
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FOSSIL: A UNIFIED FRAMEWORK FOR CONTINUAL
SEMANTIC SEGMENTATION IN 2D AND 3D DOMAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Evolving visual environments challenge continual semantic segmentation by
introducing the complexities of class-incremental learning, domain-incremental
learning, limiting available annotations, and necessitating the use of unlabeled data.
In this work, we present the framework FoSSIL (Few-shot Semantic Segmentation
for Incremental Learning), which extensively benchmarks continual semantic
segmentation, spanning both 2D natural scenes and 3D medical volumes. Our
evaluation encompasses diverse and realistic settings, leveraging both labeled
(few-shot) and unlabeled data. Building on this benchmark, we introduce
guided noise injection to mitigate overfitting due to novel few-shot classes
from various domains. Furthermore, we leverage semi-supervised learning
for unlabeled data to augment few-shot novel classes. We propose a filtering
mechanism to remove highly confident but incorrectly predicted pseudo-labels,
further improving performance. Results across class-incremental, few-shot, and
domain-incremental scenarios with unlabeled data validate our strategies for
robust semantic segmentation in complex, evolving settings, highlighting both
the effectiveness and generality of our approach. Our findings illustrate that the
proposed framework forms a simple yet powerful recipe for continual semantic
segmentation in dynamic real-world environments. Our large-scale benchmarking
across natural 2D and medical 3D domains exposes key failure modes of existing
methods and offers a roadmap for building robust continual segmentation models.

1 INTRODUCTION

"I hear and I forget. I see and I remember. I do and I understand." – Confucius

Figure 1: A major challenge in continual learning where the models must segment the objects (e.g., a car or
organ) as they appear from different domains over time with few-shot data.

The pursuit of truly intelligent systems necessitates continuous learning and adaptation in open-world
environments. While continual learning (CL) (Wang et al. (2024); Yuan & Zhao (2024)) has advanced
across various tasks, a critical gap remains in addressing the significant complexities of real-world
dense prediction tasks like semantic segmentation. In demanding applications such as autonomous
driving and medical image analysis, semantic segmentation models are confronted with a continuous
influx of data characterized by both novel semantic categories or class-incremental learning (CIL
Zhou et al. (2024)) and evolving data distributions or domain-incremental learning (DIL Mirza et al.
(2022)), posing a formidable challenge to their adaptability and robustness (Figure 1).

This discrepancy between idealized CL scenarios and real-world semantic understanding poses
significant challenges. In the realistic setting of continual learning, prevalent CL methods struggle
with catastrophic forgetting, significantly exacerbated by shifts in the semantic label space and input
data characteristics. Furthermore, data scarcity necessitates effective few-shot learning (Tao et al.
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(2020); Qiu et al. (2023); Tian et al. (2024)) within these continuous learning streams. The confluence
of these factors creates a challenging landscape where models must rapidly adapt to new concepts
with limited supervision while preserving previously acquired knowledge. Specifically, the need
to balance plasticity (acquiring new knowledge) and stability (retaining old knowledge) becomes
paramount, yet exceedingly difficult, under these conditions. Figure 2 systematically evaluates
different combinations of constraints, such as continual learning with a varying set of classes (CIL)
and changing data distributions (DIL), and scarcely labeled data (few-shot learning), highlighting the
individual and combined impact of these challenges on model performance, further emphasising the
importance of addressing this problem comprehensively.

Figure 2: Class-incremental (CI), few-shot (FS), and
domain-incremental (DI) constraints all lead to significantly
reduced Dice scores compared to the unconstrained baseline
(“no constraint”) on a 3D U-Net model.

Leveraging unlabeled data through
semi-supervised learning (Kang et al.
(2023b); Cui et al. (2024)) holds immense
potential. However, the dynamic
introduction of novel classes complicates
the reliable utilization of pseudo-labels,
as initial model biases can lead to the
propagation of incorrect information. A
key challenge here is that this initial bias
can compound over time, progressively
degrading the model’s ability to learn
effectively.

