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Abstract
Fine-tuning pretrained language models has
shown promising results on a wide range of tasks,
but when encountering a novel task, do they rely
more on generic pretrained representation, or de-
velop brand new task-specific solutions? Here,
we fine-tuned GPT-2 on a context-dependent
decision-making task, novel to the model but
adapted from neuroscience literature. We com-
pared its performance and internal mechanisms
to a version of GPT-2 trained from scratch on
the same task. Our results show that fine-tuned
models depend heavily on pretrained representa-
tions, particularly in later layers, while models
trained from scratch develop different, more task-
specific mechanisms. These findings highlight the
advantages and limitations of pretraining for task
generalization and underscore the need for further
investigation into the mechanisms underpinning
task-specific fine-tuning in LLMs.

1. Introduction
Pretraining large language models (LLMs) on vast amounts
of data has shown promising results, revealing emerging
capabilities such as mathematical skills, translation, and
reasoning. This extensive pretraining helps models develop
useful representations that allow for subsequent fine-tuning
on specific, unseen tasks, thereby broadening the range of
problems LLMs can solve. However, it remains unclear
whether a pretrained model, when addressing specific tasks,
relies on generic pretrained representations that are broadly
applicable to most language-based tasks or if it constructs
new, niche representations uniquely suited to the target task,
akin to optimizing the network from scratch for that task.
In this work, we investigate the ability of pretrained GPT-
2 to solve a context-dependent decision-making problem
based on numerical comparison through fine-tuning. This
task is adapted from neuroscience and cognitive science liter-
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ature, commonly used to study decision-making in animals
and recurrent neural network (RNN) models of the brain,
but it is entirely novel to GPT models as it is not present in
English text datasets. We aim to understand the extent to
which fine-tuned models depend on their pretrained repre-
sentations to solve a novel task. To this end, we compare the
representations after fine-tuning with those developed by
GPT-2 optimized solely on this task from scratch. We chose
this task not only because it is novel but also because its
grounding in neuroscience allows us to explore the data with
computational neuroscience methods and make direct com-
parisons between representations in biological and artificial
neural networks.

Figure 1. Task schema. Each trial of the context-dependent
decision-making (CDDM) task is converted to text description
and prompted to GPT-2. The model is trained to respond based
on the context cue and sensory evidence, similar to the animal
behavioral task.

2. Related Work
Fine-tuning pretrained transformer models enables a
variety of capabilities. Fine-tuning pretrained transformer
models has demonstrated a wide range of capabilities. For
instance, LLMs such as GPT-3 can be fine-tuned to perform
specific tasks like text summarization, question answering,
and code generation with remarkable proficiency (Brown
et al., 2020; Radford et al., 2019). This adaptability is
largely attributed to the rich representations developed dur-
ing the extensive pretraining phase, which captures various
syntactic and semantic aspects of language (Devlin et al.,
2019; Raffel et al., 2020). Fine-tuning enables these models
to leverage their broad knowledge base and adapt to niche
tasks with relatively few task-specific examples (Brown
et al., 2020; Raffel et al., 2020). Moreover, fine-tuned mod-
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els have shown effectiveness in domains beyond natural lan-
guage processing, such as protein structure prediction and
mathematical theorem proving, highlighting their versatility
and potential for cross-disciplinary applications (Jumper
et al., 2021; Polu & Sutskever, 2020).
Transformers’ relation to neuroscience. In addition to
their capability and scalability, transformers (Vaswani et al.,
2017) have been shown to bear resemblance to traditional
computational neuroscience models, namely recurrent neu-
ral networks. For example, Whittington et al. (2022) showed
that transformers with recurrent position encodings are sim-
ilar to Hopfield-network-based models of the hippocampus,
and exhibited spatial representations such as place cells
and grid cells. Zucchet et al. (2023) showed that linearized
self-attention can be implemented in linear gated recurrent
neural networks. More recent work in neurobiology even
suggested that self-attention could in principle be imple-
mented by the brain through cortical waves (Muller et al.,
2024) or Hebbian plasticity (Ellwood, 2024). As such, the
idea that transformer-based LLMs can be operating on sim-
ilar principles as human intelligence is not so far-fetched.
These parallels also inspired our approach of analyzing
transformer hidden states with standard neuroscience data
analyses.

