, O., Burch, N., Johanson, M., and Bowling, M. Solving heads-up limit texas hold’em. In
Twenty-fourth international joint conference on artificial intelligence, 2015.

Tuyls, K., Pérolat, J., Lanctot, M., Ostrovski, G., Savani, R., Leibo, J. Z., Ord, T., Graepel, T., and
Legg, S. Symmetric decomposition of asymmetric games. Scientific reports, 8(1):1–20, 2018.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,
Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre,
L., Cai, T., Agapiou, J. P., Jaderberg, M., Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gülçehre, Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R.,
Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T. P., Kavukcuoglu,
K., Hassabis, D., Apps, C., and Silver, D. Grandmaster level in Starcraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

von Neumann, J. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.

Von Stengel, B. and Forges, F. Extensive-form correlated equilibrium: Definition and computational
complexity. Mathematics of Operations Research, 33(4):1002–1022, 2008.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C. Regret minimization in games with
incomplete information. Neural Information Processing Systems, 2008.

13

A Marginals of a CCE May Not Be a CCE

a b
a 1, 0 −1,−1
a −1,−1 0, 1

Figure 3: The marginal strategies of a CCE do not generally form a CCE themselves.

Here we give an example showing the marginal strategies of a CCE may not form a CCE. Consider µ
s.t. µ(a, a) = 0.5 and µ(b, b) = 0.5. µ is a CCE. Eρ∼µ [ui(ρ)] = 0.5 for each player. If row (r) were
to player a and column continues to play according to µ, row’s utility is 0; if r plays b instead, their
utility is now −0.5. Thus r has no profitable deviations from the CCE recommendations. Column
does not either, this can be shown with a symmetric argument.

Row’s marginal strategy sµr plays a with probability 0.5 and b with probability 0.5, sµc does likewise.
ur(s

µ
r , s

µ
c) = uc(s

µ
r , s

µ
c) = −0.25. However, a is a profitable deviation for r now since 0 > −0.25,

thus the decorrelated strategies from the same CCE are also not a CCE.

B Hindsight Rationality With Respect to Action Deviations Does Not Imply
Nash

Here we show that hindsight rationality with respect to action deviations does not imply Nash
equilibrium in 2 player constant-sum games. We show this with a 1 player game. Consider the agents
strategy, shown in blue, which receives utility of 1. Deviating to [I1 : b, I2 : a] will increase the
player’s utility to 2, so the blue strategy is not a Nash equilibrium. However, this would require two
simultaneous action deviations, one at I1 to b and one at I2 to a. Neither of these deviations increases
the player’s utility on their own, so the player is hindsight rational w.r.t. action deviations.

I1

1

a b
I2

2

a

0

b

Figure 4: Action deviations in a simple game.

C Omitted Proofs

Proposition C.1 (Cai et al. (2016)). In CSP games, for any CCE µ, if i deviates to si, then their
expected utility if other players continue to play µ is equal to their utility if other player where to
play the marginal strategy profile sµ−i:

Eρ∼µ[ui(si, ρ−i)] = ui(si, s
µ
−i) ∀si ∈ Si

C.1 Proof of Proposition 4.3

Proposition 4.3. If µ is an ϵ-CCE of a CSP game G, sµ is an nϵ-Nash of G.

Proof. Since µ is an ϵ-CCE, ∀i ∈ N , we have

max
ρ′
i∈Pi

Eρ∼µ [ui(ρ
′
i, ρ−i)]− Eρ∼µ [ui(ρ)] ≤ ϵ

14

which implies (by Proposition C.1) that ∀i ∈ N ,

max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i)− Eρ∼µ [ui(ρ)] ≤ ϵ

=⇒ max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i) ≤ ϵ+ Eρ∼µ [ui(ρ)] .

Summing over N , we get∑
i∈N

max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i) ≤

∑
i∈N

(ϵ+ Eρ∼µ [ui(ρ)]) (1)

=
∑
i∈N

ϵ+
∑
i∈N

Eρ∼µ [ui(ρ)] (2)

=
∑
i∈N

ϵ+ Eρ∼µ

[∑
i∈N

ui(ρ)

]
(3)

= nϵ+ c (4)

= nϵ+
∑
i∈N

ui(s
µ). (5)

Where (4) and (5) use the fact that ∀ρ ∈ P,
∑

i∈N ui(ρ) = c for some constant. The above
inequalities give us ∑

i∈N

max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i) ≤ nϵ+

∑
i∈N

ui(s
µ).

Rearranging, we get ∑
i∈N

max
ρ′
i∈Pi

ui(ρ
′
i, s

µ
−i)− ui(s

µ)︸ ︷︷ ︸
≥0

≤ nϵ.

All terms in the sum are are non-negative because ρ′i is a best-response to sµ−i. Then any particular
term in the summation is upper bounded by nϵ.

C.2 Proof of Theorem 4.6

Proposition C.3. In two-player constant-sum games, for any ϵ-Nash equilibrium s and player i, we
have

ui(s)− min
s′−i∈S−i

ui(si, s
′
−i) ≤ ϵ.

The proof of Proposition C.3 is immediate from the fact that no player can gain more than ϵ utility by
deviating and the game is constant-sum.

Theorem 4.6. Let G be a CSP game. If G is (0, γ)-subgame stable, then for any player i ∈ N and
CCE µ of G, we have Vuli (sµ, S−i) ≤ |Ei|γ.

Proof. First we show 1. Any marginal strategy sµ of a CCE µ is a Nash equilibrium of G Cai et al.
(2016). Then,

Vuli (sµ, S−i)
.
= ui(s

µ)− min
s−i∈S−i

ui(s
µ
i , s−i)

=
∑

(i,j)∈Ei

uij(s
µ
i , s

µ
j)− min

s−i∈S−i

 ∑
(i,j)∈Ei

uij(s
µ
i , sj)


=

∑
(i,j)∈Ei

uij(s
µ
i , s

µ
j)−

∑
(i,j)∈Ei

min
sj∈Sj

uij(s
µ
i , sj).

15

Where the last line uses the fact that −i minimize i′s utility, so can do so without coordinating since
G is polymatrix. Continuing,

=
∑

(i,j)∈Ei

(
uij(s

µ
i , s

µ
j)− min

sj∈Sj

ui(s
µ
i , sj)

)
≤

∑
(i,j)∈Ei

γ

≤ |Ei|γ,

where by (0, γ)-subgame stability of each Gij , (sµi , s
µ
i) is a γ-Nash of Gij . By Proposition C.3, we

have uij(s
µ
i , s

µ
j)−minsj∈Sj ui(s

µ
i , sj) ≤ γ.

