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Abstract

The ability to actively acquire information is essential for open-world planning
under partial observability and incomplete knowledge. However, most existing
embodied Al systems either assume a known object category or rely on passive
perception strategies that exhaustively gather object and relational information
from the environment. Such a strategy becomes insufficient in visually complex
open-world settings. For instance, a typical household may contain thousands of
novel and uniquely configured objects, most of which are irrelevant to the agent’s
current task. Consequently, open-world agents must be capable of actively iden-
tifying and prioritizing task-relevant objects to enable efficient and goal-directed
knowledge acquisition. In this work, we introduce ACTIVEVOO, a novel zero-shot
framework for open-world embodied planning that emphasizes object-centric ac-
tive knowledge acquisition. ACTIVEVOO employs lifted regression to generate
compact, first-order subgoal descriptions that identify task-relevant objects, and
provides a principled mechanism to quantify the utility of sensing actions based on
commonsense priors derived from LLMs and VLMs. We evaluate ACTIVEVOO
on the visual ALFWorld benchmark, where it achieves substantial improvements
over existing LLM- and VLM-based planning approaches, notably outperforming
VLMs fine-tuned on ALFWorld data. This work establishes a principled founda-
tion for developing embodied agents capable of actively and efficiently acquiring
knowledge to plan and act in open-world environments.

1 Introduction

Open-world embodied planning is challenging due to partial observability and incomplete task-
relevant knowledge. In the open world, knowledge acquisition becomes essential, as agents must
identify and obtain relevant information necessary to generate feasible plans. Existing embodied
Al systems often assume known object categories and rely on passive strategies that exhaustively
collect objects and relational information without contextual relevance [Camoriano et al., 2017].
These approaches quickly become infeasible in complex, information-rich environments due to a
combinatorial explosion of objects and their relations to each other.

Active knowledge acquisition offers a better alternative by enabling the agent to proactively seek
information that is relevant to the task at hand. However, existing work in this area has largely
focused on locating or recognizing predefined object classes [Zhu et al., 2017, Yang et al., 2018] or
information gain [Zurbriigg et al., 2022], thereby overlooking a crucial preceding reasoning step:
identifying which objects are actually relevant to the goal. To illustrate these challenges, Figure 1
shows a comparative example of active vs. passive knowledge acquisition.
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Figure 1: Active vs. Passive Knowledge Acquisition. The left panel illustrates the active approach, where
lifted regression generates abstract subgoals that guide targeted VLM queries for object discovery. The numbered
arrows indicate the sequential order of reasoning and sensing steps. In the active flow: 1) lifted subgoals are
regressed from the goal, 2) candidate objects and relations are extracted for subgoals, 3) only relevant objects
are sensed and grounded to update the agent’s knowledge base, and 4) the agent explores the environment based
on its sensing target. This closed loop of reasoning and sensing continues until a plan can be executed. The
right panel depicts the passive approach, where a grounded progression planner relies on exhaustive object
collection. Here, 1) the agent first gathers all visible objects, 2) attempts plan grounding, 3) if grounding fails
due to missing objects, it re-enters exploration to collect additional data, and 4) Recovery occurs through further
exploration (potentially guided by the failed plan context), but this process remains inefficient in open-world
settings containing unbounded numbers of objects and relations.

In this work, we introduce ACTIVEVOO, an open-world planning framework with active knowledge
acquisition. ACTIVEVOO adopts an object-centric view of knowledge, and decomposes active
knowledge acquisition into two sub-tasks: 1) The agent determines which types of objects and
relational properties are relevant to the goal. For example, it should recognize that a kettle is relevant
when preparing a hot drink, while a TV remote is not. 2) The agent quantifies and prioritizes among
the relevant objects to sense. For instance, when preparing breakfast, the agent must decide whether
locating eggs is more important than finding a baking tray.

Object relevance can be determined by evaluating whether an object is necessary for executing a
feasible plan. However, generating plans in open-world settings is feasible with typical grounded
progression [Helmert, 2006] methods, which typically assumes the Closed World Assumption (CWA)
and a fully specified initial state. An alternative is regression-based planning, where the agent searches
backward from the goal to identify preceding subgoals without requiring explicit knowledge of the
initial state [Reiter, 2001, Sanner and Boutilier, 2009]. Moreover, regression can be conducted at the
lifted level, allowing compact relational reasoning that abstracts away from specific object instances.

ACTIVEVOQO leverages lifted regression [Sanner and Boutilier, 2009, Ghallab et al., 2004] to obtain
a set of relevant object descriptions, which it then quantifies and prioritizes based on how “helpful”
each is to achieving the overall objective. For example, when tasked with “prepare a steak dinner,”
the agent must weigh the utility of searching for a steak versus locating a wine glass. To this end, we
propose Value of Observation (VOO) to formalize active knowledge acquisition as a decision-making
process that selects utility-maximizing objects to sense. VOO measures the expected improvement in
utility obtained by observing a specific object, relative to the utility of acting without attempting to
sense the object.

We evaluate ACTIVEVOO on the ALFWorld benchmark [Shridhar et al., 2020], which provides a
diverse set of tasks in both visual and textual modalities. While prior work has primarily focused
on the textual setting, the visual version of ALFWorld remains highly challenging due to partial
observability, object diversity, and complex interaction dynamics. We demonstrate that ACTIVEVOO
achieves significant improvements against the visual ALFWorld tasks, notably outperforming vision-
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Figure 2: Overview of the ACTIVEVOO Framework. Figure 2 illustrates the full workflow of our
approach, which integrates lifted regression, object-relation extraction, and Value of Observation
(VOO)-guided active sensing. 1) Lifted regression decomposes the goal into a set of lifted subgoals
that describe feasible abstract world configurations. 2) From each subgoal, object and relational
descriptions are extracted. 3) The agent computes the VOO for each candidate object or relation
based on the current KB. 4) Objects with high VOO are selected to guide exploration and sensing.
This active cycle continues until all predicates in at least one lifted subgoal are satisfied, at which
point the associated plan is instantiated and executed.

language models that are fine-tuned specifically for this benchmark. Figure 2 shows the overall
workflow of ACTIVEVOO. To summarize, we make the following key contributions in this work:

* We enable active knowledge acquisition by extracting relevant high-level object and relational
descriptions through lifted regression for open-world planning.

* We propose a decision-theoretic Value of Observation (VOO) approach that quantifies the utility
of knowledge acquisition using commonsense beliefs from LLMs and VLMs.