3. Experimental Setup
We converted the perceptual random-dot task, which is com-
monly used to study decision-making in higher cortical
areas such as prefrontal cortex (Mante et al., 2013), to text
description as the input to GPT-2 (Figure 1A). In each trial,
depending on the context cue given at the beginning of the
trial, the model is required to choose the left or right target
matching the prevalent sensory evidence in either motion
(if the context cue is motion) or color (if the context cue is
color). As such, it requires attending to the context through-
out the trial, and comparing the numerical values for the
sensory evidence. Consistent with the neuroscience liter-
ature, the magnitude of the motion and color evidence in
either direction is randomly controlled by two latent vari-
ables, motion coherence cohm and color coherence cohc,
which vary from trial to trial and are sampled from uni-
form distribution U(−B,B). For each coherence level, the
motion and color inputs are given by:

vmotion, left =
1− cohm

2
, vmotion, right =

1 + cohm

2
(1)

vcolor, green =
1− cohc

2
, vcolor, red =

1 + cohc

2
(2)

B (“bound”) is used as a hyperparameter; given a fixed
number of training samples, the smaller the bound is, the
more likely the model will be trained on the same prompt
more than once. Under these definitions, positive motion
and color coherence provide evidence for the right choice,
and negative motion and color coherence provide evidence

for the left choice. This means that the model should re-
spond “Choose left” if evidence is stronger in left (if motion
context) or green (if color context), and “Choose right” if
evidence is stronger in right (if motion context) or red (if
color context). We used GPT-2 (”GPT2LMHeadModel”)

Figure 2. Last layer hidden states from different trials at different
tokens after dimensionality reduction by UMAP, colored by token
position (A) or different values of each behavioral variable (shown
on top of each panel) (B)

from the Hugging Face library (Radford et al., 2019), which
is characterized by its 12 layers, each containing 12 atten-
tion heads, and an embedding dimension of 768, consisting
of 117M parameters This model is able to produce rich
behavior and representations under supervised fine-tuning,
but lacks the scale and hence ability to learn this task with
in-context learning.
We took GPT-2 pretrained on large corpus of English data,
and fine-tuned it on this task for a range of training prompts:
{100, 500, 1000, 2000, 4000, 8000, 10000}, and evalu-
ated them on 2000 prompts, during which attention and
hidden states data were collected. To test for general-
ization, we also evaluated fine-tuned models on prompts
generated with different bounds (Figure A.1). To under-
stand to what extent fine-tuned GPT-2 relies on pre-trained
representations to solve the task, we trained GPT-2 from
scratch on the same task for comparison. We found that
it took 10 times more training samples to get the same
level of performance from a model trained from scratch
than from a fine-tuned model. We collected and analyzed
attention weights (softmax

(
QKT

√
d

)
) and attention outputs

(softmax
(

QKT

√
d

)
· V ) from each head in each layer, as well

as the hidden states output from each layer. We applied
various analyses to understand the population-level as well
as circuit-level mechanisms by which our models solved
this task (See Appendix for more details).

4. Results
For the fine-tuning process, we observed that the model
achieves higher accuracy (measured by the percentage of
correct choice) and lower loss when trained on more sam-
ples. Also, smaller bounds on the distribution from which
motion and color coherence are sampled leads to better per-
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formance, suggesting that seeing repeated examples helped
the model learn (Figure A.1 top). We also found that fine-
tuned models can generalize well: a model’s accuracy when
tested on different bounds is closely correlated with its ac-
curacy on training data, meaning that the model learned
how to perform the task instead of simply memorizing the
examples (Figure A.1 bottom).

