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ABSTRACT

While transformers have been at the core of most recent advancements in sequence
generative models, their computational cost remains quadratic in sequence length.
Several subquadratic architectures have been proposed to address this computa-
tional issue. Some of them, including long convolution sequence models (LCSMs),
address this issue at training time but remain quadratic during inference. We pro-
pose a method for speeding up LCSMs’ exact inference to quasilinear time, identify
the key properties that make this possible, and propose a general framework that
exploits these. Our approach, inspired by previous work on relaxed polynomial
interpolation, is based on a tiling which helps decrease memory movement and
share computation. It has the added benefit of allowing for almost complete paral-
lelization across layers of the position-mixing part of the architecture. Empirically,
we provide a proof of concept implementation for Hyena, which gets up to 7.8×
end-to-end improvement over standard inference by improving up to 110× within
the position-mixing part.

1 INTRODUCTION

A lot of recent progress in deep learning, particularly in the form of large language models (LLMs)
has been driven by the transformer architecture (Vaswani et al., 2017). While these models have great
quality, it comes at a computation cost which scales quadratically in sequence length - both during
training and inference. This can become prohibitive for very long contexts and as such a number
of alternative architectures with better computational scaling in context length have been proposed
(Gu & Dao, 2023; Poli et al., 2023; Fu et al., 2024). Although most of these works have improved
computational efficiency for training, some still scale quadratically in sequence length when it comes
to inference, thus not improving asymptotically over transformers.

In this work, we propose a framework for optimizing inference efficiency for a general class of such
models. As a case study, which inspired the method, we focus on long convolution sequence models
(LCSMs) (Poli et al., 2023; Fu et al., 2022; Romero et al., 2021b; Li et al., 2022; Karami & Ghodsi,
2024; Fu et al., 2023a; Romero et al., 2021a). However, our approach is not limited to LCSMs alone
and we identify the properties that allow for such inference speedups in hope to guide the design of
future architectures.

In the particular case of LCSMs, the building block of the architecture is that of convolving the
input sequence with a sequence-length long, (potentially underparameterized) filter. If we let L be
the sequence length (e.g. number of tokens in the case of LLMs), then a naive implementation of
convolution during training would take Ω(L2) FLOPs, but one can employ FFT to bring that down
to O(L logL). During inference, FFT cannot be used directly since the whole input sequence is
not known ahead of time, but rather incrementally computed. Because of this, the naive inference
approach goes up to Ω(L2) - this is the apparent cost of moving from a static input to a dynamic one.

It turns out that in fact, at least in the case of “dynamic FFT”, one can obtain O(L log2 L) time
complexity by using van der Hoeven (1997)’s result on relaxed polynomial convolution. Crucially,
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this result works by a direct reduction to several applications of FFT. This allows us to phrase a more
general framework for turning training-efficient architectures to inference-efficient ones.
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Figure 1: Cell (i, j) corresponds to the contribution of yi to zj . To compute zj , all its line of
contributions should’ve been accounted for. Because of the autoregressive nature of inference, one
only has access to yi after zi−1 has been computed. (Left Top) represents the standard lazy approach,
(Left Bottom) represents the eager approach, and (Right) represents our suggested method.

Our main contributions are:

(1) Proposing the first quasilinear-in-sequence-length O(L log2 L), exact inference algorithm for
LCSMs. This is in contrast to previous work of (Massaroli et al., 2024) who performs approximate
inference.

(2) Identifying the main features of LCSMs that allow for faster inference to propose a more general
framework.

(3) Highlighting and exploiting the potential for dealing with most workload of different layers
in parallel, rather than having to wait for all computation of a layer to finish before moving on to
subsequent layers.

(4) Saving up on data movement thanks to the tiling approach used.We show how to save factors of 2
in several places, including activation storage, when the convolutional filters are data-independent.
However, our method extends to any causal, data-dependent filters.

(5) Our framework provides an O(L log2 L) inference algorithm which, when run empirically, yields
up to 7.8× end-to-end time-efficiency improvement; and up to 110× on the long convolution part.

2 SETTING AND RELATED WORK

Recent efforts have focused on designing more efficient alternatives to transformers (Tay et al.,
2022), with state space models (SSMs) (Gu et al., 2021a; Gu & Dao, 2023) and convolution-based
models (Fu et al., 2022; Poli et al., 2023) emerging as notable contenders. In this work, we focus
on the latter simply because we leverage the convoluional view directly. Nevertheless, it is worth
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mentioning that there is a one-to-one mapping between linear-time invariant (LTI) SSMs and LCSMs
and consequently, our findings apply to LTI SSMs as well (since they represent the same models).
While LCSMs inherently assume sequence-long convolutions, they can correspond to LTI SSMs of
varying state dimensions (up to filter length). Using the recurrent formulation of SSMs for inference
incurs costs that scale with the state dimension, which can become prohibitive for larger dimensions.
In contrast, our method exclusively leverages the convolutional perspective and has no dependency
on filter properties. An extended contextual discussion is available in Appendix A.

2.1 NOTATIONS AND DEFINITIONS

In the most general form, we consider architectures obtained by stacking several position-mixing
layers potentially interleaved with element-wise, feature-mixing modules, partially following Arora
et al. (2023)’s notation. Put formally, let block1, . . .blockM : RD → RD be feature-mixing
modules and mixer1 . . .mixerM : RL×D → RL×D be position-mixing modules (we use superscripts
throughout to denote layers). One can think of the blocks as being combinations of MLPs, layernorms,
skip connections and other modules of similar purpose and of mixers as playing the role of multi-head
attention (MHA) in a transformer - the part where embeddings at different positions interact with
each other. Assume these are all learnt from some well-defined parameterized classes. Here, M
is the number of layers, D is the used embedding dimension and L can be any sequence length
(unless positional embeddings are used, case in which it can only take values up to some Lmax). We
define the activations a0, . . . , aM : RL×D → RL×D at level 1 ≤ ℓ ≤ M and position 1 ≤ i ≤ L
as aℓ(x)i ≜ blockℓ(mixerℓ(aℓ−1(x))i) where a0(x) = x represents the input embeddings (L
D-dimensional tokens) and the model output at position i is read from the last layer aM (x)i.

We focus on autoregressive sequence models where for an input sequence x1, . . . xp, one generates
the (p+ 1)th token by sampling from a distribution given by aM (x)p (usually via a linear map). For
this to be well-defined, we constrain (by construction of mixers) the models to be causal, that is,
aℓ(x)i is a function of only x[1,i] or, equivalently, mixerℓ(y)i is a function of y[1..i].

We use ⊙ to denote the element-wise (Hadamard) product: for two matrices A,B ∈ RN×M ,
A⊙B ∈ RN×M is given by (A⊙B)i,j = Ai,j ·Bi,j . We call a function f : X ∗ → X associative, if
f(x1, x2, . . . xp) = f(f(x1, . . . xi), f(xi+1, . . . xp)) for any 1 ≤ i < p and x1 . . . xp ∈ X . Finally,
we define the time complexity of an algorithm as the number of floating-point operations (FLOPs) it
executes - this is a notion independent of hardware.

2.2 SELF-ATTENTION

Self-attention is the building block of transformers (Vaswani et al., 2017). In its simplest form, it
implements a mixer by using three projection matrices Q,K, V ∈ RD×D to obtain three sequences
of vectors q, k, v ∈ RL×D by projecting the input y ∈ RL×D via q = yQ, k = yK, v = yV - these
are called queries, keys and values, respectively. The (causal) self-attention operator attention :
RL×D → RL×D is then given by:

attention(y)j ≜ mixer(y)j =

∑j
i=1 vj · e⟨qj ,ki⟩∑j

i=1 e
⟨qj ,ki⟩

= (v[1,j])
⊤softmax(k[1,j]qj) (1)

which represents, at position j, the average of the previous value vectors v[1,j] exponentially-weighted
by how well the values’ corresponding keys match jth query. Put differently, the bigger ⟨qi, kj⟩ is,
the more jth output attends to ith input. Note that both in the above notation, as well as in general, we
assume any 1-dimensional tensor to be a column vector (for example qj ∈ RD×1). In the transformer
architecture this is how one “head” operates and each embedding is normally split into several such
heads - this is called multihead attention (MHA). If we take the causality away (that is, the i ≤ j)
for simplicity, one could think of attention as being mixer(y) = softmax(qk⊤)v where softmax is
computed along the rows of what is called the attention matrix: qk⊤.