* We achieve state-of-the-art performance on the visual ALFWorld benchmark in a zero-shot
manner, outperforming even fine-tuned VLM baselines.

2 Methodology

A key challenge for open-world embodied agents is determining which objects are relevant to the
task prior to planning, as novel and previously unknown objects may appear in the environment.
Furthermore, exhaustively enumerating all relational information the agent observes is inefficient,
since most objects the agent encounters are irrelevant to the task. To address this challenge, we propose
a framework that identifies and prioritizes task-relevant objects through the following steps: 1) The
agent applies lifted regression to derive subgoals representing possible world configurations where
feasible plans can be executed; 2) it then extracts high-level (unary predicate) object descriptions
from each subgoal; 3) for each identified object description, the agent estimates the probability of
successful sensing by leveraging LLM-based commonsense; 4) the agent computes the Value of
Observation (VOO) to prioritize object sensing based on expected utility gain; and 5) guided by VOO,



the agent actively senses and collects object information, updating its knowledge base and executing
the plan once all relations in a subgoal can be satisfied.

An overview of ACTIVEVOO is shown in Figure 2. We assume the agent is equipped with high-level
actions defined in PDDL [Haslum et al., 2019] syntax, an extension of STRIPS [Fikes and Nilsson,
1971], but lacks complete knowledge of object types and their relational states. The full action
model for our experimental domain is provided in Appendix A; the examples below are modified
for purposes of compact exposition. The agent receives a high-level natural-language instruction
without step-by-step guidance and employs goal-conversion methods from [Song et al., 2023, Xie
et al., 2023] to translate natural-language goals into PDDL form through few-shot prompting.

2.1 Lifted Plan and Subgoal Derivation

One approach for generating plans in the open world (i.e., an open domain of potential objects) is
lifted regression [Sanner and Boutilier, 2009], which allows the agent to derive high-level plans and
their necessary execution conditions without relying on concrete object instances. This is achieved
by reasoning in a lifted representation and regressing backward from the goal to infer the abstract
preconditions required for plan feasibility. By planning with lifted representations parameterized
by variables, the agent reasons in high-level relational descriptions of objects rather than specific
instances. For example, instead of concrete object instances such as “oven” or “sink”, lifting enables
the agent to reason about object properties and relations like isClean(7x) and canClean(?7y, 7x),
deferring the instantiation of these variables until the relevant objects are observed. Lifted regression
plans backward by successively regressing the goal through the action model to determine the abstract
preconditions (i.e., subgoals) that must hold for executing a particular action to achieve that goal.

Example (1) Suppose the agent’s goal is to put a clean potato in the fridge, represented symbolically as
G := isPotato(?x) A isClean(7x) A isFridge(?z) A inside(?x, ?7z).
Consider the action model

Preconditions: holds (7x)
Effects: inside(?7x, 7z)

PutIn(?x, ?7z) := {

Regressing the goal G through PutIn(?x, ?z) replaces the achieved effect inside (?x 7z) with the
action’s preconditions, yielding the regressed subgoal

g1 = isPotato(?x) A isClean(7x) A isFridge(?z) Aholds(7x).

This expression states that the agent has to be holding a potato 7x that has already been cleaned and has
found a fridge 7z to complete the overall goal.

Lifted Backward Search. Lifted regression enables the agent to reason backward from the goal
to produce a set of high-level conditional plans capable of achieving the agent’s objective under
different possible environment configurations. In this work, we apply regression via Lifted Backward
Search [Ghallab et al., 2004], adapted to open-world settings [Liu et al., 2025], to generate a set
of conditional plans IT = {(g1,71), ..., (gn,Tn)}, where each lifted subgoal g; specifies a set of
minimal preconditions that must hold for the corresponding plan 7; to be executable. The details of
the open-world lifted regression algorithm are provided in Appendix B.

Example (2) Following the same setup as the previous example, suppose lifted regression yields two
abstract subgoals that represent feasible world configurations.

g1 := isPotato(?x) A isClean(?x) A isFridge(?z) A holds(7x),
g2 := isPotato(?w) A cleaningObject(?y) A canClean(?y, ?w) A isFridge(?7z).

Each subgoal g; is associated with a lifted conditional plan 7;, which can be executed when the corre-
sponding g; is satisfied:

m1 ¢ [PutIn(?x, 72)],

72 ¢ [Pickup(?w), Clean(?y, ?w), PutIn(?w, 7z)]



2.2 Object and Relation Description Extraction

Extracting Object Descriptions. To identify which objects are relevant for executing a plan, we
first extract their symbolic descriptions from the lifted subgoals. We assume that an object’s type and
characteristics are captured by the unary predicates present in a subgoal formula g. For every variable
v € Vars(g), we construct a conjunctive formula o, 4(v) that represents the properties associated
with that object, and collectively define the set of all such object formulas as O,

0u,g(v) = A p(v), O = {o,4(v)[g€G, ve Vars(g)}, ()

p(v)€g, arity(p)=1

where duplicates are removed via a-renaming of variable symbols. This compact formulation encodes
all unary predicates applied to each variable within g, yielding the object-level descriptions used as
sensing targets during active knowledge acquisition.

Example (3) Continuing from the previous example, we extract unary predicates for each variable to
form their corresponding object descriptions using Eq. 1. For g1, we obtain:

0z,g; () = isPotato(?x) A isClean(?x) A holds(?x), 0.4, (72z) = isFridge(?z).
Similarly, for g2, the extracted object descriptions are:
Ow,g, (Tw) = isPotato(?w), 0y,¢,(7y) = cleaning0bj(?y), 0.,4,(72) = isFridge(?z).
After removing duplicate objects, we obtain the set of four object descriptions used in subgoals g; and go:

- {isPotato(?w), isPotato(?x) A isClean(?x) A holds(?x),
" cleaningObj(7y), isFridge(?7z)}.

Extracting Relational Descriptions. In addition to unary object properties, each subgoal formula
g may contain relational predicates that describe dependencies among multiple objects—for instance,
for variables v = (?7y, ?w), one may ask whether the relation canClean(?y, 7w) holds. More
precisely, for every relational predicate p(v) with v = (vy,...,v;) and k > 2 appearing in g, we
construct a relational formula that links the corresponding object formulas, and collectively define
the set of all such relational formulas as R,

k
Pv.g(V) = (/\ 0v;,9(Vi) A p(V)> ) R = {pvy(v)[g€G, pv)€yg, [v[>2}. (2

i=1

where each p is an open first-order formula whose free variables correspond to the participating
objects; it evaluates to true under an assignment v iff each v; instantiates an object satisfying its
unary description and the relational predicate p holds among them. Together, O and R form a
lifted representation that links individual object descriptions to their relational structure for active
knowledge acquisition.

