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ABSTRACT

Although iterative denoising (i.e., diffusion/flow) methods offer strong genera-
tive performance, they suffer from low generation efficiency, requiring hundreds
of steps of network forward passes to simulate a single sample. Mitigating this
requires taking larger step-sizes during simulation, thereby allowing one- or few-
step generation. Recently proposed shortcut model learns larger step-sizes by
enforcing alignment between its direction and the path defined by a base many-
step flow-matching model through a self-consistency loss. However, its genera-
tion quality is significantly lower than the base model. In this paper, we interpret
the self-consistency loss through the lens of optimal control by formulating the
few-step generation as a controlled base generative process. This perspective en-
ables us to develop a general cumulative self-consistency loss that penalizes the
misalignment at both the current step and future steps along the trajectory. This
encourages the model to take larger step-sizes that not only align with the base
model at the current time step but also guide subsequent steps towards high-quality
generation. Furthermore, we draw a connection between our approach and rein-
forcement learning, potentially opening the door to a new set of approaches for
few-step generation. Extensive experiments show that we significantly improve
one- and few-step generation quality under the same training budget.

1 INTRODUCTION
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Figure 1: Two- and one-step image generation using ST models (Frans et al.}[2025)) and our ST-CSL
method trained on ImageNet-256 dataset. ST tends to develop artifacts in the generated image with
one and two-step generation, and our method generates a smooth, clearer image.

Diffusion (Song & Ermon| 2019} Ho et al.,[2020; [Kingma et al.l 2021} [Song et al., 2021)) and flow-
matching (Lipman et al.| 2023} |Albergo et al.,[2023)) models have demonstrated remarkable capabil-
ities in generating high-quality images (Rombach et al., 2022} [Luo et al., 2023a} [Esser et al.,[2024),
video (Esser et al}[2023}; [Gupta et al.,[2024; |Luo et al., 2023b), audio (Huang et al., 2023} |[Liu et al.}

2023a} [Kong et al., [2021)), and molecular graphs (Vignac et al, 2023}, Jo et al.} 2022} [Eijkelboom|
et al.l |2024). The generation involves iteratively transforming random noise into structured data,
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typically requiring hundreds of steps of forward passes through a neural network. This renders the
process inefficient and computationally expensive. It is a key limitation in comparison to single-step
generative models, such as VAE (Kingma & Welling, |2014; |Vahdat & Kautz, 2020), GAN (Good-
fellow et al.|[2014)), and normalizing flows (Dinh et al., 2017 |Kingma & Dhariwall 2018)).

To achieve one- or few-step generation, previous efforts distill knowledge from a pretrained diffusion
model into an efficient student model. A way for one-step generation typically involves training a
student model to learn a direct mapping from noise-image pairs generated by the pre-trained model
(Luhman & Luhman| 2021} |Zhao et al.l 2023; |[Zheng et al., [2023} |Yin et al.l 2024). A set of ap-
proaches avoid the cost of generating such pairs, and support flexible generation budgets by allowing
few-step generation (Berthelot et al., 2023} |Ghimire et al., 2023} |Gu et al., 2023} [Liu et al., [2023bj
2024} |Salimans & Ho, 2022; Song et al., |2023). These methods either progressively distill knowl-
edge by halving the number of generation steps at each stage (Salimans & Ho} 2022)), or enforce
straighter flow paths during distillation (Liu et al., 2023b; [Lee et al., 2024). These distillation-based
approaches require two training phases: training a base diffusion model and distilling its knowledge
into a student model. Consistency models propose a single-phase training for few-step generation by
learning the transformation of each noisy sample in the generation trajectory to the same final output
(Song et al.l 2023 Song & Dhariwal, [2024). However, they suffer from poor training stability and
bias introduced by discretization (Frans et al., 2025)). Recently, shortcut models, a family of models
with step-sizes larger than that of the base models, show promising performance by conditioning the
model’s output not only on time-steps and noisy inputs but also on the simulation step-sizes (Frans
et al., [2025). This simple but elegant design allows for generation under a specified budget simply
by conditioning the model on its corresponding step size. They jointly train base model and the
shortcut models with a standard flow-matching loss and a self-consistency loss (SL), which aligns
the shortcut model’s outputs with the base model at each time step. Although the experiments show
improved few-step generation performance, it still lags significantly behind the base flow-matching
models, emphasizing the need for further improvement. Moreover, the introduction of the SL loss
in the paper lacks a theoretical foundation.

In this paper, we focus on improving shortcut models by identifying limitation in the SL loss, and
introducing an improved version. Specifically, by formulating the shortcut models as a controlled
version of the base generative models, we propose to interpret the SL loss through the lens of an
optimal control framework (Bryson & Ho, [1975). Through this perspective, we show that the SL
loss corresponds to a special case of the optimal control objective, since it penalizes misalignment
between the shortcut and the base model only at the current time step, overlooking the future ram-
ifications of this immediate deviation. By drawing upon the concept of expected future cost in a
controlled process, we thus propose a general cumulative self-consistency loss (CSL), which pe-
nalizes both immediate and future misalignments cumulatively over time. Moreover, we establish
a connection between our algorithm and on-policy reinforcement learning methods (Mnih et al.,
2013} |Lillicrap et al., 2015) by interpreting the expected future cost as a value function. Similar
to on-policy algorithms aiming to maximize an agent’s cumulative reward rather than optimizing
for immediate gains, our approach optimizes the cumulative cost along the generation trajectory.
Evaluating the generative performance on CelebA256 and CIFAR10 datasets shows that our method
robustly outperforms the state-of-the-art single-phase training approaches with the same training
budget. Our contributions can be summarized as follows:

* We propose a novel perspective that frames few-step generation as a controlled process,
and interpret the SL loss as a special case of an optimal control objective.

* We propose a novel CSL loss that penalizes both immediate and future misalignments
between the few-step mode and the base generative model cumulatively over time.