2.3 LONG CONVOLUTION SEQUENCE MODELS (LCSMS)

LCSMs (Poli et al., 2023; Li et al., 2022; Gaido et al., 2024) work by creating a SISO (single-input-
single-output) primitive to map an input sequence y ∈ RL to z ∈ RL via zt ≜

∑t
i=1 yi · ρt−i where
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ρ is a (possibly infinite, and of length at least L) convolution filter which is often parameterized
by a smaller latent space Θ: ρ = f(θ) where θ ∈ Θ,dimΘ ≪ L is learnt. These convolution
primitives operate on independent axes of the hidden dimensions to create a positional mixer:
mixer(y)t ≜

∑t
i=1 yi ⊙ ρt−i ∈ RD. This assumes the filters to be independent, but shared ones are

possible as well (as is the case for multi-head Hyena (Massaroli et al., 2024)).

For example, the Hyena architecture (Poli et al., 2023) maps back to our setup when mixers are
defined as above and the block functions, depending on the layer, are either MLPs or gates - that is,
element-wise multiplications with a projection of activations at same position, but lower level. We do
not focus on the details of the blocks since they all involve some D×D matrix-vector multiplication
that is performed once for every layer and position 1 ≤ i ≤ L and thus scale as Θ(LD2) per layer -
that is, linearly in context length.

2.3.1 THE INFERENCE PROBLEM

Whereas during training, the convolutions can be performed in O(L logL) time via FFT as the whole
of y is known beforehand, during inference this is non-trivial. Suppose there is a prompt of size P and
we want to generate L− P more tokens. The bottleneck problem can be understood as computing,
for every layer and every dimension, the below:

zt ≜
t∑

i=1

yi · ρt−i (2)

for all 1 ≤ t ≤ L . To pre-fill the first P values z[1..p] at all levels of activations, since the first P
inputs are known, one can perform FFT as they would normally do during train-time (incurring an
O(P logP ) time cost), but past P th position it is important to note that yi is not available before
computing zi−1 - this is where static FFT breaks. Since dealing with the prompt can be done easily
(Massaroli et al., 2024, Lemma 2.1) by essentially filling in all contributions of y[1..P ] to z[1..L] and
then forgetting the prompt ever existed, we henceforth assume P = 0.

2.3.2 PREVIOUS WORK ON EFFICIENT INFERENCE

Speeding up Equation 2 from the naive Ω(L2) is the object of study of Massaroli et al. (2024):
they optimize the process by finding a low-dimensional LTI SSM whose equivalent convolution
filter closely resembles ρ, thus getting an RNN-like problem to simulate. If the learnt SSM has
size D′, then this yields an Θ(LDD′) algorithm for generating L tokens. This has the significant
added benefit of not needing to store the activations (or even inputs) thus far which makes it memory
efficient and practically time-efficient.

The downside, however, is that by definition this will only be an approximation of the learned
filter. More importantly, this approximation represents a projection to a potentially different space
of models, making the end-to-end procedure practically a different training procedure for a low-
dimensional LTI SSM model. Furthermore, this approach assumes the filter ρ is data-independent
- this is needed in order to undergo an expensive distillation procedure as a precomputation step.
This can be qualitatively limiting as shown in Arora et al. (2023). While we do store all activations,
our proposed framework exactly simulates the architecture and data-dependent filters can also be
accommodated.

3 FAST LCSM INFERENCE

In this section we describe our method for the case of LCSMs. That is, we still work with models
as described in Section 2.1, but we further assume the mixers to be convolution-based, as described
in 2.3. Hence, for every mixerℓ ∈ {mixer, . . .mixerM}, there exists a filter ρℓ ∈ RL×D such that

mixerℓ(y)t =

t∑
i=1

yi ⊙ ρℓt−i

We assume here, for simplicity, that ρ is data-independent and part of the model, as is the case for
most existing architectures. However, we discuss in Appendix C how our method can be extended
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to data-dependent filters (by paying a factor of 2). We also assume L = 2P for some integer P for
simplicity - one can always round L up to the closest power of 2 without changing it by more than a
factor of 2 and thus keeping the asymptotics of all our analysis unchanged.

3.1 THE PROPOSED ALGORITHM

We derive inspiration from the the work of van der Hoeven (1997) regarding relaxed polynomial
interpolation - they propose a fix to dealing with dynamic structure of Eq. 2 to achieve an overall
O(L log2 L) time complexity.

3.1.1 RELAXED POLYNOMIAL INTERPOLATION

Consider Eq. 2:

zt ≜
t∑

i=1

yi · ρt−i

The problem of relaxed polynomial interpolation can be thought of as having to compute zt for every
1 ≤ t ≤ L with the further constraint that yt and ρt are only made available once zt−1 has been
outputted. While this general setting is covered in Appendix C, here we focus on the case that all of
ρ is known ahead of time and only y is incrementally revealed. Whereas one could simply use the
more general approach of (van der Hoeven, 1997), we can further take advantage of ρ being known
ahead of time to get a twice-faster and slightly simpler algorithm. We present this both for brevity
and because existing architectures have data-independent ρ’s so this is the more efficient choice for
them (and thus, for practical purposes). However, (Arora et al., 2023; Karami & Ghodsi, 2024) show
that data-dependent filters can improve quality but finding a good causal architecture remains open.

The main approaches to relaxed polynomial interpolation, as identified in (Van der Hoeven, 2002),
are:

• The lazy approach: for every t ∈ {1 . . . L}, one computes zt by simply applying the formula.
It takes O(t) FLOPs to do so and the overall complexity is O(L2). This approach can be
thought of as the naive approach which only performs work when it is strictly needed.

• At the opposite end, there is the eager (or zealous) approach: as soon as a new value of y or
ρ becomes available, one accounts for all its contributions to z. Since we assumed the entire
ρ is known beforehand, this translates to the following:

After computing zt−1, yt becomes available, so for every t ≤ i ≤ L, we increase
zi by yt · ρi−t. zt is now fully computed so we proceed to the next iteration.

Hence, the eager approach can be thought of as performing work as soon as it can be
performed. Here, tth iteration takes O(L − t) so we still have an overall complexity of
O(L2).

• Relaxed approaches: these approaches perform some but not all available work ahead of
time - their advantage stems from grouping contributions (i.e. accounting collectively for
groups of pairs yi · ρj) in such a way that fast convolution methods (such as FFT) can be
employed for a speedup.

First, let us define the sort of contribution grouping that we consider:
Definition. For any 1 ≤ l ≤ r ≤ l′ ≤ r′ ≤ L we let τ(y, [l, r], ρ, [l′, r′]) represent the aggregated
contribution of all y[l,r] to all of z[l′,r′]. That is, for all l′ ≤ t ≤ r′, we have:

τ(y, [l, r], ρ, [l′, r′])t ≜
r∑

i=l

yi · ρt−i (3)

The employment of FFT for speeding up the computation of τ(y, [l, r], ρ, [l′, r′]) can then be achieved
following the next lemma:
Lemma 1. Let 1 ≤ l ≤ r ≤ l′ ≤ r′ ≤ L represent ranges of lengths L1 = r − l + 1 and
L2 = r′− l′+1 of y and z, respectively. There exists an FFT-based algorithm running in O(L1+L2)
space and O((L1 + L2) log(L1 + L2)) time complexity that, given access to y[l,r], computes all the
elements of τ(y, [l, r], ρ, [l′, r′])[l′,r′] - that is, all the aggregated contributions of y[l,r] to all of z[l′,r′].
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What this lemma says is that we can compute efficiently the contribution of a range of inputs to a
range of outputs, where the computational cost is asymptotically given by the larger of the ranges
(this is because O(L1 +L2) = O(max(L1, L2)). Furthermore, observe that we assumed r ≤ l′: this
is because in order to account for all these contributions at once, we need to have all of y[l,r] available
which means that all of z[1,r−1] was computed, so by that time we should have already accounted for
the contributions of y[l,r] to all of z[1,r−1]; hence, there is no point to (re)computing any of these.

The lazy, eager, and our version of a relaxed approach are depicted in Figure 1 under the form of
tilings of the contribution space. Note that the lazy and eager approaches can still be thought of as
grouping contribution accounting, but do so along thin strips: the contribution of a long range of y’s
to one element of z in the lazy approach and that of a singe element of y to a long range of z’s in the
eager approach. The key to our relaxed tiling is using more balanced tiles since, as noted, the cost of
a tile is given by the larger side (which is very expensive for thin tiles). The tiles still have to respect
r ≤ l′ and one needs to ensure that the whole line of contribution to some zt has been dealt with by
the time we return the value of zt - this is indeed the case for our tiling.