Example (4) Continuing from the previous example, the subgoal g> contains one relational predicate,
canClean(?y, 7?w). Using Eq. 2, we construct the corresponding relational formula:

Py,w), g2 (7Y, 7w) = (cleaningObj(?y) A isPotato(?w) A canClean(?y, 7w)).

This formula specifies that the relation canClean(?y, ?w) needs to hold for object isPotato (?w) and
cleaningObject (7y). We can then define the (singleton) set of relation descriptions for subgoal g-:

R = {cleaningObject(?y) A isPotato(?w) A canClean(?y, ?w)},

2.3 Sensing Belief Estimation via LLM Commonsense Probability Elicitation

Building on prior work showing that LLM token logits can approximate commonsense belief prob-
abilities [Liu et al., 2023a, Chen et al., 2023], we estimate how likely it is for the agent to sense
particular objects. For an object description g1 (x) A - - - A g (), we query the LLM with statement s:
“Does there exist an object that is q1, . . ., ¢, 7" For a relational description p over v = (v1,...,vx)
with predicate p, we query s: “Can p(v) hold given v such that ¢; (v1), . .., gk (vg)?" Then, given a



fixed context c (e.g., “You are reasoning about a typical household kitchen.”) and a statement s, we
can obtain model-specific logits of “Yes” and “No” for s given that context c holds, denoted as

2ves (€, 8) := logity mlc, s = “Yes™], 2No (¢, 8) := logity v[c, s = “No”, 3)
and apply the definition of conditional probability to estimate whether s is true when context c is true:

P(s=T,c=1T) - exp(zyes(c;s))

Pls=Tle=T) = e =T 1 PG =T c=T) ~ oxplovee(c.5)) + oxplana(.s))’
4)

Since some logit APIs are stochastic, we average k logits across samples (k=5 in our case). For each
o€ Oand p € R, we obtain p, := Pr(s, = T'|c = T) and p, := Pr(s, = T'|c = T') which we use
to independently estimate the probability of whether objects satisfying s, or relationships satisfying
S, can be sensed in context c. Prompt templates and paraphrasing details are provided in Appendix E.

2.4 Value of Observation (VOO) Computation

After extracting object and relational descriptions from lifted subgoals, the agent must determine
how to prioritize among candidate objects for sensing. To this end, we propose Value of Observation
(VOO), a utility-based measure that quantifies the expected improvement in the agent’s ability to
achieve its goal with respect to sensing object candidates fitting specific descriptions. By evaluating
the VOO for each potential sensing target, the agent can prioritize observations that are most
informative, thereby enabling goal-directed and object-centric knowledge acquisition in open-world
environments.

Problem Setup. Given the sets of object descriptions O and relational descriptions R, we define
the agent’s knowledge states as a set of sensing beliefs over objects and relations:

S ={(O"0O",R",R") | OFCO,RF*CR,0"NO”" =2, R"NR" =2}. (5

S

Here, O and R denote the sets of object and relational descriptions that the agent believes can
be sensed, whereas O~ and R~ represent those that the agent believes cannot be sensed. Objects
that are not included in either of these sets but are present in the overall object set O are considered
unknown to the agent. The agent can perform a sensing action a, for an object description o € O,
which transitions it into one of two possible successor states depending on whether o can be sensed:

s =(O0*tu{o}, 0", R", R"), s =(0", 0" u{o}, R, R7), (6)

The two outcomes occur with respective probabilities p, and 1 — p,, estimated in Section 2.3. We
formalize this knowledge acquisition process as a belief-state Markov Decision Process (MDP), whose
full specification, including transition dynamics and reward formulation, is provided in Appendix D.

Utility Estimation and VOO Calculation. We define a utility function U (s) reflecting the agent’s
belief that any subgoal g € G is satisfiable given the agent’s knowledge state s. For each subgoal g,
we first identify the sets of still-unknown object and relational descriptions associated with g as

0bjunk(g,8) = obj(g) \ (OTUO™),  reluk(g,s) = rel(g)\ (R UR"). Q)
Here, obj(g) and rel(g) denote the sets of object and relational descriptions associated with subgoal

g, respectively.

Example (5) Continuing from the previous example, suppose the agent’s current knowledge state is
s =(0",07,R",R™), where O" = {isPotato(7w)} and R*,0~, R~ = @, indicating that only
the potato has been identified. Recalling previous subgoal

g2 := isPotato(?w) A cleaningObject(?y) A canClean(?y, ?w) A isFridge(?z),
the unknown object and relational descriptions are respectively:

0bj,u (g2, 8) = {cleaningObject (?y), isFridge(?z)},
reluk (g2, s) = {cleaningObject(?y) A isPotato(?w) A canClean(?y, 7w)}.



Assuming independent sensing outcomes with success probabilities {p, } ,co for object descriptions
and {p,},er for relational descriptions, we define the belief probability a subgoal g can be satisfied
after sensing all currently unknown descriptions as:

Pr(g is satisfiable | s) = H Do - H Pp- ®

o€obj,u(g,) perelunk(g,s)

The utility of a given knowledge state s is then defined as the maximum probability of any subgoal g
that can be made satisfiable from s.