* Training with the proposed CSL loss significantly outperforms shortcut models and other
few-step generation baselines on benchmark datasets.

2 RELATED WORKS

2.1 FEW-STEP GENERATION

Distillation-based approaches aim to transfer knowledge from a pretrained model to a student model
(Luhman & Luhmanl 2021; Zhao et al., 2023; Zheng et al., 2023 |Yin et al., [2024; [Liu et al., [ 2023b;
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Salimans & Ho| 2022). Some methods allow only fixed-step generation or require generating large
volumes of noise-image pairs (Luhman & Luhman, 2021;[Zhao et al., 2023} Zheng et al., 2023; Yin
et al., |2024; [Liu et al.l |2023b)), while others reduce steps via bootstrapping but demand retraining
a new model for each step reduction (Salimans & Hol [2022). Overall, these approaches are either
computationally expensive or inefficient when scaling to different step counts. Moreover, all these
approaches follow a two-phase pipeline: pretraining a base model followed by distilling knowledge
into few-step models. In contrast, consistency models (Song et al. [2023; [Song & Dhariwall 2024;
Lu & Songl 2025) introduce a single-phase training strategy that trains a model to map noisy in-
puts from any time step directly to the final denoised version, essentially enforcing transformation
consistency along the denoising trajectory. Remarkably, this class of models achieve one- or few-
step performance close to the base diffusion or flow-matching model. However, they are compli-
cated by design and naturally unstable while training, requiring substantial engineering efforts like
adaptive weighing for training stability [Lu & Song| (2025). Recently, |[Frans et al.| (2025) proposed
shortcut models for few-step generation, featuring a simple, intuitive design and a straightforward
single-phase training recipe, making them accessible for real-world deployment. Shortcut models
condition not only on the noisy input and time step but also on the step size. By learning a family
of denoising functions conditioned on the step size, they provide a flexible and efficient framework
for few-step generation using a single model across different computation budgets. The SL loss is
employed to align the generation trajectory of the model at larger step sizes with that of the base
model, yielding strong performance. Nevertheless, the performance of few-step models still lags
considerably behind that of the base model.

In this work, we focus on improving shortcut models. Since the original formulation of the SL
loss lacks a theoretical foundation, we establish one, which allows us to identify its limitations
and propose an improved variant. In addition, our theoretical framework uncovers a previously
unidentified connection between few-step generation and reinforcement learning.

2.2 LEVERAGING CONTROL THEORY TO GUIDE DIFFUSION-BASED GENERATION

A few works have utilized control-theoretic principles to steer or fine-tune base diffusion and flow-
matching models (Wang et al., [2025; Sprague et al., 2024; |Domingo-Enrich et al., |2025). OC-Flow
(Wang et all [2025) leverages an optimal control framework to guide pre-trained flow-matching
models for controlled generation. Domingo-Enrich et al. (Domingo-Enrich et al., [2025)) introduce a
fine-tuning algorithm that interprets reward-based optimization through the lens of stochastic opti-
mal control.

3 BACKGROUND

3.1 OpTIMAL CONTROL

Let X}* denote the state of a controlled dynamical system at time ¢ defined by:
dX{ = (b(X{t) + o(t)ug(X (1)) dt,  X§ ~ po, (1)
where b( X}, t) is the base drift, ug (X}, t) is the drift, called the control vector field, o(t) is a control

coefficient, and py is the initial distribution. These jointly define the evolution of the controlled
process X;'. Optimal control problem aims to minimize the following objective:

1
Hussoet) = [ (X200 + 9068 0) de 4 HXD), w0 =XE @
t/

where f(ug(X}",t),t) penalizes the magnitude of the control, g(X;", t) is the intermediate state cost,
and h(X?) is the terminal cost. A result which we will later use in our analysis, is the expression
for the derivative of J(ug; x4, t") with respect to the control parameters 6 is:

dJ (ug; xer,t') Lo L Oug (X, 1)
ZINRO IS ) “ XU vRo\A - Y) .
d6 , g/ (X0, 0) dH/t/ gg  COVe S (ugiznt)dt ()

The gradient in Equation[3|consists of an immediate and a propagated effect. The first term measures
how changes control parameter # directly influence the instantaneous control cost, while the second
term captures how those same changes alter the future trajectory and thus the future costs. Together,
they quantify both the local and downstream impacts of the change in 6.
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3.2 FLOW MATCHING

Flow-matching models (Lipman et al.| 2023} |Albergo et al., [2023) formulate data generation as
simulating an ordinary differential equation (ODE), iteratively converting random noise into realistic
data samples. Given a model with parameter 6 that outputs velocity field vy, the denoising process
is represented as:

dry = vg(xy,t) dt, t€]0,1], zg ~N(0,I)

The goal is to train the model such that the distribution of samples at ¢ = 1 matches the data
distribution. We consider the optimal transport formulation of flow-matching (Lipman et al., [2023)
in which the model is trained to optimize the following objective:

Lon(0) = Eagn, [llolent) =l w= (1 =ao+tar, v=m-20 @

Here, 1 is a sample from the data distribution, 1 ~ D, and v; represents the direction from
noise to the data sample. When both xy and x; are known, v; is deterministic. However, multiple
(20, 1) pairs may correspond to the same x;, making v; inherently stochastic. When trained with
the objective in Equation 4] flow-matching models learn the expected velocity conditioned on x,
denoted as E[v; |x].

