Under review as a conference paper at ICLR 2026

ENHANCING SHORTCUT MODELS WITH CUMULATIVE
SELF-CONSISTENCY LOSS FOR ONE-STEP DIFFUSION

Anonymous au

thors

Paper under double-blind review

1

ABSTRACT

Although iterative denoising (i.e., diffusion/flow) methods offer strong genera-
tive performance, they suffer from low generation efficiency, requiring hundreds
of steps of network forward passes to simulate a single sample. Mitigating this
requires taking larger step-sizes during simulation, thereby allowing one- or few-
step generation. Recently proposed shortcut model learns larger step-sizes by
enforcing alignment between its direction and the path defined by a base many-
step flow-matching model through a self-consistency loss. However, its genera-
tion quality is significantly lower than the base model. In this paper, we interpret
the self-consistency loss through the lens of optimal control by formulating the
few-step generation as a controlled base generative process. This perspective en-
ables us to develop a general cumulative self-consistency loss that penalizes the
misalignment at both the current step and future steps along the trajectory. This
encourages the model to take larger step-sizes that not only align with the base
model at the current time step but also guide subsequent steps towards high-quality
generation. Furthermore, we draw a connection between our approach and rein-
forcement learning, potentially opening the door to a new set of approaches for
few-step generation. Extensive experiments show that we significantly improve
one- and few-step generation quality under the same training budget.

INTRODUCTION

Shortcut Model Ours Shortcut Model Ours

Two
Steps

One
Step

Figure 1: Two-step and one-step image generation using shortcut models (Frans et all, 2025) and
our proposed method on CelebA-256 dataset. Our method generates images with less artifacts and
higher sharpness than the shortcut model.

Diffusion (Song & Ermon),

2019; [Ho et al| [2020; Kingma et al., 2021}, [Song et al.| 2021)) and flow-

matching (Lipman et al., 2023} |Albergo et al.,[2023)) models have demonstrated rem

arkable capabil-

ities in generating high-quality images (Rombach et al., 2022} [Luo et all [2023a; [Es:

video (Esser et al.

ser et al.,|2024),

2023} [Gupta et al} [2024; [Luo et al., [2023b), audio (Huang et al.,[2023; [Liu et al.,

2023a} [Kong et al.

[2021)), and molecular graphs (Vignac et al, 2023} Jo et al., [20

22} [Eijkelboom|

et al.l |2024). The generation involves iteratively transforming random noise into structured data,

Under review as a conference paper at ICLR 2026

typically requiring hundreds of steps of forward passes through a neural network. This renders the
process inefficient and computationally expensive. It is a key limitation in comparison to single-step
generative models, such as VAE (Kingma & Welling, |2014; |Vahdat & Kautz, 2020), GAN (Good-
fellow et al.|[2014)), and normalizing flows (Dinh et al., 2017 |Kingma & Dhariwall 2018)).

To achieve one- or few-step generation, previous efforts distill knowledge from a pretrained diffusion
model into an efficient student model. A way for one-step generation typically involves training a
student model to learn a direct mapping from noise-image pairs generated by the pre-trained model
(Luhman & Luhman| 2021} |Zhao et al.l 2023; |[Zheng et al., [2023} |Yin et al.l 2024). A set of ap-
proaches avoid the cost of generating such pairs, and support flexible generation budgets by allowing
few-step generation (Berthelot et al., 2023} |Ghimire et al., 2023} |Gu et al., 2023} [Liu et al., [2023bj
2024} |Salimans & Ho, 2022; Song et al., |2023). These methods either progressively distill knowl-
edge by halving the number of generation steps at each stage (Salimans & Ho} 2022)), or enforce
straighter flow paths during distillation (Liu et al., 2023b; [Lee et al., 2024). These distillation-based
approaches require two training phases: training a base diffusion model and distilling its knowledge
into a student model. Consistency models propose a single-phase training for few-step generation by
learning the transformation of each noisy sample in the generation trajectory to the same final output
(Song et al.l 2023 Song & Dhariwal, [2024). However, they suffer from poor training stability and
bias introduced by discretization (Frans et al., 2025)). Recently, shortcut models, a family of models
with step-sizes larger than that of the base models, show promising performance by conditioning the
model’s output not only on time-steps and noisy inputs but also on the simulation step-sizes (Frans
et al., [2025). This simple but elegant design allows for generation under a specified budget simply
by conditioning the model on its corresponding step size. They jointly train base model and the
shortcut models with a standard flow-matching loss and a self-consistency loss (SL), which aligns
the shortcut model’s outputs with the base model at each time step. Although the experiments show
improved few-step generation performance, it still lags significantly behind the base flow-matching
models, emphasizing the need for further improvement. Moreover, the introduction of the SL loss
in the paper lacks a theoretical foundation.