C.3 Proof of Proposition 4.8

Proposition 4.8. In a δ-CSP game G the following hold

1. Any CCE of G is a 2δ-CCE of any Ǧ ∈ CSPδ(G).

2. The marginalized strategy profile of any CCE of G is a 2nδ-Nash equilibrium of any
Ǧ ∈ CSPδ(G).

3. The marginalized strategy profile of any CCE is a 2(n+ 1)δ-Nash equilibrium of G

Proof. First we prove claim 1. Let ǔi denote the utility function of i in Ǧ. Note that ∀ρ ∈ P we have
|ǔi(ρ)− ui(ρ)| ≤ δ ∀i ∈ N . Let µ be any CCE of G. The definition of CCE states

Eρ∼µ [ui(ρ
′
i, ρ−i)− ui(ρ)] ≤ 0 ∀i ∈ N, ρ′i ∈ Pi.

It is sufficient to consider only player i. We can preserve the inequality by substituting ǔi(ρ
′
i, ρ−i)−δ

in place of ui(ρ
′
i, ρ−i) and ǔi(ρ) + δ in place of ui(ρ). This gives us

Eρ∼µ [ǔi(ρ
′
i, ρ−i)− δ − (ǔi(ρ) + δ)] ≤ 0 ∀ρ′i ∈ Pi

=⇒ Eρ∼µ [ǔi(ρ
′
i, ρ−i)− ǔi(ρ)] ≤ 2δ ∀ρ′i ∈ Pi.

Thus claim 1 is shown. Claim 2 is an immediate corollary of claim 1 and Proposition 4.3. Lastly, we
show claim 3. By claim 2, we have the marginalized strategy of µ, sµ, is a 2nδ-Nash equilibrium of
Ǧ ∈ CSPδ(G). That is for any i ∈ N ,

ǔi(ρ
′
i, s

µ
−i)− ǔi(s

µ
i , s

µ
−i) ≤ 2nδ ∀ρ′i ∈ Pi.

However, since G is δ-CSP, we may substitute ui(ρ
′
i, s

µ
−i)−δ in place of ǔi(ρ

′
i, s

µ
−i) and ui(s

µ
i , s

µ
−i)+

δ in place of ǔi(s
µ
i , s

µ
−i) as preserve the inequality.(
ui(ρ

′
i, s

µ
−i)− δ

)
−
(
ui(s

µ
i , s

µ
−i) + δ)

)
≤ 2nδ ∀ρ′i ∈ Pi.

Rearranging, this gives us

ui(ρ
′
i, s

µ
−i)− ui(s

µ
i , s

µ
−i) ≤ 2nδ + 2δ = 2(n+ 1)δ ∀ρ′i ∈ Pi.

C.4 Proof of Theorem 4.9

Theorem 4.9. If G is δ-CSP and ∃Ǧ ∈ CSPδ(G) that is (2nδ, γ)-subgame stable and µ is a CCE of
G, then

Vuli (sµ, S−i) ≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ,

The proof is largely the same as Theorem 4.6, with added approximation since G is no longer CSP.

16

Proof. Let Ǧ be a polymatrix game that is (2nδ, γ)-subgame stable such that Ǧ ∈ CSPδ(G). Let ǔi

denote the utility function of i in Ǧ. By Proposition 4.8, µ is a 2nδ-Nash equilibrium of Ǧ. Then,

Vuli (sµ, S−i)
.
= ui(s

µ)− min
s′−i∈S−i

ui(s
µ
i , s

′
−i)

≤ ǔi(s
µ)− min

s′−i∈S−i

ǔi(s
µ
i , s

′
−i) + 2δ,

since G is δ-CSP. Then expanding ǔi across i’s subgames we have∑
(i,j)∈Ei

ǔij(s
µ
i , s

µ
j)− min

s′−i∈S−i

∑
(i,j)∈Ei

ǔi(s
µ
i , sj) + 2δ

=
∑

(i,j)∈Ei

ǔij(s
µ
i , s

µ
j)−

∑
(i,j)∈Ei

min
s′j∈Sj

ǔi(s
µ
i , s

′
j) + 2δ.

Where, as in Theorem 4.6, the last line uses the fact that Ǧ is polymatrix, Gij is constant-sum and −i
minimize i′s utility and can do so by without coordinating. Continuing, we have∑

(i,j)∈Ei

ǔij(s
µ
i , s

µ
j)−

∑
(i,j)∈Ei

min
s′j∈Sj

ǔi(s
µ
i , s

′
j) + 2δ

=
∑

(i,j)∈Ei

(
ǔij(s

µ
i , s

µ
j)− min

s′j∈Sj

ǔi(s
µ
i , s

′
j)

)
+ 2δ

≤
∑

(i,j)∈Ei

γ + 2δ

= |Ei|γ + 2δ

≤ (n− 1)γ + 2δ.

Where by (2nδ, γ)-subgame stability of each Gij , (sµi , s
µ
i) is a γ-Nash of Gij . By Proposition C.3,

sµi can lose at most γ to a worst case opponent s′j in each subgame, since Ǧij is two-player constant-
sum.

C.5 Proof of Theorem 5.3

Theorem 5.3. If G is δ-CSP in the neighborhood of S×(AN) and ∃Ǧ ∈ CSPδ(G,S×(AN)) that is
γ-subgame stable in the the neighborhood of S(Ai), then for any s ∈ S(Ai)

Vuli
(
s, S×

−i(AN)
)
≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ.

Proof. The proof is very similar to Theorem 4.9. Writing the definition of vulnerability we have

Vuli (s, S(A)) .
= ui(s)− min

s′−i∈S×
−i(AN)

ui(s, s
′
−i), (6)

since G is δ-CSP in the neighborhood of S×(AN). Swapping out the utility of ui for ǔ, we have

(6) ≤ ǔi(s)− min
s′−i∈S×

−i(AN)
ǔi(si, s

′
−i) + 2δ

Since Ǧ is a polymatrix game,

ǔi(s)− min
s′−i∈S×

−i(AN)
ǔi(si, s

′
−i) + 2δ (7)

=
∑

(i,j)∈Ei

ǔij(si, sj)− min
s′−i∈S×

−i(AN)

∑
(i,j)∈Ei

ǔij(si, sj) + 2δ (8)

=

 ∑
(i,j)∈Ei

ǔij(si, sj)− min
s′j∈Sj(Aj)

ǔij(si, s
′
j)

+ 2δ. (9)

17

Where, as in Theorem 4.6 and Theorem 4.9, the last line uses the fact that Ǧ is polymatrix, Gij is
constant-sum and −i minimize i′s utility and can do so by without coordinating.