3.3 SHORTCUT MODELS

The trajectory defined by the flow-matching ODE is typically curved, necessitating small step sizes
for accurate simulation, resulting in inefficient generation. Using larger step sizes to enable faster,
few-step generation leads to deviations from the true trajectory and significantly degrades sample
quality, often causing failure when generating with fewer than four steps. To overcome this limita-
tion, Frans et al. (Frans et al.,|2025)) propose shortcut models, which learn to take larger steps while
accounting for the future curvature of the trajectory, thereby avoiding deviation from the original
path. This approach enables few-step generation with improved sample quality. Notably, both the
flow-matching and shortcut models are parameterized by the same backbone network, with different
variants conditioned on the step size. A step taken by the shortcut model is given by:

Tiyd = Tt + S(l’t, t, d) . d (5)

where d is the step size, and s(x¢, ¢, d) denotes the normalized direction from x; to the point 2444
on the trajectory. Shortcut models of different step sizes d can be trained on the same backbone
network. The flow-matching model is the one conditioned with d = 0 i.e., s(x¢,¢,0). Shortcut
models are trained to enforce consistency across step sizes: taking a single step of size 2d should be
equivalent to taking two sequential steps of size d.

S(xtvtvd) S(mt+d7t+da d)
2 + 2

The target for the shortcut model s(z¢, t, 2d) is thus generated by bootstrapping. The joint training
objective of the flow-matching and shortcut models is:

(6)

S(xta t, Qd) = Starget;  Starget —

| (7)

»Cshortcut(e) = Ezo,ml,t,d [ ||89(xt7 t, 0) - (xl - xO)HQ + \\se(xt, t, Qd) — Starget

Flow-Matching Self-Consistency

4 CONTROL THEORETIC FORMULATION OF FEW-STEP MODELS

Both the forward and backward processes in flow-matching and diffusion models are governed
by the Fokker—Planck equation, which describes the evolution of a probability density over time
(Risken, [1996). From this perspective, one- or few-step generation can be viewed as training a
neural network to approximate the solution of an underlying ODE. Consequently, when training a
shortcut model to approximate this solution, the resulting integration error is cumulative in nature.
To formalize this intuition, we model the output of the shortcut model itself as the solution to an
ODE, defined as follows:

dX; = [b(X{ 1) +ua(Xit)] dt,  ug(X{t) = so(X{t) — b(X}t) (8)
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This formulation implies that the shortcut model’s output incurs an error ug(X}*, t) at each point in
time that makes its trajectory deviate away from the base model. Consequently, the error at time ¢
reflects the cumulative effect of all errors at earlier time points 7 < ¢. Note that the model predicts
the shortcut velocity sg(X;*,t), and the error ug is obtained by comparing this prediction with the
base velocity b(X}, t). Another advantage of this formulation is that Equation (8) provides a new
perspective of viewing the few-step model as a controlled process. Unlike the standard optimal
control formulation, where a control vector field ug is introduced to steer the base process toward
optimizing a predefined objective (e.g., Equation 2, here ug is an unknown error that is implicitly
introduced along the generation trajectory of a shortcut model. Since our goal is solely to make the
shortcut model’s trajectory match the base model, we focus only on minimizing the error uy and do
not consider intermediate state costs g(X, t) or terminal state cost h(X7"). Accordingly, we define
an objective by setting g = h = 0 in Equation[2]
1
J(ug; zy,t') :/ fug(X{,¢),t) di ©9)
tl
The future cost, .J, thus becomes the primary quantity of interest. It is important to note that if
ug = 0 for all £ and X, the controlled process matches exactly with the base process, and the path
of the few-step model matches that of the base flow-matching model.

Equations 8|and[9)reveal that changing the model parameters 6 affects the cumulative objective .J in
two ways: (i) by altering the immediate error ug (X, t'), and (ii) by changing the subsequent states
X}, which in turn impacts the future errors ug(X;*,t) for t > t'. We will show in the next section
that the self-consistency loss is limited in that it accounts only for the immediate error. We will then
propose two loss functions that also incorporate the impact on future errors.

4.1 SELF-CONSISTENCY L0SS (SL) AS AN OPTIMAL CONTROL OBJECTIVE

Lemma 1 Let f(ug(X{,t),t) = |ug(X, 1)|[28(t' — t), where 8(t) is the Dirac delta function.
The objective in Equation [9 becomes:

1
Jsr(ug; zy,t') :/ lug (X', O[P0(t" = t)dt = [lug(xe, t)|?, 2w =Xg  (10)
t/

From Equation if we consider model with stepsize 2d as shortcut model dff and that with

stepsize d as base drift b( X}, t), then for the discrete case, uy is the difference between the average
of the two steps taken by the base model and a single step taken by the shortcut model: ug(z:,t) =
sg(xy, t,2d) — Starget- The optimal control objective equals to the self-consistency loss term:

JSL(UO;xtat) = ||39(xt;t72d) - 3targel||2

Equation@accumulates the cost f over the full trajectory from ¢ = ¢/ to ¢t = 1. SL corresponds to
restricting this accumulation to only the current time ¢ = ¢’ via a Dirac delta function. Thus, Jsy, is
suboptimal: it penalizes the error ug only at t’, ignoring how this error propagates and affects future
errors at t >t along the trajectory. .

5 CUMULATIVE SELF-CONSISTENCY Loss (CSL)

We relax the delta function constraint in Jgz, and propose the following two losses:

Lemma 2 Let, f(ug(X{,t),t) = ||ug(ze, t')||> Vt > t', where, x, = X! the objective in Equa-
tion@ becomes:

1
JUSL(“9§$t’>tl>:/ lug (X7, )% dt = (1 = t') [Jug (2, )| (1D
t/

where USL stands for Uniform Self-Consistency Loss. Jirgr considers errors over the entire time
t' < t < 1; however, it makes a naive assumption that the error ug(X}*,t) is independent of ¢,
and is uniform over the entire trajectory which is equal to the value at ¢ = t’. Essentially, this
simply reduces to a weighted SL and suffers from the same limitation as Jgz,. We further relax the
uniformity assumption and propose a CSL loss.
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Figure 2: (a)lllustration of the SL (left) and CSL (right) losses. The solid blue, orange, and red
arrows denote the direction of the base model, the shortcut model, and the error ug, respectively.
The error is the difference between the direction taken by the base model and the shortcut model.
For SL, we calculate the error only at the current time ¢, while for CSL, we calculate and aggregate
the error at every point from ¢ = ¢’ to the final time ¢ = 1. CSL allows the model to learn from
cumulative gradient in addition to the immediate gradient as denoted by dashed purple and green
arrows respectively. (b) A comparison between SL, USL, and CSL losses.

