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Abstract
Advances in Large Language Models (LLMs)
have sparked interest in their ability to solve
Olympiad-level math problems. However, the
training and evaluation of these models are con-
strained by the limited size and quality of avail-
able datasets, as creating large-scale data for
such advanced problems requires extensive ef-
fort from human experts. In addition, current
benchmarks are prone to contamination, lead-
ing to unreliable evaluations. In this paper, we
present an automated pipeline that leverages the
rich resources of the Art of Problem Solving
(AoPS) forum, which predominantly features
Olympiad-level problems and community-driven
solutions. Using open-source LLMs, we de-
velop a method to extract question-answer pairs
from the forum, resulting in AoPS-Instruct, a
dataset of more than 600,000 high-quality QA
pairs. Our experiments demonstrate that fine-
tuning LLMs on AoPS-Instruct improves their
reasoning abilities across various benchmarks.
Moreover, we build an automatic pipeline that
introduces LiveAoPSBench, an evolving evalua-
tion set with timestamps, derived from the latest
forum data, providing a contamination-resistant
benchmark for assessing LLM performance. No-
tably, we observe a significant decline in LLM
performance over time, suggesting their success
on older examples may stem from pre-training
exposure rather than true reasoning ability. Our
work presents a scalable approach to creating
and maintaining large-scale, high-quality datasets
for advanced math reasoning, offering valuable
insights into the capabilities and limitations of
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LLMs in this domain. Our benchmark and code
is available at https://livemathbench.
github.io/leaderboard.html

1. Introduction
Large language models (LLMs) have shown tremendous
success in solving various tasks such as code generation (Li
et al., 2022), math reasoning (Shao et al., 2024), and com-
monsense reasoning (Zellers et al., 2019; Achiam et al.,
2023), suggesting that current models may show signs of
artificial general intelligence (AGI) (Bubeck et al., 2023).
Math reasoning is perhaps one of the most challenging tasks
for the LLMs, since mathematics is inherently structured,
requiring not just recall of facts but also rigorous logical in-
ference, abstraction, and understanding of formal symbolic
systems. As such, there have been grand challenges (Selsam
et al., 2019) and million-dollar prizes AIMO (2023) estab-
lished for a model capable of solving Olympiad-level math
problems.

On the training side, despite significant progress in certain
areas, such as geometry, particularly with the assistance of
symbolic methods (Trinh et al., 2024), the performance of
LLMs remains limited on Olympiad-level problems (He
et al., 2024). One of the key challenges in advancing
competition-level math reasoning, compared to other do-
mains like coding or grade-school math, is the scarcity of
large-scale data. Creating valid and challenging math ques-
tions, along with providing correct solutions, is costly. This
is especially true for Olympiad-level problems, which can
be time-consuming even for experts. This highlights the
need for scalable and automated methods to collect high-
quality data for Olympiad-level problems to facilitate further
advancements in this field.

On the evaluation side, in contrast to the rapid advancements
in LLMs, the evaluation of their math reasoning capabil-
ities remains relatively underdeveloped. First, as afore-
mentioned, the cost of creating and annotating advanced
math problems is high. Second, popular datasets such as
MATH (Hendrycks et al., 2021b) and GSM8K (Cobbe et al.,
2021) have been saturated by both open-source and closed-
source models (Achiam et al., 2023; Yang et al., 2024b).
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Third, benchmarks whose test sets are publicly available
online (Hendrycks et al., 2021b; Cobbe et al., 2021; He
et al., 2024; Zhang et al., 2023b) are prone to potential con-
tamination. Although techniques like n-gram matching and
locality-sensitive hashing have been applied as a common
practice (Achiam et al., 2023; Dubey et al., 2024; Yang et al.,
2024a) to reduce contamination, they still suffer low accu-
racy and would not be able to rule out rephrased questions,
as shown by Yang et al. (2023). Given these limitations, it
is crucial to develop an evolving evaluation benchmark that
contains abundant and up-to-date test samples, and designed
with appropriate difficulty to fairly assess a model’s math
reasoning abilities.

The Art of Problem Solving1 (AoPS) forum is a rich re-
source for Olympiad-level math problems, featuring discus-
sions on topics such as algebra, geometry, combinatorics,
and number theory from competitions like AMC (AOPS,
2023), AIME (AOPS, 2024), and the International Math-
ematical Olympiad (IMO). However, the forum’s unstruc-
tured nature, including irrelevant comments and incomplete
solutions, poses challenges in extracting high-quality, struc-
tured question-answer (QA) pairs. Developing an effective
automated pipeline to curate these QA pairs is essential
to address the scarcity of large-scale, high-quality data for
training and evaluating models in Olympiad-level math rea-
soning. In this paper, we utilize the posts from the AoPS
forum to create a large-scale training and a contamination-
resistant evaluation set. Our pipeline is designed to run
automatically, enabling us to build and maintain evolving
train/evaluation datasets. This automated approach is cru-
cial, as it allows for continuously updating the datasets,
ensuring they are less likely to suffer from contamination,
even as existing data potentially becomes compromised over
time. In summary, our key contributions are as follows:

• We build a pipeline to extract questions and solu-
tions from raw AoPS forum data, constructing the
AoPS-Instruct, a novel large-scale dataset with 652K
Olympiad-level math QA pairs.

• Using the most recent QA pairs, We build an au-
tomatic pipeline that introduces LiveAoPSBench, a
contamination-resistant evaluation set for assessing the
math reasoning capabilities of LLMs. LiveAoPSBench
stays regularly updated.

• Our experiments on LiveAoPSBench show a declining
performance trend over time for various LLMs, indi-
cating potential data contamination, and stressing the
need for up-to-date evaluation data.

• Fine-tuning various LLMs on AoPS-Instruct lead to
improved performance on standard benchmarks such

1https://artofproblemsolving.com/community

as OlympiadBench, Omni-Math, and our LiveAoPS-
Bench dataset, verifying the effectiveness of our dataset
in enhancing math reasoning capabilities of LLMs.

2. Related Work
In this section, we provide an overview of the existing math-
ematical datasets used for evaluation and training purposes.
Additionally, we review the latest methods and LLMs for
enhancing and evaluating these math datasets.

Evaluation Datasets for Math. The evaluation of the
mathematical capabilities of LLMs has traditionally re-
lied on well-established and widely-used datasets such as
GSM8K and MATH (Cobbe et al., 2021; Hendrycks et al.,
2021b), which have served as benchmarks for several years.
These datasets typically contain math problems ranging
from middle-school to high-school level, providing broad
coverage across various problem categories. However, they
present two significant limitations: 1) being older, their test
sets are more susceptible to contamination from current
training data of LLMs (Yang et al., 2023), and 2) they have
reached a level of saturation, with state-of-the-art (SOTA)
models achieving over 90% accuracy (Yang et al., 2024b).
To address these shortcomings, Zhang et al. (2023b) intro-
duced the Gaokao dataset, which includes more challenging
high school-level problems from the Chinese college en-
trance exam. In addition, newer datasets such as Olympiad-
Bench (He et al., 2024), AMC23 (AOPS, 2023), AIME24
(AOPS, 2024), and Omni-Math (Gao et al., 2024) represent
higher levels of difficulty, collecting from more recent high
school competition problems. While these datasets tem-
porarily mitigate the risk of data contamination, they remain
susceptible to this issue as LLMs continue to evolve, partic-
ularly with fine-tuning on newer data. To address this, we
introduce LiveAoPSBench, which utilizes the most recent
posts from the AoPS forum and applies substring-matching
techniques to exclude any previously used problems from
the new posts. More importantly, our pipeline is fully au-
tomated, allowing the evaluation set to evolve with forum
posts, thereby significantly decreasing the likelihood of con-
tamination.

Training Datasets for Math. Training datasets for math-
ematical reasoning can be categorized into two types: pre-
training and supervised fine-tuning (SFT) datasets. First,
pretraining datasets consist of large-scale math data, e.g., bil-
lions of tokens used during the pretraining phase of LLMs.
Notable examples include Open-Web-Math (Paster et al.,
2024) and Minerva (Lewkowycz et al., 2022), which contain
38.5B and 14.7B tokens of math data, respectively. Second,
SFT datasets focus on high-quality question-answer pairs.
Examples include Open-Math-Instruct (Toshniwal et al.,
2024), Orca-math (Mitra et al., 2024), MetaMath (Yu et al.,
2024), DART-Math (Tong et al., 2024), ScaleQuest (Ding

2



Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation

Mar-May 23

Jun-Aug 23
Sep-Nov 23

Dec-Feb 24

Mar-May 24

Jun-Aug 24

5

10

15

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

Model 2023 2024 Drop
(5.2K) (3.8K) (%)

7B-Qwen2.5-Math-Ins 34.80 33.40 4.02
72B-Qwen2-Math-Ins 37.84 36.15 4.45
72B-Qwen2.5-Math-Ins 42.36 40.45 4.51
72B-NuminaMath-CoT 25.59 24.14 5.68
20B-Internlm2-Math-Plus 17.78 16.03 9.83
16B-DeepSeekCoderV2-Ins 22.08 19.80 10.31
7B-Qwen2-Math-Ins 33.26 29.32 11.85
7B-NuminaMath-CoT 16.88 14.76 12.55
7B-DeepSeek-Math-RL 14.35 12.44 13.35
7B-Mathstral-v0.1 15.25 13.00 14.76
7B-Internlm2-Math-Plus 16.26 13.64 16.16

27B-Gemma2-it 12.78 11.59 9.30
70B-Llama-3.1-Ins 22.02 19.34 12.16
8B-Llama3.1-Ins 13.01 10.85 16.55
3B-Llama3.2-Ins 12.67 10.32 18.51
9B-Gemma2-it 11.63 9.30 20.01
1B-Llama-3.2-Ins 6.32 4.83 23.62

Figure 1. Accuracy trends of various LLMs on LiveAoPSBench over an 18-month period, highlighting a consistent decline in performance.
We separate the math expert model from the general purpose model on the right. The degradation in accuracy varies across models,
ranging from 2.4% to 23.6%. Please refer to figure 8 for results on state-of-the-art reasoning models like Qwen-QwQ and DeepSeek-R1.

et al., 2024), MATH2 (Shah et al., 2024), and the training
sets of widely used benchmarks such as GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021b). How-
ever, these datasets are generally limited to grade-school
and intermediate high-school level mathematics and do not
target more advanced topics like Olympiad-level math. One
of the most closely related datasets to ours is Numina (Li
et al., 2024), which combines popular SFT datasets like
Orca-math, MATH, and GSM8K, along with approximately
190K new Olympiad-level QA pairs. Concurrently, Yue
et al. (2024) introduced a large-scale instruction fine-tuning
dataset for math and science, which has also shown improve-
ments in mathematical reasoning. Table 1 presents a detailed
comparison of our dataset with these related datasets.