Algorithm 1 Fast Relaxed Polynomial Interpolation

Require: filter ρ ∈ RL and y1
1: Initialize z ∈ RL with zeros
2: for i← 1 to L− 1 do
3: U ← maximum power of 2 that divides i # the side of the ith gray tile
4: zi += yi ∗ ρ0 # finalize zi by accounting for newly available yi - red cell
5: # account for the contribution of y[i−U+1,i] to z[i+1,i+U ] - gray tile
6: z[i+1,i+U ] += τ(y, [i− U + 1, i], ρ, [i+ 1, i+ U ]) # τ is defined as in Eq 3
7: return zi # zi has been computed
8: unlock(yi+1) # yi+1 becomes available
9: end for

10: zL += yL ∗ ρ0
11: return zL # zL has been computed

While the lazy and eager algorithms have been described, one needs to make explicit the order
of processing the tiles in the relaxed setting since we still cannot use yt before zt−1 has been
computed. This is shown in Algorithm 1: return marks a value of z having been computed and
unlock represents a value of y becoming available. At the beginning of iteration i it always holds that
zi =

∑i−1
j=1 yj · ρi−j . We start the iteration by completing this with the freshly unlocked yi · ρ0 at

line 4 - this corresponds to the red tiles of Figure 1. Following this step zi is ready to be returned.
Then, we account for the gray tile that has just been unlocked (line 6) - this tile corresponds to the
contribution of y[i−U+1,i] to z[i+1,i+U ] where U is the side of the tile, namely the largest power of 2
dividing i. Finally we return zi as being in its final form and get access to yi+1 - we could have done
this before dealing with the gray tile as well. Note that the relative ordering of the red and gray lines
does not matter within an iteration, but it is important to finish up the first red and gray tiles before
second ones, the second ones before the third ones and so on.

Proposition 1. When L = 2P , Algorithm 1 performs 2P−1−q calls to τ on ranges of length 2q

for every q ∈ {0 . . . P − 1}. If we base τ ’s implementation on Lemma 1, this entails a total time
complexity of O(L log2 L). Since the calls to τ are sequential and outputs are not stored, the peak
memory usage is given by the largest call to τ and remains O(L).

3.1.2 PERFORMING LCSM INFERENCE VIA FAST RELAXED POLYNOMIAL INTERPOLATION

We can now use Algorithm 1 to get an efficient inference algorithm for LCSMs, but to do so we
need to be careful about data-dependency. First, for brevity, in our previous notation of activations,
disregard the dependency on input x - that is, use aℓi instead of aℓ(x)i - since we are only going
to work with one input x (the one we are generating). Furthermore, denote the intermediate mixer
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computation by b ∈ RM×L×D as follows:

bℓi ≜ mixerℓ(aℓ−1)i =

i∑
k=0

aℓ−1
k ⊙ ρℓi−k (4)

aℓi ≜ blockℓ(bℓi) (5)

for any 1 ≤ ℓ ≤ M , where a0i is the embedding of ith token. Whenever one has generated the
tokens x[1,i] up to position i or, equivalently, a0[1,i], the whole of a[0,M ]

[1,i−1] will have been computed
(since aM[1,i−1] is needed to sample x[1,i−1]). Caching these up is the equivalent of a KV-cache in
transformers and is simply the natural way to not repeat work when autoregressively sampling. To
generate the next token xi+1 = a0i+1, we want to fill in the values of a[1,M ]

i . To do so, as per Eq. 4,
we need to compute bℓi which is practically, for each level ℓ, and within each dimension 1 ≤ c ≤ D,
a relaxed interpolation between aℓ−1

:,c (playing the role of y) and ρℓ:,c. Further applying a blockℓ to bℓ,
one gets aℓ. Thus, we can pipeline several instances of Algorithm 1 sequentially across layers.

The resulting algorithm is illustrated in Algorithm 2. The outer loop (line 3) iterates through positions
i: at each iteration, one computes the activations at position i across all layers, does some (limited)
eager work and samples next token. To do so, the inner loop (line 5) iterates through the several
mixer-layers. It first accounts for the red cells in the diagram, that is, the direct dependency on
previous layer’s activations at position i (line 7), thus finalizing bℓi . After computing the activation at
position i (line 8), it also accounts for the contribution of the gray tile that has just been unlocked
(line 10) at the current layer. We reuse the notation from previous section for τ to be the same as
before but within each of the D dimensions - that is:

τ(y, [l, r], ρ, [l′, r′])t ≜
r∑

i=l

yi ⊙ ρt−i

for all l′ ≤ t ≤ r′. The accounting works by considering (in-place) the influence of last U positions
of a to next U ones of b.

Algorithm 2 Flash Inference for LCSMs

Require: filter ρ ∈ RM×L×D, block[1,M ], first token a01 and sampler
1: Output: All activations a0, . . . , aM ∈ RL×D obtained by autoregressively sampling
2: Initialize b ∈ RM×L×D to zeros
3: for i← 1 to L− 1 do
4: U ← maximum power of 2 that divides i # the side of the ith gray tile
5: for ℓ← 1 to M do
6: # account for the contribution of aℓ−1

i to bℓi - red cell
7: bℓi += aℓ−1

i ⊙ ρℓ0
8: aℓi = blockℓ(bℓi)

9: # account for the contribution of aℓ−1
[i−U+1,i] to bℓ[i+1,i+U ] - gray tile

10: bℓ[i+1,i+U ]
+= τ(aℓ−1, [i− U + 1, i], ρℓ, [i+ 1, i+ U ])

11: end for
12: # generate next token based on the output of last layer at position i
13: a0i+1 = sampler(aMi )
14: end for

As far as performance goes, Algorithm 2 practically calls Algorithm 1 MD times (within each layer
and within each of the D dimensions of embeddings). Proposition 2 covers its complexity analysis:

Proposition 2. The overall time complexity of Algorithm 2 is O(MDL log2 L) for the mixer-part
plus LM block calls, to generate L = 2P tokens. Furthermore, for each 0 ≤ q ≤ P − 1, there are
MD2P−1−q calls to τ on ranges of length 2q. The overall amount of memory it takes to store the
activations is O(MLD) (as is the case for the naive lazy approach) and the peak memory usage does
not change the asymptotics.

7



Published as a conference paper at ICLR 2025

3.2 ACROSS-LAYER PARALLELIZATION

One important feature of the proposed method is that it allows for higher parallelization across layers.
In particular, the gray lines can be taken out of the inner loop and performed in parallel across all
layers at once, just after the loop - this is because all their inputs and outputs are disjoint. However,
the red lines need to be performed sequentially since aℓi is a function of bℓi which is a function of
aℓ−1
i for every ℓ.

Note that this optimization can be applied to the eager and lazy approaches as well (provided that the
red tiles are accounted for separately from the gray ones). However, the benefit of extra parallelization
is practically relevant only in settings that are not memory-bandwidth bound - this is the case for
smaller tiles which represent a significant amount of the tiles in our method, but an insignificant
amount in the eager and lazy approaches. This is further discussed in Appendix F.

3.3 MEMORY CONSIDERATIONS

As follows from Proposition 1, the overall size of the inputs to (and outputs of) τ in the proposed
algorithm is only O(MDL logL) - that is, we access on average activation values at logL positions
per iteration as opposed to the naive implementations (such as lazy and eager approaches) that access
an average of Ω(L) positions. This directly translates to significant data movement improvements.

A simple optimization of static memory is to never store b, but rather use aℓi to store bℓi until hitting
line 8: this will work because from that point onwards bℓi is never used again and aℓi was not needed
(or available) thus far. Hence, the static memory overhead is minimal: at least in the LCSM case, one
directly aggregates contributions to the same activation tensor, thus not using any extra storage (on
top of the inherent MLD it takes to store the activations).

The only extra cost we pay is in the peak memory usage which is given by the largest tile - this is
O(MLD), but can be dropped to O(LD) at essentially no cost by dropping parallelization for large
tiles, as further discussed in Appendix F.

Lastly, if one is restricted to only using one GPU and the whole tensor of M × L ×D cannot fit
it, it is possible to drop the requirement to only storing M × (L/2) × D activations by dropping
parallelization in the largest tile (which was alluded above). This, together with a more granular
analysis of memory usage is further discussed in Appendices E and Appendix F.

3.4 GENERALIZATION

We propose a framework called Flash Inference to generalize our fast LCSM inference algorithm,
covered in Appendix B due to lack of space. Crucially, we identify the main properties that are being
exploited by Algorithm 2: in order to apply our tiling one needs the mixers to be contribution-based
(that is, mixer(y)i is some aggregation of contributions of yj≤i to position i) and these contributions
to only depend on data available at step j. The latter is the reason we cannot apply Flash Inference to
transformers since ⟨qi, kj⟩ depends on qi which depends on yi.

4 EXPERIMENTS

We performed two kinds of experiment: one synthetic and one on the Hyena architecture (Poli et al.,
2023). The synthetic setup defines all blocks to be MLPs with a hidden dimension of 2D and GELU
activation; it also simply sets a0i+1 as aMi plus some noise to avoid dependency on vocabulary size
since that is out of the scope of our framework and will be negligible at scale. Note that this can be
viewed as a sampler: a function from logits at the last layer and previous position to the next token’s
embedding. In both settings the weights are initialized to random noise since it does not affect the
runtime - this avoid unnecessarily training a new model for each hyperparameter choice.