Lemma 3 Let f(ug(X{,1),t) = |lug(X{,t)||?,Vt > t, the objective in Equation@becomes:
1
Josu(uize ) = [ Jun(XE 0IPdt, a0 = X (1)
t/

The differences between the SL, USL, and CSL losses are illustrated in Figure |Zkb). Starting from
t = t’, SL penalizes the error ugy only at that specific time. USL accounts for the error along the
entire trajectory; however, it assumes the error is uniform across time, effectively treating the error
at all points as identical to that at ¢ = ’. In contrast, CSL captures the true error landscape along
the entire trajectory, accumulating the error at each time step.

5.1 ANALYSIS AND COMPARISON WITH SELF-CONSISTENCY LOSS

Using the gradient of Jo gy, with respect to the parameters 6 is given as (assuming o (t) = 1):

dJcsL(U0§ z /,t’) ! Ouq
i ¢ = /t, 2up + Vyu, Josr(ue; i, t) Wdt

Analyzing the integrand,

duyg ! w Oug
(2U9 + thJCSL(UQ;l‘t,t))% = ( &Iﬁg —l-th/t ||u9(Xt ,t)||2dt)39 (13)

immediate grad
cumulative grad

In Equation T3] the gradient of Jc sz, comprises two components: an immediate gradient term cor-
responding to the error at the current step, and a cumulative gradient term corresponding to the
cumulative error along the trajectory. In contrast, the gradient of the Jgs, and Ji7gz, include only the
immediate gradient. Note that the cumulative gradient is a gradient of the future errors with respect
to the state z;. Optimizing Jco sy, therefore encourages the shortcut model not only to align with
the base model at the current step, but also to guide the trajectory towards a state z; that facilitates
high-quality generation by supporting the alignment in the subsequent steps as well.

5.2 CSL ESTIMATION AND TRAINING

Since we are working with discrete time steps, the loss Jc sz, in Equation [I2]can be expressed as a
summation of the norm of wy at every discrete step along the trajectory:

R/
1
JCSL(UQ;Ind7nd) = ZHUa(zdk,dk,d)HQ, R = 8, n e {1,2,...,R/—1} (14)

k=n
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Let R = R’ — n + 1 denote the number of terms in the summation. Replacing R’ = é with
R’ = n (ie. R = 1) results in an SL objective. An illustration of the SL and CSL losses is
presented in Figure 2] Estimating summation in Equation [I4] requires simulation, which can be
computationally demanding. However, we can approximate the summation by including only a few
terms. Specifically, we find that using only two terms, i.e., R = 2, significantly improves few-
step generation performance with negligible computational overhead. The effectiveness of R = 2
estimation is because for few-step models with two or four steps, even a two-step simulation covers
a substantial portion of the trajectory, covering the full trajectory for a 2-step model and 50% of the
trajectory for a 4-step shortcut model. We have presented the Algorithm, and the details of how the
gradient backpropagates from future (k > n) steps to the current (k = 1) step in Appendix [E}

5.3 CONNECTION TO REINFORCEMENT LEARNING

In our setting, the reinforcement learning analogy can be drawn by viewing the agent as attempting
to transform noise into a data sample, where the states correspond to intermediate noisy samples
along the generation path, the action is the direction of the next step, and the reward is defined as the
negative magnitude of ug. Under this view, the objective Josz, in Equation [T2] plays a role similar
to a value function: it quantifies the cumulative cost of following a policy along the trajectory.
Moreover, since few-step generation involves a small, fixed number of steps, we do not require
a separate network to approximate Jco gy ; instead, it can be estimated directly by rolling out the
actions. A more detailed discussion on this connection is provided in the Appendix [F}

Table 1: Comparison of FID-50K | scores of the baselines and our method on CelebA-256 and
CIFARI1O0. (* indicates that results are taken from |[Frans et al.|(2025)), 1 indicates that separate models were
trained for different generation step settings.)

| CelebA-256 | CIFAR10

| 128-Step Four-Step Two-Step One-Step | 128-Step Four-Step Two-Step One-Step

Two Phase Training

Reflow [ 12.80+0.03 13.774+0.05 14.484+0.05 16.07+0.02 | 13.93£0.05 14.92£0.05 15.5940.14 16.98+0.06
pPD' 7.96+£0.07 14.4940.07 16.73+0.02 20.4040.15 [ 7.894+0.07 10.75+0.09 11.80+0.08 13.26+0.09
Single Phase Training
FM 7.9240.04  62.8+£0.04 112.140.07 321.240.04 [ 7.95+0.09 65.03+£0.03 177.9+0.12 385.1+£0.11

CT* 53.7 19.0 - 332 - - - -

ST 7.83+£0.04 9.36£0.05 12.5640.02 20.46+0.02 [ 7.374+0.03  9.154+0.13 11.79+£0.07 19.80+0.03
ST-USL | 7.954£0.02 9.184+0.08 12.00+0.05 19.41+£0.03 | 7.37+0.08 9.35+0.07 11.65+0.08 19.5740.05
ST-CSL | 7.88+0.04 8.98+0.02 10.96+0.02 18.37+0.02 | 7.13+0.03  8.10+0.09  9.24+0.09 17.76+0.02

6 EXPERIMENTS

In this section, we empirically evaluate the proposed CSL. First, to evaluate the generative perfor-
mance, in section we make a comparison of the model’s performance with the baselines. In
sections [6.2] and [6.3] we assess if the improvement brought by CSL is consistent across varying
backbone network size and varying ratio of flow-matching to bootstrap targets (B : K) (see algo-
rithm (1) along with the training time comparison of the methods. Lastly, in section we assess
the effect of increasing the number of terms R on the performance. For all evaluations, we use
FID-50K score as the comparison metric. We train the models on the CelebA256 |Liu et al.|(2015)
and CIFAR10 |Krizhevsky| (2009) datasets using NVIDIA A100 and RTX A5000 GPUs.