Despite its practical significance, the
realistic setting of few-shot learning and
semi-supervised learning for complex tasks
like semantic segmentation remains largely
under underexplored in the context of
continual learning. Existing CL methods,
often evaluated on simpler tasks, are not
designed to handle these complexities. The
core challenge lies in developing a learning framework that can effectively handle the data distributions
that change over time and the need for rapid adaptation to new classes with limited labeled data,
while simultaneously mitigating catastrophic forgetting and the propagation of errors from noisy
pseudo-labels.

This work directly confronts these critical, largely unaddressed challenges in continual learning for
semantic segmentation. Our proposed framework FoSSIL (Few-shot Semantic Segmentation for
Incremental Learning) investigates continual learning in realistic and demanding scenarios where
semantic classes and data domains evolve and may reappear over time, constrained by few-shot
data within each learning session. Crucially, FoSSIL models the real-world occurrence where a
previously seen class or domain can reappear, with the constraint that any given incremental session
introduces novelty in either the class set or the data domain, but not concurrently. In contrast to
prevailing approaches, FoSSIL addresses the intertwined challenges of evolving classes and domains
under data scarcity by employing an exemplar-free prototype replay (Chen et al. (2023)) with a
novel guided noise injection scheme and refinement of pseudo-labels in a semi-supervised setting
that takes advantage of widely accessible unlabeled data. This enables effective learning, robustness,
and knowledge retention, achieving strong generalization across diverse semantic segmentation
architectures.

To ground our contributions, we conduct extensive benchmarking that spans both 2D natural and
3D medical domains, systematically evaluating class-incremental, domain-incremental, few-shot,
and semi-supervised continual learning settings. FoSSIL benchmarks a wide spectrum (around
twenty-five) of state-of-the-art methods with detailed ablations on nine datasets with different
backbones like U-Net (Ronneberger et al. (2015)), DeepLabv3+ (Chen et al. (2018)) and
Transformers-based (Kirillov et al. (2023)). It highlights key failure modes in current approaches, such
as overfitting in few-shot regimes, difficulties in adapting across domains, and error amplification
from pseudo-labels, and proposes novel strategies to overcome them. We find that fine-tuning
popular backbones (e.g., U-Net, DeepLabv3+, MedFormer Gao et al. (2022)) on novel few-shot
classes from varied domains, whether with partially frozen or fully unfrozen weights, leads to severe
performance drops in incremental sessions, highlighting the severity of the problem (Figure 3).
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Figure 3: Performance of various backbones on the FoSSIL
benchmark with partially frozen or fully unfrozen weights.
Session 1 denotes the first incremental session following the
common base session.

Our key contributions to multi-constrained
continual learning for semantic
segmentation are fourfold: (i) Firstly,
we provide an extensive benchmark
of continual learning for semantic
segmentation through the FoSSIL
framework, incorporating multiple realistic
constraints across nine datasets from
both 2D natural and 3D medical domains.
We re-implemented and adapted around
twenty-five closely related methods
with open-source implementation to
run on our proposed benchmark. This
evaluation exposes limitations in current
approaches. (ii) Secondly, we employ an
exemplar-free prototype replay strategy
for continual learning in both class- and
domain-incremental settings with few-shot
data, improving memory efficiency and
privacy by avoiding the storage of raw samples. FoSSIL’s novelty further lies in integrating a
guided noise injection strategy, which regularizes the model and enhances generalization across
novel classes from multiple domains with few-shot data. (ii) Thirdly, We leverage semi-supervised
learning to augment few-shot classes using readily available unlabeled data. Here, the novelty
lies in employing learned prototypes to filter highly confident but incorrectly predicted regions
within pseudo-labels, thereby enhancing the quality of supervision obtained from unlabeled data.
(iii) Finally, our innovative approaches demonstrate strong generalization across diverse semantic
segmentation architectures (3D U-Net, DeepLabv3+, Transformers), even outperforming models
pre-trained on large-scale datasets like SAM (Kirillov et al. (2023); Kerssies et al. (2024)) on the
FoSSIL benchmark.