In terms of notation, we introduce the batch dimension B and keep M,D,L refer to the number of
layers, embedding dimension and number of tokens generated, respectively. We use U to refer to the
square-tile length, as per line 4. We sweep over B ∈ {1, 2, 4, 8},M ∈ {18, 36}, D ∈ {256, 768}
and generate tokens up to the greatest power of 2 that fits the memory. All results are obtained
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by averaging over 4 runs following 2 runs of warm-up. We evaluate our approach on on the latest
NVIDIA H100 and A100 GPUs. (Results for all the parameter sweeps in supplementary material).

For our baselines, (1) we consider the eager and lazy approaches described in Section 3.1, depicted
in 1. We also consider their implementation exploiting our observation regarding parallelization
across layers (3.2) (we denote the the parallel versions simply as lazy and eager).

Our Flash Inference framework explored various implementations of τ , covered in Section 4.2. Our
best method is a Hybrid that dynamically chooses the optimal implementation of τ depending on
(B,D,M,U).

4.1 INTEGRATING FLASH INFERENCE IN REAL WORLD SETTING (HYENA ARCHITECTURE)

Flash Inference significantly speeds-up the end-to-end inference by up to 7.8× and the convolution-
based mixer component of the Hyena architecture by 110× compared to the baselines as shown in
Figures 2a and 2b. Figure 2c shows the per token response time of Hybrid and baselines. Hybrid
shows low variance in per-token time except at the tokens positions where large tiles are computed.
For a given sequence length of L, we have L/2 positions that use tile size 1, L/4 positions using tile
size 2, and so on. That is, 93.75% of tokens use a tile size U ≤ 8. Hence the spikes occur rarely.
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Figure 2: Real world Hyena experiments: (a) End-to-end inference time breakdown shows Hybird provides
4.8× speed-up over optimized baselines (b) Cumulative mixer time of Hybrid scales 90× better (c) Hybrid
shows low variance in per-token response time except at the tokens positions where large tiles are computed.

4.2 τ IMPLEMENTATIONS

Algorithm 2 assumes an implementation of primitive τ that accounts for the contribution of a range
of inputs to a range of outputs of a convolution. We considered 7 different implementations but, here,
we only present results of the ones on the Pareto Frontier - that is, those optimal for at least some
(B,N,D,U) setting (the others are covered in Appendix D.1). There are 4 such implementations, of
two types:

(1) Depthwise-separable 1D Convolution: We use two types of implementations (a) Conv1D refers
to the default PyTorch (Paszke et al., 2019) kernel, that requires explicit padding (b) Flash Conv1D
refers to fused kernel by FlashFFTConv (Fu et al., 2023b) - these are asymptotically quadratic in tile
size U .

(2) FFT based convolution: we again use two implementations (a) PyTorch native, shown as FFT, that
requires computing the FFTs of inputs, followed by pointwise multiplication and lastly performing
the inverse FFT operation. (b) the second is provided by FlashFFTConv that does all the above in a
single fused kernel shown as FlashFFT- both these scale as O(U logU).

4.3 MIXER ISOLATION STUDY AND HYBRIDIZATION OF τ IMPLEMENTATIONS

We evaluate the different convolution implementations for all settings of B,D,M,U and observe that
each of these four implementation lies on the pareto frontier curve of tile size vs latency as shown in
Figure 3a. Our Hybrid approach dynamically chooses the best τ implementation for a given tile size U
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based on the isolated empirically-measured efficiency of each implementation as shown in Figures 3a.
Figure 3c shows the cumulative token time breakdown for the mixer and non-mixer components of
the synthetic setup for all our τ implementations. We observe the non-mixer component staying
largely the same across approaches - this is made possible through the employment of CUDA Graphs
as further discussed in Appendix D.2.
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Figure 3: Mixer Isolation in a Synthetic setting: (a) Different implementations of τ are optimal for different tile
sizes creating a pareto optimal curve for Hybrid to choose, (b) Cumulative mixer inference of Hybrid achieves
the best of all τ Implementations (c) End-to-end cumulative token inference breakdown

4.4 IMPROVEMENTS JUSTIFICATION

This significant speed-up can be attributed to:

(1) The significantly lower O(L log2 L) FLOPs required for our tile computation approach compared
to the Ω(L2) FLOPs required by Eager and Lazy counterparts. This is shown in Figure 2b where
methods based on our tiling outperform by a large constant the quadratic methods in terms of time
spent on the mixer components.

(2) Drastically reduced activation memory access from Ω(L2) for Eager and Lazy to out O(L logL)
tiling-based methods. This can be shown through the performance of Flash Conv1D (Figure 3b)
which outperforms lazy and eager by a margin although it also performs Ω(L2) FLOPs - it does so in
a more memory-friendly and kernel-optimizable way.

(3) The dynamic choice of best τ implementation for given tile U - hybrid outperforming any method
using a fixed implementation (Figure 3b).

(4) Our engineering contributions: first, the DFT for the convolutional kernel is pre-computed
ahead of time for all tile sizes. Second, Flash-FFT configurations are pre-initialized for these tile
sizes to maximize hardware performance. Third, right padding is used instead of left padding to
reduce computation time by half. Fourth, properties of circular convolution are exploited to halven
FFT length. Finally, tile processing is parallelized across layers to saturate memory bandwidth for
small tile computations and optimize computation for large tile computations, resulting in improved
performance (one can notice improvements of 10−20% even in the Eager and Lazy implementations).

5 CONCLUSION AND FURTHER WORK

We propose a framework for performing inference in certain autoregressive sequence models. Among
such models, LCSMs are noteworthy: there, our framework provides an O(L log2 L) inference
algorithm which, when run empirically, yields up to 8× end-to-end time-efficiency improvement. The
framework exploits a causal, fractal tiling that helps save on data movement and share computation.
Moreover, it allows for almost-complete across-layers parallelization of mixer-related workload.

An interesting future direction to pursue is that of designing architectures that fit out framework
requirements and thus get fast-inference by construction. Furthermore, in the class of LCSMs, we
have noted that one can achieve the same theoretical complexity if filters are made data-dependent,
and, while previous works Arora et al. (2023); Karami & Ghodsi (2024) have shown the potential for
these, they are not yet causal so looking into how to make filters data-dependent in a causal way is
another promising direction.
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A CONTEXTUAL DISCUSSION

In this section, we extend our discussion on the contextual relevancy of LCSMs and our method. We
focus on the SISO (single-input-single-output) setting unless otherwise specified and assume that
such a primitive is used across channels of the embedding dimensions to form a mixer.

As discussed in Section 2.3, LCSMs directly compute the filter ρ to be used to map an input
sequence y ∈ RL to an output sequence z ∈ RL via zt ≜

∑t
i=1 yi · ρt−i. We assume here that

ρ ∈ RL although it could be longer since no entry past Lth position matters. While ρ is often
underparameterized, one could, in principle, directly learn its entries (and, indeed, (Fu et al., 2023a)
successfuly do that by using some extra regularization). However, even in underparameterized
settings, where ρ = f(θ) for some θ ∈ Θ with dim(Θ)≪ L, what filters ρ we end up dealing with is
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a function of data and f : here, f implicitly bakes in a certain bias. While depending on bias (such as
decaying pattern of ρ as suggested by (Li et al., 2022)) one may assume ρ to have certain exploitable
structures, our method is broadly applicable regardless of such structural properties. That makes
Flash Inference be bias and data-independent. For completeness, we mention in Section A.2 previous
works exploiting such structure - that is, ways to perform fast inference assuming certain properties
of ρ hold.

Since, as mentioned in Section 2, there is a direct connection between long convolutions and LTI
SSMs, we cover this more extensively in Section A.1.

A.1 STATE SPACE MODELS

While SSMs and LCSMs can fundamentally represent the exact same class of models, they differ
through their parameterization. Works such as (Poli et al., 2023; Li et al., 2022; Romero et al.,
2021b;a; Shi et al., 2023; Fu et al., 2023a) try to characterize the convolution implicitly. On the
other hand, LTI SSMs (Gu et al., 2021a; 2022; Ma et al., 2022; 2024; Gu et al., 2021b; Gupta et al.,
2022; Mehta et al., 2022) define a recurrent system that is equivalent to a convolution and provide
an alternative perspective in doing so. We define discrete SISO SSMs below following the notation
of (Gu et al., 2021a).