U(s) = max H Do - H Dp - ©)

o€obj,y(g,s) pErelunc(g,s)

Example (6) Continuing from the previous example, assuming independent sensing outcomes with
success probabilities Pcreaningobject = 0.9, Disrrigge = 0.8, and peanciean = 0.7, the belief that g2 can be
satisfied is

Pr(go is satisfiable | s) = 0.9 x 0.8 x 0.7 = 0.504
For g1 = isPotato(?x) A isClean(7x) A isFridge(?z) A holds(7x), the unknown descrip-
tions are obj,,(g1,s) = {isFridge(?z),isPotato(?x) A isClean(?x) A holds(?x)}, with
probabilities pisrriagge = 0.8 and Pispotato A isClean A hotas = 0.1 giving

Pr(g: is satisfiable | s) = 0.8 x 0.1 = 0.08

Using Eq. 9, the utility of the current knowledge state s is defined as

U(s) = max IT »o- J] »oy = max(0.504,0.08) = 0.504

o€objyk(g;s) perelynk(g,s)

Value of Observation. Given utility U(s), when the agent attempts to sense object description
o € O, the expected utility of the outcomes of sensing vs. not sensing o can be calculated as follows:

Use™(s) = poU(s,) + (1 =po) U(s),  UFo="(s) = U(s). (10)

Here, s, and s”_ denote the successor knowledge states corresponding to successful and unsuccessful
sensing outcomes, respectively. The left equation represents the expected utility from sensing o,
while the right shows the baseline utility when the agent does not sense o and cannot make use of it.
Then, the Value of Observation (VOO) quantifies the expected utility gain from actively sensing o:

VOO, (s) = U5 (s) — UR=m¢ (5) — p, [U(s',) — U(s")]. (i

VOO thus measures how much the agent’s expected progress toward a satisfiable subgoal improves
by actively acquiring knowledge about a specific object.

While the astute reader may observe a non-incidental similarity between VOO and Value of Infor-
mation (VOI) [Howard, 1966], there are causal differences in the computations. In VOI, deciding
whether or not to make an observation (weather report) does not causally affect the outcome (whether
it will rain). In contrast for VOO, an object must be actively observed to causally affect the outcome.

2.5 Active Knowledge Acquisition and Plan Execution

The ACTIVEVOO agent acquires knowledge from both the physical environment, by navigating
to new locations and collecting visual observations, and by issuing language or vision—language
queries that infer object relations using LLMs or VLMs. At each step, the agent selects the object
description with the highest Value of Observation, 0* = argmax,co VOO,(s), and treats it as the
next exploration target. It then queries an LLM to obtain the optimal location the agent can explore
based on the exploration target. After navigating to the corresponding region, the agent captures an
RGB frame and queries the VLM to detect instances that satisfy the top-k (in our case, top 5) object
descriptions ranked via VOO values. Successful detections are updated into the agent’s knowledge
state s, which in turn updates the estimated utilities U (s) and all VOO scores. The agent also infers
relational predicates (via LLM reasoning or direct observation) whose arguments correspond to the
sensed object types. Once every predicate in a lifted subgoal g € G is grounded, the agent instantiates



the associated plan 7, and executes the corresponding plan. ACTIVEVOO enables the agent to
allocate its limited sensing budget toward information that maximizes expected utility, seamlessly
integrating physical exploration with commonsense reasoning over object relations. The complete
execution flow of the agent is illustrated in Figure 2, and detailed implementation steps are provided
in Appendix F of the supplementary material.

3 Experiments

Experimental Setup. We evaluate ACTIVEVOO on the ALFWorld benchmark using raw vi-
sual inputs in a zero-shot setting, without additional data for training or fine-tuning. We compare
ACTIVEVOO against state-of-the-art LLM/VLM-based planners using both vision and language
observations, including zero-shot methods as well as fine-tuned models on ALFWorld data. The
performance is evaluated using Success Rate, defined as the agent’s ability to complete the task in
30 steps. We average success rate over 3 runs. We set the regression length to 10 and the LLM
temperature to 0.1, except when computing belief probabilities, where the temperature is set to 0.
All experiments are carried out on a 6-Core AMD CPU with 32GB of RAM, and we rely on API calls
for LLMs/VLMs. For ACTIVEVOO, we use GPT-4o0 both for belief probability estimation and as a
vision-language model to extract relevant objects. We choose ALFWorld [Shridhar et al., 2020] as
our benchmark to evaluate both text and vision observations modalities.

Baselines. We compare ACTIVEVOO against a diverse set of baselines across three categories:
vision only models, language only models, and vision language models. We include ResNet-
18 [Shridhar et al., 2020] and MCNN-FPN [Shridhar et al., 2020], which are standard computer vision
architectures that take an image as input and output an action. For language-based models, we focus on
prompting-based methods, REACT [Yao et al., 2022], REFLEXION [Shinn et al., 2024], DEPS [Wang
et al., 2023], and AUTOGEN [Wu et al., 2023], which rely solely on LLMs for reasoning and planning
with few-shot examples. Vision language agents take both raw pixel observations and natural language
instructions as input, requiring multimodal reasoning. We include models that require data collection
and fine-tuning, which are BUTLER [Shridhar et al., 2020], MINIGPT-4 [Zhu et al., 2023a], BLIP-
2 [Lietal., 2023], LLAMA-ADAPTOR [Gao et al., 2023], INSTRUCTBLIP [Panagopoulou et al.,
2023], and EMMA [Yang et al., 2024], as well as advanced VLMs, GPT40 [Hurst et al., 2024a] and
LLAVA-13B [Liu et al., 2023b], in the zero-shot setting. Note that EMMA and REFLEXION require
successive attempts on the same task. Thus, we report their performance for both 3 and 10 trials.

4 Results and Discussion

Table 1 presents ACTIVEVOO’s performance against 6 ALFWorld tasks, compares it with 13 base-
lines representing vision-only, language-only, and vision-language models. ACTIVEVOO achieves
an overall success rate of 0.86, the highest among all agents with only visual observations. Our
approach significantly outperforms SOTA vision-language models such as GPT-40 and LLAVA-13B
in zero-shot settings, and also surpasses models that require extensive task-specific fine-tuning and
data collection, including BUTLER, LLAMA-ADAPTER, INSTRUCTBLIP, and EMMA. While
EMMA'’s performance is comparable, it achieves this level after 10 successive trials in the same envi-
ronment, leveraging cross-trial information transfer. In contrast, ACTIVEVOO is strictly evaluated in
a zero-shot setting, based on a single trial, without relying on any prior experience or memory from
earlier episodes.

4.1 RQ 1: Overall Performance Comparison

Even when compared to language-based methods, which operate on structured textual inputs devoid
of visual noise, ACTIVEVOO outperforms all existing LLM-based planners, except for REFLEXION-
10, which relies on 10 trials that reflect on past failures in the same environment, while ACTIVEVOO
significantly outperforms REFLEXION-3 with 3 trials. Additionally, most existing LLM-based
planners require few-shot examples of the same task, which may not be available when the task is
new. More impressively, ACTIVEVOO outperforms all approaches that rely on large-scale supervised
training or environment-specific fine-tuning, which are often costly and impractical.