2 RELATED WORK

Class-Incremental/Domain-Incremental Learning in Semantic Segmentation: MiB Cermelli
et al. (2020) pioneered incremental semantic segmentation by addressing background shift with
distillation losses and classifier initialization. CLIP-CT Zhang et al. (2023) builds on this by
using pseudo-labeling and CLIP-guided Radford et al. (2021) organ-specific heads for efficient
adaptation to new classes. MDIL Garg et al. (2022) addresses semantic segmentation across domains
using a dynamic architecture that factorizes parameters into domain-invariant and domain-specific
components. It employs domain-aware residual units, domain-specific normalization, and adaptive
distillation to balance stability and plasticity.

Few-shot Class-Incremental Learning: Cermelli et al. (2021) proposed Prototype-based
Incremental Few-Shot Segmentation (PIFS), which integrates prototype learning with knowledge
distillation to learn new classes from few samples without access to old training data. Subspace
regularization (Subspace Akyürek et al. (2021)) mitigates catastrophic forgetting and overfitting
by constraining novel class weights to the subspace spanned by base class weights, optionally
incorporating semantic information from class names. Hersche et al. (2022) introduced C-FSCIL
(Constrained Few-shot Class-Incremental Learning), which leverages hyperdimensional computing
with a frozen meta-learned feature extractor, a trainable fully connected layer, and a dynamically
growing memory of quasi-orthogonal prototypes. FACT (Zhou et al. (2022)) reserves embedding
space for future classes via virtual prototypes and uses manifold mixup to forecast novel classes. Liu
et al. (2022) presented an entropy-regularized data-free replay (Gen-Replay) method that synthesizes
uncertain samples from previous classes without storing real data. Yang et al. (2023) proposed
NC-FSCIL, a neural collapse–inspired framework that fixes classifier prototypes as a simplex
equiangular tight frame. Qiu et al. (2023) introduced GAPS, a model-agnostic framework for
few-shot incremental semantic segmentation that addresses partial annotations by generating fully
labeled data via copy-paste synthesis. SoftNet (Kang et al. (2023a)) is inspired by the Regularized
Lottery Ticket Hypothesis, which uses adaptive soft masks to decompose a network into major and
minor subnetworks. The major subnetwork mitigates forgetting, while the minor subnetwork adapts
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to novel classes with limited overfitting through joint weight–mask optimization. Jiang et al. (2023)
presented FSCIL-SS that combines pseudo-labeling with knowledge distillation to learn novel classes
from limited examples while retaining existing knowledge. FeCAM (Goswami et al. (2023)), an
exemplar-free method leverages class-specific covariance matrices and the Mahalanobis distance to
improve prototype-based classification.

Semi-Supervised Learning based approaches: Killamsetty et al. (2021) proposed RETRIEVE,
a coreset selection framework for efficient and robust semi-supervised learning. NNCSL (Kang
et al. (2023b)) is a soft nearest-neighbor framework for continual semi-supervised learning, tackling
catastrophic forgetting on unlabeled representations and overfitting on limited labeled samples.
UaD-CE (Cui et al. (2024)), an uncertainty-aware distillation framework with class equilibrium
for semi-supervised learning that balances pseudo-label generation, while the uncertainty-aware
distillation module selects reliable exemplars for adaptive knowledge transfer, mitigating both
overfitting and forgetting.

Miscellaneous: Khosla et al. (2020) introduced a supervised contrastive learning (SupCL) framework
that extends self-supervised contrastive approaches to leverage label information for improved
representation learning. SimCLR (Chen et al. (2020)) is a contrastive learning framework that
learns visual representations by maximizing agreement between differently augmented views
of the same image, without requiring labels (UnSupCL). Robinson et al. (2021) proposed a
hard negative sampling framework (UnSupCL-HNM) for contrastive learning that addresses the
challenge of selecting informative negative samples without supervision. Wang et al. (2021) bridged
multi-task learning (MTL) and gradient-based meta-learning by showing that both share the same
optimization formulation via joint training and regularized bi-level optimization. Bouniot et al. (2022)
analyzed few-shot learning through multi-task representation theory, highlighting differences between
gradient-based (e.g., MAML) and metric-based meta-learning methods in satisfying optimal predictor
assumptions. Liu et al. (2023) proposed a CLIP-driven universal model for multi-organ segmentation
and tumor detection, addressing partial label problems by incorporating CLIP Radford et al. (2021)
text embeddings to capture semantic relationships. Franco et al. (2024) proposed HALO, a hyperbolic
neural network approach for pixel-level active learning in semantic segmentation under domain shift.