Since Ǧ is γ-subgame stable in the neighborhood of S(Ai) and s ∈ S(Ai), then means (si, sj) is a
γ-Nash for each subgame Ǧij , so has bounded vulnerability within that subgame.

(9) ≤

 ∑
(i,j)∈Ei

γ

+ 2δ

≤|Ei|γ + 2δ

≤(n− 1)γ + 2δ

D Normal-Form Algorithms

D.1 Computing Subgame Stability

Let γ be the minimum γ such that a CSP game G is (0, γ)-subgame stable. How do we compute γ?
Does it involve computing all equilibria of G and checking their subgame stability? The answer is no,
it can be done in polynomial time in the number of pure strategies. We next provide an algorithm
for computing γ. The algorithm involves solving a linear program for each edge in the graph and
each pure strategy of those players. This linear program takes a pure strategy ρ′i, and finds a Nash
equilibrium of G that maximizes i’s incentive to deviate to ρ′i when only considering their utility in
Gij ; call this quantity γ

ρ′
i

ij . If there are no such Nash equilibria the solver returns “infeasible”. If the

solver does not return “infeasible”, we update γ = max(i,j)∈Ei
maxρ′

i∈Pi
γ
ρ′
i

ij .

Algorithm 2 Compute γ

Input: G = (N,E,P, u), a polymatrix game
γ ← −∞
for (i, j) ∈ E do

for ρ′i ∈ Pi do
if LP1(i, j, ρ′i) not infeasible then
γ
ρ′
i

ij ← LP1(i, j, ρ′i)

γ ← max(γ, γ
ρ′
i

ij)
end if

end for
for ρ′j ∈ Pj do

if LP1(j, i, ρ′j) not infeasible then

γ
ρ′
j

ji ← LP1(j, i, ρ′j)

γ ← max(γ, γ
ρ′
j

ji)
end if

end for
end for
return γ

Let ai(ρ′i, µ) be the advantage of deviating to ρ′i from a joint distribution over pure strategies:

ai(ρ
′
i, µ)

.
=

∑
(i,j)∈Ei

uij(ρ
′
i, s

µ
j)︸ ︷︷ ︸

(a)

−Eρ∼µ

 ∑
(i,j)∈Ei

uij(ρi, ρj)


︸ ︷︷ ︸

(b)

18

Note that (a) is a linear function of µ, since sµj is a marginal strategy. (b) is also a linear function of
µ, and so ai(ρ

′
i, µ) is a linear function of µ. Likewise, let

aij(ρ
′
i, µ)

.
= uij(ρ

′
i, s

µ
j)− Eρ∼µ [uij(ρi, ρj)] .

be the advantage of ρ′i in the subgame between i and j. LP1(i, j, ρ′i) is given below. The decision
variables are the weights of µ for each ρ ∈ P and γ

ρ′
i

ij .

LP 1

max γ
ρ′
i

ij

s.t. ai(ρi, µ) ≤ 0 ∀i ∈ N, ρi ∈ Pi

aij(ρ
′
i, µ) ≥ γ

ρ′
i

ij∑
ρ∈P

µ(ρ) = 1

µ(ρ) ∈ [0, 1] ∀ρ ∈ P

We can get away with computing a CCE rather than targeting Nash equilibria because the marginals
of any CCE are Nash equilibria in CSP games Cai et al. (2016).

The whole procedure runs in polynomial time in the size of the game. We need to solve an LP, which
takes polynomial time, at most n2 maxi∈N |Pi| times.

D.2 Finding Constant-Sum Polymatrix Decomposition

Projecting a game into the space of CSP games with minimum δ can be done with a linear program.
Let δ be the minimum δ such that G is δ-CSP. We give a linear program that finds δ and returns a
CSP game Ǧ ∈ CSPδ(G). The decision variables are the values of ǔij(ρ) for all i ̸= j ∈ N, ρ ∈ P,
δ and constants for each subgame cij , for all i ̸= j.

LP 2

min δ

s.t. ui(ρ)−
∑
j∈−i

ǔij(ρi, ρj) ≤ δ ∀i ∈ N, ρ ∈ P

ui(ρ)−
∑
j∈−i

ǔij(ρi, ρj) ≥ −δ ∀i ∈ N, ρ ∈ P

ǔij(ρi, ρj) + ǔji(ρi, ρj) = cij ∀i ̸= j ∈ N, (ρi, ρj) ∈ Pij ,

E Extensive-Form Games

Section 4 developed notions of approximately CSP and subgame stable in the context of normal-form
games. Here, we apply these concepts to extensive-form games. While any extensive-form game
has an equivalent induced normal-form game, analysing properties of an EFG through its induced
normal is intractable for moderately-sized EFGs, since the size the normal-form representation is
exponentially larger.

After background on extensive-form games, we introduce a novel “extensive-form version” of normal-
form polymatrix games, which we call poly-EFGs. The major benefit of poly-EFGs over normal-form
polymatrix games is their efficiently: poly-EFGs are exponentially more compact than an equivalent
normal-form polymatrix game. The results of this section extend the theory of Sections 4 and 5
using this more efficient representation. We also give a proof-of-concept showing that poly-EFGs can
be used to efficiently decompose extensive-form games by giving an algorithm for decomposing a
perfect information EFG into a poly-EFG.

19

E.1 Background on Extensive-Form Games

We use the imperfect information extensive-form game (EFG) as a model for sequential
multi-agent strategic situations. An imperfect information extensive-form game is a 10-tuple
(N,A, H, Z,A, P, u, I, c, πc) where N is a set of players; A is a set of actions; H is a set of
sequences of actions, called histories; Z ⊆ H is a set of terminal histories; A : H → A is a function
that maps a history to available actions; P : H → N is the player function, which assigns a player
to choose an action at each non-terminal history; u = {ui}i∈N is a set of utility functions where
ui : Z → R is the utility function for player i; I = {Ii}i∈N where Ii is a partition of the set
{h ∈ H : P (h) = i} such that if h, h′ ∈ I ∈ Ii then A(h) = A(h′). We call an element I ∈ Ii
an information set. The chance player c has a function πc(a, h) ∀h : P (h) = c which returns the
probability of random nature events a ∈ A. Let Nc = N ∪{c} be the set of players including chance.