Table 1: Success rates on the ALFWorld tasks using template task instructions. “Env.” indicates whether the
agent uses a visual or textual environment. “Multi-Trail” indicates whether the agent requires multiple trials on
the same environment. “Fine-Tuning” states whether the model is fine-tuned with data collected from ALFWorld.
“*” indicates that reported results are used, and “~" indicates results are not available.

Agent Env. Multi-Trial Fine-Tuning \ Avg. Pick Clean Heat Cool Look Pick2
Human Performance* [Shridhar et al., 2020]  Visual X X \ 0.91 - - - - - -
Vision Only Models
MCNN-FPN* [Shridhar et al., 2020] Visual X v 0.05 - - - - - -
RESNET-18* [Shridhar et al., 2020] Visual X v 0.06 - - - - - -
Language Only Models
GPT-40 (Text) [Hurst et al., 2024b] Textual X X 021 029 0.17 021 023 027 0.13
REACT [Yao et al., 2022] Textual X X 069 078 075 072 058 077 0.6
REFLEXION-3 [Shinn et al., 2024] Textual v(3) X 083 089 0.8 078 085 0.86 0.81
REFLEXION-10 [Shinn et al., 2024] Textual v (10) X 091 096 1.00 0.81 083 094 0.88
DEPS* [Wang et al., 2023] Textual X X 076 093 050 080 1.00 1.00 0.00
AUTOGEN* [Wu et al., 2023] Textual X X 077 092 074 078 086 0.83 041
Vision Language Models

BUTLER* [Shridhar et al., 2020] Visual X v 026 031 041 0.60 027 0.12 0.29
GPT-40 (Vision) [Hurst et al., 2024b] Visual X X 008 0.16 0.06 0.00 004 0.10 0.12
LLAVA-13B [Liu et al., 2023b] Visual X X 011 013 015 0.12 0.07 0.11 0.09
LLAMA-ADAPTER* [Yang et al., 2024] Visual X v 0.13 017 010 027 022 000 0.00
INSTRUCTBLIP* [Yang et al., 2024] Visual X v 022 050 026 023 006 0.17 0.00
EMMA-3* [Yang et al., 2024] Visual v (3) v 0.37 055 041 045 0.13  0.65 0.4
EMMA-10* [Yang et al., 2024] Visual vV (10) v 082 071 094 085 083 088 0.67
(Ours) Visual X X [ 086 093 087 083 080 089 0.86

For example, BUTLER and EMMA require 52K and 15K expert demonstrations, respectively.
In contrast, ACTIVEVOO only requires a high-level symbolic action model typically available
for agents with predefined skill sets (see Appendix A in the supplementary material). Given the
diversity and variability of open-world task instances, models trained on fixed task distributions often
struggle to generalize. In contrast, ACTIVEVOO can reason over any task that can be expressed
in PDDL [Haslum et al., 2019] or similar symbolic forms. ACTIVEVOOQO'’s strong performance
underscores the value of combining structured symbolic reasoning with LLM-inferred commonsense
probability estimates, pointing to a promising direction for hybrid planning in embodied Al systems.

4.2 RQ 2: Impact of Active Knowledge Acquisition

One key research question we inves-

tigate is how much our agent’s per- Taple 2: Impacts of Active Knowledge Acquisition and Ac-

formance can be credited to active  tjyeVOO Components (RQ2 and RQ3 Results)
knowledge acquisition (which lever-

ages VOO-inferred objects from vi-  Settings Success Rate Episode Length

sual observations) in comparison t0  Ac(iveVOO 0.86 153

more passive strategies. Under the w/ Exhaustive Obj. Acq. 0.22 25.4

exhaustive object acquisition setup, w/ Goal-Directed Obj. Acq. 0.48 23.0

the agent passively extracts informa- w/ LLM Subgoals Obj. Acq. 0.47 22.5

tion from each scene by prompting the i

VLM to extract all possible objects w/o VOO Calculation 075 192
. possi! )€ w/o VOO and Object Partition 0.68 213

and relations from visual input, with-

out contextual filtering. This method w/LLaVA-13B as VLM 0.82 161

g w/ GPT-3.5 as LLM 0.77 19.5

achieves a success rate of only 0.22
as shown in Table 2, likely due to the
overwhelming number of potential objects and relations present in each image. In the Goal-Directed
Object Acquisition setting, we instead query the VLM using only the high-level task goal. This
leads to an improvement over the fully passive baseline. We also evaluate a strategy where the
VLM is queried using a plan generated by an LLM. Both of these weakly guided methods achieve
similar success rates (0.47 and 0.48), suggesting that LLM-generated plans alone are insufficient
to reliably identify task-relevant objects. Together, these results empirically demonstrate the value
of our principled VOO-based approach, which significantly outperforms passive or weakly guided
knowledge acquisition strategies. The results are shown in Table 2, and the experimental setup details
for these ablations can be found in Appendix G in the supplementary material.



4.2.1 RQ 3: Ablation of ActiveVOO Components

We conduct a detailed ablation study to examine the contributions of various components in the
ACTIVEVOO framework as shown in Table 2. We assess the effect of VOO by replacing VOO-
selected objects with those chosen solely by highest belief probability. In this setting, if the agent’s
initial belief is improperly calibrated, it then lacks a mechanism to effectively explore alternatives.
This results in a performance drop from 0.86 to 0.75 and an increase in the average episode length by
3.9 steps. We further analyze the performance by removing not only the VOO module but also the
mechanism to extract relevant object descriptions. In this case, the agent directly queries the LLM to
produce belief probabilities of an entire subgoal. Under this setup, the success rate declines further to
0.68. We observe that when a subgoal becomes sufficiently complex, i.e., containing many predicates,
the LLM’s logits become a worse approximation of the agent’s actual belief. Lastly, we investigate
the effect of using different VLM and LLM models. Replacing the GPT-40 with LLaVA-13B for the
VLM component slightly reduces performance to 0.82, and substituting GPT-40 with GPT-3.5 for
the LLM component results in a further drop to 0.77, indicating that stronger LLM/VLM reasoning
capabilities directly enhance ACTIVEVOO’s performance.