State space models (SSM) can be thought of as linear RNNs. In its simplest form, SSM’s mixer
for a SISO operator mapping y ∈ RL to z ∈ RL is defined via an extra sequence of hidden states
u : RL×D′

where D′ is the SSM’s dimension. For a fixed input y : RL, one defines:

ut = A(t)ut−1 +B(t)yt

zt = C(t)⊤ut

where A(t) : RD′×D′
, B(t), C(t) : RD′

. While models like Mamba (Gu & Dao, 2023) let A,B,C
be functions of y and, thus, vary with t, linear-time invariant (LTI) models assume A, B and C to be
fixed parameters. Thus, the equations rewrite to:

ut = Aut−1 +Byt

zt = C⊤ut

Opening up the recurrence, we get that:

zt =

t∑
i=0

(C⊤At−iB) · yi

which corresponds to a convolution with the filter ρ implicitly defined via ρi = C⊤AiB. If A is
further assumed to be diagonal, we call the corresponding SSM diagonal. Gupta et al. (2022) showed
that one does not lose practical model quality by assuming A to be diagonal. When one tried to
perform inference on an LTI SSMs, one could use:

• the recurrent view: keep around only the last state ut−1 and update it in-place. This is why
the memory of performing inference with an SSM scales with D′ rather than L. The time
complexity of performing one step is O(D′2) in the general case, but as mentioned, one can
resort to diagonal SSMs which drop this complexity to O(D′).

• convolutional view: precompute the equivalent convolution ρ and use Flash Inference.

A.2 COMPARISON TO STRUCTURAL FILTER EXPLOITATION

Following our discussion in Section A.1, LTI SSMs become a candidate of structural property that
can be assumed on a filter ρ ∈ RL. While if one is to let D′ grow as much as L, it is provably
possible to represent any filter ρ, it is a structural assumption to assume that a given filter ρ can be
represented (or well-approximated) by an LTI SSM of a particular dimension D′ (and this is what
(Massaroli et al., 2024) do). However, if the filter has this structure then we can use the recurrent
view and pay a time cost of D′ per token generation (assuming a diagonal SSM) while having our
activation space drop by a factor of L/D′. Alternatively, we can store all the activations and use Flash
Inference to get an average token step for O(log2(L) time-budget. Hence, at least asymptotically,
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if D′ ∈ O(log2(L)), one would prefer the recurrent view (and thus using the D′-dimensional SSM
equivalent to ρ). Past this point, our method is faster but still uses memory that scales up with L
rather than D′ so which one to choose is a function of our memory constraints.

Another noteworthy line of work follows dilated convolutional models and was popularized through
(Shi et al., 2023), inspired in turn by (Van Den Oord et al., 2016). Paine et al. (2016) show how such
models allow for linear time inference, while also needing to store all activations. Thus, granted such
structure, Flash Inference is inferior and (Paine et al., 2016)’s approach should be used.

Finally, it is worth emphasizing that Flash Inference can accommodate data-dependent filters, while
online exploitation of structure is often prohibitively expensive (as in the case of distilling ρ into an
LTI SSM following (Massaroli et al., 2024)). Moreover, the class of data-dependent convolution-
based models is larger than that of LTI SSMs simply because of the linear-time invariant assumption:
one cannot know the whole A,B,C when only half of ρ is unlocked (similarly to how data-dependent
SSMs, such as (Gu & Dao, 2023), can represent more than LCSMs can). And while there are no
major data-dependent causal LCSMs yet, works such as (Arora et al., 2023; Karami & Ghodsi, 2024)
show the potential of such a research direction.

A.3 ON FLASH INFERENCE’S PREFILLING AND AUTOREGRESSIVE GENERATION STAGES

We have touched briefly in Section 2.3.1 on how our method deals with prompts. In particular, if
one is given a prompt of size P , FFT will be employed to fill in all the contributions of y[1,P ] to
z[1,L]. The way this translates to the complete architecture is computing all of a[0,M ]

[1,P ] as well as
the contributions of these to the future L− P positions. One can do so at a fraction of the cost of
the forward pass, by just caching the appropriate activations and then zeroing out positions in the
range [P + 1, L] before proceeding to the next layer (to not allow second order contributions to be
performed). This comes at a cost that scales with O(L logL).

Afterwards, we can drop the first P positions and apply our method starting with the current values
of a to perform autoregressive generation. This is because the eager nature of our prefill is more
aggressive than in the case of transformers since we already account for all the relevant contributions
of the prompt to the future. This can be very useful when we have a long prompt, relatively few
autoregressive steps to perform and the autoregressive generation takes place on a different machine,
since we save up valuable and communication costs.

We also want to emphasize, that Flash Inference focuses on optimizing the autoregressive generation
part. However, if the prompt is large enough compared to the number of tokens generated, this may
have smaller relative improvement since the overall time is dominated by the prefill.

B THE FLASH INFERENCE FRAMEWORK

We propose a framework called Flash Inference to generalize our fast LCSM inference algorithm. To
do so, we identify the main properties that are being exploited by Algorithm 2 and show how, granted
these properties, one can get fast inference following the same kind of tiling.

Notice that in the case of LCSMs, it never mattered how one computes the contribution of a range
of inputs to another range: only that it is well-defined (as soon as the inputs are available) and
that it can be done more efficiently than the brute-force approach. Thus, the crux of Algorithm 2
is not convolution-specific, but rather the way we tile the space of contributions while ensuring
autoregressive generation can take place.

B.1 ARCHITECTURAL PROPERTIES

In order for our framework to apply, we need the mixers involved to have certain properties:

P.1 Contribution-based The used mixers work by aggregating contributions of each input posi-
tion to each subsequent output position. That is, for any mixerℓ, there exist an associative
aggregation function agg : X ∗ → X , a read function read : X → RD and a contribution
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function cont : RD × N× N→ X such that:

mixer(y)i = read(agg(cont(y, 1, i), cont(y, 2, i), . . . cont(y, i, i))) (6)

where, X is a set of intermediate states and read is a function to map those back
to embeddings. Recall that agg being associative means that agg(x1, x2, . . . xτ ) =
agg(agg(x1, . . . xi), agg(xi+1, . . . xτ )) for any 1 ≤ i < τ . For a sensible architecture,
the size of X and cost of agg should be of order D.
In the case of self-attention this translates to having read ◦ agg simulate the softmax, by
letting X = RD × R, agg =

∑
and

cont(y, i, j) = (V yi · ey
⊤
j QK⊤yi , ey

⊤
j QK⊤yi) = (vi · e⟨ki,qj⟩, e⟨ki,qj⟩)

that is, the exponentially weighted value vector along with the exponential weight. Finally
one can use read(v, w) = v/w to implemnent the softmax normalization step.
In the case of LCSMs, one can simply choose X = RD, read be the identity function, agg
be the sum again and cont(y, i, j) = yi ⊙ ρj−i.

P.2 Query-independent The contribution function cont(y, i, j) does not depend on y[i+1,L].
Note that this is the case in LCSMs since yi ⊙ ρj−i only depends on yi. However, it is not
the case for transformers, since cont(y, i, j) depends on qj which depends on yj .

B.2 SETTING AND DEFINITIONS

Suppose P.1 holds and there exists an algorithm A that for any given input sequence y and indices
l ≤ r < l′ ≤ r′, computes the contributions of y[l,r] to outputs at every position p ∈ [l′, r′]:

A(y, [l, r], [l′, r′])l′≤p≤r′ = agg(cont(y, l, p), cont(y, l + 1, p), . . . cont(y, r, p)).

Furthermore, for this choice of A, let T : N× N→ N such that for any l ≤ r < l′ ≤ r′, evaluating
A(y, [l, r], [l′, r′]) takes at most T (r − l + 1, r′ − l′ + 1) FLOPs.

If we dropped the r < l′ condition and set l = l′ = 1 and r = r′ = L, this algorithm would actually
represent the procedure one needs to perform a forward pass during training - which we refer to as
the static setting. In the case of LCSMs, A is the FFT-based algorithm underlying Lemma 1, with
an associated T (L1, L2) = D(L1 + L2) log(L1 + L2), as opposed to the naive implementation that
would have Tnaive(L1, L2) = DL1 · L2.

B.3 MAIN RESULT

Our main result can be phrased as follows:
Theorem 2. Under the assumptions P.1 and P.2, one can generate L = 2P tokens autoregressively
by performing, per layer, L− 1 black-box calls to A as well as L more calls to cont, agg, read and
block. Concretely, there are L/2 = 2P−1 calls to A of length 1 each, L/4 = 2P−2 calls of length 2
each and so on up to 1 call of length L/2. Hence, neglecting the cont, agg, read and block part, the
overall time complexity per mixer layer is:

FLOPs =
P−1∑
q=0

2P−1−qT (2q, 2q)

Furthermore, during every token-generation iteration, the calls to A across different layers can be
performed in parallel as there is no data-dependency between them.

Here, we are being ignorant of the L calls to cont, agg, read and block because they only scale
linearly with L - however MLPs scale quadratically in D and therefore these can be the limiting
factor when D is large in comparison to L.