In this paper, we focus on improving shortcut models by identifying limitation in the SL loss, and
introducing an improved version. Specifically, by formulating the shortcut models as a controlled
version of the base generative models, we propose to interpret the SL loss through the lens of an
optimal control framework (Bryson & Ho, [1975). Through this perspective, we show that the SL
loss corresponds to a special case of the optimal control objective, since it penalizes misalignment
between the shortcut and the base model only at the current time step, overlooking the future ram-
ifications of this immediate deviation. By drawing upon the concept of expected future cost in a
controlled process, we thus propose a general cumulative self-consistency loss (CSL), which pe-
nalizes both immediate and future misalignments cumulatively over time. Moreover, we establish
a connection between our algorithm and on-policy reinforcement learning methods (Mnih et al.,
2013} |Lillicrap et al., 2015) by interpreting the expected future cost as a value function. Similar
to on-policy algorithms aiming to maximize an agent’s cumulative reward rather than optimizing
for immediate gains, our approach optimizes the cumulative cost along the generation trajectory.
Evaluating the generative performance on CelebA256 and CIFAR10 datasets shows that our method
robustly outperforms the state-of-the-art single-phase training approaches with the same training
budget. Our contributions can be summarized as follows:

* We propose a novel perspective that frames few-step generation as a controlled process,
and interpret the SL loss as a special case of an optimal control objective.

* We propose a novel CSL loss that penalizes both immediate and future misalignments
between the few-step mode and the base generative model cumulatively over time.

* Training with the proposed CSL loss significantly outperforms shortcut models and other
few-step generation baselines on benchmark datasets.

2 RELATED WORKS

2.1 FEW-STEP GENERATION

Distillation-based approaches aim to transfer knowledge from a pretrained model to a student model
(Luhman & Luhmanl 2021; Zhao et al., 2023; Zheng et al., 2023 |Yin et al., [2024; [Liu et al., [2023b;

Under review as a conference paper at ICLR 2026

Salimans & Ho| 2022). Some methods allow only fixed-step generation or require generating large
volumes of noise-image pairs (Luhman & Luhman, 2021;[Zhao et al., 2023} Zheng et al., 2023; Yin
et al., |2024; [Liu et al.l |2023b)), while others reduce steps via bootstrapping but demand retraining
a new model for each step reduction (Salimans & Hol [2022). Overall, these approaches are either
computationally expensive or inefficient when scaling to different step counts. Moreover, all these
approaches follow a two-phase pipeline: pretraining a base model followed by distilling knowledge
into few-step models. In contrast, consistency models (Song et al. [2023; [Song & Dhariwall 2024;
Lu & Songl 2025) introduce a single-phase training strategy that trains a model to map noisy in-
puts from any time step directly to the final denoised version, essentially enforcing transformation
consistency along the denoising trajectory. Remarkably, this class of models achieve one- or few-
step performance close to the base diffusion or flow-matching model. However, they are compli-
cated by design and naturally unstable while training, requiring substantial engineering efforts like
adaptive weighing for training stability [Lu & Song| (2025). Recently, |[Frans et al.| (2025) proposed
shortcut models for few-step generation, featuring a simple, intuitive design and a straightforward
single-phase training recipe, making them accessible for real-world deployment. Shortcut models
condition not only on the noisy input and time step but also on the step size. By learning a family
of denoising functions conditioned on the step size, they provide a flexible and efficient framework
for few-step generation using a single model across different computation budgets. The SL loss is
employed to align the generation trajectory of the model at larger step sizes with that of the base
model, yielding strong performance. Nevertheless, the performance of few-step models still lags
considerably behind that of the base model.

In this work, we focus on improving shortcut models. Since the original formulation of the SL
loss lacks a theoretical foundation, we establish one, which allows us to identify its limitations
and propose an improved variant. In addition, our theoretical framework uncovers a previously
unidentified connection between few-step generation and reinforcement learning.

2.2 LEVERAGING CONTROL THEORY TO GUIDE DIFFUSION-BASED GENERATION

A few works have utilized control-theoretic principles to steer or fine-tune base diffusion and flow-
matching models (Wang et al., [2025}; |Sprague et al., 2024; Domingo-Enrich et al., |2025). OC-Flow
(Wang et all [2025) leverages an optimal control framework to guide pre-trained flow-matching
models for controlled generation. Domingo-Enrich et al. (Domingo-Enrich et al.,[2025) introduce a
fine-tuning algorithm that interprets reward-based optimization through the lens of stochastic opti-
mal control.