Contamination-Resistant Evaluation. Benchmarks that
are publicly accessible are prone to be contaminated due
to the potential inadvertent data overlap during training.
The typical decontamination method involves using exact
substring (e.g., n-gram) matching to detect overlaps with
the target evaluation sets (Zhuo et al., 2024). However,
this approach fails to catch rephrased examples and can not
eliminate all overlaps with the test set (Yang et al., 2023).
While alternative LLM-based methods for decontamination
have been proposed, they often lack guarantees and may
result in high false-positive rates (Yang et al., 2023). A
reliable way to mitigate contamination is to select data that
appeared after LLMs were trained, known as the knowledge
cut-off. In the code generation domain, LiveCodeBench
(Jain et al., 2024) addresses this issue by categorizing data
based on timestamps, setting a cutoff date, and designating

Table 1. Comparison of our dataset with other related datasets from
the literature. Our dataset uniquely includes timestamp informa-
tion and leverages open-source large language models (LLMs)s
like Qwen 2.5 72B for solution rewrites. ⋆ denotes inclusion of ad-
ditional training datasets such as GSM8K, Orca-Math, and MATH.
Datasets marked with † have their solutions entirely generated by
LLM.

Dataset Dataset Size Time Olympiad Solution
Train Eval Stamp Level Rewrite

Numina 859K⋆ 0.1K ✗ ✓ GPT4-o
OpenMathInstruct 1.8M − ✗ ✗ Mixtral†

OlympiadBench − 6.1K ✗ ✓ Human
DART-Math 585K −K ✗ ✗ DeepSeekMath†

GSM8K 7.5K 1K ✗ ✗ Human
MATH 7.5K 5K ✗ ✗ Human
Orca-Math 200K - ✗ ✗ GPT-4†

MAmmoTH2 10M - ✗ ✗ Mixtral

AoPS (Ours) 647.2K 3.8K ✓ ✓ Qwen 2.5

data beyond this point as unseen. We adopt a similar strategy
in the math domain, partitioning the dataset by timestamps
and enabling users to select data based on specific dates.
Although this approach may not fully eliminate rephrased
existing questions, it ensures that evaluation data remains
unseen and less contaminated, providing a more accurate
and fair assessment of LLMs.

Math-Specific Models. Several specialized models have
been developed to improve the mathematical reasoning ca-
pabilities of LLMs (Shao et al., 2024; Mistral, 2024; Li et al.,
2024; Yang et al., 2024b; Azerbayev et al., 2024). These
models are typically initialized from pretrained general-
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Figure 2. The overall process of our dataset curation. Top: Processing pipeline of AoPS-Instruct (training data). First, irrelevant
topics are detected using a small LLM. We then extract question-answer pairs from relevant discussions, and rewrite each answer into a
step-by-step solution. Bottom: LiveAoPSBench Processing pipeline of LiveAoPSBench (evaluation data). We take the most recent posts,
use two LLMs to rewrite the solution, filter out the questions without clear answers, and create the final evaluation set.

purpose models, trained on large math datasets, followed by
math-specific SFT, and then refined through reinforcement
learning with human feedback (RLHF). In this paper, we
fine-tune both general and math-specific models to demon-
strate that AoPS-Instruct brings consistent improvements.

3. AoPS Dataset
In this section, we first describe the process of extracting and
cleaning QA pairs from the AoPS forum to construct our
training set. Then we explain how to utilize the latest forum
data to create a reliable, contamination-resistant evaluation
dataset for assessing model performance.

3.1. Math Instruction Fine-tuning Dataset:
AoPS-Instruct

We now describe the five steps of our automated pipeline
for constructing the instruction fine-tuning dataset AoPS-
Instruct.

Step 0: Raw Forum Discussion Collection. We begin by
collecting raw discussions from the forum website, where
each discussion is called a “topic”. In these topics, the

author presents math problems (e.g., competition-level prob-
lems) or general questions, such as seeking advice or re-
sources. Our raw dataset consists of 1, 076, 712 topics. Top-
ics posted up until December 2023 are used as the training
set, while those posted between January and August 2024
are reserved as the evaluation dataset.

Step 1: Math Question Detection. We then filter out irrele-
vant topics, specifically those not containing a mathematical
question. To achieve this, we use Qwen 2.5 14B (Yang et al.,
2024a) to decide the relevance of each topic. The first post
of each topic determines whether the topic is a mathematical
question or not, so we manually design a few-shot prompt,
provide the first post of the topic to the model, and prompt
the model to output if the topic is a math question or not.
This step reduces the dataset to 478, 337 topics with math
questions after pruning 598, 375 irrelevant ones.

Step 2: Question-Answer Extraction. After filtering, we
extract the math question from the first post of each topic
and identify potential solutions provided in subsequent posts.
Since this task requires understanding the entire conversa-
tion and determining which responses contain valid solu-
tions, we employ the 70B variant of Llama 3.1 for this step,
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Question: Find all solutions in N: 22
x

+ 1 = 17y

User Response:
The multiplicative order of 2 modulo 17 is 8, since 24 = 16 ≡ −1 (mod 17). Therefore, if x ≥ 3, then 8 | 2x, and so 22

x

≡ 1

(mod 17). So x ≤ 2, and so the only solution is (x, y) = (2, 1).

Qwen Rewritten Solution:
1. Determine the multiplicative order of 2 modulo 17. We find that 24 = 16 ≡ −1 (mod 17).
2. Since 24 ≡ −1 (mod 17), it follows that 28 ≡ 1 (mod 17). Therefore, the multiplicative order of 2 modulo 17 is 8.
3. Consider the equation 22

x

+ 1 = 17y. If x ≥ 3, then 2x is a multiple of 8 (since 23 = 8 and higher powers of 2 are multiples
of 8).
4. If 2x is a multiple of 8, then 22

x

≡ 1 (mod 17), because the order of 2 modulo 17 is 8.
5. Substituting 22

x

≡ 1 (mod 17) into the equation, we get 1 + 1 ≡ 17y (mod 17), which simplifies to 2 ≡ 0 (mod 17).
This is a contradiction.
6. Therefore, x must be less than 3. The possible values for x are 0, 1, and 2.
7. Check each possible value of x:

• For x = 0: 22
0

+ 1 = 21 + 1 = 3, which is not divisible by 17.

• For x = 1: 22
1

+ 1 = 22 + 1 = 5, which is not divisible by 17.

• For x = 2: 22
2

+ 1 = 24 + 1 = 16 + 1 = 17, which is divisible by 17.

8. The only solution is (x, y) = (2, 1).
Thus, the solution is (2, 1) .

Figure 3. Example of a posted problem, a user solution, and a LLM-rewritten solution. The model fills in the trivial intermediate steps,
reformats the response, and puts the final answer in a box.

enabling the detection of both the question and all relevant
answers from the discussion.

Step 3: Solution rewriting. Math solutions generated by
users on the AOPS forum are often concise, omitting details
assumed to be common knowledge among the target audi-
ence. For instance, a user might write (x+ yz)/2 ≥ √

xyz
without explicitly mentioning the application of the AM-
GM inequality to (x, yz). While such brevity is typical for
expert-level discussions, LLMs trained on these succinct
solutions often struggle to maintain their chain-of-thought
reasoning capabilities.

Our experiments show that fine-tuning a model on these
concise solutions significantly degrades its performance on
standard benchmarks (see Section 4.5 and Figure 5b). To
address this issue, we utilize the Qwen 2.5 72B model (Yang
et al., 2024b) to rewrite all solutions into detailed, step-
by-step explanations. This approach aligns with similar
techniques used in prior work, such as the Numina project
(Li et al., 2024), which also employed solution rewriting
to improve response quality. An example of a rewritten
solution is provided in Figure 3, and the overall dataset
curation process is illustrated in Figure 2.

Step 4: Data Decontamination. After processing all the
QA pairs, we apply data decontamination to remove any

overlap with the test sets of commonly used math bench-
marks. Following the approach used in DeepSeekMath
(Shao et al., 2024), we employ a 10-gram exact match de-
contamination (Zhuo et al., 2024) method to ensure that our
dataset remains distinct from those benchmarks.

After following the steps described above, we have a total
of 652K QA pairs, out of which 647, 255 are before Jan
2024 and constitute the AoPS-Instruct. We provide further
statistics of our dataset in Section 4.1 and Figure 4.