Proof. Figure 1 shows why the tiling used in Algorithm 2 covers every pair of contributions ex-
actly once and in the correct order (remember, we only assumed agg to be associative, not nec-
essarily commutative). The more general algorithm is illustrated in Algorithm 3 and follows
the same shape as its LCSM counterpart. The only difference is that X is not assumed to be
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RD necessarily, so one cannot store the intermediate accumulated states in the same place they
store the activations (though they could reuse some of the space since aℓi and bℓi never need to
coexist). We use bℓi to store the inner part of Equation 6, namely bℓi incrementally computes
agg(cont(aℓ−1, 1, i), cont(aℓ−1, 2, i), . . . cont(aℓ−1, i, i)). Finally, we explicitly moved the gray
tile calls to happen after the inner loop and in parallel - this simply shows the last point of the theorem,
namely that the calls to A can be done parallelly across layers.

The only part remaining to be proved is the right counting of calls to A per layer: calls of length 2q

happen whenever 2q divides i but 2r+1 does not - that is, for i ∈ {2q, 3 ·2q, 5 ·r2, . . . (2P−q−1) ·2q},
so 2P−q−1 calls.

Algorithm 3 Generic Flash Inference

Require: Functions A, cont, agg, read,block[1,M ], first token a01 and sampler
1: Output: All activations a0, . . . , aM ∈ RL×D obtained by autoregressively sampling
2: Initialize b ∈ XM×L×D with elements neutral to agg
3: for i← 1 to L− 1 do
4: U ← maximum power of 2 that divides i # the side of the ith gray tile
5: for ℓ← 1 to M do
6: # account for the contribution of aℓ−1

i to bℓi - red cell
7: bℓi = agg(bℓi , cont(a

ℓ−1, i, i))

8: aℓi = blockℓ(read(bℓi))
9: end for

10: # account for the contribution of a:[i−U+1,i] to b:[i+1,i+U ] - gray tile(s)
11: parallelly across ℓ← 1 to M do:
12: bℓ[i+1,i+U ] = agg(bℓ[i+1,i+U ],A(a

ℓ−1, [i− U + 1, i], [i+ 1, i+ U ]))

13: # generate next token based on the output of last layer at position i
14: a0i+1 = sampler(aMi )
15: end for

C EXTENSION TO DATA-DEPENDENT FILTERS

The reason why data-dependent filters are harder to deal with is that cont(y, i, j) = yi · ρj−i depends
on both yi and on what ρj−i depends on. By only assuming causality, we can only access ρj−i after
zj−i−1 has been computed. This stops Algorithm 2 from working out-of-the-box since when i is
a power of 2, in order to account for the contribution of aℓ−1

[1,i] to aℓ[i+1,2i] one will need access to
ρℓ[1,2i−1] which is not guaranteed to be accessible (only ρℓ[1,i] can be assumed to be known at this
stage).

The modified algorithm is shown in Algorithm 4 and precisely follows the tiling of van der Hoeven
(1997) and, thus, its correctness transfers. Note that rather than using the A algorithm, it directly uses
the untruncated convolution (implementable via FFT) - in the contribution space this corresponds to
a parallelogram tile rather than rectangle - and this cannot be simulated via a rectangle, although the
other way around is possible (and is what we did through Lemma 1). This implementation performs
convolutions between two sequences of length U each and uses the whole output and thus requires
an order 2U FFT. Note that this happens twice for a given i when i+ 1 is not a power of 2 (almost
always). Algorithm 2, on the other hand, only performs a convolution between a length-U sequence
and a length-2U sequence. However, as noted in Appendix D, we can get away without padding and
thus performing only one order 2U FFT. Thus, our proposed tiling improves FLOPs by a factor of 2,
but it requires the kernel to be data-independent.

D IMPLEMENTATION IMPROVEMENTS

In Algorithm 2, the calls to τ all have a shape of τ(y, [i− U + 1, i], ρ,[i+ 1, i+ U ]) where U is a
power of 2 that divides i. Following the proof of Lemma 1, we note that to implement τ , we need
to perform the convolution of a segment of length U of y and a prefix of length 2U of ρ. However,
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Algorithm 4 Flash Inference for LCSMs with data-dependent filters

Require: first token a10, a:0, ρ:0, block[1,M ] and sampler
1: Output: All activations a0, . . . , aM ∈ RL×D obtained by autoregressively sampling
2: Initialize a with zeros outside a:0
3: for i← 1 to L− 1 do
4: U ← maximum power of 2 that divides (i+ 1)
5: for ℓ← 1 to M do
6: Compute ρℓi as a causal function of data aℓ−1

[1,i] as per model specification
7: # account for the newly available contributions
8: aℓi = blockℓ(aℓi + aℓ−1

i ∗ ρℓ0 + aℓ−1
0 ⊙ ρℓi)

9: # account for some eager contributions
10: if i+ 1 = U then
11: # downgrade the power of 2 by half if i+ 1 is already a power of 2
12: U ← U/2

13: aℓ[2U,4U−2]
+= CONV (aℓ−1

[U,2U−1], ρ
ℓ
[U,2U−1])

14: else
15: aℓ[i+1,i+2U−1]

+= CONV (aℓ−1
[U,2U−1], ρ

ℓ
[i−U+1,i])

16: aℓ[i+1,i+2U−1]
+= CONV (ρℓ[U,2U−1], a

ℓ−1
[i−U+1,i])

17: end if
18: end for
19: # generate next token based on the output of last layer at position i
20: a0i+1 = sampler(aMi )
21: end for

following the convolution, of the 3U − 1 outputs, indexed [0, 3U − 2], we are only interested in the
middle U of them, namely indices [U, 2U − 1]. The canonical way of performing convolutions via
FFT involves padding by enough 0s and using an order large enough to store the whole output which
rounded up to the closest power of 2 would mean an order 4U FFT. However, using a 2U FFT call,
which will perform a cyclical convolution, is enough for our purposes, since the values of interest are
not affected by the cyclicity - that is, when folding outputs at [2U, 3U − 2] onto [0, U − 2], we do not
intersect [U, 2U − 1]. Furthermore, there are only logL different lengths of prefixes of ρ involved
in these convolution so one could, in fact, cache the DFTs for these as a precomputation step, thus
dropping the number of DFT’s per convolution from 3 to 2, speeding up by a further ×1.5 factor.

D.1 MORE IMPLEMENTATION DETAILS

In Section 4.2, it has been mentioned that we considered 7 implementations of τ . Besides the four
mentioned (Torch’s and FlashFFT’s Conv1D and FFT) we also did 3 more naive versions:

1. Torch FFT (no precomputed FFT for the convolution kernel): This implementation is
identical to Torch-FFT except that we do not pre-compute the DFT of the convolution kernel
beforehand.

2. Vectorized Conv1D: It implements a 1D convolution operation in a vectorized manner using
tensors and leverages efficient operations to process multiple slices in parallel. It takes
advantage of the fact that convolutions are depth-wise separable.

3. Element-wise Conv1D: This implementation does an element-wise dot product of the
convolution kernel with the input, while iteratively sliding the kernel over the input.

D.2 CPU OVERHEAD: THE SILENT PERFORMANCE KILLER

One primary improvement we introduce is the use of CUDA Graphs to mitigate the CPU overhead
observed in the non-mixer components during inference.

In both synthetic settings and the Hyena model, these non-mixer components primarily deal with
only current token being generated. As a result, the GPU compute time is often shorter than the
kernel dispatch time, leading to CPU overhead. Typically, this overhead remains hidden when the
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mixer component requires significant GPU compute time. However, Flash Inference dramatically
reduces mixer times (up to 120×), exposing the CPU overhead and causing the observed decrease
in end-to-end speed-ups. A similar effect is observed for the Lazy approach compared to Eager, as
Lazy’s faster execution also exposes the overhead.

To address this, we employ CUDA Graphs, which record all kernel dispatches for generating a single
token into a graph. For subsequent token generation, the same graph is replayed, allowing all kernels
for the non-mixer components to be dispatched simultaneously. This approach significantly reduces
CPU overhead and ensures consistent overhead times for both Flash Inference and its baselines.

With these improvements, Flash Inference demonstrates much better end-to-end relative gains, as the
mixer now constitutes a larger portion of the total runtime. We observe speed-ups of up to 120× in
the mixer and up to 8× in the end-to-end Hyena runs (as opposed to 1.6× when not using CUDA
Graphs). All the results are shown in Appendix I.