For some history h, the jth action in h is written hj . A sub-history of h from the jth to kth actions is
denoted hj:k and we use h:k as a short-hand for h0:k. If a history h′ is a prefix of history h, we write
h′ ⊑ h and if h′ is a proper prefix of h, we write h′ ⊏ h.

A pure strategy in an EFG is a deterministic choice of actions for the player at every decision point.
We use ρi : Ii → A to denote a pure strategy of player i, and the set of all pure strategies as
Pi. Likewise, si ∈ ∆(Pi) = Si is a mixed strategy, where ∆(X) denotes the set of probability
distributions over a domain X .

There are an exponential number of pure strategies in the number of information sets. A behavior
strategy is a compact representation of the behavior of an agent that assigns a probability distribution
over actions to each information set. We use πi ∈ Πi = (∆(A(I)))I∈Ii to denote a behavior strategy
of player i and πi(a, I) as the probability of playing action a at I . Let I(h) be the unique information
set such that h ∈ I . We overload πi(a, h) = πi(a, I(h)). We use ρ ∈ P, s ∈ S and π ∈ Π to denote
pure, mixed and behavior strategy profiles, respectively. Note that P is a subset of both Π and S.

Given a behavior strategy profile, let

pi(h1, h2, πi)
.
=

∏
h1⊑ha⊑h2,P (ha)=i

πi(a, h)

p(h1, h2, π)
.
=
∏
i∈Nc

pi(h1, h2, πi)

p−i(h1, h2, π−i)
.
=

∏
j∈Nc\{i}

pj(h1, h2, πj)

be the probability of transitioning from history h1 to h2 according to πi, π and π−i, respectively.
Let pi(z, πi), p−i(z, πi) and p(z, πi) be short-hands for pi(∅, z, πi), p−i(∅, z, π−i) and p(∅, z, π),
respectively, where ∅ is the empty history.

We define the utility of a behavior strategy as:

ui(π)
.
= Ez∼π [ui(z)] =

∑
z∈Z

p(z, π)ui(z) =
∑
z∈Z

(∏
i∈Nc

pi(z, πi)

)
ui(z).

Perfect recall is a common assumption made on the structure of information sets in EFGs that prevents
players from forgetting information they once possessed. Formally, for any h ∈ I let Xi(h) denote
the set of (I, a) s.t. I ∈ Ii and ∃h′ ∈ I and h′a ⊑ h. Let X−i(h) be defined analogously for −i and
X(h) for all players.
Definition E.1 (Perfect recall). If ∀I ∈ Ii,∀h, h′ ∈ I,Xi(h) = Xi(h

′) then i has perfect recall. If
all players possess perfect recall in some EFG G, we call G a game of perfect recall.

In games of perfect recall, the set of behavior strategies and mixed strategies are equivalent: any
behavior strategy can be converted into a mixed strategy which is outcome equivalent over the set of
terminal histories (i.e. has the same distribution over Z) and vice-versa.
Theorem E.2 (Kuhn (1953)). In games of perfect recall, any behavior strategy πi has an equivalent
mixed strategy si (and vice versa), such that

pi(z, πi) = Eρi∼si [pi(z, ρi)] .

20

Theorem E.2 establishes a connection between equilibria in behavior and mixed strategies: a Nash
equilibrium behavior strategy profile implies the equivalent mixed strategy profile is also a Nash
equilibrium in mixed strategies and vice-versa.

We may also reduce any extensive-form game into an equivalent normal-form game.

Definition E.3 (Induced normal-form). The induced normal-form of an extensive-form game G
(with utility functions ui) is a normal-form game G′ = (N,P, u′) such that u′

i(ρ) = ui(ρ)

The induced normal-form of an EFG has players making all decisions up-front. It is not always
practical to construct an induced normal-form, but the concept is useful for proving things about
EFGs.

E.2 Poly-EFGs

What is the appropriate extension of polymatrix games to EFGs? Given some n-player EFG G, what
should the subgame between i and j be in the graph? Unlike in normal form games, players act
sequentially, and i and j may either observe actions or have their utility impacted by other players.
There is additional structure present in EFGs beyond the players’ pure strategies.

The approach we take is to have an EFG for each pair of players i and j. For simplicity, we assume
that each subgame G′

ij shares the same structure as some n-player game G, but information sets
where P (I) /∈ {i, j} now belong to the chance player c.

Definition E.4 (Subgame). Let G = (N,A, H, Z,A, P, u, I, c, πc) be some EFG. We define a
subgame G′

ij = ({i, j},A, H, Z,A, P ′, (u′
ij , u

′
ji), I, c, π′

c) as a structurally identical game to G
between i and j with player function P ′ and utility functions (u′

ij , u
′
ji), then

P ′(h)
.
=

{
P (h) if P (h) ∈ {i, j}
c o.w.

and let π′
c be the strategy of the chance player in G′

ij . We put no restrictions on π′
c.

Note that u′
ij , u

′
ji are not necessarily defined in the above definition. They may take any values. We

merely want the subgame G′
ij to share the structure of G. In G′

ij , i and j’s utility only depends on
their strategies πi, πj and chance’s actions π′

c:

u′
ij(πi, πj)

.
= Ez∼(πi,πj ,πj)

[
u′
ij(z)

]
=
∑
z∈Z

pi(z, πi)pj(z, πj)pc(z, π
′
c)u

′
ij(z).

What should π′
c be defined as? This turns out to not matter very much. Given any subgame G′

ij with
chance strategy π′

c and utility functions u′
ij , u

′
ji, for any G′′

ij with chance strategy π′′
c , we can find

u′′
ij , u

′′
ji so that the utility of players between the two games will always be equal for any strategy

profile (πi, πj).