3.2. Contamination-Resistant Evaluation:
LiveAoPSBench

Math LLMs are trained on large instructional corpora. A
common issue with current evaluation sets is the risk of con-
tamination, where test samples may inadvertently overlap
with training data. To create contamination-resistant bench-
marks, we constructed our evaluation set by sorting the raw
data based on the initial posting timestamp and including
only the most recent entries. Our evaluation set, denoted
as LiveAoPSBench, is sourced from the AoPS forum, with
posts strictly between January 2023 and September 2024.
We utilize the same pre-processing pipeline, depicted in
Figure 2, to extract QA pairs and have the raw solutions
rewritten for consistency.
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Filtering. The correctness of the solution is typically veri-
fied by comparing the final answer to the human-annotated
answer. Note that human-annotated answers may still con-
tain errors, as we do not perform formal proofs or verifica-
tion. When constructing an evaluation set, it is essential that
each question has a concrete and definite answer, which is
enclosed as ans format for ease of parsing, as illustrated
in Figure 3. We start by applying a series of heuristic fil-
ters to exclude proof-based questions and extract only those
with explicit, boxed answers. To ensure that our test set
does not contain problems included in widely used train-
ing sets, we use an stricter 8-gram matching filter—stricter
compared to the 10-gram filter used for training set decon-
tamination. This helps eliminate any potential overlap with
common training corpora (Hendrycks et al., 2021b; Cobbe
et al., 2021; Mitra et al., 2024).

Cross-Check by LLMs. A key challenge in building a fair
evaluation set is ensuring the accuracy and validity of QA
pairs. To automate this process, we employed two differ-
ent models—Llama3.1-70B-Ins (Dubey et al., 2024) and
Qwen2.5-72B-Ins (Yang et al., 2024a) to perform the rewrit-
ing step twice for each question. Consequently, for each
question Q, we obtain a triplet: (Aqwen, Allama, Aoriginal). If
a boxed answer is detected in Aoriginal, it is automatically
accepted as a candidate answer for the question. Following
this, we performed a cross-check between Aqwen and Allama,
removing all cases with inconsistent answers. This was done
through string matching for text and value matching for num-
bers, while a SymPy-based (Meurer et al., 2017) symbolic
equivalence program was used for SymPy-parsable expres-
sions. The final answers are obtained by deduplicating the
candidate answers. Through this process, we constructed
LiveAoPSBench, which contains 3863 2 examples, all of
which are from posts in the year 2024. Further details can
be found in Appendix A.

Quality Verification. We assess the quality of our dataset by
having a group of 10 graduate students annotate a randomly
selected 10% subset (386 cases) from our evaluation set.
Each human annotator verifies whether the final answer is
correct based on the raw post, with each question annotated
by two different individuals. We report the percentage of
cases marked as correct by the human annotators to measure
the correlation between human judgment and our method.
Additionally, since Olympiad-level questions can be chal-
lenging even for humans, we also report the inter-annotator
agreement to evaluate consistency between different groups
of human annotators. More details can be found in Section
4.5.

Evolving Evaluation with Up-to-date Data. Since our

2The version of LiveAoPSBench we present in this paper corre-
sponds to LiveAoPSBench-0824 which contains problems posted
between 01-2024 to 08-2024.

Table 2. 10-gram Overlap Statistics Across Time Periods
Time 23/01-04 23/05-08 23/09-12 24/01-04 24/05-08

Overlap (%) 13.24 11.65 12.82 9.92 6.88
Count 229 208 218 226 109

pipeline does not require human annotators, we are able to
continuously update our LiveAoPSBench in an automated
manner. This makes our benchmark an up-to-date and times-
tamped evaluation set that is resistant to contamination,
thereby providing a more reliable mathematical evaluation
resource for the research community.

4. Experiments
4.1. Dataset Statistics

We provide a better overview of the AoPS dataset in Figure
4. As shown in Figure 4a, more than 60% of the questions
have only one answer, while around 24% and 8% have two
and three answers, respectively. Figure 4b shows the number
of posts across each year, with a cut-off of August 2024. We
observe that each year at least 15K mathematical questions
are posted to the forum. This translates to more than 1, 000
monthly questions, which shows the potential of the AoPS
forum to be used as training, and especially evaluation set.
Figure 4c shows a breakdown of the types of questions in
our dataset. Proof questions and numerical questions with
about 32% and 28% constitute the majority of the questions
in our dataset.

Finally, Figure 4d shows the pairwise overlap between
each pair of popular supervised fine-tuning datasets us-
ing substring matching between the two datasets of each
pair. Among the two Olympiad-level datasets (i.e., ours and
Numina), our dataset has the least overlap with common
datasets (with less than 14.1% overlap), which shows the
number of new data points.

4.2. Evaluation Set with Timestamps Mitigate
Contamination

We analyze the relationship between timestamps and con-
tamination using our evaluation set, tested against the Num-
nia Training Set (released July 2024). As shown in Table 2,
we report contamination levels based on 10-gram overlap
rates across different timestamps. We observe a consistent
decrease in contamination rate as the test data timestamps
become more recent.

4.3. Evaluating Open-Sourced Models

We evaluate the models’ performance as a function of time
window. As shown in Fig 1, we find that all the models
experience a performance drop when evaluating 2024 ques-
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Table 3. Performance comparison of different models fine-tuned
on various datasets across multiple benchmarks. Bold values in
the columns for No SFT, Numina, and AoPS-Ins represent the
highest scores for individual datasets. Additionally, bold values for
Numina+AoPS-Ins indicate performance that matches or surpasses
all other fine-tuning alternatives.

Model SFT Dataset AoPS24 Math
Olympiad

Bench
Omni
Math

No SFT 11.7 47.1 14.5 12.3
Deepseek-Math Numina 16.3 55.5 22.7 17.0

7b-Ins AoPS-Ins 19.0 58.8 24.3 17.8

Numina+AoPS-Ins 19.7 58.8 25.6 18.0

No SFT 15.40 56.30 21.20 15.90
Mathstral Numina 16.60 54.60 23.40 17.10

7B AoPS-Ins 23.60 60.80 27.10 19.90

Numina+AoPS-Ins 24.90 59.60 29.60 21.10

No SFT 12.0 47.4 16.1 12.9
Llama-3.2 Numina 12.9 49.5 19.3 14.4

3B-Ins AoPS-Ins 16.7 54.6 19.6 16.4

Numina+AoPS-Ins 17.4 55.6 22.8 17.2

No SFT 5.30 28.80 4.70 7.00
Llama-3.2 Numina 8.00 32.70 6.40 9.70

1B-Ins AoPS-Ins 10.00 34.70 11.10 11.00

Numina+AoPS-Ins 11.20 36.60 12.00 11.70

tions compared to questions in 2023. This decline suggests
that performance on earlier examples may not accurately
reflect the true capabilities of LLMs, as the initial results
could be inflated by inadvertent data overlap.

4.4. Instruction Fine-Tuning

We show that the collected training dataset is effective at
improving the math reasoning capabilities of LLMs. To this
end, we choose 4 representative LLMs and fine-tune them
on our dataset combined with the Numina (Li et al., 2024)
dataset, and show that such a combination provides superior
performance compared to training on either of the datasets
alone.

We use the following set of diverse models for fine-tuning
evaluation: (1) Mathstral-7B (Mistral, 2024): a math-
specialized model derived from Mistral-7B (Jiang et al.,
2023), (2) DeepSeekMath-7B (Shao et al., 2024): a math-
specialized model based on the DeepSeek family, and (3)
Llama 3.2 3B (Dubey et al., 2024) and (4) Llama 3.2
1B (Dubey et al., 2024), two recent general state-of-the-art
models. For each QA pair, only the question is used as the in-
struction, with the rewritten solution serving as the response,
formatted within the model’s respective chat template. For
instance, with Mathstral, we use the prompt: <s>[INST]
question [/INST]solution for instruction tuning.

Consistent with prior work, we train each model for three
epochs (Shao et al., 2024; Yang et al., 2024b), as we observe
additional epochs provide no further benefit (see Figure
10 in the Appendix for ablation studies on the number of

epochs). We explore three data mixtures for fine-tuning:
(1) AoPS alone, (2) Numina alone, and (3) AoPS + Nu-
mina. For each dataset, we use the full decontaminated
dataset for fine-tuning (i.e., Numina with 824K QA pairs,
and AoPS-Instruct with 647K QA pairs). After fine-tuning
each model, we evaluate the performance of each model on
the following standard competition-level benchmarks: (1)
OlympiadBench (He et al., 2024), which is an Olympiad-
level evaluation dataset. Following prior literature (Yang
et al., 2024a), we take only the math questions which have
final answers and do not contain images or figures. This
leaves us with 675 samples from this dataset (2) Omni-
MATH (Gao et al., 2024), which is a collection of 4428
problems from various mathematical olympiad competi-
tions. (3) LiveAoPSBench set for the year 2024. The results
are shown in Table 3. As shown by the table, fine-tuning
with our dataset consistently boost the performance.

4.5. Ablation Studies

Evaluation Quality Assessment. We assess the quality
of our evaluation set in two ways: by measuring its corre-
lation with a well-established dataset and through manual
evaluation over a subset of the data. First, He et al. (2024)
compiled an Olympiad-level math evaluation set using man-
ual assessment, which we leverage in our context to verify
the quality of our method through the correlation between
accuracies. Figure 5a, demonstrates that the evaluation on
LiveAoPSBench is highly correlated with carefully estab-
lished benchmarks such as OlympiadBench. This demon-
strates that our automatically generated benchmark aligns
closely with the quality of those created through extensive
human effort. Next, we subsample 10% of our evaluation
set and ask human annotators to verify the correctness of
the final parsed answers by referring to the original post.
Annotators are given three options: yes, no, and no-answer.
“Yes” and “no” indicate whether the answer is deemed cor-
rect, while “no-answer” is selected when a concrete answer
is not appropriate (e.g., abstract concept questions answered
with concrete examples). As a result, we found that 92%
of the annotations were marked as correct, while 5% were
incorrect and 3% fell under the no-answer category.