To the best of our knowledge, no existing method jointly addresses CIL, DIL, and few-shot
learning for semantic segmentation. The proposed FoSSIL framework addresses this limitation
and leverages unlabeled data to augment scarce few-shot classes.

3 FOSSIL FRAMEWORK

We formalize the multi-constrained continual learning problem for semantic segmentation as a
sequence of sessions S = {S0,S1,S2, . . . ,ST } where each session St is characterized by both a
semantic class space Ct and a domain distribution Dt. At each session St, a learning model encounters
a dataset Dt = {(xi, yi)}Nt

i=1 where xi ∈ X represents input images drawn from the domain Dt and
yi ∈ Yt ⊆ Ct denotes the pixel-wise semantic labels, with |Dt| = Nt being the number of available
samples in session t. S0 denotes the base session, which contains domain(s) with abundant labeled
data (N0), while the remaining sessions are few-shot sessions with sparsely labeled domains.

3.1 CLASSES, DOMAINS, AND DATA ACROSS SESSIONS

The continual learning sequence accommodates three realistic scenarios that distinguish our
framework from idealized settings. Same Classes, Different Domains: Different sessions may share
semantic classes while those classes belong to different domains: Ct = Ct′ and Dt ̸= Dt′ . Different
Classes, Same Domain: New classes may be introduced across sessions belonging to the same
domain: Ct ̸= Ct′ and Dt = Dt′ . Different Classes, Different Domain: The most challenging
scenario with both semantic and domain shift: Ct ̸= Ct′ and Dt ̸= Dt′ . Importantly, we explicitly
exclude the case where same classes of the same domain are repeated across sessions.

Each incremental session (t ̸= 0) is trained on few-shot labeled data, where Nt ≪ N0 and Nt =
K ·|Ct|. Here, K denotes the number of labeled examples per class (typically K ∈ {5, 10, 20, 30}). In
addition, each session may also access unlabeled data, defined as Ut = {x(u)

j }Mt
j=1, where Mt ≫ Nt

indicates the number of unlabeled samples drawn from the same domain Dt.
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3.2 EXEMPLAR FREE PROTOTYPE REPLAY

For each class c ∈ Ct, we extract a compact prototype from the feature space. Given a trained model
with intermediate feature extractor ϕ. For each sample (xi, yi), embedding Ei = ϕ(xi) ∈ RD×H×W .

In session t, for class c, we extract features corresponding to class pixels as F (i)
c = {Ei : yi = c}.

The class prototype is given as,

p(i)c =
1

|F (i)
c |

∑
f∈F(i)

c

f (1)

Across all samples in session t containing class c:

Pc =
1

NSc

∑
j∈NSc

p
(j)
c

||p(j)c ||2
(2)

where NSc ⊆ Nt is the number of samples containing class c.

In session t+ 1, we replay all prototypes learned from previous session, Pt = {Pc} for all c ∈ Ct as,

Lproto =
∑

Pc∈Pt

LCE(F (Pc), c) (3)

where F is the final classifier layer and LCE is the cross-entropy loss. Lproto optimizes the model
parameters in session t+ 1.

3.3 GUIDED NOISE INJECTION

The guided noise injection mechanism regulates noise using parameter gradients, which serve as a
proxy for determining the appropriate magnitude of noise to add to each parameter.

The method maintains a gradient buffer G that accumulates squared gradients (∇wij
L)2 where L is

the loss function and wij are the weight parameters of the classifier layer F with weight matrix W.