Figure 3. Accuracy of decoding each task-relevant variable from
the hidden states at different tokens, for one example unit. Grey
dashed lines indicate label-shuffled decoding accuracy as a base-
line. Solid lines and shaded area indicate mean and standard
deviation of decoding accuracy across 5 cross-validation folds.
More example units shown in Figure A.2

Figure 4. Evaluation accuracy, measured in the percentage of cor-
rect repsonses, after zero-ablating each attention head for a pre-
trained network fine-tuned on the task (left) and a network trained
on the task from scratch (right).

4.1. Population-level structure develops in the hidden
states of fine-tuned network.

To understand the key driving factors of representations
formed, we projected the hidden states from the last layer
at all tokens in all trials to a two-dimensional space with

Figure 5. Average attention weights (softmax
(

QKT
√
d

)
) across

prompts from a fine-tuned network for 4 example attention heads
that caused significant performance drop when zero-ablated. y-axis
is source token, x-axis is destination token. Darker color indicates
larger value.

UMAP. We found that the hidden states move in latent space
according to the token position: in each prompt, the hidden
states start in the middle of the UMAP space, then move
outwards, then move inwards. This temporal structure does
not apparently correlate to any behavioral variables (con-
text, motion coherence, color coherence, or choice) (Figure
2). We decoded task-relevant variables, including context,
motion coherence (whether it’s positive or negative), color
coherence (whether it’s positive or negative), and choice,
from the hidden states of the last layer during the presenta-
tion of each token with logistic regression before and after
tine-tuning (Figure 3; more examples shown in Figure A.2).
We notice that, after fine-tuning, a single unit’s activation
can encode multiple independent task-relevant variables at
the same time, similar to the mixed selectivity phenomenon
in the brain (Rigotti et al., 2013). Increasing amount of
information relevant for decision-making gets encoded as
token position progresses.

4.2. Task-specific solutions emerge in networks trained
from scratch.

To understand whether task-optimized networks and fine-
tuned networks converge onto similar circuit-level mech-
anisms, we ablated each attention head in each layer in
trained networks by setting their attention weight to zero,
and evaluated the accuracy. We found that fine-tuned net-
works rely more on attention heads in later layers, particular
examples included L5H7, L8H3, L9H3, L11H8, etc, where
performance on the task had a significant drop after ab-
lation (Figure 4 left). The importance of these heads is
universal across models fine-tuned with different hyperpa-
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Figure 6. Accuracy of decoding the response type from the output
of each attention head (softmax

(
QKT
√
d

)
· V ), in a pretrained net-

work fine-tuned on the task (left) and a network trained on the task
from scratch (right).

rameters (Figure A.3). The trial-averaged attention patterns
from these heads did not expose particularly task-specific
solutions; instead, we hypothesized that these heads are
important for generic language modeling and largely de-
veloped their representation during pretraining (Figure 5).
Indeed, the same heads in models trained from scratch had
not yet developed the same generic attention pattern (Fig-
ure A.4). In contrast, networks optimized on the task from
random initialization developed more task-specific patterns
in their attention weights: drastic performance change hap-
pened only when ablating heads from the first layer but not
later layers (Figure 4 right). We found that first layer heads
pay attention to numbers in the prompt (Figure A.5), which
could be a task-specific solution that networks trained from
scratch developed.
Next, we asked, what about these heads makes their abla-
tion more detrimental than other heads? To this end, we
connected results from head ablation to the representation
of behavior in attention outputs. For each head in each layer,
we decoded with SVM the type of response produced by
the model following the prompt: whether it’s choosing left,
choosing right, or an invalid response (neither choosing left
or right). We found that, for fine-tuned models, heads in
later layers indeed showed higher decodability for response
type, matching the intuition that they are more important
for generic language-based tasks than earlier layers. For
models trained on task from scratch, we found that the first
layer, whose ablation led to significant performance drop,
showed less decodability than other layers. This hints at the
possibility that, while heads in the first layer pay significant
attention to numbers and other relevant information, the cog-
nitive processing and manipulation of such information to
produce appropriate responses could happen in later layers
(Figure 6).