Rewritting’s effect on performance. We also ablate the
effect of solution rewriting, which is an important part of
our pipeline. As shown in Figure 5b, rewriting solutions
into a step-by-step format substantially improves the test
accuracy across all benchmarks. The Qwen-2.5 72B based
rewriting performs favorably against Llama-3.1 70b based
rewriting on competition-level math benchmarks, while be-
ing slightly worse on easier grade-school math. Overall,
we found Qwen to be a stronger model, providing a higher
amount of details and being less verbose compared to Llama
in rewriting solutions (see Figure 18 in the Appendix for a
qualitative example). This suggests that rewriting solutions

7



Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation

1 2 3 4 5 6
# Answers

0

50000

100000

150000

200000

250000

300000

# 
Qu

es
tio

ns

(a) Number of answers per
question.

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Year

0

5000

10000

15000

20000

25000

30000

35000

# 
Po

st
s

(b) Number of questions per year, based
on post date.

Proof
32.0%

Numerical

28.7%

Expression

17.7%

Other

11.6%

Equation

5.7%
List

4.3%

(c) Problem category distri-
bution.

MAT
H

GSM
8K

ORC
A Math

Ope
nM

ath
Ist

Num
ina Ao

PS

MATH

GSM8K

ORCA Math

OpenMathIst

Numina

AoPS

1.000 0.000 0.000 0.870 0.876 0.727

0.000 1.000 0.999 0.867 0.973 0.000

0.000 0.162 1.000 0.141 0.807 0.001

0.773 0.223 0.223 1.000 0.897 0.566

0.035 0.042 0.180 0.067 1.000 0.074

0.025 0.000 0.000 0.022 0.094 1.000
0.0

0.2

0.4

0.6

0.8

1.0

(d) Pairwise overlap between various
datasets.
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Figure 5. Ablations on LiveAoPSBench. (a) The performance of
models on our benchmark is highly correlated with established
datasets. (b) The effect of rewriting user solutions into a step-by-
step solution with two different models, on an early version of our
dataset. Rewriting solutions always improves accuracy, and using
stronger models leads to larger accuracy gains.

5. Limitations
Absence of Visual Content. Our dataset currently focuses
on text-only problems, which may limit its effectiveness in
certain areas, particularly geometry. Many geometry prob-
lems rely heavily on diagrams to fully convey the problem
statement. Incorporating relevant images and figures could
significantly enhance the dataset’s comprehensiveness and
applicability, especially in visually-dependent mathematical
domains.

Evaluation of Proof-based Questions. Our evaluation
dataset focuses on QA pairs with clear, final answers, which
is well-suited to a broad range of Olympiad-level problems.
However, a significant portion of such types of problems
involve more complex proof-based questions that require
detailed logical reasoning and multiple steps. While we
incorporate proof-based questions in our instruction-tuning
pipeline, the current evaluation pipeline lacks the ability to
evaluate such questions effectively.

Quality Variability in Community-Generated Content.
The community-driven content from the AoPS forum pro-
vides a rich source of high-quality data. Nevertheless, as
with any community-generated content, the quality of an-
swers and solutions can vary. While our filtering and refine-
ment processes have successfully mitigated much of this
noise, incorporating more advanced techniques in future
iterations could result in better consistency and precision.

6. Conclusion and Future Work
In conclusion, this paper introduces the AoPS-Instruct
dataset and LiveAoPSBench, leveraging community-driven
content from the Art of Problem-Solving forum to address
the challenges of limited training data and unreliable evalu-
ation for LLMs solving Olympiad-level math problems. By
developing a scalable and automated pipeline for extract-
ing and refining question-answer pairs, this work presents
a dataset containing over 600, 000 QA pairs, along with an
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up-to-date, contamination-resistant evaluation benchmark.
Our experiments demonstrate significant performance im-
provements across multiple standard benchmarks for mod-
els fine-tuned on the AoPS-Instruct, highlighting enhanced
mathematical reasoning capabilities. Furthermore, the ob-
served performance decline of various LLMs on LiveAoPS-
Bench underscores the importance of continuously updating
evaluation sets to mitigate the risks of data contamination.

For future work, there are several promising directions to
explore. First, while this paper focuses on the AoPS forum,
the pipeline developed is not limited to this domain. It is
generalizable and can be applied to other online forums or
different subject areas, enabling the creation of high-quality
datasets for various fields, such as physics, computer sci-
ence, or even non-technical disciplines. Expanding this
pipeline to other knowledge-intensive communities could
further improve the training and evaluation of LLM across
disciplines. Additionally, the quality of the dataset can
be significantly improved by incorporating more advanced
LLMs into the pipeline. Leveraging state-of-the-art mod-
els for question extraction, answer detection, and solution
rewriting would result in more accurate and detailed data,
ultimately enhancing the effectiveness of the fine-tuned mod-
els. Moreover, the problems is AoPS-Instruct could be used
as a diverse set to distill larger models into smaller mod-
els. Lastly, the current pipeline focuses on question-answer
pairs with clear final answers, but a significant portion of
Olympiad-level problems involves proof-based questions
that require a deeper evaluation of logical reasoning, argu-
ment structure, and intermediate steps. Future work could
include adapting the pipeline to accommodate these proof-
based problems, potentially using another advanced LLM
as a judge (Li et al., 2023), or incorporating formalization
methods to better assess these complex solutions.

Impact Statement
This paper aims to advance the field of mathematical rea-
soning. It is important to note that AoPS-Instruct and
LiveAoPSBench contain no personal information. Addi-
tionally, we have not identified any societal consequences
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Acknowledgments
This work was funded, in part, by the NSERC DG Grant
(No. RGPIN-2022-04636), the Vector Institute for AI,
Canada CIFAR AI Chair, NSERC Canada Research Chair
(CRC), NSERC Discovery Grants, a Google Gift Fund,
and the Government of Canada’s New Frontiers in Re-
search Fund NFRFE-2023-00936. Resources used in
preparing this research were provided, in part, by the
Province of Ontario, the Government of Canada through

the Digital Research Alliance of Canada alliance.can.
ca, and companies sponsoring the Vector Institute www.
vectorinstitute.ai/#partners, and Advanced
Research Computing at the University of British Columbia.
Additional hardware support was provided by John R. Evans
Leaders Fund CFI grant. Sadegh Mahdavi and Muchen Li
are supported by UBC Four Year Doctoral Fellowships.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

AIMO. The aimo prize. https://aimoprize.org,
November 2023.

AOPS. 2023 amc 12a, and 12b problems.
https://artofproblemsolving.com/
wiki/index.php/2023_AMC_12A_Problems,
https://artofproblemsolving.com/wiki/
index.php/2023_AMC_12B_Problems, 2023.

AOPS. 2024 aime community page. https:
//artofproblemsolving.com/community/
c3370201_2024_aime, 2024.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S. M., Jiang, A. Q., Deng, J., Biderman, S.,
and Welleck, S. Llemma: An open language model for
mathematics. In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=4WnqRR915j.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Ding, Y., Shi, X., Liang, X., Li, J., Zhu, Q., and Zhang,
M. Unleashing reasoning capability of llms via scal-
able question synthesis from scratch. arXiv preprint
arXiv:2410.18693, 2024.

9

alliance.can.ca
alliance.can.ca
www.vectorinstitute.ai/#partners
www.vectorinstitute.ai/#partners
https://aimoprize.org
https://artofproblemsolving.com/wiki/index.php/2023_AMC_12A_Problems
https://artofproblemsolving.com/wiki/index.php/2023_AMC_12A_Problems
https://artofproblemsolving.com/wiki/index.php/2023_AMC_12B_Problems
https://artofproblemsolving.com/wiki/index.php/2023_AMC_12B_Problems
https://artofproblemsolving.com/community/c3370201_2024_aime
https://artofproblemsolving.com/community/c3370201_2024_aime
https://artofproblemsolving.com/community/c3370201_2024_aime
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://arxiv.org/abs/2501.12948


Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783x qx q, 2024.

Gao, B., Song, F., Yang, Z., Cai, Z., Miao, Y., Dong, Q.,
Li, L., Ma, C., Chen, L., Xu, R., et al. Omni-math:
A universal olympiad level mathematic benchmark for
large language models. arXiv preprint arXiv:2410.07985,
2024.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z., Shen, J., Hu, J.,
Han, X., Huang, Y., Zhang, Y., Liu, J., Qi, L., Liu, Z., and
Sun, M. OlympiadBench: A challenging benchmark for
promoting AGI with olympiad-level bilingual multimodal
scientific problems. In Ku, L.-W., Martins, A., and Sriku-
mar, V. (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 3828–3850, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.211. URL https:
//aclanthology.org/2024.acl-long.211.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021a.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. NeurIPS,
2021b.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code. arXiv preprint
arXiv:2403.07974, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Koncel-Kedziorski, R., Roy, S., Amini, A., Kushman, N.,
and Hajishirzi, H. Mawps: A math word problem reposi-
tory. In Proceedings of the 2016 conference of the north
american chapter of the association for computational lin-
guistics: human language technologies, pp. 1152–1157,
2016.

Lewkowycz, A., Andreassen, A. J., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V. V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., Wu, Y., Neyshabur, B., Gur-
Ari, G., and Misra, V. Solving quantitative reasoning
problems with language models. In Oh, A. H., Agarwal,
A., Belgrave, D., and Cho, K. (eds.), Advances in Neural

Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=IFXTZERXdM7.

Li, J., Beeching, E., Tunstall, L., Lipkin, B., Soletskyi, R.,
Costa Huang, S., Rasul, K., Yu, L., Jiang, A., Shen, Z.,
Qin, Z., Dong, B., Zhou, L., Fleureau, Y., Lample, G.,
and Polu, S. Numinamath. https://github.com/
project-numina/aimo-progress-prize/
blob/main/report/numina_dataset.pdf,
2024.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 5 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Meurer, A., Smith, C. P., Paprocki, M., Čertı́k, O., Kirpichev,
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A. More details on LiveAoPSBench
A.1. Evaluation pipeline statistics

To begin with, we have 14158 QA pairs with time stamps between Jan-2024 and Aug-2024. Decontamination with 8-gram
matching is performed against Math and GSM8K training set (Hendrycks et al., 2021b; Cobbe et al., 2021), which removes
664 Q-A pairs. After removing proof questions and non-boxed solutions, we are left with 7173 Q-A pairs over 5416
unique questions. Lastly, The LLM cross-check filters out 1553 questions with inconsistent solutions and the resulting
LiveAoPSBench contains 3863 questions. We apply the same pipeline described in Sec 3.2 to data with a time stamp
between Jan-2023 and Dec-2023 and get 5216 questions for the 2023 split result.