Definition E.5. We say πc is fully mixed if π′
c(a, h) > 0 ∀h ∈ {h ∈ H | P (h) = c}, a ∈ A(h)

Proposition E.6. Let G be an EFG and G′
ij a subgame between i and j with utility functions

u′
ij , u

′
ji and fully mixed chance strategy π′

c. Given G′′
ij , a subgame between i and j with fully mixed

chance strategy π′′
c , we may find u′′

ij , u
′′
ji such that ∀πi, πj we have u′

ij(πi, πj) = u′′
ij(πi, πj) and

u′
ji(πi, πj) = u′′

ji(πi, πj).

21

Proof. Note that pc(z, π′
c), pc(z, π

′′
c) ̸= 0. Then ∀z ∈ Z, define u′′

ij(z) =
pc(z,π

′
c)

pc(z,π′′
c)u

′
ij(z) and

u′′
ji(z) =

pc(z,π
′
c)

pc(z,π′′
c)u

′
ji(z). Then

u′′
ij(πi, πj) =

∑
z∈Z

pi(z, πi)pj(z, πj)pc(z, π
′′
c)u

′′
ij(z)

=
∑
z∈Z

pi(z, πi)pj(z, πj)pc(z, π
′′
c)

pc(z, π
′
c)

pc(z, π′′
c)

u′
ij(z)

=
∑
z∈Z

pi(z, πi)pj(z, πj)pc(z, π
′
c)u

′
ij(z)

= u′
ij(πi, πj).

For the remainder of this work, when defining a subgame between i and j given an EFG G, we define
the subgame chance player’s strategy to be equal to πc in G at information sets I where P (I) = c in
G and uniform randomly otherwise.

Having defined subgames, we may now define our representation of extensive-form polymatrix
games.
Definition E.7 (Poly-EFG). A poly-EFG (N,E,G) is defined by a graph with nodes N , one for each
player, a set of edges E and a set of games G = {Gij | ∀(i, j) ∈ E} where Gij ∈ G is a two player
EFG between i and j and all Gij ∈ G are a subgame between i and j and all subgames are defined
with respect to some EFG G.

Let Gij ∈ G denote the subgame between i and j. We use subscript ij (e.g. Zij) to refer to parts of
Gij .

Since each subgame of the poly-EFG is the subgame of the same G, the space of pure, mixed and
behavior strategies is the same for each subgame for any player. A player chooses a strategy (whether
pure, mixed or behavior) and plays this strategy in each subgame. A player’s global utility is the sum
of their utility in each of their subgames. We have

ui(π) =
∑

(i,j)∈Ei

uij(πi, πj),

where Ei ⊆ E is the set of edges connected to i in the graph and uij is the utility function of i in
subgame Gij .

E.3 Constant-Sum and Subgame Stable Poly-EFGs

Here, we give definitions of constant-sum and subgame stability for poly-EFGs. These definitions are
largely identical to their normal-form counterparts, we merely provide them here for completeness.

Poly-EFGs are constant-sum if, for each subgame, the utilities at the terminals add up to a constant.
Definition E.8 (Constant-sum). We say a poly-EFG G is constant-sum if ∀Gij ∈ G, z ∈ Zij ,
uij(z) + uji(z) = cij where Zij is the set of terminal histories of ∀Gij and cij is a constant.

We may also define approximate poly-EFGs in the same way as in normal-form games.
Definition E.9 (δ-constant sum poly-EFG). An EFG G is δ-constant sum poly-EFG (δ-CSP) if
there exists a constant-sum poly-EFG Ǧ with global utility function ǔ such that ∀i ∈ N, π ∈ Π,
|ui(π)− ǔi(π)| ≤ δ. We denote the set of such CSP games as CSPδ(G).

Finally, we define subgame stability for poly-EFGs. Our definitions are near-identical from the
normal-form definitions.
Definition E.10 (Subgame stable profile). Let G be a poly-EFG. We say a strategy profile π is
γ-subgame stable if ∀(i, j) ∈ E, we have (πi, πj) is a γ-Nash of Gij .
Definition E.11 (Subgame stable game). Let G be a poly-EFG. We say G is (ϵ, γ)-subgame stable if
for any ϵ-Nash equilibrium π of G, π is γ-subgame stable.

22

E.4 Theoretical Results For Poly-EFGs

Our theoretical results from Sections 4 and 5 continue to hold in poly-EFGs. The idea is to use the
induced normal-form of a poly-EFG. We assume perfect recall.

First, we will characterize what self-play will produce in EFGs. These are called marginal behavior
strategies.
Definition E.12 (Marginal behavior strategy). Given some mediated equilibrium (µ, (Φi)

N
i=1), let πµ

i
be the marginal behavior strategy for i where πµ

i (a, I) is defined arbitrarily if
∑

ρ′
i∈Pi(I)

sµi (ρ
′
i) = 0

and otherwise

πµ
i (a, I)

.
=

∑
ρi∈Pi(a,I)

sµi (ρi)∑
ρ′
i∈Pi(I)

sµi (ρ
′
i)

∀I ∈ Ii, a ∈ A(I),

where sµi (ρi)
.
=
∑

ρ−i∈P−i
µ(ρi, ρ−i).

Definition E.13 (Marginal behavior strategy profile). Given some mediated equilibrium (µ, (Φi)
N
i=1),

let πµ be a marginal behavior strategy profile, where πµ
i is a marginal behavior strategy ∀i ∈ N .

Definition E.14 (Induced normal-form polymatrix game). Given a poly-EFG G = (N,E,G),
the induced normal-form polymatrix game is a polymatrix game G′ = (N,E,P, u′) such
that Pi is equal to i’s set of pure strategies in each Gij and u′

ij(ρi, ρj) = uij(ρi, ρj) =∑
z∈Z pi(z, ρi)pj(z, ρj)pc(z, π

′
c)uij(z) where uij is the utility function of i in Gij .

In games of perfect recall, every behavior strategy πi has an equivalent mixed strategy sπi
i (by Kuhn’s

Theorem), which means for any perfect recall EFG G, we can use the poly-EFG representation
instead of turning G into a normal-form game then using a normal-form polymatrix game to get the
same vulnerability bounds on G. Given π, let sπ be a profile of equivalent mixed strategies.

From Kuhn’s Theorem and an assumption that each Gij ∈ G has perfect recall, we derive two
immediate corollaries.
Corollary E.15. If π is γ subgame stable for a poly-EFG Ǧ where each subgame has perfect recall ,
then sπ is γ subgame stable in the induced normal-form polymatrix game of Ǧ.