E STORING ONLY HALF OF THE ACTIVATIONS

If the whole activation tensor (M × L×D) cannot fit the memory of one GPU, we can save a factor
of 2 along the L-axis. To do this, observe that after (L/2)th iteration completes we never need to look
back to any activation at position i ≤ L/2. Hence, one can hope to reuse the space used for the first
half to store the second half of activations. While doing this directly by having A work as an in-place
operator requires storing MLD intermediate values, one can choose to not apply A parallelly across
all layers (or even dimensions), as discussed in Section 3.3. Processing the tiles sequentially allows
for the reuse of the space for interim results; once the result of A is read, we place it back to where
the input used to be - similarly in nature to gradient accumulation - always placing the output back
into the input slot. This way, the peak extra memory required for the call to A can be LD or even L.

As we get the output of A(a0, 1, L/2, L/2 + 1, L), which has a shape of (L/2)×D, we overwrite
a0 by it and then move on to the next layer. We can do this because the contribution of a0i to a1i has
already been properly accounted for so the first half of a0 truly becomes irrelevant for next layers and
iterations to come. Hence, a0 contains the intended second half of a1. We then proceed to do the
same thing for a1 and so on. At the end, a[0...M−1] will contain the second halves of a[1...M ], so we
can shift these by 1, emptying a0 and now finally having a represent the second halves of activations
- the first halves have been discarded.

Although per layer, one will have a peak memory containing both aℓ, the output, and whatever
other necessary temporary values needed to perform A, this does not scale with M - because we
essentially reuse the extra space needed by A across different layers. We seemingly pay the cost
of not performing the calls to A in parallel across layers, but if storing the M × L ×D tensor of
activations was an issue, then one would very likely have to make this sort of compromise to be able
to run A in the first place.

F DISCUSSION ON MEMORY

Besides peak memory usage, it is important to understand how memory boundedness affects end-to-
end performance. In general, GPUs have 2 types of memory bound:

• Memory Latency-Bound: most time is spent on memory operations, but parallelism is
insufficient to saturate GPU memory bandwidth. In this setting, throughput can be optimized
by increasing parallelism to saturate memory bandwidth.

• Memory Bandwidth-Bound: GPU memory bandwidth is already saturated with available
parallelism. In this case, throughput optimization is achieved by increasing arithmetic
intensity (compute-to-IO ratio), usually by changing the algorithm or fusing operations.

Putting this into perspective for our use cases, and looking at how across-layer parallelization affects
performance, we have that:

• Lazy computes token contributions using pointwise multiplication kernels, accessing almost
all sequence activations for large i values, making it memory bandwidth-bound beyond a
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certain (early) iteration index. Hence across-layer parallelization helps most in the beginning.
Lazy acts exactly as a dual (it is memory bandwidth-bound until close to the end).

• Our approach computes token contributions in a tiled fashion, with most tiles being small
(87.5% have size ≤ 4), making the workload memory-latency bound. Parallelizing across
layers can then further saturate memory bandwidth. For large tile sizes we end up using FFT
implementations to decrease arithmetic intensity since we get to a compute-bound regime.

In Section 3.3, we discussed the peak memory usage being given by the gray calls to τ . Since each
call to τ performs D FFTs of length L each (when dealing with the biggest tile of side L/2), the
naive implementation would use up to MD · L extra memory to perform these FFT calls. However,
this assumes the biggest gray tile is being processed in parallel across all layers and across all
dimensions at once. We do not need to maximize parallelization on all sizes of tiles: for the largest
ones, we can process the tiles at different layers sequentially by reusing the space, thus dropping
to an overhead of O(LD), or even just O(L) if one is to treat sequentially the different dimensions.
Dropping parallelization could theoretically yield a slowdown, but that is only when we are not
memory bandwidth-bound which is the case if one has to worry about allocating more than O(LD) -
in that case, the FFT calls are anyway not happening in parallel. Hence, one can easily drop the peak
memory overhead to O(LD) or even O(L) without incurring an actual time cost.

G FRAMEWORK ADAPTATIONS

We covered the clean case of LCSMs and of other architectures that fit Theorem 2. However, all these
assume complete causality of the architecture as well as all the layers fitting our framework. This
need not be the case and Flash Inference can easily be adapted to deal with both.

As far as causality is concerned, one needs to assume it for autoregressive inference to be well-defined.
Remember, we defined causality by having aℓ(x)i be a function of only x[1,i] or, equivalently,
mixerℓ(y)i is a function of y[1..i]. If this was not the case, then we could not compute xi+1 by
only knowing xi. However, much like the encoder-decoder architecture, we can allow for non-
causal prompts. That is, if at any point an external user gives us a sequence of tokens (say an
image), we could fill in the activations at those position in the standard forward-pass way, and then
start our procedure from there as if we were given a fixed a prompt. Granted a prompt and the
activations at its respective positions, we can proceed with our inference method as described in
Section 2.3.1, following (Massaroli et al., 2024, Lemma 2.1), and essentially accounting in advance
for the contribution of all this prompt to all subsequent positions.

Another useful adaption for most alternatives to attention is that of using hybrids: architectures where
different layers use different mixers. Our method can be applied seamlessly to the subset of layers
that fit the framework. All the algorithm stays unchanged but computing aℓ(x)i for the layers ℓ

which do not fit our framework needs to be done in the way specific to mixerℓ. Importantly, even the
across-layer parallelization can be maintained since the gray tiles only affect subsequent positions at
the layers that fit the framework, hence not interfering with the rest. At any point in our algorithm,
we have computed every piece of information that the lazy approach has, as well as some extra partial
future contribution. Therefore, everything that worked assuming the lazy approach will work with
our method as well - this includes other layers attending to more than the previous layer.

H PROOFS

Lemma. Let 1 ≤ l ≤ r ≤ l′ ≤ r′ ≤ L represent ranges of lengths L1 = r−l+1 and L2 = r′−l′+1
of y and z, respectively. There exists an FFT-based algorithm running in O(L1 + L2) space and
O((L1 +L2) log(L1 +L2)) time complexity that, given access to y[l,r], computes all the elements of
τ(y, [l, r], ρ, [l′, r′])[l′,r′] - that is, all the aggregated contributions of y[l,r] to all of z[l′,r′].

Proof. Consider performing a convolution between y[l,r] and ρ[l′−r,r′−l]. It holds that for each
j ∈ [l′, r′] and i ∈ [l, r], j − i is in the range of ρ. On the other hand, truncating the output of the
convolution appropriately, one can keep only the corresponding outputs for each j ∈ [l′, r′]. The
overall size of the FFT is then given by the sum of the lengths, which is at most r − l + 1 + (r′ −
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l)− (l′ − r) + 1 = 2(r− l+1)+ (r′ − l′ +1)− 1 = O((r− l+1)+ (r′ − l′ +1)). Since an FFT
of order L runs in O(L logL) and takes up O(L) memory, the conclusion follows.

I EXTENDED EXPERIMENTAL RESULTS AND ANALYSIS

I.1 BAR PLOTS

For completeness, we provide the breakdown for both Hyena(Figure 4) and synthetic(Figure 5)
settings. As mentioned in the main body, we see consistency across the non-convolution part and
very significant improvement on the convolution part.

I.2 SUMMARY

We provide the end-to-end relative speedups for our methods with regards to Lazy (the parallel
version) for all the 21 runs that we performed, for Hyena as well as the synthetic setup, measuring
both complete wall-clock time, as well as mixer time.

Notice that in some of the synthetic runs, the torch-based FFT implementation is faster than Hybrid -
we attribute that to noise since the absolute runtime difference is below 50 ms and it translates to less
than 2% drop in performance. Hybrid however sometimes exceeds FFT’s performance by close to
20% (for example in the very first experiment).

Worth noticing is also the consistent 10% speedup that the parallelization of Lazy yielded - do
note that the reported speedups are relative to the parallel version of Lazy, but they are even bigger
relative to the non-parallel version. Furthermore, Conv1D1, yields a consistent > 5-fold improvement
while still having a quadratic complexity - this shows the potential of our framework as a grouping
mechanism even when no asymptotically faster algorithms to deal with the tiles exist: we simply get
better arithmetic intensity.