A.2. Human Annotation

As shown in Figure 6, we develop a simple web interface for human annotators to verify the answers extracted by our LLMs.
Annotators compare the “Voted Answer”, “Original Answers” and all posts in the original topic page identified by LLMs to
verify if the “Voted Answer” matches the original posts’ answers. The verification process provides four results: Positive
(“Yes”), negative (“No/No Answer”), and neutral (“Not sure”). The “Not sure” option is provided since verifying the answer
sometimes requires a certain mathematical foundation and a significant amount of reading time. We also show highlight two
examples of disagreement in Figure 7.

A.3. Derivation of Difficulty Levels

The difficulty levels in this dataset do not reflect the exact difficulty of the problems but rather approximate the general
education background of the problem, e.g., this is a “High School” level problem. However, a challenging high school
problem may be more complex than an easy college-level problem. The classification is derived from the problem tag
in the AOPS forum, where the categories correspond to “Middle School”, “High School”, “College”, and “High School
Olympiads”. In addition, some problems originate from special forums, which do not fit into the above categories and are
classified as “Others” in our dataset.

Figure 6. Human Annotation Interface.
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Example 1

Question: In a triangle, ABC, Angle BAC = 90◦; AD is the altitude from A onto BC. Draw DE perpendicular to AC and
DF perpendicular to AB. Suppose AB = 15 and BC = 25. Then the length of EF is?

Raw Post:
Because the triangle is a right triangle, so by the Pythagorean Theorem, the length of AC is 25² - 15² = 20. The area of ABC is
AB * AC / 2 = 15 * 20 / 2. But it can also be represented by 25 * AD / 2. Putting them together we get 15 * 20 / 2 = 25 * AD / 2.
So AD = 15 * 20 / 25 = 12. Because DE perpendicular to AC and DF perpendicular to AB, AEDF is a rectangle, which means
that EF = AD, EF = 12. The answer is A.

Voted Answer: 12

Is the Voted answer consistent with answer in raw post?
Human Annotator 1: ✓
Human Annotator 2: ✗

Example 2

Question: For a positive integer k we write (1+x)(1+2x)(1+3x)......(1+kx) = a0+a1x+a2x
2+.......+akx

k where a0, ...ak

are the coefficients of the polynomial. Find the sum of all the digits of smallest possible value of k if a0+a1+a2+ ......a(k−1)
is divisible by 2005.

Raw Post:
f(x) = (1 + x)(1 + 2x) . . . (1 + kx) = a0 + a1x+ . . .+ akx

k

a0 + a1 + . . .+ ak−1 = f(1)− ak

ak = 1 · 2 · 3 . . . k = k!
f(1) = 2 · 3 · 4 . . . (1 + k) = (k + 1)!
2005 | (k + 1)!− k! =⇒ 2005 | k · k!
2005 = 5 · 401
k ≥ 401

Voted Answer: 5

Is the Voted answer consistent with answer in raw post?
Human Annotator 1: ✗
Human Annotator 2: ✓

Figure 7. We highlight two examples of annotation inconsistencies caused by human annotators: 1. Example 1: Annotator 2 failed to
recognize that the answer is explicitly stated in the raw post. 2. Example 2: The raw post does not directly provide the final answer.
Annotator 1 was unable to reason that 4 + 0 + 1 = 5 constitutes the correct solution.

B. Detailed Evaluation Results on LiveAoPSBench
B.1. LiveAoPSBench-2024

We update the LiveAoPSBench with the complete 2024 data. This resulted in LiveAoPSBench-2024 with 5328 questions.
In figure 8 we provide the latest result with the state-of-the-art reasoning models like deepseek-r1(DeepSeek-AI, 2025) and
QwQ(Team, 2024).

B.2. Evaluating open-sourced LLMs

We have selected several mainstream open-source general LLMs and math-specific LLMs that demonstrate high performance
on the previous math evaluation datasets. For math-specific LLMs, we choose DeepSeek-Math-7b-rl (Shao et al., 2024),
Mathstral-7B-v0.1 (Mistral, 2024), 7b and 20b versions of Internlm2-Math-plus (Ying et al., 2024), 7B and 72B versions of
NuminaMath-CoT (Li et al., 2024), 1.5B,7B,72B version of Qwen2-Math-Instruct (Yang et al., 2024a) and Qwen2.5-Math-
Instruct (Yang et al., 2024b) as the representative of the math specific LLMs. Additionally, we include DeepSeek-Coder-V2-
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Figure 8. Accuracy trend over time for LiveAoPSBench-2024. For the most up-to-date results, please visit: https://
livemathbench.github.io/leaderboard.html.

Lite-Instruct (Zhu et al., 2024), which is a code specialist model trained on both math and code corpus. For general purpose
LLMs, We report performance on 1B, 3B and 8B versions of the Llama3 family models (Dubey et al., 2024) as well as 9B
and 27B versions of Gemma-2-Instruct (Team et al., 2024) model.

B.3. Detailed Results

The accuracy comparison for these mainstream open source LLMs are shown in Tables 4, 5, 6 split by Month, Difficulty
and Answer Type. The Month tables separately include evaluation results for 2023 and 2024. For the Difficulty and
Answer Type tables, we use only the most recent evaluation results from 2024. Notably, the difficulty labels represent the
general educational background of the problems rather than their exact difficulty. Over half of the problems originate from
educational backgrounds associated with High School or High School Olympiads, and only around 7% are from Middle
School, indicating our dataset’s focus is more on the complex problems. Similarly, in the Answer Type Table, more than
half of the problems are categorized as numeric-int.

C. Training set details
C.1. Decontamination Details

We use 10-gram substring matching to decontaminate against test set for a comprehensive list of math evaluation datasets
available. (Cobbe et al., 2021; Hendrycks et al., 2021b; He et al., 2024; AOPS, 2023; 2024; Zhang et al., 2023b; Lewkowycz
et al., 2022; Gao et al., 2024; Miao et al., 2020; Hendrycks et al., 2021a; Koncel-Kedziorski et al., 2016; Patel et al., 2021;
Zhang et al., 2023a). In Figure 9. We show the decontamination statistic for our dataset and Numina.

D. SFT Experiements
D.1. Ablation with controlled computation budget

As shown in Tab 3, Numina + AoPS-Instruct performs favorably against using AoPS-Instruct or Numina alone. To show
this gain is not simply achieved by doubling the computation available for fine-tuning. We control the total fine-tune
budget the same for AoPS-Instruct only, numina only and AoPS-Instruct + numina. This results in approximately 6
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Model 2023 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Count 5216 483 388 444 415 472 412 396 505 381 409 404 507

DeepSeek-Coder-V2-Lite-it 22.45 23.40 19.33 22.97 22.17 22.67 21.12 23.99 25.74 22.83 23.72 22.28 18.93
DeepSeek-Math-7b-rl 15.38 18.22 15.46 17.57 13.49 14.41 12.86 15.66 14.65 15.75 15.89 17.08 13.61
Internlm2-Math-plus-20b 18.23 18.84 16.75 17.79 18.31 20.55 17.72 16.41 18.42 17.06 21.27 18.81 16.57
Internlm2-Math-plus-7b 17.10 17.81 16.49 19.82 17.11 18.01 15.05 19.95 16.24 13.91 18.58 17.08 15.19
Mathstral-7B-v0.1 15.91 17.18 14.95 15.54 14.22 16.31 16.75 16.67 18.22 13.91 14.18 18.32 14.20
NuminaMath-72B-CoT 26.15 29.40 25.77 23.87 25.30 29.87 22.57 25.51 25.54 24.41 27.87 25.50 27.02
NuminaMath-7B-CoT 17.29 18.43 14.95 18.24 15.90 19.70 15.53 17.68 17.43 15.22 18.83 19.80 15.38
Qwen2-Math-1.5B-it 29.06 31.47 26.55 31.31 31.08 28.81 26.21 26.77 29.90 27.82 29.58 32.43 26.43
Qwen2-Math-72B-it 37.96 41.41 36.34 37.39 38.31 38.35 37.14 37.37 38.61 34.91 40.10 39.60 35.50
Qwen2-Math-7B-it 33.07 33.13 35.31 33.33 31.33 36.86 28.64 35.10 33.27 30.45 32.52 36.39 30.57
Qwen2.5-Math-1.5B-it 34.72 36.02 32.47 35.81 34.94 37.50 32.04 31.31 36.04 33.86 36.67 35.15 33.73
Qwen2.5-Math-72B-it 42.04 44.31 38.40 41.22 41.93 45.55 44.17 40.15 42.18 35.43 46.21 43.32 40.43
Qwen2.5-Math-7B-it 34.87 35.82 31.70 36.26 35.42 37.71 29.61 33.59 37.43 32.28 34.72 37.87 34.52

Llama-3.2-1B-it 6.75 6.83 5.93 4.73 5.54 9.53 5.10 8.08 6.73 8.66 7.09 7.92 5.13
Llama-3.2-3B-it 13.77 14.49 13.40 12.16 13.98 14.19 13.11 16.92 12.08 14.44 15.16 13.61 12.43
Llama-3.1-8B-it 14.03 15.53 13.66 14.86 13.73 13.56 11.65 15.15 16.04 12.86 14.91 14.60 11.64
Gemma-2-27b-it 13.80 11.39 13.92 15.77 13.01 15.04 10.68 14.90 15.64 12.86 14.91 14.36 13.02
Gemma-2-9b-it 12.42 10.97 10.05 13.51 12.53 13.35 11.17 13.38 15.05 10.76 13.45 13.61 10.85