6.1 PERFORMANCE COMPARISON

We consider two categories of baselines for performance comparison. 1. Two-Phase distillation
approaches: Progressive Distillation (PD) |Salimans & Hol (2022), Reflow [Liu et al.| (2023b). 2.
Single-Phase training approaches: Flow-Matching (FM)|Lipman et al.|(2023), Consistency Train-
ing (CT)[Song et al.[(2023), Shortcut Models (ST)Frans et al.| (2025)
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Figure 3: FID score comparison between shortcut and shortcut-CSL (ours) across different backbone
network sizes (parameter counts). The networks are diffusion transformers (DiT) of varying sizes.
Our model consistently outperforms the shortcut model across all network sizes and generation steps
on both CelebA-256 and CIFAR10 datasets.

For a fair comparison with the shortcut model, we make sure the training budget is the same for both
methods. We use the same number of flow-matching and bootstrap targets per batch. To achieve
this, since we create two bootstrap targets per datapoint for R = 2, we only make use of K/2
datapoints for bootstrap targets in our case, while for the shortcut model we use K datapoints. We
require additional compute for the additional network forward pass step during bootstrap targets
generation (step 18 in Algorithm [I), which adds only 7% of extra computation and training time
in practice. Similar to [Frans et al|(2025), we use the medium-scale diffusion transformer model
DiT-B-2 (Peebles & Xie, 2023) as a backbone network. All the other hyperparameters are the
same, and the details are provided in the Appendix. The FID-50K scores for the baselines and
our method are reported in Table [I] the base flow-matching model is the one with 128-steps. Our
method, trained with Jy gy, and Jogg, are referred to as shortcut-USL (ST-USL) and shortcut-CSL
(ST-CSL), respectively. The results show that ST-USL consistently outperforms the baseline ST
in one-, two-, and four-step generation, except for the four-step case on CIFAR10. Notably, the
performance of ST-CSL surpasses both ST and ST-USL on both datasets across all the steps, with
the exception of the base 128-step model on CelebA, where it achieves performance comparable
to ST. This shows the effectiveness of using CSL in improving the generation quality of few-step
models. Additionally, while PD achieves superior one-step generation performance on CIFAR-10,
and Reflow does so on CelebA, both methods require a two-phase training procedure. Furthermore,
they offer a less favorable trade-off between computational cost and performance, underperforming
on 2- and 4-step generation tasks compared to our method. PD also requires training and deploying
separate models for each generation budget, which is time-inefficient.

Next, we empirically asses the analysis in sectionS.1] pje 2- Squared misalignment (u2) for
that our method trains the model to not only min-  ~1pAR-10 averaged over 100 samplesg.

imize current but also future errors. We compare
trained Shortcut and Shortcut-CSL models for CI- Method ¢ =0.5 t=1.0
FAR10 by generati'ng samplgs fFom random noise at ST 05%x10-3 2.5 % 10-3
t = 0 and measuring the misalignment uy between _3 _3
the two-step and it’s base four-step trajectories at in- ST-CSL 0.5 x 10 1.4 %10
termediate time steps t = 0.5 and ¢ = 1.0. For a
two-step trajectory, the value of ug at ¢ = 0.5 and ¢t = 1.0 correspond to immediate and future errors
respectively. Table[2]shows that while both methods are similar value of ug at t = 0.5, Shortcut-CSL
has a notably lower value at ¢ = 1.0, demonstrating its advantage in reducing future error.

6.2 PERFORMANCE WITH INCREASING BACKBONE NETWORK SIZE

We evaluate whether the improvement of ST-CSL over ST is consistent across different backbone
network sizes. We train both models using small (DiT-S-2, 74M parameters), medium (DiT-B-2,
296M parameters), and large (DiT-L-2, 1.2B parameters) diffusion transformer networks.

The FID scores for models trained on CelebA and CIFAR10 are shown in Figure[3] We observe that
as the model size increases, the overall few-step generation quality of the shortcut model improves.
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Table 3: Wall-clock time (in hours) for training
(100 epochs) a Flow-Matching (FM), a shortcut
(ST) and Ours (ST-CSL) methods for Diffusion
Transformers of different sizes on the CelebA

Importantly, ST-CSL consistently outperforms
ST across all model sizes and generation steps.
This shows that the improvement of CSL over SL
is robust across varying network sizes.

dataset.
Training Time Comparison: In Table [3] we FM ST ST-CSL
compare the time taken to train the flow-matching
(FM), shortcut(ST), and our methods. Training DiT-S-2 (74M) - 56 6.2
FM is efficient of all but it doesn’t support few- DiT-B-2 (296M) | 6.4 7.4 7.8
step generation. Compared to ST, our method DIiT-L-2 (1.2B) ~ 114 122
only consumes 7% more training time on aver-

age. Please refer to Appendix [G]for detailed time
and memory consumption analysis.

6.3 ANALYSING THE EFFECT OF THE RATIO B : K

We further evaluate whether the improvement of ST-CSL is consistent if we vary the ratio of flow-
matching to bootstrap targets (B : K) while training. We report the FID scores with varying ratio in
Table[d] Although increasing the percentage of bootstrap targets introduces additional computational
cost, our results show that it significantly enhances the generation performance. Importantly, our ST-
CSL consistently outperforms the ST baseline in few-step generation across all ratios. Moreover,
we observe that at the 1 : 1 ratio, our method achieves two-step performance within 2.0 points of
the ST’s 128-step performance on CelebA, and within 1.5 points on CIFAR-10.