For any Gij ∈ G the inverse is computed as G−1
ij = 1

Gij+ϵ where ϵ = 10−8 ensures numerical
stability. To control the noise magnitude, the inverse gradients are normalized to a bounded range:

G̃−1
ij =

1 +G−1
ij −min(G−1)

1 + max(G−1)−min(G−1)
(4)

The weights W are perturbed as:

W̃ = W+ G̃−1 ⊙N (0, I) (5)

Hence the noise N (0, I) added to W is guided by G̃−1.

Large gradients correspond to low noise injection, whereas small gradients allow for higher noise
injection. Critical weight parameters with large gradients, which are actively contributing to learning,
receive minimal noise injection, whereas parameters that have begun overfitting and no longer
contribute significantly are injected with higher noise for regularization.

3.4 PROTOTYPE-GUIDED PSEUDO-LABEL REFINEMENT

To leverage abundant unlabeled data while mitigating the risk of noise and error propagation, we
introduce a prototype-guided pseudo-label refinement (or filtering) strategy within a mean-teacher
(Tarvainen & Valpola (2017)) based framework. To mitigate confirmation bias in standard
pseudo-labeling, we introduce a mechanism that validates pseudo-labels through both predictive
confidence and feature-space consistency with prototypes.

For an unlabeled input x(u)
j , the student network Ms and teacher network Mt generate pseudo-label

predictions, denoted by ŷs and ŷt, respectively:
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ŷs,Fs = Ms(x
(u)
j ), ŷt,Ft = Mt(x

(u)
j ) (6)

where Fs and Ft are features representations learned by student and teacher, respectively.

We compute the confidence of the predictions (ŷs and ŷt) as,

c′(p, q) = argmax
c

(softmax(ŷ(p, q))), conf(p, q) = max(softmax(ŷ(p, q))) (7)

where c′(p, q) is class for pixel (p, q), conf(p, q) is confidence of class c′(p, q) and ŷ(p, q) is
pseudo-label at pixel (p, q).

To validate predictions, the cosine similarity between features and prototypes is computed as,

sim(p, q) =
F(p, q) · Pc′(p,q)

||F(p, q)||2||Pc′(p,q)||2
(8)

where F(p, q) is feature of the pixel (p, q) and Pc′(p,q) is prototype corresponding to the predicted
class c′(p, q).

A pseudo-label at (p, q) is retained only if it satisfies the following conditions:

valid(p, q) = (conf(p, q) > τconf) and (sim(p, q) > τsim) (9)

where τconf and τsim are empirically determined thresholds.

The consistency loss in mean-teacher operates only on validated pseudo-labels:

Lconsistency =
1

|V|
∑

(p,q)∈V

||ŷs(p, q)− ŷt(p, q)||22 (10)

where V = {(p, q) : valids(p, q) and validt(p, q)} represents pixels validated by both models.

This verification mechanism reduces pseudo-label noise by requiring both high prediction confidence
and feature-space similarity to class prototypes. This ensures the pseudo-labels are robust to domain
shifts, preventing the amplification of errors in the student-teacher feedback loop.

Table 1: Summary of FoSSIL Benchmarks. |Ct| denotes the number of classes in session i. ‘SS’ denotes
Semi-Supervised.

Benchmark Session 0 (Base) Session 1 Session 2 Session 3 Session 4 Session 5
Med FoSSIL-Disjoint |C0| = 15 (TS) |C1| = 5 (AMOS) |C2| = 6 (BCV) |C3| = 4 (MOTS) |C4| = 3 (BraTS) |C5| = 4 (VerSe)
Med FoSSIL-Mixed |C0| = 10 (AMOS) |C1| = 8 (BCV, MOTS) |C2| = 6 (TS, AMOS) |C3| = 4 (MOTS, TS) |C4| = 7 (Brats, VerSe) –
Med SS-FoSSIL |C0| = 15 (TS) |C1| = 5 (AMOS) |C2| = 6 (BCV) |C3| = 4 (MOTS) |C4| = 3 (BraTS) |C5| = 4 (VerSe)