Model 2024 Jan Feb Mar Apr May Jun Jul Aug

Count 3863 634 527 614 503 511 380 363 331

DeepSeek-Coder-V2-Lite-it 20.86 18.14 22.77 25.41 22.47 18.00 17.89 21.21 19.64
DeepSeek-Math-7b-rl 13.64 14.04 17.08 15.31 15.71 10.37 10.53 13.50 9.97
Internlm2-Math-plus-20b 16.93 14.51 22.01 17.59 17.50 14.48 14.74 18.73 15.71
Internlm2-Math-plus-7b 14.81 11.83 18.60 17.59 16.50 11.15 17.11 13.77 10.88
Mathstral-7B-v0.1 14.29 11.04 17.65 17.43 16.50 10.96 12.11 12.95 15.11
NuminaMath-72B-CoT 24.95 22.08 28.65 28.66 23.46 23.48 22.37 27.55 22.36
NuminaMath-7B-CoT 16.13 13.56 20.87 17.10 19.68 13.89 13.42 16.25 12.69
Qwen2-Math-1.5B-it 26.84 25.24 29.79 30.46 27.24 22.90 25.79 28.37 23.56
Qwen2-Math-72B-it 36.68 34.38 37.57 41.69 36.98 36.59 35.79 36.91 30.82
Qwen2-Math-7B-it 30.05 28.08 31.69 34.20 31.41 27.98 29.74 30.85 24.17
Qwen2.5-Math-1.5B-it 32.57 28.71 33.59 39.25 31.21 31.70 30.00 34.99 29.61
Qwen2.5-Math-72B-it 40.56 40.54 41.56 45.11 40.16 37.96 40.53 42.42 33.23
Qwen2.5-Math-7B-it 34.04 32.18 35.48 41.37 32.41 32.09 32.11 34.99 28.40

Llama-3.2-1B-it 5.80 3.63 7.40 6.84 6.16 4.70 5.53 7.16 5.44
Llama-3.2-3B-it 11.75 8.68 13.85 12.87 14.12 10.18 13.42 9.92 11.18
Llama-3.1-8B-it 12.71 10.57 16.13 14.17 11.33 12.33 12.63 12.67 11.48
Gemma-2-27b-it 12.87 10.57 16.13 13.03 13.52 11.94 11.58 14.05 12.39
Gemma-2-9b-it 10.67 8.68 11.95 13.36 10.93 8.02 8.16 14.05 10.27

Table 4. Accuracy per Month for Different Models
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Table 5. Accuracy per Difficulty for Different Models: The difficulty labels are for general education background of the problem and do
not reflect the exact difficulty of the problem.

Model Overall Middle School High School College High School Others
Olympiads

Count 3863 286 1349 314 889 1025

DeepSeek-Coder-V2-Lite-it 20.86 24.48 19.79 22.93 17.21 23.80
DeepSeek-Math-7b-rl 13.64 22.73 12.23 14.97 8.55 16.98
Internlm2-Math-plus-20b 16.93 24.83 15.64 19.11 12.71 19.41
Internlm2-Math-plus-7b 14.81 20.63 13.94 17.20 9.67 18.05
Mathstral-7B-v0.1 14.29 19.23 12.90 15.61 10.24 17.85
NuminaMath-72B-CoT 24.95 33.57 25.28 26.75 18.45 27.22
NuminaMath-7B-CoT 16.13 18.18 15.12 16.24 12.60 19.90
Qwen2-Math-1.5B-it 26.84 32.17 26.17 28.98 22.61 29.27
Qwen2-Math-72B-it 36.68 43.36 38.62 42.04 28.01 38.15
Qwen2-Math-7B-it 30.05 37.06 30.17 31.21 24.86 32.10
Qwen2.5-Math-1.5B-it 32.57 38.81 33.65 31.85 28.91 32.78
Qwen2.5-Math-72B-it 40.56 48.25 42.70 45.86 32.62 40.88
Qwen2.5-Math-7B-it 34.04 42.66 34.84 36.62 27.11 35.80

Llama-3.2-1B-it 5.80 10.14 4.30 5.41 3.71 8.49
Llama-3.2-3B-it 11.75 18.53 10.23 9.55 8.10 15.71
Llama-3.1-8B-it 12.71 17.48 10.60 15.29 7.54 17.85
Gemma-2-27b-it 12.87 20.63 11.86 13.38 7.65 16.39
Gemma-2-9b-it 10.67 15.38 8.30 12.74 7.65 14.44

Table 6. Accuracy per Answer Type for Different Models: As not all answers can be easily verified, we divide the answers into different
types to facilitate more accurate comparison and more convenient observation of the structural distribution of the dataset.

Model Overall equation expression list numeric-dec numeric-int numeric-irr others

Count 3863 296 950 195 57 2114 176 75

DeepSeek-Coder-V2-Lite-it 20.86 18.24 16.00 20.00 15.79 24.36 11.93 21.33
DeepSeek-Math-7b-rl 13.64 11.15 10.42 10.77 8.77 16.18 6.25 21.33
Internlm2-Math-plus-20b 16.93 14.53 12.74 13.33 14.04 20.20 8.52 18.67
Internlm2-Math-plus-7b 14.81 11.49 9.26 12.31 12.28 18.31 8.52 22.67
Mathstral-7B-v0.1 14.29 14.53 10.74 6.67 12.28 16.65 10.80 21.33
NuminaMath-72B-CoT 24.95 19.59 20.21 16.92 24.56 28.71 20.45 32.00
NuminaMath-7B-CoT 16.13 14.86 12.11 11.28 12.28 18.78 12.50 21.33
Qwen2-Math-1.5B-it 26.84 23.31 22.11 28.72 15.79 29.52 25.57 32.00
Qwen2-Math-72B-it 36.68 27.70 30.84 36.41 26.32 41.15 31.82 40.00
Qwen2-Math-7B-it 30.05 23.99 26.21 27.69 19.30 33.30 25.00 37.33
Qwen2.5-Math-1.5B-it 32.57 25.34 28.74 32.82 22.81 35.86 22.73 46.67
Qwen2.5-Math-72B-it 40.56 31.42 38.32 41.54 31.58 43.19 36.36 45.33
Qwen2.5-Math-7B-it 34.04 28.72 30.21 33.85 24.56 36.90 30.11 40.00

Llama-3.2-1B-it 5.80 2.70 3.79 2.56 5.26 7.66 3.41 5.33
Llama-3.2-3B-it 11.75 7.77 8.32 7.18 7.02 14.71 6.25 16.00
Llama-3.1-8B-it 12.71 4.05 9.58 10.77 17.54 15.33 9.66 21.33
Gemma-2-27b-it 12.87 7.77 10.11 9.74 14.04 15.28 9.09 16.00
Gemma-2-9b-it 10.67 7.09 7.89 8.72 14.04 12.54 7.95 16.00
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Figure 9. Decontamination Statistics: We perform decontamination on the raw dataset to produce AoPS-Instruct, with the same method as
the Numina-Math-COT. Both datasets show considerable overlap with the MATH dataset. AoPS-Instruct exhibits more contamination
within our 2024 split due to repeated questions, while Numina-Math-COT has higher contamination with other external datasets, reflecting
its multi-source composition.

Table 7. Performance comparison of original DeepSeek-Math, Qwen2.5-1.5B, and DeepSeek-Math fine-tuned on solutions rewritten by
Qwen2.5-1.5B. The fine-tuned DeepSeek-Math significantly outperforms both the original model and the rewriting model, demonstrating
that our dataset enhances reasoning capabilities beyond the limitations of its rewriting model.

Model AIME24 AMC23 Olympiad Bench Math AoPS24 Omni Math

Deekseek-Math-7b-Ins 1/30 8/40 14.5 47.1 11.7 12.3
Qwen2.5-1.5b-Ins 0/30 9/40 21.3 55.0 16.7 16.8

Deepseek-Math-7b-Ins (fine-tuned) 1/30 13/40 22.7 61.0 19.4 19.2

epoch on AoPS-Instruct or Numina or 3 epoch of training on AoPS-Instruct + Numina. We show the curve of ACC on
Math,LiveAoPSBench, OlympiadBench w.r.t. training steps.

D.2. Rewriting model ablation

We use Qwen 2.5 72B to rewrite the solutions, and then we fine-tune smaller models on our dataset. This may raise the
question of whether the effectiveness of our dataset would be limited by the capabilities of its rewriting model. To show the
effectiveness of our dataset, we use a Qwen 2.5 1.5B to rewrite the solutions and then fine-tune DeepSeek-Math 7B-instruct
on the dataset. Table 7 shows the performance of the original DeepSeek-Math, the performance of Qwen2.5-1.5B, and the
performance of fine-tuned DeepSeek on Qwen2.5-1B-rewritten solutions. As shown by the results, the fine-tuned version
outperforms both models, which shows that our dataset can improve the reasoning capability beyond its rewriting model
solution.

E. AIME and AMC results on the main models
Results of fine-tuning on AIME 2024 and AMC 2024 are present in table 8.
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Figure 10. Ablation study on accuracy with respect to training steps. Here, 18,000 steps approximately correspond to 6 epochs for
AoPS-Instruct and Numina, and 3 epochs for AoPS-Instruct + Numina. We can see that LiveAoPSBench + Numina consistenly improve
as training goes on.

Insturction:
You are given an online Math QA post. Your task is to identify whether the post asked is a concrete mathematical question,
note that this means it shouldn’t be an abstract general question related to math, and output the result as \boxed{0} for no and
\boxed{1} for yes. A few examples are provided below:

Few shot examples...

Now, your task is to provide output for the following post:

Post: Post 1

Example Classify result:

\boxed{0/1}

Figure 11. Prompt for the Topic Filtering part in Fig 2.