5 Related Work

Language and Vision Models for Embodied Planning. Recent work on embodied planning with
LLMs focuses on predicting the next action [Ahn et al., 2022, Valmeekam et al., 2023, Hazra et al.,
2024] or generating step-by-step plans through prompting [Yao et al., 2022, Shinn et al., 2024, Huang
et al., 2022]. Hybrid approaches that integrate classical planners with LLM reasoning have also been
proposed [Arora and Kambhampati, 2023, Guan et al., 2023, Hazra et al., 2024], though they typically
operate under closed-world assumptions or rely on iterative re-planning. VLM-based methods extend
embodied reasoning to visual observations, either via vision-to-language translation [Gao et al., 2024,
Huang et al., 2023] or direct visual grounding [Driess et al., 2023, Hurst et al., 2024b]. VLAs based
approaches produce low-level action sequences [Kim et al., 2024, Brohan et al., 2022], but generally
assume static, fully observable environments. While some open-world VLMs [Yang et al., 2024, Liu
et al., 2023b] have been proposed, they rely on costly task-specific fine-tuning and extensive data
collection. In contrast, ACTIVEVOO generates lifted plans without assuming full observability or
complete knowledge, enabling robust reasoning in open-world settings.

Active Knowledge Acquisition For Embodied Agents. Existing works tackle active knowledge
acquisition from different perspectives. A notable area of research is embodied navigation, where
the agent is tasked with autonomously discovering an object of a certain type [Yang et al., 2018],
navigating to a specified image [Zhu et al., 2017], or following step-by-step instructions [Anderson
et al., 2018, Ku et al., 2020]. However, these approaches typically assume that the goal or target
object is predefined. In contrast, our work focuses on determining object relevance to the overall
goal. Other lines of work explore active object recognition [Bohg et al., 2017, Caselles-Dupré et al.,
2021] or general exploration of the environment [Zhu et al., 2023b]. While these methods emphasize
interaction and perception, they are not task-driven and do not require assessing the relevance of
objects, an essential ability for open-world agents. ActiveVOO explicitly addresses this gap by
integrating goal-conditioned object relevance estimation with a principled knowledge acquisition
framework base on VOO for open-world embodied planning.

6 Conclusion

We introduce ACTIVEVOO, a novel framework that enables active knowledge acquisition for open-
world embodied agents based on the Value of Observation (VOO). Our method integrates lifted
regression for plan subgoal generation with commonsense reasoning and probabilistic inference via
LLMs, allowing for structured inference without requiring a complete domain specification. We
demonstrate that ACTIVEVOO significantly outperforms state-of-the-art LLM and VLM methods
without the need for additional data collection, domain-specific fine-tuning, or few-shot examples.

Limitation This work is evaluated on the ALFWorld simulator, which requires further fine-tuning to
transfer effectively to real-world settings involving physical robots. Additionally, it does not address
user or contextual preferences in goal specification, which could influence the agent’s underlying
utility function.
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A Action Model

Below are the high-level skills/actions defined in PDDL syntax. Each action A € A is represented as
A = {params(A), pre(4), add(A), del(4)},

corresponding to the action’s parameters, preconditions, and effects. The sets add(A) and del(A)
indicate which predicates are made true or false. Our regression approach requires no negated
preconditions or goals, no conditional effects, and no quantifiers in preconditions or effects.

(:action PickupObject
:parameters (7o - obj)
:precondition (and

(handEmpty)

(isObject ?0))
:effect (and

(holds 7o)

(not (handEmpty))))

(:action PutObjectInReceptacle
:parameters (7o - obj ?r - obj)
:precondition (and

(canContain ?r 7o)
(isObject 7r)
(holds 70))

:effect (and
(inReceptacle 7o 7r)
(handEmpty)

(not (holds 70)))))

(:action HeatObject
:parameters (7r - obj 7o - obj)
:precondition (and
(isHeatingObject 7r)
(canHeat ?r 7o)
(holds 70))
reffect (and
(isHot 70)))

(:action CleanObject

:parameters (?r - obj 7o - obj)

:precondition (and
(isCleaningObject ?r)
(canClean ?r 7o)
(holds 70))

:effect (and
(isClean 70)))

(:action CoolObject
:parameters (7r - obj 7o - obj)
:precondition (and
(isCoolingObject 7r)
(canCool ?r 7o)
(holds 70))
teffect (and
(isCool 70)))

(:action ToggleObject
:parameters (7r - obj)
:precondition (and

(isObject ?7r))
:effect (and
(isOn 7r)))
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B Open-World Lifted Regression

B.1 Open-World Planning Formalism

We formalize the open-world planning problem as the tuple IT = (P, A, O, G, I), where P denotes
the set of predicate symbols, A the set of action schemas, O the (incomplete) set of known objects, G
the goal formula, and I the agent’s initial knowledge. Unlike closed-world planning, which presumes
complete knowledge of all objects and the initial state, open-world agents must accommodate missing
object instances as well as uninstantiated variables or predicates. We represent an atom p(7') by
pairing a predicate p € P with an n-tuple of terms T = (t1,...,¢,), where vars(T) indicates
the variables occurring in 7. An atom is lifted if vars(T) # (). Each action schema A € A,
A = {params(A), pre(A), add(A), del(A)}, in which params(A) are the action’s parameters,
pre(A) its preconditions, add(A) the predicates added to the resulting subgoal, and del(A) the
predicates removed. The objective is to generate a finite set S = {(g;, m;)}}_;, where each pair
(gi, ;) consists of a feasible lifted subgoal g; and an associated action sequence m; whose length
does not exceed a user-defined horizon 7.

B.2 Open-World Lifted Regression

Once the planning problem is formalized, we leverage Lifted Backward Search [Ghallab et al.,
2004], adapted to open-world settings, to produce a set S = {(g1,71), ..., (gn, 7 )} of all feasible
lifted subgoals g; and their corresponding plans 7;. Starting from the overall goal G, the algorithm
iteratively applies REGRESS to each RELEVANT action until no further regression is possible or a
predefined length 7 is reached. We say that an action schema a € 4 is RELEVANT to a subgoal s
if s N (add(a) U del(a)) # 0, sNdel(a) = 0, and s N add(a) = 0. Whenever « is relevant, the
regressed subgoal is computed as REGRESS(s, a) = (s\ add(a)) Upre(a). To avoid variable clashes
and ensure correctness, each regression step applies the standard logical operations STANDARDIZE,
UNIFY, and SUBSTITUTE (see Appendix C). The algorithm maintains a frontier of subgoal-plan pairs
(g, ), initialized with (G, ()). At each iteration, if || = 7 the current pair is added to S as a terminal
subgoal-plan pair; otherwise, for each action a € A, we STANDARDIZE and UNIFY a with g, check
RELEVANT(q, g), and enqueue the new pair (REGRESS(g, a), a::7) if g has not been visited. If no
regressible action exists, the pair is deemed terminal and also added to S. The process repeats until
the frontier is empty, at which point the algorithm returns all lifted plans and subgoals in S of length
at most 7. A complete pseudocode listing appears in Appendix C in the supplementary material.