Natural-FoSSIL |C0| = 10 (BDD) |C1| = 5 (IDD) |C2| = 5 (BDD, IDD) – – –
SS-Natural-FoSSIL |C0| = 10 (BDD) |C1| = 2 (Cityscapes) |C2| = 2 (IDD) |C3| = 3 (IDD) – –

4 FOSSIL BENCHMARKS

We construct five challenging benchmarks for 3D medical and 2D natural scene segmentation,
designed to simulate realistic clinical and autonomous driving scenarios with multiple sessions,
diverse domains, and a large number of novel classes. Each benchmark features a base learning
session on a large dataset followed by incremental sessions with limited labeled data (few-shot) and
with significant domain shifts.

3D Medical FoSSIL Benchmarks: We develop three 3D medical benchmarks using data from
TotalSegmentator (TS) (Wasserthal et al. (2023)), AMOS (Ji et al. (2022)), BCV (Landman et al.
(2015), MOTS (Zhang et al. (2021)), BraTS (Menze et al. (2014)), and VerSe (Sekuboyina et al.
(2021)). All three benchmarks adopt a few-shot learning setup, using 5 training samples per class for
incremental sessions, progressing from normal to tumor segmentation.
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Table 2: Performance of baselines on Med FoSSIL-Disjoint benchmark (3-sessions). Results reported as Dice
coefficients (0-1).

Method Session 0 Session 1 Session 2

PIFS Cermelli et al. (2021) 0.700 0.129 0.078
NC-FSCIL Yang et al. (2023) 0.394 0.077 0.081
CLIP-CT Zhang et al. (2023) 0.475 0.186 0.141
MiB Cermelli et al. (2020) 0.700 0.271 0.096
MDIL Garg et al. (2022) 0.779 0.115 0.097
C-FSCIL Hersche et al. (2022) 0.787 0.334 0.297
SoftNet Kang et al. (2023a) 0.820 0.305 0.146
GAPS Qiu et al. (2023) 0.700 0.334 0.253
FSCIL - SS Jiang et al. (2023) 0.700 0.115 0.089
Subspace Akyürek et al. (2021) 0.257 0.054 0.040
Gen-Replay Liu et al. (2022) 0.700 0.076 0.102
FeCAM Goswami et al. (2023) 0.700 0.048 0.042
FACT Zhou et al. (2022) 0.357 0.071 0.0278
MAML Bouniot et al. (2022) 0.700 0.0006 0.059
MAML + regularizer Bouniot et al. (2022) 0.700 0.001 0.062
MTL Wang et al. (2021) 0.700 0.079 0.0880
UnSupCL Chen et al. (2020) 0.700 0.039 0.0882
SupCL Khosla et al. (2020) 0.700 0.058 0.0421
UnSupCL-HNM Robinson et al. (2021) 0.700 0.035 0.0676

FoSSIL (U-Net) 0.736 0.460 0.398

Table 3: Performance on Med FoSSIL-Disjoint benchmark (6-sessions). All values are reported as Dice
coefficients (0-1).

Method Session 0 Session 1 Session 2 Session 3 Session 4 Session 5

U-Net Vanilla 0.700 0.076 0.057 0.047 0.030 0.042
FoSSIL (U-Net) 0.736 0.460 0.398 0.329 0.025 0.324

The three medical benchmarks: (i) Med FoSSIL-Disjoint, a 6-session, 37-class protocol with
disjoint classes and domains; (ii) Med FoSSIL-Mixed, a 5-session, 35-class setup allowing
recurrence of either classes or domains (but not both) and mixing datasets per session; and (iii)
Med Semi-Supervised-FoSSIL, a semi-supervised variant of Med FoSSIL-Disjoint augmented with
8–30 unlabeled samples per session. Please refer to Table 1 for various classes and domains.