Corollary E.16. For EFG of perfect recall G, if G is δ-CSP-EFG then the induced normal form of
G is δ-CSP.

An extension of Theorem 4.9 holds for poly-EFGs. Let Πµ be the set of marginal behavior strategy
profiles for any CCE of G and Πµ

i be the set of marginal behavior strategies for i.

Proposition E.17. If an EFG G is δ-CSP and ∃Ǧ ∈ CSPδ(G) that is (2nδ, γ)-subgame stable and
µ is a CCE 5 of G, then

Vuli (πµ,Π−i) ≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ,

Proof. Transform Ǧ into its induced normal-form polymatrix game Ǧ′. By Corollaries E.15 and
E.16 the induced normal form of G is δ-CSP and (2nδ, γ)-subgame stable. By perfect recall, we can
convert πµ to an equivalent mixed strategy profile sµ and do likewise with any π−i ∈ Π−i. Then
apply Theorem 4.9 using sµ, S−i and the induced normal-form polymatrix game of Ǧ to bound
vulnerability on G’s induced normal form, and hence G.

E.5 Vulnerability Against Self-Taught Agents in EFGs

Next we show an analogue of Theorem 5.3 for extensive-form games. In Section 5 we defined S(A)
as the set of marginal strategy profiles for a no-regret learning algorithm A. Many algorithms for
EFGs will compute behavior strategies, so we use Π(A) .

= {πµ | (µ, (Φi)i∈N) ∈M(A)} as the set
of marginal behavior strategy profiles ofM(A) (recall thatM(A) is the set of mediated equilibria
reachable by learning algorithm A. Then let Πi(A) .

= {πi | π ∈ Π(A)} be the set of i’s marginal
strategies from Π(A). For example, if A is CFR,M(A) is the set of observably sequentially rational
CFCCE Morrill et al. (2021b) and Π(A) is the set of behavior strategy profiles computable by CFR.

5Note that “CCE” refers to a normal-form CCE (NFCCE) in the language of Farina et al. (2020).

23

Next, suppose each player i learns with their own self-play algorithm Ai. Let AN
.
= (A1, ...An) be

the profile of learning algorithms; Π×(AN)
.
=×i∈N

Πi(Ai) be the set of all possible match-ups
between strategies learned in self-play by those learning algorithms and Π×

−i(AN)
.
=×j∈−i

Πj(Aj)

be the profiles of −i amongst these match-ups.
Definition E.18. We say a game G is δ-CSP in the neighborhood of Π′ ⊆ Π if there exists a constant
sum poly-EFG Ǧ such that ∀π ∈ Π′ we have |ui(π)− ǔi(π)| ≤ δ. We denote the set of such CSP
games as CSPδ(G,Π′).
Definition E.19. We say a poly-EFG game G is γ-subgame stable in the neighborhood of Π′ if
∀π ∈ Π′,∀(i, j) ∈ E we have that (πi, πj) is a γ-Nash of Gij .

Proposition E.20. If G is δ-CSP in the neighborhood of Π×(AN) and ∃Ǧ ∈ CSPδ(G,Π×(AN))
that is γ-subgame stable in the the neighborhood of Π(Ai) , then for any Π ∈ Π(Ai)

Vuli
(
π,Π×

−i(AN)
)
≤ |Ei|γ + 2δ ≤ (n− 1)γ + 2δ.

The proof goes the same way as in Corollary E.17. Use the induced normal-form polymatrix game of
Ǧ and Theorem 5.3 to derive bounds for the induced normal form of G, which then apply to G.

E.6 Leveraging the Poly-EFG Representation for Computing CSP Decompositions

The poly-EFG representation gives rise to more efficient algorithms for computing a poly-EFG
decomposition. As a proof of concept, we show that in perfect information EFGs, we can write a
linear program to compute the optimal polymatrix decomposition for an EFG that is exponentially
smaller than LP 2 from Section D.2. Recall that δ is the minimum value of δ such that a game is δ-CSP.
In an perfect information EFG, we can compute δ with the following LP. The decision variables are δ,
the values of ǔij(z) ∀z ∈ Z, (i, j) ∈ E and cij ∀(i, j) ∈ E.

LP 3
min δ

s.t. ui(z)−
∑
j∈−i

ǔij(z) ≤ δ ∀i ∈ N, z ∈ Z

ui(z)−
∑
j∈−i

ǔij(z) ≥ −δ ∀i ∈ N, z ∈ Z

ǔij(z) + ǔji(z) = cij ∀i ̸= j ∈ N, z ∈ Z

The trick is that in perfect information EFGs, each pure strategy profile leads to a single terminal.
Hence, rather than having a constraint for each pure strategy profile, a constraint for each terminal
will suffice. This leads to an exponential reduction in the number of constraints over LP 2.

F Details of SGDecompose

Next, we give the full details of SGDecompose. We give details here using our poly-EFG representa-
tion, since this is the representation we use in our experiments.

For each subgame Ǧij we store a single vector ǔij where the entry ǔij(z) gives the value of the
utility for corresponding terminal z. We additionally store a constant čij for each subgame. Player i
will use ǔij when computing ǔij(πi, πj):

ǔij(πi, πj) =
∑
z∈Z

pi(z, πi)pj(z, πj)pc(z, πc)ǔij(z).

Whereas we compute ǔji(πi, πj) as follows.

ǔji(πi, πj) =
∑
z∈Z

pi(z, πi)pj(z, πj)pc(z, πc) (čij − ǔij(z)) .

For simplicity, let ǔ denote the stacked vector of all ǔij and čij . We additionally initialize Ǧ as a
fully connected graph.

24

The overall loss function which we minimize has two components: first, Lδ is the error between the
utility functions of G and Ǧ; it is a proxy for δ in δ-CSP.

Lδ (π; ǔ, u)
.
=
∑
i∈N

|ǔi(π)− ui(π)|

=
∑
i∈N

∣∣∣∣∣∣
 ∑

(i,j)∈Ei

ǔij(πi, πj)

− ui(π)

∣∣∣∣∣∣ .
The other component of the overall loss function, Lγ , measures the subgame stability. First, we
define Lγ

ij , which only applies to a single subgame.

Lγ
ij(πij , π

∗
ij ; ǔ)

.
=max (ǔij(π

∗
i , πj)− ǔij(πij), 0)

+max
(
ǔji(πi, π

∗
j)− ǔji(πij), 0

)
.