1The Conv1D kernel crashes for configurations B = 1, N = [18, 36], L = [217, 216]. This is because it
requires 32-bit indexing which is only supported in cuDNN version 9.3 and above. Our experiments use cuDNN
v9.1.
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Table 1: Mixer times improvements on end-to-end Hyena relative to the lazy approach (higher is
better)

B N D L Hybrid Eager Eager NP Lazy NP
1 18 256 218 95.96 × 0.54 × 0.52 × 0.85 ×

768 217 100.38 × 0.54 × 0.53 × 0.89 ×
864 217 110.74 × 0.53 × 0.53 × 0.91 ×

36 256 217 79.71 × 0.54 × 0.50 × 0.76 ×
768 216 89.36 × 0.54 × 0.51 × 0.82 ×
864 216 94.11 × 0.54 × 0.52 × 0.84 ×

2 18 256 217 75.22 × 0.54 × 0.50 × 0.85 ×
768 216 84.88 × 0.54 × 0.51 × 0.87 ×
864 216 93.35 × 0.54 × 0.51 × 0.86 ×

36 256 216 64.60 × 0.54 × 0.49 × 0.77 ×
768 215 74.80 × 0.55 × 0.50 × 0.80 ×
864 215 81.20 × 0.55 × 0.49 × 0.77 ×

4 18 256 216 66.82 × 0.54 × 0.53 × 0.88 ×
768 215 78.79 × 0.55 × 0.53 × 0.87 ×
864 215 84.77 × 0.55 × 0.52 × 0.88 ×

36 256 216 74.92 × 0.54 × 0.49 × 0.79 ×
768 215 88.22 × 0.56 × 0.51 × 0.84 ×
864 215 92.96 × 0.56 × 0.49 × 0.81 ×

8 18 256 216 81.37 × 0.55 × 0.53 × 0.90 ×
768 215 96.14 × 0.56 × 0.53 × 0.90 ×
864 215 104.81 × 0.56 × 0.53 × 0.91 ×
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Figure 4: Time breakdown for end-to-end Hyena experiments.
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Figure 5: Time breakdown for end-to-end synthetic experiments.
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Table 2: Cummulative times improvements on end-to-end Hyena relative to the lazy approach (higher
is better)

B N D L Hybrid Eager Eager NP Lazy NP
1 18 256 218 5.30 × 0.59 × 0.57 × 0.88 ×

768 217 5.60 × 0.58 × 0.57 × 0.89 ×
864 217 5.71 × 0.59 × 0.59 × 0.93 ×

36 256 217 3.11 × 0.66 × 0.61 × 0.83 ×
768 216 3.60 × 0.64 × 0.62 × 0.90 ×
864 216 3.50 × 0.60 × 0.59 × 0.85 ×

2 18 256 217 4.30 × 0.61 × 0.56 × 0.88 ×
768 216 4.81 × 0.60 × 0.57 × 0.91 ×
864 216 5.09 × 0.59 × 0.56 × 0.89 ×

36 256 216 2.63 × 0.65 × 0.60 × 0.80 ×
768 215 3.01 × 0.64 × 0.60 × 0.85 ×
864 215 3.16 × 0.62 × 0.58 × 0.80 ×

4 18 256 216 3.88 × 0.61 × 0.59 × 0.90 ×
768 215 4.53 × 0.61 × 0.59 × 0.91 ×
864 215 4.85 × 0.60 × 0.57 × 0.89 ×

36 256 216 3.76 × 0.61 × 0.55 × 0.81 ×
768 215 4.46 × 0.61 × 0.56 × 0.85 ×
864 215 4.86 × 0.61 × 0.54 × 0.82 ×

8 18 256 216 6.95 × 0.58 × 0.57 × 0.92 ×
768 215 7.14 × 0.59 × 0.56 × 0.91 ×
864 215 7.83 × 0.59 × 0.56 × 0.91 ×
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Table 3: Mixer times improvements on end-to-end synthetic relative to the lazy approach (higher is
better)

B N D L Hybrid C1D flashC1D flashFFT FFT Eager Eager NP Lazy NP
1 18 256 218 97.70 × 5.94 × 2.40 × 51.16 × 82.27 × 0.54 × 0.52 × 0.85 ×

768 217 112.62 × - 2.42 × 51.18 × 111.57 × 0.54 × 0.53 × 0.90 ×
864 217 124.30 × - 2.42 × 56.14 × 119.41 × 0.53 × 0.53 × 0.91 ×

36 256 217 82.69 × 5.94 × 2.41 × 39.73 × 78.58 × 0.54 × 0.50 × 0.76 ×
768 216 100.53 × - 2.41 × 35.36 × 102.32 × 0.54 × 0.51 × 0.82 ×
864 216 112.33 × - 2.41 × 36.58 × 112.81 × 0.54 × 0.52 × 0.84 ×

2 18 256 217 84.84 × 5.94 × 2.41 × 52.28 × 81.43 × 0.54 × 0.50 × 0.85 ×
768 216 84.84 × 5.81 × 2.40 × 45.94 × 88.36 × 0.54 × 0.51 × 0.87 ×
864 216 97.23 × 5.85 × 2.40 × 49.77 × 94.40 × 0.54 × 0.51 × 0.87 ×

36 256 216 69.28 × 5.74 × 2.40 × 39.57 × 69.03 × 0.54 × 0.49 × 0.77 ×
768 215 78.79 × 5.54 × 2.43 × 31.91 × 76.47 × 0.55 × 0.51 × 0.80 ×
864 215 85.89 × 5.56 × 2.43 × 33.80 × 87.56 × 0.55 × 0.49 × 0.77 ×

4 18 256 216 75.13 × 5.97 × 2.49 × 47.70 × 74.52 × 0.54 × 0.53 × 0.88 ×
768 215 80.48 × 5.75 × 2.52 × 42.66 × 82.05 × 0.55 × 0.53 × 0.87 ×
864 215 93.40 × 5.79 × 2.54 × 45.22 × 88.84 × 0.55 × 0.52 × 0.88 ×

36 256 216 79.85 × 5.78 × 2.40 × 50.57 × 80.60 × 0.54 × 0.49 × 0.79 ×
768 215 92.30 × 6.47 × 2.45 × 46.37 × 88.90 × 0.56 × 0.51 × 0.84 ×
864 215 96.29 × 6.49 × 2.45 × 47.93 × 94.17 × 0.56 × 0.50 × 0.81 ×

8 18 256 216 95.32 × 6.10 × 2.51 × 56.11 × 87.85 × 0.55 × 0.53 × 0.90 ×
768 215 102.49 × 5.89 × 2.55 × 54.83 × 94.08 × 0.56 × 0.53 × 0.90 ×
864 215 107.36 × 5.93 × 2.55 × 45.75 × 98.61 × 0.56 × 0.53 × 0.91 ×
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Table 4: Cummulative times improvements on end-to-end synthetic relative to the lazy approach
(higher is better)

B N D L Hybrid C1D flashC1D flashFFT FFT Eager Eager NP Lazy NP
1 18 256 218 6.70 × 3.55 × 2.04 × 6.34 × 6.64 × 0.59 × 0.57 × 0.87 ×

768 217 8.36 × - 2.09 × 7.08 × 8.05 × 0.57 × 0.56 × 0.91 ×
864 217 7.76 × - 2.09 × 6.66 × 7.42 × 0.57 × 0.56 × 0.91 ×

36 256 217 4.32 × 2.91 × 1.89 × 3.88 × 4.48 × 0.60 × 0.57 × 0.78 ×
768 216 5.17 × - 2.00 × 4.56 × 5.50 × 0.61 × 0.58 × 0.85 ×
864 216 5.01 × - 1.91 × 4.30 × 4.78 × 0.60 × 0.58 × 0.87 ×

2 18 256 217 6.02 × 3.30 × 2.01 × 5.70 × 6.01 × 0.59 × 0.55 × 0.88 ×
768 216 6.06 × 3.34 × 1.97 × 5.75 × 5.90 × 0.58 × 0.55 × 0.89 ×
864 216 6.38 × 3.50 × 2.02 × 6.03 × 6.37 × 0.57 × 0.54 × 0.88 ×

36 256 216 3.84 × 2.59 × 1.84 × 3.67 × 3.94 × 0.63 × 0.57 × 0.82 ×
768 215 4.25 × 2.74 × 1.84 × 3.69 × 3.89 × 0.62 × 0.57 × 0.83 ×
864 215 4.19 × 2.71 × 1.83 × 3.88 × 4.51 × 0.62 × 0.56 × 0.81 ×

4 18 256 216 5.83 × 3.34 × 2.07 × 5.46 × 5.77 × 0.59 × 0.57 × 0.89 ×
768 215 6.25 × 3.45 × 2.08 × 5.91 × 6.29 × 0.60 × 0.57 × 0.89 ×
864 215 7.15 × 3.45 × 2.08 × 6.24 × 6.64 × 0.59 × 0.56 × 0.90 ×

36 256 216 5.98 × 3.33 × 2.02 × 5.49 × 6.38 × 0.59 × 0.53 × 0.82 ×
768 215 6.62 × 3.64 × 2.06 × 6.75 × 6.59 × 0.59 × 0.55 × 0.85 ×
864 215 6.99 × 3.74 × 2.06 × 6.68 × 7.13 × 0.59 × 0.53 × 0.84 ×

8 18 256 216 9.88 × 4.19 × 2.22 × 9.14 × 10.36 × 0.57 × 0.56 × 0.90 ×
768 215 11.55 × 4.30 × 2.29 × 9.85 × 10.55 × 0.58 × 0.55 × 0.91 ×
864 215 11.37 × 4.25 × 2.28 × 10.56 × 11.20 × 0.57 × 0.55 × 0.91 ×
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