2D Natural Scene FoSSIL Benchmarks: We introduce two benchmarks for autonomous driving
scenarios using data from BDD100K (Yu et al. (2020)), Cityscapes (Cordts et al. (2016)), and IDD
(Varma et al. (2019)). These benchmarks feature a few-shot learning with 10 training samples per
class. The two natural scene benchmarks for autonomous driving: (i) Natural-FoSSIL, a 3-session
setup using BDD100K, Cityscapes, and IDD, designed to test representation adaptation under domain
shifts and class recurrence; and (ii) Semi-Supervised Natural-FoSSIL, a 4-session variant that
augments new classes with 400 unlabeled images per class to reflect realistic scenarios with limited
annotations but abundant raw data. Our code is available at https://github.com/anony34/FoSSIL.
Please refer to the Appendix for details.

Table 4: Performance on Natural-FoSSIL benchmark. All values are reported as mIoU (0-100).

Method Session 0 Session 1 Session 2

DeepLab Vanilla 47.76 2.18 3.86
GAPS Qiu et al. (2023) 47.76 23.42 16.68
MiB Cermelli et al. (2020) 47.76 2.50 2.37
MDIL Garg et al. (2022) 48.54 1.59 3.02

SAM Vanilla Kerssies et al. (2024) 66.0 32.6 30.81
FoSSIL (SAM) 66.0 33.2 31.22

7
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Table 5: Performance on Med FoSSIL-Mixed benchmark. All values are reported as Dice coefficients (0-1).

Method Session 0 Session 1 Session 2 Session 3 Session 4

U-Net Vanilla 0.571 0.216 0.133 0.074 0.045
CLIP-driven Liu et al. (2023) 0.717 0.417 0.227 0.196 0.089
MedFormer Vanilla 0.613 0.198 0.134 0.052 0.067
SwinUNetr Vanilla 0.605 0.197 0.133 0.082 0.082

FoSSIL (SwinUNetr) 0.605 0.318 0.275 0.254 0.210
FoSSIL (MedFormer) 0.622 0.367 0.287 0.288 0.228

Table 6: Performance on Semi-Supervised Natural-FoSSIL benchmark. All values are reported as mIoU (0-100).

Method Session 0 Session 1 Session 2 Session 3

DeepLab Vanilla 47.76 1.04 1.51 0.43
MDIL Garg et al. (2022) 47.76 1.87 1.43 0.39
MiB Cermelli et al. (2020) 47.76 5.97 1.59 0.42
UaD-CE Cui et al. (2024) 47.76 1.88 1.74 0.69
NNCSL Kang et al. (2023b) 47.76 0.79 1.27 0.46
HALO Franco et al. (2024) 47.76 1.78 2.02 1.27
RETRIEVE Killamsetty et al. (2021) 47.76 1.57 1.89 0.39
GAPS Qiu et al. (2023) 47.76 19.73 18.76 14.45

FoSSIL + GAPS 47.76 27.84 27.69 25.47

5 RESULTS AND ANALYSIS

We use mean Intersection over Union (mIoU), ranging from 0 to 100, for 2D natural scene benchmarks,
and the Dice coefficient (Dice score), ranging from 0 to 1, for 3D medical benchmarks, as evaluation
metrics. In each incremental session, we evaluate the classes introduced in the current session along
with all classes encountered in previous sessions. The goal is to retain previously learned knowledge
while effectively acquiring new information, handling data scarcity, and adapting to domain shifts.
A Vanilla baseline consists of a plain backbone with no mechanisms to handle any constraints.
Gen-Replay Liu et al. (2022) is implemented with a diffusion model adapted from Dorjsembe et al.
(2024).

Across the medical benchmarks, baselines collapse after just two sessions in Med FoSSIL-Disjoint
(Table 2), while FoSSIL with a U-Net backbone sustains strong performance across all five,
demonstrating robustness to multiple constraints as shown in Table 2 and Table 3. In Med
FoSSIL-Mixed, transformer backbones such as MedFormer, SwinUNetr, and a CLIP-driven U-Net
all degrade over sessions, with the latter dropping despite pretraining on 21 of 35 classes (Table 5),
highlighting the benchmark’s difficulty. In Med Semi-Supervised-FoSSIL, adding unlabeled data
significantly boosts FoSSIL (Table 7, Figure 4b), unlike existing semi-supervised methods that fail to
exploit it. This demonstrates that leveraging readily available unlabeled data can substantially
improve multi-constraint continual learning for semantic segmentation. In natural scene
benchmark (Natural-FoSSIL), even large-scale models like SAM Kirillov et al. (2023), pretrained on

Table 7: Performance on Med Semi-Supervised-FoSSIL benchmark. Results reported as Dice coefficients (0-1).