Table 4: FID score comparison between shortcut and shortcut-CSL (ours) for different ratios of
flow-matching to bootstrap targets (B : K). Our model consistently outperforms shortcut model
across all ratios and generation steps on both CelebA-256 and CIFAR10 datasets.

| CelebA-256 CIFAR10

B:K Method |128»Slep Four-Step  Two-Step One—Stepl 128-Step Four-Step Two-Step One-Step

41 ST 7.83 9.36 12.56 20.46 7.37 9.15 11.79 19.80
' ST-CSL 7.88 8.98 10.96 18.37 7.13 8.10 9.24 17.76
21 ST 7.73 9.00 11.51 18.50 6.98 8.53 11.00 18.33
' ST-CSL 7.75 8.58 10.09 16.37 6.95 7.98 9.08 16.51
11 ST 8.01 9.00 11.14 16.51 6.56 8.17 10.54 16.43
’ ST-CSL 7.56 8.54 9.91 15.51 6.67 6.95 7.94 13.96

6.4 EFFECT OF R

We investigate the effect of increasing the num-

ber of terms in the CSL objective in Equation Table 5: FID-50K scores for one- and few-

Specifically, we experiment with R = 1,2,4,  step generation for different values of R on CI-
where larger values of R yield more accurate esti- FAR]0).

mations of the CSL. Note that R = 1 corresponds CIFAR10
to the SL loss used in the shortcut models. For
all settings of R, the number of flow-matching
and bootstrap targets per batch is kept constant.
We observe that, compared to R = 1, R = 2
incurs approximately a 5% more training time,
while R = 4 incurs about 30% more time. The
FID scores for few-step generation under differ-
ent values of R are reported in Table [5] The results demonstrate that increasing R consistently
improves generation performance, highlighting the benefit of more accurate CSL estimation.

Four-Step Two-Step  One-Step

8.17+0.10 10.54+0.08 16.4340.06
6.95+0.07 7.944007 13.9640.10
6.66+0.11 7.11+0.05 13.10+0.06

N S e =)

6.5 CLASS CONDITIONAL GENERATION ON IMAGENET

We would like to evaluate further the efficacy of the proposed CSL on the class-conditional genera-
tion task. For this, we train the baseline ST and our ST-CSL methods on the ImageNet dataset, and
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calculate the FID and the F1 scores of the generated samples (details of the metrics are provided
in Appendix [H). For this analysis, we also compare with the recent MeanFlow [Geng et al| (2025)
baseline at different percentages of bootstrap target, which corresponds to the B : K ratio for ST
and ST-CSL. The FID for base 128-step generation is 15.21. The results in Table[6]show significant
gains of our ST-CSL method when compared to Meanflow and ST. Additionally, although Meanflow
performs better than ST in one-step generation, ST offers better performance vs efficiency tradeoff as
shown by its superior performance at two- and four-step generations. Moreover, compared to Table
[T} the gain of ST-CSL over ST is even larger in advanced and challenging datasets like ImageNet-
256: for one-step generation, our method improves FID by nearly 20 points and F1 score by 4%.
We additionally experimented with both small- and large DiT backbones, and the results in Table 7]
show that improvement with ST-CSL is scalable with backbone network sizes.

Furthermore, Figure [T shows generated samples from the ST and ST-CSL methods. Images gener-
ated by ST with one and two steps have noticeable artifacts; for instance, in the flying-bird example,
despite the plain background, distinct distortions appear around the object. In contrast, our method
yields smoother and cleaner generations.

Table 6: FID score comparison between shortcut (ST) and ST-CSL (ours) on the class-conditional
generation task on ImageNet-256. We train the models on ImageNet-256x256 and compare the
performance across different ratios B : K for ST and ST-CSL, and different percentage of bootstrap
targets for Meanflow. ST-CSL consistently outperforms ST across all ratios and generation steps.
The backbone is_a medium-scale diffusion Transformer: DiT-B-2.

FID | F1-score T
Method Four-Step Two-Step  One-Step | Four-Step Two-Step One-Step
Reflow 40.86 43.68 50.40 0.56 0.54 0.51
FM 104.96 210.39 325.78 0.26 0.09 0.00
Meanflow (15%) 48.22 50.13 59.63 0.55 0.55 0.54
Meanflow (10%) 39.65 41.10 50.01 0.57 0.57 0.55
Meanflow (5%) 34.09 36.61 45.12 0.58 0.57 0.56
ST (4:1) 24.70 35.73 64.12 0.61 0.56 0.46
ST (2:1) 23.47 32.54 55.55 0.63 0.58 0.50
ST (1:1) 24.17 32.22 51.78 0.63 0.59 0.51
ST-CSL (4:1) 16.98 21.77 45.84 0.63 0.60 0.50
ST-CSL (2:1) 16.21 18.71 37.60 0.64 0.62 0.53
ST-CSL (1:1) 15.71 17.35 31.66 0.64 0.63 0.56

Table 7: FID score comparison between shortcut (ST) and ST-CSL (ours) on the class-conditional
generation task on ImageNet-256 with small-scale (DiT-S-2) and large-scale (DiT-L-2) diffusion
transformer backbone. The B:K ratio is set to 4:1. ST-CSL consistently outperforms ST across all
generation steps.

DiT-S-2 DiT-L-2
Method | 128-Step Four-Step Two-Step One-Step | 128-Step Four-Step Two-Step One-Step
ST 36.62 44.87 57.36 84.52 12.35 18.62 28.59 55.88
ST-CSL | 34.09 33.44 39.60 64.02 13.45 14.58 20.02 46.19

7 CONCLUSION AND FUTURE WORK

We formulate few-step generation as a controlled process, using the flow-matching model as its
base process. This perspective provides the theoretical foundation for the self-consistency loss and
motivates our proposed cumulative self-consistency loss. By training with this objective, we achieve
significant improvement in one- and few-step generation performance over the baselines.

In this work, we consider the objective J without any intermediate state cost, i.e., g(X*,t) = 0.
An interesting direction for future work is to explore ways of incorporating this cost to influence the
trajectory by penalizing undesirable intermediate states. Furthermore, the connection of our formu-
lation to reinforcement learning offers opportunities to leverage techniques from the reinforcement
learning literature to further enhance few-step generation quality.