5. Discussion
This study demonstrates that fine-tuned models rely more on
pretrained representations to solve a novel decision-making
task, while models optimized from scratch develop alter-

native mechanisms. Specifically, the fine-tuned models
showed significant reliance on attention heads in later lay-
ers, which are likely crucial for generic language modeling,
as these heads were developed during pretraining. In con-
trast, models trained from scratch developed task-specific
solutions, with significant performance drops upon ablating
heads in the first layer, suggesting that these heads are vital
for extracting task-relevant numerical information.
Our findings suggest that while fine-tuned models bene-
fit from the pretrained representations for generalization
and performance, models trained from scratch might of-
fer more specialized and potentially efficient solutions for
specific tasks. This distinction could be crucial for appli-
cations requiring highly specialized problem-solving capa-
bilities. Future research could explore the implications of
these findings for the design and deployment of LLMs in
various real-world applications, considering the trade-offs
between leveraging pretrained knowledge and developing
task-specific solutions from scratch.
Our approach of adapting cognitive tasks commonly used in
neuroscience and cognitive science laboratories also served
another purpose: to evaluate the representation alignment
between biological and artificial intelligence, and to advance
our understanding of the general principles of intelligence.
Complex intelligence systems such as the brain or its com-
putational models often need to pack high-dimensional in-
formation from the real world into their activation, making
understanding the mechanism by which these activation
forms a model of the world a challenge. In the realm of
AI, the phenomenon that one neuron can reliably respond
to multiple semantic concepts is termed “polysemanticity”,
and has been observed in vision models and the multi-layer
perceptron (MLP) units in language models (Olah et al.,
2017; 2020; Elhage et al., 2022; Scherlis et al., 2023). Such
phenomenon is similar to the neuroscience phenomenon of
“mixed selectivity” in which neurons respond to a combi-
nation of sensory inputs, task conditions, and behavioral
outputs. Thus, we propose that understanding how LLMs
solve cognitive tasks and deciphering the representational
alignment between the brain and LLMs would be crucial for
the development of more robust and adaptable AI systems.

6. Limitations and next steps
Here we have demonstrated that fine-tuned models relied
more on pretrained representations to solve a novel decision-
making task, and that models optimized on the same task
from scratch which do not have pretrained representations to
rely on developed other mechanisms, which we hypothesize
to be a combination of first layer extracting numbers and
later layers manipulating these information to make a deci-
sion. However, further investigation is needed to elucidate
the exact mechanism by which models trained from scratch
solve this task. Another limitation is that we drew our con-
clusions based on one cognitive task; further studies with
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more diverse cognitive tasks are required to understand how
pretrained representations support task-specific fine-tuning.
Lastly, it is important to develop new quantitative metrics to
ensure scientific rigor in our results, as much of our current
findings are based on qualitative observations. Similarly,
the field of mechanistic interpretability in LLMs, which is
also largely qualitative at present, requires new quantitative
methods to advance.
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A. Appendix
A.1. Training and fine-tuning details
To fine-tune the GPT2LMHeadModel on the CDDM task, we generated a text-based CDDM task dataset, in which each
sample follows the template “”Context cue is presented: ... context. A delay occurs. Now sensory evidence is presented:
motion left . . . , motion right . . . , color green . . . , color red. . . . The decision is: choose . . . ”, and we concatenated the
samples to become the train dataset for the next-token prediction task for the model. We loaded the pretrained checkpoint
and tokenizer from huggingface.
To evaluate the model accuracy, we generated new samples either with the same bound for motion and color coherence, or a
different bound to test generalization. We asked the model to generate the choice (“Choose left/right”) given the prompt that
contains the context cue and the numerical evidence. The evaluation accuracy is defined as the percentage of responses
answered correctly.
To train the model on the task from scratch, we used the same training and testing data, as well as a pretrained GPT2
tokenizer, but used newly initialized GPT2LMHeadModel without loading any weights.
For both training and fine-tuning, we ran the experiments with 3 seeds, and grid-searched through the hyperparameter space
for training epochs, per-device train batch size, and learning rate. The major results shown in the paper come from the
hyperparameter settings in Table 1.