Where πij = (πi, πj) is a profile and π∗
ij = (π∗

i , π
∗
j) is a profile of deviations. Then

Lγ (π, π∗; ǔ)
.
=

∑
(i,j)∈E

Lγ
ij(πij , π

∗
ij ; ǔ).

Algorithm 3 shows how to compute a subgame stable constant-sum polymatrix decomposition via
SGD. As input, the algorithm receives a game G, a finite set of strategy profiles Π′, learning rate η,
number of training epochs T , hyperparameter λ ∈ [0, 1] and batch size B. First, we initialize Π× as
the set of all match-ups amongst strategies in Π′.

We then repeat the following steps for each epoch. First, we compute a best-response (for example,
via sequence-form linear programming) to each strategy π′

i in Π′ in each subgame; the full process is
shown in Algorithm 4. After computing these best-responses for the current utility function of Ǧ, we
try to fit ǔ to be nearly CSP in the neighborhood of Π× and subgame stable in the neighborhood of
Π′. Since Π× is exponentially larger than Π′, we partition it into batches, then use batch gradient
descent. We use the following batch loss function, which computes the average values of Lδ and Lγ

over the batches, then weights the losses with λ. Let Πb denote a batch of strategy profiles from Π×

with size B, the overall loss function is

L(Πb,Π′,Π∗; ǔ, u)
.
=

λ

B

∑
π∈Πb

Lδ(π; ǔ, u) +
(1− λ)

|Π′|
∑
π∈Π′

∑
π∗∈Π∗

Lγ(π, π∗; ǔ).

We take this loss and find its gradient with respect to ǔ, then update ǔ:

ǔ← ǔ− η · ∇ǔL(Πb,Π′,Π∗; ǔ, u).

We found that in practise the gradient can be quite large relative to ǔ, which has the potential to
destabilize optimization. This is alleviated by normalizing the gradient by its l2 norm.

g ← ∇ǔL(Πb,Π′,Π∗; ǔ, u)

ǔ← ǔ− η · g

∥g∥ 2

G Experiment Details

The codebase for our experiments is available at https://github.com/RevanMacQueen/
Self-Play-Polymatrix.

G.1 Leduc Poker

We ran SGDecompose 30 times, each time with its own set of 30 strategy profiles. These 900 strategy
profiles are generated with CFR+ in self-play for 1000 iterations with random initializations. We

25

https://github.com/RevanMacQueen/Self-Play-Polymatrix
https://github.com/RevanMacQueen/Self-Play-Polymatrix

Algorithm 3 SGDecompose with behavior strategies

Input: G, Π′, η, T , λ, B
Initialize ǔ to all 0
Π× ←×i∈N

Π̂i

for t ∈ 1...T do
Π∗ ← getBRs(Ǧ, Π′)
B ← partition of Π× into batches of size B
for Πb ∈ B do

g ← ∇ǔL(Πb,Π′,Π∗; ǔ, u)
ǔ← ǔ− η · g

∥g∥ 2
end for

end for
{Lastly, output δ and γ}
δ ← maxπ∈Π× |ui(π)− ǔi(π)|
γ ← maxπ∈Π′ maxi̸=j∈N×N (ǔij(BRij(πj), πj)− ǔij(πi, πj))
return ǔ, γ, δ

Algorithm 4 getBRs

Input: Ǧ, Π′

Π∗
i ← ∅ ∀i ∈ N

for i ̸= j ∈ N ×N do
for πj ∈ Π′

j do
compute π∗

ij ∈ argmaxπ′
i∈Πi

ǔij(π
′
i, πj)

Π∗
i ← Π∗

i ∪ {π∗
ij}

end for
end for
return×i∈N

Π∗
i

randomly initialize CFR+ with regrets between 0 and 0.001 chosen uniformly at random, which are
the default values in OpenSpiel.

Interestingly, we found that CFR+ converges to approximate Nash equilibria in Leduc poker, with a
maximum value of ϵ equal to 0.013 after 1000 iterations. As we will show in Appendix G.2, CFR
also empirically produces approximate Nash equilibria in Leduc poker.

Let Π(CFR+)j denote the set of CFR+-learned strategy profiles for run j; and Π×(CFR+)j
denote the set of all match-ups between these 30 strategy profiles. Figure 5 shows diversity of
Π(CFR+)j for each of the 30 runs. We measure the diversity of each Π(CFR)j by taking each pair
of strategy profiles π, π′ ∈ Π(CFR)j and computing the total variation between these two probability
distributions induced over the terminal histories of Leduc poker. We denote the maximum total
variation for run j as TVj , where

TVj
.
= max

π,π′∈Π(CFR)j

1

2

∑
z∈Z

|p(z, π)− p(z, π′)|.

TVj is constrained to be between 0 and 1, where 0 means the two distributions are the same and 1
means they are maximally different. Figure 5 shows the maximum total variation between any two of
the strategy profiles used in each run.

We used the same parameters for each run of SGDecompose: λ = 0.5, B = 30, T = 200. We
used a learning rate schedule where the learning rate η begins at 2−6, then halves every 5 epochs
until reaching 2−17 to encourage convergence. Our results are shown in Figure 6. We see that
across the 30 runs of SGDecompose, Leduc poker is at most 0.021-CSP in the neighborhood of
Π×(CFR+)j and 0.009-subgame stable in the neighborhood of Π(CFR+)j . Figure 7 shows the
maximum vulnerability with respect to the strategies in each of the runs compared to the bounds on
vulnerability given by Proposition E.20. We compute the maximum vulnerability as

Vulj
.
= max

i∈N
max

π∈Π(CFR)j
Vuli

(
π,Π×

−i(CFR)j
)
. (10)

26

j
0.18

0.20

0.22

0.24

0.26

0.28

TVj

Figure 5: The maximum total variation for each Π(CFR)j used in different runs of SGDecompose in
Leduc Poker. Different runs are shown on the x-axis, and the corresponding TVj for run j is shown
with the bars. A value of 0 indicates minimal diversity and 1 means maximal diversity. The minimum,
mean, maximum and standard error across runs are 0.21, 0.22, 0.26 and 0.0016, respectively.

We see that the bounds are between 1.89 and 3.05 times the actual vulnerability, and are on average
2.51 times larger with a standard error of 0.049.