B.3 Open-World Lifted Regression Algorithm

The Open World Lifted Regression algorithm is initialized with an empty set S, which the algorithm
will return, and a frontier that contains the overall goal G paired with an empty plan. The algorithm
performs a backward search by repeatedly REGRESS through a subgoal and trace pair (g, ) from
the frontier. If the trace length | 7| equals the maximum depth 7, it adds (g, 7) to .S. For each action
schema A € A, the algorithm applies STANDARDIZE to generate fresh variables to obtain A’ and
uses UNIFY to match A’ effect with the current subgoal g. If g is determined to be RELEVANT, the
algorithm regresses g through A’ to produce a new subgoal ¢’ and an extended trace w.append(A’).
The new subgoal ¢’ is added to the frontier for further regression. If no actions apply, the algorithm
treats (g, 7) as a leaf and adds it to S. Once the frontier is exhausted, S contains all lifted subgoals
and their corresponding regression paths up to depth 7.

C Logical Operations

Here is a set of standard logical operations used in this work for Lifted Regression:

* Substitution: SUBSTITUTE is an operator that replaces terms in one set of logical statements with
terms from another set. We use 6 to represent a mapping between variables/ terms in the form of a
dictionary:

0= {Ul/tl,UQ/tg, 1}3/7537 PN ,Un/tn}.

+ Standardization: The STANDARDIZE operator, written as STANDARDIZE(p), replaces all variables

in a predicate p with new variables v’ such that v ¢ V. This ensures that variables in one logical
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Algorithm 1 Open-World Lifted-Regression

I = (P,AO0,GI), T

2: 8« {}

3: Frontier + {(G,7 = [])}

4: Regressed < {G}

5: while Frontier # () do

6: g, 7 < POP(Frontier)

7. iflen(w) =7 then

8: S.add((g,))

9: else

10: RegressActions = {}

11: for each A in Ado

12: A’ « STANDARDIZE(A)

13: 0 « UNIFY(A’, g)

14: if RELEVANT(9(A’), 6(g)) then
15: RegressActions.add(A”)

16: m.append(A’)

17: g’ < REGRESS(8(g), 0(A"))
18: if ¢’ not in Visited then

19: Regressed.add(g’)
20: Frontier.add((g’, 7))
21: end if
22: end if
23: end for
24: if RegressActions = () and ¢’ ¢ Visited then
25: S.add((g,m))
26: end if
27:  endif
28: end while
29: return S

statement do not conflict with those in the target statement it tries to unify. Standardization is
carried out by applying substitution 6(p), which replaces each variable as follows:

Vv € vars(p), v ¢ vars(STANDARDIZE(p)).

* Unification: UNIFY(p, ¢) is an operator that checks whether two logical statements can be made
equivalent by applying substitution and standardization to their variables. In Lifted Regression,
this is used to match an action with a subgoal. Given two logical statements p and g, it returns a
substitution 6, which is the Most General Unifier (MGU), such that:

UNIFY(p,q) =60 where 6(p) =6(q).

D Belief MDP Formalism

We cast object-centric active knowledge acquisition as a sequential decision problem: the agent
selects which candidate objects to sense to maximize progress toward the goal. We model this as
an MDP over the extracted object descriptions O, relational descriptions R, and lifted subgoals G.
Formally, we define a Markov Decision Process as a tuple M = (S, A, T, R).

State Space. The state captures verified (true/false) knowledge about objects and relations:
S ={s=(O"O",R"\R") | O CO,R*CR,0O"NO" =9, RINR =0}

Here O and O~ are, respectively, the sets of object descriptions verified true or false; R and R~
are the analogous sets for relational descriptions. Any description notin (OTUO™)U (RTU R™) is
unobserved.

Action Space. At each state, the agent chooses one unobserved description (object or relation) to
sense:

A(s) = {SenseObj(0o) |o€ O\ (OTUO7)} U {SenseRel(p) |pe R\ (RTUR")}.
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Each action corresponds to an information-gathering operation that attempts to confirm whether the
chosen description holds in the current environment.

Transition Model. The agent may sense an object description o € O or a relational description
p € R only if it is currently unobserved. Moreover, a relational sensing action is enabled only
when all argument-dependent object descriptions of p have already been sensed. We assume that the
outcome of each sensing action depends only on the corresponding object or relational descriptions
rather than the state s and s’ in which the sensing occurs.

The transition model is therefore

Po s'=(0"U{o}, 07, R, R7)
T(s,Sense0bj(0),s’) =
1—p, §=(0",0"U{o}, R", R")

Pp s'= (0%, 07, R* U{p}, R7)
T(s,SenseRel(p),s’) =
1-p, §=(0", 07, R", R-U{p})

where s = (OT,07,R",R™), p, € [0,1] is the agent’s belief that object o can be sensed, and
Pp € [0,1] is the belief that p holds true.

Reward Function. The agent receives a terminal reward when its verified knowledge suffices to
realize some lifted subgoal. Let obj(g) € O and rel(g) C R denote, respectively, the object and
relational descriptions required by g € G. We define

1, Jg € G such that g is satisfiable

R(s) = { (12)

0, otherwise,

Having defined the MDP, we now describe how the transition probabilities p, and p, are estimated
using a large language model (LLM) to provide commonsense priors over object existence.

E Extracting Belief Probability via LLMs

For belief probability extraction from LLM logits, we use OpenAI’s API (GPT-40) with a simple
yes/no classification interface. The estimator takes as input an object description in natural language
(e.g., “There exists a cooked piece of meat on a plate”) and returns a scalar belief probability that
reflects the model’s confidence in the truth of the statement. To compute this, we prompt the LLM
with an existential question and analyze its token-level response. We set the temperature to zero and
enable logit tracking.