F. Use of AoPS as a Data Source
Concurrent to our work, both Numina (Li et al., 2024) and Omni-math (Gao et al., 2024) also use AoPS as their data source.
Different from us, Numina only includes data from the contest page with 30K questions 3, while we utilize all the 1.07
available posts on this forum. Furthermore, Omni-math (Gao et al., 2024) includes only 4428 evaluation questions from all
timestamps, while we include the most recent problems posted in 2024, as well as a large-scale training set.

G. Prompts
We provide the Prompts used in our pipeline in Figures 11, 12, and 13.

H. Dataset Examples
We provide further examples of our dataset and its rewritten solutions in Figures 14, 15, 16, 17. 18, and 19.

3https://artofproblemsolving.com/community/c13_contest_collections
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Insturction:
You are given an online Math QA forum where each user post in each topic is in the format “post i by user j: [post i text]”. Each
user may reply to other users by quoting their post. Your task is to find all potential answers within the follow-up discussion, and
output them in a structured json format.
Your output json must have one “answers” key containing the list of answers. Each answer must have two keys: a “user” key to
identify the user who posted the solution, a “post number” to identify which post number the answer originates from. Do not add
any additional information to the question or answers. In case the dialogou does not contain any mathematical question, or there
are no valid answers, leave the “answer” key as an empty list. Before you output your JSON answer, provide a short summary of
the discussion. A few examples are proided below:

Few shot examples...

Now, your task is to provide JSON output for the following Topic:

post 1 by user1: ...
post 2 by user2: ...

Example Parse result:
{

“question”: “Question from Post 1”,
“answers”: [

{
“user”: “User2”,
“post number”: 2

},
{

“use”: ”User4”,
“post number”: 5

}
]

}

Figure 12. Prompt for the QA extraction part in Fig 2.

Insturction:
You are given a solution to a mathematical question. Your task is to re-write the solution into a step-by-step solution with
itemized steps(1..., 2...., 3....). You should re-write the solution in a formal and clean way, without missing any details. Make sure
to include all the necessary steps and explanations. Do not include any irrelevant information in the answer. Do not add any
additional information to the solution. Always surround mathematical questions with $ symbols for LaTeX formatting. If the
question contains a final number, make sure to put the number in a

boxed for LaTeX formatting.

Question: Question

Solution: Raw Answer

Now provide the formalized re-written answer. DO NOT include the question in your answer. Only respond with
the re-written solution.

Example Rewrite result:
Rewritten solutions

Figure 13. Prompt for the Solution Rewriting Part in Fig 2.
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Question: Find all pairs (k, l) of positive integers such that kl

lk
= k!

l!

User Response 1:
W.l.o.g we may assume k ≥ l.
If k ≥ l + 2, then k − 1 divides the RHS, thus the LHS, thus kl, but k, k − 1 are coprime, thus this is only possible if k = 2,
which would imply l = 0, contradiction.
So the cases k = l, l + 1 are left.
If k = l, then we always have equality.
If k = l + 1, then the we need kk−1

(k−1)k
= k ⇐⇒ kk−2 = (k − 1)k.

Again k − 1 is supposed to divide a power of k, thus we remain with k = 2, so with l = 1, clearly being a solution.

User Response 2: If (k,l) solution, then (l,k) is solution too. Therefore we can find solutions k ≥ l. If l=1 we have
k = k! =⇒ k = 1 or k = 2.
If l=2 we have k2 = 2k−1k! solution is k=2.
If l ≥ 3 then kl

lk
≤ 1 and k!

l!
≥ 1, therefore solution is l=k.

All solutions (k, l) = (1, 2)(2, 1), (n, n), n ∈ N .

Qwen Rewritten Solution 1:
1. Without loss of generality, assume k ≥ l.
2. Consider the case k ≥ l + 2:

• The right-hand side (RHS) of the equation kl

lk
= k!

l!
is divisible by k − 1.

• Therefore, the left-hand side (LHS) must also be divisible by k − 1.

• Since k and k − 1 are coprime, k − 1 must divide kl.

• This is only possible if k = 2, which would imply l = 0, leading to a contradiction.

3. Therefore, the only possible cases are k = l and k = l + 1.
4. If k = l:

• The equation kl

lk
= k!

l!
simplifies to kk

kk = k!
k!

, which is always true.

5. If k = l + 1:

• The equation becomes (l+1)l

ll+1 = (l+1)!
l!

.

• Simplifying, we get (l+1)l

ll+1 = l + 1.

• This further simplifies to (l + 1)l−1 = ll+1.

• Again, l and l + 1 are coprime, so l must divide a power of l + 1.

• The only solution is l = 1, which implies k = 2.

6. Therefore, the pairs (k, l) that satisfy the equation are (k, l) = (k, k) and (k, l) = (2, 1) .

Qwen Rewritten Solution 2:
1. If (k, l) is a solution, then (l, k) is also a solution. Therefore, we can assume without loss of generality that k ≥ l.
2. Consider the case when l = 1. The equation becomes k1

1k
= k!

1!
, which simplifies to k = k!. The only positive integer solutions

to this equation are k = 1 and k = 2.
3. Consider the case when l = 2. The equation becomes k2

2k
= k!

2!
. This simplifies to k2 = 2k−1k!. The only positive integer

solution to this equation is k = 2.
4. Consider the case when l ≥ 3. We have kl

lk
≤ 1 and k!

l!
≥ 1. For these two inequalities to hold simultaneously, it must be that

k = l.
5. Therefore, the solutions are (k, l) = (1, 2), (2, 1), and (n, n) for any positive integer n.

Figure 14. An example illustrating two distinct rewritten solutions for a single posted problem, where each user has proposed a unique
approach to solving it.
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Table 8. Performance comparison of different models on AIME24 and AMC23 benchmarks. Bold values indicate the highest scores for
individual datasets.

Model SFT Dataset AIME24 AMC23

No SFT 1/30 8/40
Deepseek-Math Numina 0/30 12/40

7b-Ins AoPS-Ins 1/30 15/40

Numina+AoPS-Ins 2/30 11/40

No SFT 0/30 16/40
Mathstral Numina 0/30 15/40

7B AoPS-Ins 0/30 12/40

Numina+AoPS-Ins 0/30 16/40

No SFT 2/30 11/40
Llama-3.2 Numina 1/30 6/40

3B-Ins AoPS-Ins 2/30 11/40

Numina+AoPS-Ins 0/30 12/40

No SFT 0/30 5/40
Llama-3.2 Numina 0/30 6/40

1B-Ins AoPS-Ins 0/30 6/40

Numina+AoPS-Ins 0/30 9/40

Table 9. Comparison of fine-tuning DeepSeek-Math-7b-Instruct on DART-Math-Hard (Tong et al., 2024) vs. AoPS-Instruct on various
benchmarks.

Dataset Size LiveAoPSBench Olympiad Bench Omni Math MATH

DART-MATH-Hard 585K 14.4 21.8 15.4 52.5
AoPS-Instruct 647K 19.0 24.3 17.8 58.8

Question: Let ABC be an equilateral triangle. On the plane (ABC) rise the perpendiculars AA′ and BB′ on the same side of
the plane, so that AA′ = AB and BB′ = 1

2
AB. Determine the measure the angle between the planes (ABC) and (A′B′C′).

User Response:
Denote A′B′ ∩ AB = D.Then BD = BA = BC so ∠ACD = 90◦. Thus the plane AA′C is perpendicular to CD and the
angle between A′B′C and ABC is equal to ∠A′CA = 45◦.

Qwen Rewritten Solution:
1. Denote the intersection of A′B′ and AB as D.
2. Since BD = BA = BC, it follows that △BDA and △BDC are isosceles triangles.
3. Therefore, ∠ACD = 90◦.
4. The plane AA′C is perpendicular to CD.
5. The angle between the planes (A′B′C′) and (ABC) is equal to ∠A′CA.
6. Since AA′ = AB and BB′ = 1

2
AB, and given the symmetry and properties of the equilateral triangle, ∠A′CA = 45◦.

7. Thus, the measure of the angle between the planes (ABC) and (A′B′C′) is 45◦ .

Figure 15. An example of a rewritten geometry solution for a posted problem.
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Question: Solve the equation in parameter p: x3 + px2 + (p− 1 + 1
p−1

)x+ 1 = 0

User Response: Note that p ̸= 1. Then x = 1− p works, you can get the other roots (when they exist) by quadratic formula.

Qwen Rewritten Solution:
1. First, observe that the parameter p must satisfy p ̸= 1 to avoid division by zero in the term

(
1

p−1

)
.

2. Next, consider the given equation:

x3 + px2 +

(
p− 1 +

1

p− 1

)
x+ 1 = 0

3. We test the value x = 1− p to see if it is a root of the equation. Substitute x = 1− p into the equation:

(1− p)3 + p(1− p)2 +

(
p− 1 +

1

p− 1

)
(1− p) + 1 = 0

4. Simplify each term:
(1− p)3 = 1− 3p+ 3p2 − p3

p(1− p)2 = p(1− 2p+ p2) = p− 2p2 + p3(
p− 1 +

1

p− 1

)
(1− p) = (p− 1)(1− p) +

1− p

p− 1
= (p− 1)(1− p)− 1 = −p2 + 2p− 1− 1 = −p2 + 2p− 2

5. Combine all the simplified terms:

1− 3p+ 3p2 − p3 + p− 2p2 + p3 − p2 + 2p− 2 + 1 = 0

6. Simplify the expression:

(1− 3p+ 3p2 − p3) + (p− 2p2 + p3) + (−p2 + 2p− 2) + 1 = 0

1− 3p+ 3p2 − p3 + p− 2p2 + p3 − p2 + 2p− 2 + 1 = 0

1− 3p+ 3p2 − p3 + p− 2p2 + p3 − p2 + 2p− 2 + 1 = 0

0 = 0

7. Since the equation holds true, x = 1− p is indeed a root of the equation.
8. To find the other roots, we can perform polynomial division of the original cubic polynomial by (x− (1− p)) to obtain a
quadratic polynomial.
9. The quadratic polynomial can then be solved using the quadratic formula:

x =
−b±

√
b2 − 4ac

2a

where a, b, and c are the coefficients of the quadratic polynomial obtained from the division.
10. The final roots of the equation are:

x = 1− p and the roots of the quadratic polynomial obtained from the division.