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

j

(a)

0.003

0.004

0.005

0.006

0.007

0.008

j

(b)

Figure 6: Boxplots showing the values of δj and γj for each of the 30 runs of SGDecompose in
Leduc Poker. Figure 6a shows the values of δj , with the minimum, mean, maximum and standard
error being 0.006, 0.009, 0.021 and 0.00046, respectively. Figure 6b shows the values of γj , with the
minimum, mean, maximum and standard error being 0.003, 0.004, 0.009 and 0.00016, respectively.

G.2 CFR Finds Approximate Nash in Leduc Poker

It was previously believed that CFR does not compute an ϵ-Nash equilibrium on 3-player Leduc for
any reasonable value of ϵ. Previous work found that CFR computed a 0.130-Nash equilibrium after
108 iterations Abou Risk & Szafron (2010). We saw in the previous section that CFR+ computes
approximate Nash equilibria in Leduc poker—does this hold for CFR as well?

We ran 30 runs of CFR in self-play for 10,000 iterations and found that all of our strategies converged
to an approximate Nash equilibrium with the maximum ϵ = 0.017 after only 104 iterations. Figure 8b

27

j
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ex
pe

ct
ed

 U
til

ity

Vulj 2(j + j)

Figure 7: Bounds on vulnerability compared to true vulnerability in Leduc Poker for each run.
Each of the 30 runs are shown on the x-axis. For each run j, we compute the bounds determined
by Proposition E.20, which are (n − 1)γj + 2δj = 2(γj + δj). These value are shown in orange.
The blue bars are the maximum vulnerability in each run, computed using (10). The ordering of
bars in this plot matches the ordering of bars in Figure 5. The rightmost run had both the highest
vulnerability and highest diversity.

shows the shows the maximum deviation incentive

ϵ = max
π′
i

ui(π
′
i, π−i)− ui(π)

for each of the CFR strategies π computed by CFR in Leduc Poker. Each column is for one of the
players and each point is one of the random seeds. We see the maximum value of ϵ after 10,000
iterations is 0.017. Figure 8a shows the maximum deviation incentive ϵ over 10,000 iterations. We
average learning curves over 30 random seeds.

H Toy Hanabi

In games with low values of δ and γ, self-play will perform well against new opponents; however
is the converse also true? Do games where self-play performs poorly against new opponents have
high values of δ and γ? As mentioned earlier, self-play struggles to generalize to new agents in some
games with specialized conventions (Hu et al., 2020). Hanabi is one such game (Bard et al., 2020).
Hanabi is a cooperative game where players cannot see their own hands, but can see all other players
hands; therefore players must give each other hints on how to act.

We show that a small version of the game of Hanabi is not close to the space of CSP games and
self-play is quite vulnerable. We use Tiny Hanabi in the Openspiel framework (Lanctot et al., 2019)
with our own payoffs, shown in Figure 9. Chance deals one of two hands, A or B with equal
probability. Only player 1 may observe this hand and must signal to other players through their
actions, σ1 and σ2, which hand chance has dealt. If both players 2 and 3 then correctly choose their
actions to match chance’s deal ((a, a) for A or (b, b) for B) then all players get payoff equal to 1,
otherwise all players get 0.

σ1 and σ2 can come to mean different things, σ1 could signal to 2 and 3 to play a, or b. Self-play
may learn either of these conventions. However, if a player trained in self-play encounters a set of
players trained in an independent instance of self-play, they may not have compatible conventions.

This is indeed what happens when we train CFR on Tiny Hanabi in Figure 9. We trained 30 runs in
self-play with different random initializations for 10,000 iterations. Some of these runs converged to

28

0 5000 10000
Iteration

10 2

10 1

100

Player 1

0 5000 10000
Iteration

10 2

10 1

100

Player 2

0 5000 10000
Iteration

10 2

10 1

100

Player 3

(a)

1 2 3
Player

0.008

0.010

0.012

0.014

0.016

(b)

Figure 8: CFR empirically computes Nash Equilibria in Leduc Poker. (a) shows learning curves over
iterations for each of the players. We measure ϵ by finding a best-response with sequence-form linear
programming every 1000 iterations. We show each of the individual instances of CFR with different
random initializations in light-coloured lines and the average across seeds in bold. (b) shows the
distribution of ϵ at iteration 10,000.

each convention and when played against each other miscoordinated. We found

max
i∈N

max
π∈Π(CFR)

Vuli
(
π,Π×

−i(CFR)
)
≈ 1,

as expected.

We decomposed Tiny Hanabi and found δ = 0.5 and γ ≈ 0, meaning the true vulnerability matched
what our bounds predicted since (n− 1)γ + 2δ ≈ 1. Why is γ ≈ 0? We found that this was because
our algorithm was setting the payoffs to equal to 0.50 for all terminal histories, which is trivially
polymatrix.

29

c

A B

1

σ1 σ2

1

σ1 σ2

2

a b

2

a b

2

a b

2

a b

3

1

a b

3

a

1

b

3

1

a b

3

a

1

b

3

1

a b

3

a

1

b

3

1

a b

3

a

1

b

Figure 9: Tiny Hanabi. We omit payoffs of 0 at terminals.

30

	Introduction
	Background
	Vulnerability
	Guarantees via Polymatrix Decomposability
	Vulnerability on a Simple Constant-Sum Polymatrix Game
	Subgame Stability
	Approximate Constant-Sum Polymatrix Games

	Vulnerability Against Other Self-Taught Agents
	Computing an SS-CSP Decomposition in a Neighborhood
	Experiments
	Conclusion
	Marginals of a CCE May Not Be a CCE
	Hindsight Rationality With Respect to Action Deviations Does Not Imply Nash
	Omitted Proofs
	Proof of Proposition 4.3
	Proof of Theorem 4.6
	Proof of Proposition 4.8
	Proof of Theorem 4.9
	Proof of Theorem 5.3

	Normal-Form Algorithms
	Computing Subgame Stability
	Finding Constant-Sum Polymatrix Decomposition

	Extensive-Form Games
	Background on Extensive-Form Games
	Poly-EFGs
	Constant-Sum and Subgame Stable Poly-EFGs
	Theoretical Results For Poly-EFGs
	Vulnerability Against Self-Taught Agents in EFGs
	Leveraging the Poly-EFG Representation for Computing CSP Decompositions

	Details of SGDecompose
	Experiment Details
	Leduc Poker
	CFR Finds Approximate Nash in Leduc Poker

	Toy Hanabi