E.1 Prompt Construction

We first construct a natural language description of the target object based on its descriptive predicates.
Each lifted subgoal generated by regression is represented as a conjunction of unary and binary
predicates. After applying object-centric partitioning to extract individual objects from the subgoals,
we obtain a set of unary predicates for each object. These predicates are then translated into a coherent
natural language phrase that captures the object’s type and its functional relationships. The resulting
description is embedded into a fixed prompt template that assigns the language model the role of a
home assistant robot operating in a household environment.

Below is an example prompt for object description query:

You are a home assistant robot operating in a common household environment.
Is it true that you can find an object such that this object is a plate and it is
clean?

Please answer the question using only [’Yes’, ’No’]
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Below is an example prompt for relational description query:

You are a home assistant robot operating in a common household environment.

Is it true that object X canclean object Y, given that object X is a cleaning
object and object Y is a plate?

Please answer the question using only [’Yes’, ’No’]

Each query is repeated 5 times.

F Agent Overview

Algorithm 2 ACTIVEVOO Agent

Require: Instruction G,;, action model .A, interaction budget B
: G < GOALPARSER(G;)

: S + LIFTEDREGRESSION(G, A, T)

c I {m | {g,7) € S}

: (U, R) < PARTITIONSUBGOALS(S)

: KB < I; budget + B

: for all (g, m) € S do

Uy + EXTRACTOBIECTS(g)

: end for

: while not SATISFIED(G, KB) and budget > 0 do
10:  p e {P(p|m,KB)}ren

11:  forall o € U, do

12: VOO(0) <~ CoMPUTEVOO(o, p)

13:  end for

14: O« {0]|VOO(o) >0}

15: 0" < argmax,eo, VOO(0)

16:  EXPLORE(0*)

17:  forallo € O4 do

18: OBSERVE(0); UPDATEKB(0,KB)
19: budget < budget —1

20: if budget = O then

21: break

22: end if

23:  end for

24:  forall (g,7) € S do

25: if SATISFIED(g, KB) then

26: for all a € 7 do

27: if ACT(a) succeeds then
28: PROGRESS(KB,a)
29: end if

30: budget < budget —1
31: if budget = O then

32: break

33: end if

34: end for

35: end if

36:  end for

37: end while
38: return KB

For every candidate plan 7 € II, the agent maintains a belief score P(¢ | 7, KB) that reflects the
likelihood that the plan can currently succeed. Using these scores, the agent computes the Value
of Observation (VOO) for each object description o extracted from every lifted subgoal g. All
objects with strictly positive VOO are collected into the set O . This positive VOO set represents all
observable objects that can potentially improve or alter the agent’s decision. The agent then queries
the vision-language model for all objects in O.. Each query updates the knowledge base (KB) with
new unary and relational facts. After the KB is updated, the agent scans the set of lifted subgoals.
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Whenever the predicates of a subgoal g are satisfied, the associated plan 7 becomes executable. The
agent immediately executes each action a € 7, updating the KB after each successful step. The loop
terminates when the overall goal G is achieved or the interaction budget is exhausted.

G Ablations

Passive and Weakly Guided Baselines: We evaluate three alternative methods for extracting object
information from the environment. Exhaustive Object Acquisition is a fully passive approach in
which the vision-language model (VLM) is prompted to list all observable objects. Goal-Directed
Object Acquisition is a weakly guided approach that prompts the VLM using only the overall task
goal. Plan-Directed Object Acquisition first prompts the VLM to generate a plan and then queries for
all objects mentioned in that plan. The exact prompts used in our experiments are provided below.

* Exhaustive Object Acquisition:

You are a home assistant robot operating in a common household environment
Give me all objects you can observe from the scene.

Please answer in this format: ["obj_1", "obj_2", ..., "obj_n"]

* Goal-Directed Object Acquisition:

You are a home assistant robot operating in a common household environment
Give me all objects you can observe from the scene that are related to the goal
{GODAL}.

Please answer in this format: ["obj_1", "obj_2", ..., "obj_n"]

* LLM-Subgoal Object Acquisition:
— Extract high-level plan

You are a home assistant robot operating in a common household environment
Your goal is to {GOAL}.

Give me a plan that can achieve the goal.

— Extract objects from the plan:

You are a home assistant robot operating in a common household environment
Your plan is {PLAN}.

Give me all objects you can observe from the scene that are related to your
plan.

Please answer in this format: ["obj_l", "obj_2", ..., "obj_n"]

All extracted object names are post-processed to align with the vocabulary used in ALFWorld;
however, the list of ALFWorld object names is never exposed during extraction. We employ GPT-40
as the VLM in all of these experiments.

Component Ablations within ACTIVEVOO: We next disable or swap individual components of
ACTIVEVOO:

* No VOO: Without VOO, the agent extracts objects only from the plan it believes is most likely to
succeed, that is, p = arg max, P (p'), where the belief probabilities are obtained from the LLM.
We retain the same object-partition method but limit extraction to the chosen plan p.

* No VOO + No Partition: VOO calculation requires partitioning objects by their first-order
descriptions. When partitioning is disabled, we cannot compute per-object plan probabilities, so
we ask the LLM for the feasibility of the entire plan. The prompt is:
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You are a home assistant robot operating in a common household environment
Is the plan {PLAN} feasible to execute in this environment?

Please answer using only [’Yes’, ’No’].

* VLM Swap: We replace GPT-40 with LLaVA-13B for vision—language object extraction while
still using GPT-4o0 to compute belief probabilities.

* LLM Swap: We substitute GPT-40 with GPT-3.5 Turbo for belief-probability estimation, keeping
GPT-4o0 as the VLM for visual information extraction.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The 3 contribution we listed in the introduction are all answered in the results
section and ablations in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is included as a section in the Discussion in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The full mathematical derivation of our framework are shown extensively
through section 2 with explicit assumptions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The Section 2 shows our methodology with formal mathematical language
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Anonymous repo is provided in the technical supplementary material with
source code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The set of implementation details and parameters are included Section 2 under
"assumptions" and Section 3 under "Experimental Setup"

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All results are averaged over 3 runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

23


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Hardware used to run experiments is given under Section 3 under "Experimen-
tal Setup".

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed and follow NeurIPS’s code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is done with simulated environment with no direct link to communi-
cate with external users.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No new data or model are being released.

Guidelines: The work is done with simulated environment with no direct link to external
enviorment.
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creator and owners of the material and assets used are properly credited in
this work.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: All code and algorithm are well documented and provided.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing experiments and research with human subjects in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No animal or human subjects are involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM are used only to check grammar and help with formatting text.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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