10
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APPENDIX

A DERIVATION OF EQUATION

‘We have,
1
Tussae,t) = [ (F(X00.0) + 9068 0) de4 HXD), w0 =XE(5)
tl
We can write the gradient of J as:

d 1
T |, fn(xe0.0 + g2 0 e nx)
1

0 PO[f (g (X 1), 1) + g( Xy 0] OXp  Oh(XY)
= — X2 t),t)dt > . dt 16
Using the st opgrad notation as in|Domingo-Enrich et al.|(2025)) for the last two terms
1 u u u u
o oxX} o0 o0
8 1
— o | [ a0+ x| (13)
¢ v=stopgrad(ug)
Using the result from |Domingo-Enrich et al.[(2025). (Lemma 5),
a 1
a5 | FOOEED,0) % 90X, ) de -+ h(x)
t/
1
Xit
:/ Ma(t)vmtJ(ue;xt,t) dt (19)
" 00
Plugging this into Equation [T
dJ (ug; xp,t') Lo /1 dug (X, 1)
—_ = — XM _— : 2
= a6 (ug(X3',t),t) dt + y 5 o(t)Va, J(ug; z,t)dt  (20)

B LATENT SPACE INTERPOLATABILITY

To analyze whether the one-step model learned by our approach captures an interpolatable latent
space, we examine the model’s outputs when fed with interpolated noise samples between two in-
dependently drawn Gaussian noise vectors. Specifically, given zg,z[ ~ N(0,I), we generate
interpolated inputs using

To =V1—axe+Vaz, «acl0,1].

We then apply one-step denoising to each interpolated sample using our shortcut-CSL model. The
resulting images shown in Figured]exhibit smooth transitions across the interpolation path, suggest-
ing that the model has an interpolatable latent space.

C SAMPLES FROM SHORTCUT-CSL

In Figure 5] we provide some samples from the proposed shortcut-CSL method for different gener-
ation budgets.

14
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Figure 4: Image generated using the shortcut-CSL (ours) method with one-step denoising applied
to a variance-preserving interpolation between two Gaussian noise samples. The leftmost and right-
most images correspond to independently drawn noise samples, while the intermediate images were
produced from interpolated samples.

128
Steps

Four
Steps

Two
Steps

One
Step

Figure 5: Image generated by the shortcut-CSL (ours) method by four-, two-, and one-step denois-
ing. 128 steps denoising corresponds to the base flow-matching model.

D HYPERPARAMETER DETAILS

For the experiment in Table 1, we use the medium-scale diffusion transformer DiT-B-2
(2023) as the backbone network for both the shortcut baseline and our method. For CelebA-
256, we downsample images from 3x256x256 to 4x32x32 using the VAE encoder from the
Stable Diffusion framework [Rombach et al|(2022), specifically the sd-vae-ft—ema variant. We
then train the diffusion model in this compressed latent space. Detailed hyperparameters for our
(ST-CSL) approach are provided in Table [§] Here, M denotes the total number of denoising steps
in the base flow-matching model. The baseline shortcut method (ST) uses the same hyperparameter
configuration, except with R = 1. The experiments were run on NVIDIA A100 and RTX A5000
GPUs and took about 24 hours to run.

15



Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters used for training on CelebA-256 and CIFAR10.

Hyperparameter Value

batch size 64

epochs 300 (CelebA), 500 (CIFAR10, ImageNet)
M 128

B 64 (CelebA, CIFAR10), 128 (ImageNet)
K 16 (CelebA, CIFAR10), 32 (ImageNet)
R 2

ema 0.9999

optimizer AdamW

learning rate 0.0001

weight decay 0.1

E ALGORITHM

The algorithm for training shortcut models with the proposed CSL loss is detailed in Algorithm|[I}

Algorithm 1 Training Shortcut Models with cumulative Self-Consistency Loss (Shortcut-CSL)

1: K < #bootstrap targets

2: B « #flow-matching targets

3. R < #terms in Jo gy, estimation
4: while not converged do

5: xo ~N(0,I), =z~ D,
6: xy <+ (1 —t)zp + tay

7 for B batch elements do

8: Starget < T1 — T

9: d<+0

(dv t) ~ p(d, t)

10: end for

11: for K/R batch elements do

12: t' < t, 2} < @, Starget = ]

13: for R iterations do

14: s1  sg(a, ', d)

15: xh x| + s1d

16: 89 + sg(xh,t' + d,d)

17: APPEND (Sarger, sStopgrad((sy + $2)/2))
18: @) + zf) + sp(ah,t' +d,2d) - 2d
19: t' =t +2d

20: end for

21: end for

22: vtz — xy

23: forr=1to R do

24: 0 < Volso(z,t,2d) — Starget[7]||*
25: xh =) + se(x),t,2d) - 2d

26: t' =t +2d

27:

28: end for

29: end while

The cumulative grad term in V,J (Equation[I3)) term is realized in practice by line 24 of Algorithm
1. For R = 2, lines 23-26 operate as follows: Starting from an initial state 2} at time ¢, we compute

a shortcut step with stepsize 2d as:,

se (2, t,2d),
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and evaluate the squared-loss objective against the fixed target produced by rolling out two steps
with stepsize d (lines 13-19). In practice, PyTorch autograd computes this gradient. We then move
along the shortcut step to obtain the “next state” and updated time (line 25 and 26). Now, in the
second iteration, we again compute

50(’7;/17 ta Qd)a

at this “next state”, and evaluate the squared loss with the corresponding target. Crucially, during
this second loss evaluation, the “next state” depends on the shortcut step taken in the first iteration
(line 25). As a result, the gradient from the second loss flows backward into the computation of
the first shortcut step. This ensures that the first shortcut step is also updated so as to reduce the
loss incurred at the second step. This is precisely how the gradient backpropagates from the second
(future) step to the first (current) step and realizes the cumulative gradient term in Equation [13]

F CONNECTION TO REINFORCEMENT LEARNING

The optimal control (OC) viewpoint of few-step models naturally connects to reinforcement learn-
ing. In OC literature, the following OC objective (Equation [2) at optimality is known as a “value
function”, which mirrors the RL value function that represents the cumulative future cost along a
trajectory:

1
J(UG; zt’at/) = / (f(u‘g(X;L,tLt) + g(XZJvt)) dt + h(Xf)a )(tlf = Ty (21)

!