Fine-tuned model From-scratch model
Training epochs 12 50
Number of training samples 8000 200000
Per-device train batch size 4 16
Learning rate 5e-5 0.0001
Bound for coherence 0.9 0.7
Seed 2024 2026

Table 1. Hyperparameters used for fine-tuned and from-scratch models

A.2. Analysis
A.2.1. ANALYSIS ON LAST LAYER HIDDEN STATES

During the evaluation phase when the model is asked to generate the choice based on the prompt, we collected the hidden
states output (dim=768) from the transformer module at each token (in total 47 tokens in the prompt), before they were used
to compute the logits.
To project the 768-dimensional vector into a two-dimensional space with UMAP, we stacked the vectors across evaluation
prompts across tokens. We color coded the results from dimensionality reduction with token position, context (color or
motion), choice (left or right), motion coherence (a number uniformly sampled between -bound and bound), and color
coherence (a number uniformly sampled between -bound and bound).
Logistic regression decoding on behavioral variables: we trained a logistic regressor to map the 768-dimensional vector at
different token positions in each prompt to the corresponding behavioral variable (context, choice, motion coherence, color
coherence) of that trial. We used 5-fold cross-validation, in which in each fold, 80% of the data is used for training and
20% for calculating the mapping accuracy, and averaged across the folds. To obtain a baseline, we shuffled the value of
behavioral variables and ran the same analysis.

A.2.2. ANALYSIS ON ATTENTION WEIGHTS AND ATTENTION OUTPUTS

Zero ablation: To assess the importance of each attention head to the task performance, during evaluation, we set the
attention weights of target head to 0 during forward pass, and evaluate the accuracy on the decision-making task.
During evaluation, at each token position, we collected the attention output from each head in each layer (dim=64) before
they were concatenated and used to compute the hidden states output from that attention layer. We trained SVM decoder
to decode the response type (choose left, choose right, or invalid response that is either choose left or choose right) from
attention outputs across tokens during each prompt (i.e., we concatenated the 64-dimensional vectors from all token positions
in a prompt, and used that to decode the type of response to that prompt).
Our analysis was done using scikit-learn (for UMAP, SVM decoding, logistic regression), and we used matplotlib and
seaborn libraries to generate our plots. Experiments were done using pytorch and numpy packages. We aim to maximize the
reproducibility of this study, and we will release the codebase upon acceptance.
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Figure A.1. Top: Performance of network after fine-tuning. We plotted the maximum accuracy and minimum loss for each hyper-
parameter setting, given the number of trials used for training. Error bar shows mean and standard deviation across 3 seeds. Bottom:
Generalization to test datasets of different bounds. Left: Mean accuracy on test datasets across the 4 different test bounds that are
different from the bound that the model was fine-tuned on, plotted against model’s accuracy on the train datasets. Different colors indicate
different seeds for fine-tuning. Right: Histogram of the standard deviation of accuracy on test datasets across the 4 different test bounds.
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Fine-tuned network relies on generic representation to solve unseen cognitive task

Figure A.2. Behavioral variable decoding (with logistic regression) from last-layer hidden states at each token, for 5 different units
(corresponding to the 5 rows). Left column: before fine-tuning. Right column: after fine-tuning.
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Fine-tuned network relies on generic representation to solve unseen cognitive task

Figure A.3. Supplementary ablation results: Evaluation accuracy, measured in the percentage of correct repsonses, after zero-ablating
each attention head, for two more pretrained networks fine-tuned on the task (left) and two more networks trained on the task from scratch
(right).
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Fine-tuned network relies on generic representation to solve unseen cognitive task

Figure A.4. Average attention weights (softmax
(

QKT
√
d

)
) across prompts from a network trained from scratch for the 4 example

attention heads whose zero-ablation in fine-tuned networks caused significant performance drop. y-axis is source token, x-axis is
destination token. Darker color indicates larger value.
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Fine-tuned network relies on generic representation to solve unseen cognitive task

Figure A.5. Average attention weights (softmax
(

QKT
√
d

)
) across prompts from a network trained from scratch for the 12 heads in the first

layer. y-axis is source token, x-axis is destination token. Darker color indicates larger value.
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