11. The solution to the equation is:
x = 1− p

Figure 16. An example of an incomplete solution where the author left finding the other two roots of the equation to the reader. While the
language model has adequately and correctly expanded the solution of the author, two more solutions of the equation are not mentioned

(neither by the author nor the LLM): − p−1+
√

5−6p+p2

2(p−1)
and 1−p+

√
5−6p+p2

2(p−1)
.
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Question: Find a 5 × 5 checkerboard with a square removed that cannot be tiled using right triominoes(L shaped). Prove that
such a tiling does not exist for this board.

User Response:
Alright, then colour
01010
11111
01010
11111
01010
The sum of the squares covered by each L is at least 2, so if we place 8 L’s we get a total of at least 16, meaning that every 1
must be covered. Hence removing a 1 makes the covering impossible.

Qwen Rewritten Solution:
1. Consider a 5 × 5 checkerboard with the following coloring pattern:

0 1 0 1 0
1 1 1 1 1
0 1 0 1 0
1 1 1 1 1
0 1 0 1 0

2. Each right triomino (L-shaped) covers exactly 3 squares. When placed on the board, the sum of the numbers on the squares
covered by each L-shaped triomino is at least 2. This is because each L-shaped triomino must cover at least one square with a 1
and two squares with 0s or 1s.
3. If we place 8 L-shaped triominoes on the board, the total sum of the numbers on the squares covered by these 8 triominoes is
at least 8× 2 = 16.
4. The total number of squares on the 5 × 5 board is 25. Removing one square leaves 24 squares. Since each L-shaped triomino
covers 3 squares, 8 L-shaped triominoes will cover exactly 24 squares.
5. For the 8 L-shaped triominoes to cover the 24 squares, the sum of the numbers on these 24 squares must be at least 16. Given
the coloring pattern, the sum of the numbers on all 25 squares is 13 (since there are 12 squares with 0 and 13 squares with 1).
6. If a square with a 1 is removed, the sum of the numbers on the remaining 24 squares is 13− 1 = 12.
7. Since the sum of the numbers on the squares covered by the 8 L-shaped triominoes must be at least 16, and the sum of the
numbers on the remaining 24 squares is only 12, it is impossible to cover the board with 8 L-shaped triominoes if a square with a
1 is removed.
8. Therefore, a 5 × 5 checkerboard with a square removed that cannot be tiled using right triominoes (L-shaped) is one where a
square with a 1 is removed. The tiling is impossible in this case.
1

Figure 17. A failure example for rewriting the solution. While the Qwen model gets the overall logic of the proof correct, it produces
mistakes in counting the number of “ones” on the checkboard and provides incorrect intermediate steps.
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Question: Let x be a real number such that log2 x+ log4 5 + log8 7x = log√2 x
5/6. Find x.

User Response:
Turn everything into log2 of something. Here is the algebra:

log2 x+ log22 5 + log23 7x = log21/2 x
5/6,

log2 x+ log2
√
5 + log2

3
√
7x = log2

3
√
x5,

log2(x ·
√
5 · 3

√
7x) = log2(

3
√
x5),

x ·
√
5 · 3

√
7x =

3
√
x5 =⇒ x = 35

√
5 .

Qwen Rewritten Solution:
1. Convert all logarithms to base 2: log2 x+ log22 5 + log23 7x = log21/2 x

5/6

2. Simplify the logarithms using the change of base formula: log2 x+ 1
2
log2 5 +

1
3
log2 7x = 1

1
2

log2 x
5/6

3. Simplify the right-hand side: log2 x+ 1
2
log2 5 +

1
3
log2 7x = 2 log2 x

5/6

4. Use the property of logarithms to combine the terms on the left-hand side: log2 x+ log2 5
1/2 + log2 (7x)

1/3 = log2 x
5/3

5. Combine the logarithms on the left-hand side: log2
(
x · 51/2 · (7x)1/3

)
= log2

(
x5/3

)
6. Since the logarithms are equal, the arguments must be equal: x · 51/2 · (7x)1/3 = x5/3

7. Simplify the equation: x ·
√
5 · 3

√
7x = x5/3

8. Divide both sides by x (assuming x ̸= 0):
√
5 · 3

√
7x = x2/3

9. Raise both sides to the power of 3 to eliminate the cube root: (
√
5 · 3

√
7x)3 = (x2/3)3

10. Simplify the equation: 53/2 · 7x = x2

11. Simplify 53/2: 53/2 = 5
√
5

12. Substitute back into the equation: 5
√
5 · 7x = x2

13. Simplify the equation: 35
√
5x = x2

14. Rearrange the equation to form a quadratic equation: x2 − 35
√
5x = 0

15. Factor out x: x(x− 35
√
5) = 0

16. Solve for x: x = 0 or x = 35
√
5

17. Since x = 0 is not a valid solution (as it would make the original logarithms undefined), the solution is: x = 35
√
5

Llama Rewritten Solution:
To solve the given equation, we first need to express all logarithms in terms of log2. This can be achieved by applying the change
of base formula for logarithms.
Step 1: Express log4 5 and log8 7x in terms of log2.
Using the change of base formula, we have: log4 5 = log2 5

log2 4
= log2 5

log2 22
= log2 5

2
= log2

√
5 and log8 7x = log2 7x

log2 8
= log2 7x

log2 23
=

log2 7x

3
= log2

3
√
7x.

Step 2: Express log√2 x
5/6 in terms of log2.

Using the change of base formula, we have: log√2 x
5/6 = log2 x5/6

log2
√
2

= log2 x5/6

log2 21/2
= log2 x5/6

1
2

= 2 log2 x
5/6 = log2 (x

5/6)2 =

log2 x
5/3 = log2

3
√
x5.

Step 3: Substitute the expressions from Steps 1 and 2 into the original equation. log2 x+ log2
√
5 + log2

3
√
7x = log2

3
√
x5

Step 4: Combine the logarithms on the left-hand side using the product rule for logarithms.
log2 (x ·

√
5 · 3

√
7x) = log2

3
√
x5

Step 5: Since the logarithms are equal, the arguments of the logarithms must be equal. Therefore, we have:
x ·

√
5 · 3

√
7x =

3
√
x5.

Step 6: Solve for x.

x ·
√
5 · 3

√
7x =

3
√
x5 =⇒ x = 35

√
5 .

Figure 18. Comparison of Qwen 2.5 72B and Llama 3.1 70B on rewriting solutions. Overall, the Qwen model shows a higher level of
detail in expanding equations compared to Llama.
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Question: Solve the equation in parameter p: x3 + px2 + (p− 1 + 1
p−1

)x+ 1 = 0

Qwen Generated Solution: To solve the equation x3 + px2 +
(
p− 1 + 1

p−1

)
x+ 1 = 0 in the parameter p, we will follow a

systematic approach. Let’s denote the polynomial by f(x):

f(x) = x3 + px2 +
(
p− 1 + 1

p−1

)
x+ 1

### Step 1: Check for Rational Roots We will use the Rational Root Theorem to check for possible rational roots. The Rational
Root Theorem states that any rational root, expressed in its lowest terms p

q
, must have p as a factor of the constant term (1) and q

as a factor of the leading coefficient (1). Therefore, the possible rational roots are ±1.
### Step 2: Test x = 1 Substitute x = 1 into the polynomial:
f(1) = 13 + p · 12 +

(
p− 1 + 1

p−1

)
· 1 + 1 f(1) = 1 + p+ p− 1 + 1

p−1
+ 1 f(1) = 2p+ 1 + 1

p−1

For x = 1 to be a root, f(1) = 0:
2p+ 1 + 1

p−1
= 0

### Step 3: Solve the Equation 2p+ 1 + 1
p−1

= 0 Multiply through by p− 1 to clear the fraction:
(2p+ 1)(p− 1) + 1 = 0 2p2 − 2p+ p− 1 + 1 = 0 2p2 − p = 0
Factor out p:
p(2p− 1) = 0
This gives us two solutions:
p = 0 or p = 1

2
### Step 4: Verify the Solutions We need to verify if these values of p indeed make x = 1 a root of the original polynomial.
#### For p = 0: Substitute p = 0 into the polynomial:
f(x) = x3 + 0 · x2 +

(
0− 1 + 1

0−1

)
x+ 1 f(x) = x3 − 2x+ 1

Check f(1):
f(1) = 13 − 2 · 1 + 1 = 1− 2 + 1 = 0
So, x = 1 is a root when p = 0.
#### For p = 1

2
: Substitute p = 1

2
into the polynomial:

f(x) = x3 + 1
2
x2 +

(
1
2
− 1 + 1

1
2
−1

)
x+ 1 f(x) = x3 + 1

2
x2 +

(
1
2
− 1− 2

)
x+ 1 f(x) = x3 + 1

2
x2 − 3

2
x+ 1

Check f(1):
f(1) = 13 + 1

2
· 12 − 3

2
· 1 + 1 f(1) = 1 + 1

2
− 3

2
+ 1 f(1) = 1 + 1− 1 = 1

So, x = 1 is not a root when p = 1
2

.
### Conclusion The only value of p for which x = 1 is a root of the polynomial is p = 0.
Thus, the solution to the equation is:
0

Figure 19. An example of letting Qwen generate the entire solution without the user input (from Figure 16). In this case, the model
completely fails to respond correctly, misinterpreting the question and taking an incorrect approach to solving the problem. This shows
the cruciality of rewriting solutions (rather than generating entire solutions from stronger models).
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