Method Session 0 Session 1 Session 2 Session 3 Session 4 Session 5

U-Net Vanilla 0.700 0.076 0.0578 0.0472 0.0302 0.0429
NNCSL (U-Net) Kang et al. (2023b) 0.700 0.048 0.0477 0.030 0.011 0.0404
UaD-CE (U-Net) Cui et al. (2024) 0.700 0.082 0.0750 0.0670 0.0313 0.0487

FoSSIL (U-Net) 0.736 0.554 0.4449 0.414 0.0576 0.368

MedFormer Vanilla 0.659 0.065 0.062 0.059 0.051 0.040
UaD-CE (MedFormer) Cui et al. (2024) 0.659 0.052 0.0479 0.0646 0.0369 0.0323
NNCSL (MedFormer) Kang et al. (2023b) 0.659 0.142 0.0955 0.144 0.010 0.048

FoSSIL (MedFormer) 0.640 0.431 0.368 0.335 0.323 0.293
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a billion masks, exhibit forgetting (Table 4), yet FoSSIL consistently improves SAM, as well as U-Net
and transformer backbones, showing broad applicability. Finally, in Semi-Supervised Natural-FoSSIL,
FoSSIL serves as a plug-and-play module that leverages unlabeled data to enhance GAPS results
(Table 6), further underscoring its effectiveness across diverse baselines.

Ablations: In the Med FoSSIL-Mixed benchmark, where FoSSIL improves the performance of
MedFormer, we removed guided noise injection (G̃−1) from Equation 5, and the results are plotted
in Figure 5a. As shown, there is a significant drop in performance, highlighting the importance of
the proposed guided noise injection strategy, which helps regularize the model under few-shot data
and domain shifts. In the Semi-Supervised Natural-FoSSIL benchmark, where FoSSIL improves
GAPS using unlabeled data, we removed the pseudo-label refinement strategy and evaluated FoSSIL’s
performance, as shown in Figure 5b. It is evident that the refinement strategy contributes to the
improved performance of FoSSIL.

Figure 4: a) Variation of performance of SwinUnetr Vanilla and with FoSSIL over the epochs. This illustrates
how FoSSIL sustains performance across epochs. b) Performance of FoSSIL without unlabeled data (Med
FoSSIL-Disjoint) and with unlabeled data (Med Semi-Supervised-FoSSIL). ‘SS’ is Semi-Supervised.

Figure 5: a) FoSSIL without Guided Noise Injection (GNI) evaluated with MedFormer (Med FoSSIL-Mixed). b)
FoSSIL without Pseudo-Label Refinement (PLR) on Semi-Supervised Natural-FoSSIL benchmark.

6 CONCLUSION

We evaluated existing continual learning methods—including class-incremental, domain-incremental,
few-shot, and semi-supervised approaches—against the proposed benchmarks, which reveal a
substantial performance gap that current methods have yet to close. This underscores the urgent
need for robust methods capable of handling multiple constraints in continual semantic segmentation,
as even large pre-trained and foundational models exhibit performance degradation. Our proposed
framework, FoSSIL, mitigates performance drop across sessions, demonstrating the effectiveness
of guided noise injection and pseudo-label refinement strategies. It clearly demonstrates that using
readily available unlabeled data can significantly improve multi-constraint continual learning for
semantic segmentation. In the future, FoSSIL will be extended to more challenging settings, such
as continual learning with open-vocabulary, detection, and other dense prediction tasks that remain
largely unexplored. We will also evaluate and refine other large foundational and vision–language
models to assess their performance on the FoSSIL benchmark.
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