Since our proposed Jcgr, has the same structure—accumulating the consistency error ||ug||? along
the trajectory—we can formulate training as an RL problem: the shortcut model acts as the actor,
while a value network serves as the critic estimating Jcgy, via temporal-difference learning. We can
formulate our method as a reinforcement problem as follows:

Starting with random noise at ¢ = 0, an agent aims to transform it into a meaningful image in (1/d)-
steps, taking a each step of size d going from ¢ = 0 to ¢ = 1. The agent is trained to take a direction,
moving along which generates the best image (i.e., same as the direction taken by the base 128-step
model in our case). For this, we define the reward as the negative of the CSL (—J¢gs1,), which we
aim to maximize.

—Jogr, acts as our value function, and we can train a value network to estimate it. We can use the
following temporal difference learning to learn a value network V:

V(e t,d) = —|lug(we,t, d)||* + 7 Vi (2e1a,t + d, d) (22)

where 4 4 is calculated using Equation Here, ug (x4, t, d) is the immediate misalignment where
6 is the parameter of the few-step model, and V, represents the future misalignment from time ¢ 4- d
onwards, predicted by the value network.

In reinforcement learning terms, the (1/d)-step model serves as an actor, and the value model serves
as a critic, where the actor tries to maximize the estimated value. Instead of training a separate value
network to estimate CSL, we opted for K -rollout as it offered a good balance of performance and
efficiency. We leave further exploration with techniques from the reinforcement learning literature
for future work.

G EMPIRICAL TIME AND MEMORY CONSUMPTION COMPARISON

Table [9] reports the wall-clock time (in hours) and GPU memory usage (in GB) for training Flow-
Matching (FM), shortcut model (ST), and our method (ST-CSL) on the CelebA dataset for 100
epochs, using small, medium, and large Diffusion Transformer (DiT) models. All experiments were
conducted on a single NVIDIA A100 GPU.

FM is the most efficient of all in time and memory, but does not support few-step generation.

Our method requires slightly more time than the shortcut model but uses less memory in larger
models. This trade-off arises from how each method processes batches during training. The shortcut
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Table 9: Wall-clock time (in hours) and GPU memory usage (in GB) for training a Flow-Matching
(FM), a shortcut (ST) and Ours (ST-CSL) methods for Diffusion Transformers (parameter counts)
of small, medium, and large sizes.

Model Time (hours) Memory (GB)
FM ST ST-CSL, FM ST ST-CSL
DiT-S-2 (74M) - 56 6.2 - 2135 2135
DiT-B-2 (296M) | 6.4 7.4 7.8 28.66 31.67 28.96
DiT-L-2 (1.2B) - 114 122 - 4547 3852

model processes the entire batch in a single step from the current state, which minimizes time but
leads to high memory consumption. In contrast, our method uses a two-step process: it first com-
putes an intermediate step using part of the batch, then computes the next step using the intermediate
outputs (as described in lines 23-26 in Algorithm [I). Splitting the batch this way reduces memory
usage but requires additional time for the extra computation.

For two-stage methods like Progressive Distillation (PD) and Reflow, we first need to train the FM
model and distill the knowledge to the student model. Reflow requires twice the time taken by FM.
For PD, we train a student model that learns to generate samples in half as many steps as the teacher
model. Therefore, a separate model needs to be trained for 128, 64, 32, ..., 2 and 1 step generation
successively, consuming a significantly large amount of time.

H METRIC DETAILS

Fréchet Inception Distance (FID). FID measures the discrepancy between the real and generated
data distributions by comparing their feature-level means and covariances. The features are obtained
from an Inception v3 network. Lower FID indicates that the generated distribution matches the

real distribution more closely. Given real features F" = {fI }fV:fl and generated features 'Y =
{ f;-’ }Nf 1, let (u,, 3,.) and (pg, B,) denote their empirical means and covariances.

j=1
FID = ||, — pig% + Tr(Er +y, - 2(2ng)1/2) . (23)

Precision Precision measures the quality of generated samples by quantifying the fraction of gen-
erated points that lie within the local support of the real data manifold. For each real feature f],
define the k-nearest-neighbor radius

50 = KNN_dist(f7, F"),  i=1,...,N,. (24)

A generated point g; is considered valid if it lies within the radius of at least one real point. Precision

1S:
1 Qo

‘Sion — SN F9 g (r)
Precision = oA Z 1 {len £ = fillz<6;7 . (25)

g j=1

Recall Recall measures the diversity of generated samples by quantifying how much of the real
data manifold is covered by the generated distribution. For each generated feature f jg , define

( . .
') = kNN dist(f¢, F9),  j=1,...,N,. (26)
A real point f] is considered covered if a generated sample lies within its radius. Recall is:
N,
1 & -
Recall = -3 |1 [m}n IFF = £l < 08| 27)
" i=1

F1 Score. The F1 score summarizes precision and recall into a single measure, balancing sample
quality and diversity. It is defined as the harmonic mean:

2 - Precision - Recall

F = (28)

Precision + Recall -
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I CONVERGENCE WITH TRAINING STEPS
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Figure 6: We evaluate the convergence of shortcut-CSL by tracking the FID score at regular training
intervals across different backbone DiT network sizes on the CelebA-256 dataset. Our results show
that performance consistently improves with increasing model size at every stage of training.

J LLM USAGE

LLM is lightly used to polish writing in the paper. The used prompt is Please polish the
following sentence/sentences
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