3 BACKGROUND

3.1 OPTIMAL CONTROL

Let X} denote the state of a controlled dynamical system at time ¢ defined by:
dX; = (b(X{,t) +o(t)ue(X{, 1)) dt, X§ ~ po, (1)

where b(X}, t) is the base drift, ug (X", t) is the drift, called the control vector field, o (t) is a control
coefficient, and p is the initial distribution. These jointly define the evolution of the controlled
process X;'. Optimal control problem aims to minimize the following objective:

1
$gg,/0 (f(UQ(Xtu;t)vt) + g(X;‘,t)) dt + h(X™), @)

where f(ug(X},t),t) penalizes the magnitude of the control, g(X}, t) is the intermediate cost, and
h(X73) is the terminal cost. We also define the cost functional .J (u; x,t’), representing the expected
future cost starting from state x at time ¢':

1
J(UQ;:L‘t/7t/):/ (f(ug(Xtu’t),t)—|—g(Xt",t))dt+h(X}‘), xp = X 3)
t/

A result from optimal control, which we will later use in our analysis, is the expression for the
derivative of J(ug; x4, t") with respect to the control parameters 6 is:

dJ (ue; e, t') Lo u Y Oug (X, 1) .
T _/t/ % (’LLQ(Xt ,t),t) dt-'—/;, Tg(t)vlt'](uﬂvxﬁt)dt (4)

Under review as a conference paper at ICLR 2026

3.2 FLOW MATCHING

Flow-matching models (Lipman et al.| 2023} |Albergo et al., [2023) formulate data generation as
simulating an ordinary differential equation (ODE), iteratively converting random noise into realistic
data samples. Given a model with parameter 6 that outputs velocity field vy, the denoising process
is represented as:

dry = vg(ay,t) dt, t€]0,1], zg ~ N(0,I)

The goal is to train the model such that the distribution of samples at ¢ = 1 matches the data
distribution. We consider the optimal transport formulation of flow-matching (Lipman et al., [2023)
in which the model is trained to optimize the following objective:

Lrm(0) =Eqy o {Hve(ﬂﬁt,t) — thz} o= (1—tzo+tz, v=x1— 0 5

Here, 1 is a sample from the data distribution, 1 ~ D, and v; represents the direction from
noise to the data sample. When both z and z; are known, v; is deterministic. However, multiple
(o, 1) pairs may correspond to the same z;, making v; inherently stochastic. When trained with
the objective in Equation [5] flow-matching models learn the expected velocity conditioned on ¢,
denoted as E[v; |x].

3.3 SHORTCUT MODELS

The trajectory defined by the flow-matching ODE is typically curved, necessitating small step sizes
for accurate simulation, resulting in inefficient generation. Using larger step sizes to enable faster,
few-step generation leads to deviations from the true trajectory and significantly degrades sample
quality, often causing failure when generating with fewer than four steps. To overcome this limita-
tion, Frans et al. (Frans et al.,|2025)) propose shortcut models, which learn to take larger steps while
accounting for the future curvature of the trajectory, thereby avoiding deviation from the original
path. This approach enables few-step generation with improved sample quality. Notably, both the
flow-matching and shortcut models are parameterized by the same backbone network, with different
variants conditioned on the step size. A step taken by the shortcut model is given by:

Tiyrd = Tt —+ S(ZL't, t, d) .d (6)

where d is the step size, and s(x+, t,d) denotes the normalized direction from x; to the point ¢4
on the trajectory. Shortcut models of different step sizes d can be trained on the same backbone
network. The flow-matching model is the one conditioned with d = 0 i.e., s(x¢,%,0). Shortcut
models are trained to enforce consistency across step sizes: taking a single step of size 2d should be
equivalent to taking two sequential steps of size d.

S(.Z't,t,d) S(x;+d7t+d7 d)
+ ;
2 2
Ty g = ¢ + se(xy,t,d) .d

5(-'17157 t, 2d> = Starget; Starget —

The target for the shortcut model s(z¢, t, 2d) is thus generated by bootstrapping. The joint training
objective of the flow-matching and shortcut models is:

Lortcut(0) = By a1 .4 [so(z¢,t,0) — (z1 — x0)||* + ||s0(wt,t, 2d) — Starget||? (7)

Flow-Matching Self-Consistency

4 CONTROL THEORETIC FORMULATION OF FEW-STEP MODELS

Both the forward and backward processes in flow-matching and diffusion models are governed
by the Fokker—Planck equation, which describes the evolution of a probability density over time
(Riskenl [1996). From this perspective, one- or few-step generation can be viewed as training a
neural network to approximate the solution of an underlying ODE. Consequently, when training a
shortcut model to approximate this solution, the resulting integration error is cumulative in nature.
To formalize this intuition, we model the output of the shortcut model itself as the solution to an
ODE, defined as follows:

dX{ = [b(X{,t) + ue(X{, t)]dt ®

Under review as a conference paper at ICLR 2026

where, X denotes the output of a shortcut model trying to match the output from a flow-matching
base process dX; = b(X;,t) dt. This formulation implies that the shortcut model’s output incurs
an error ug at each point in time ¢. Consequently, the error at time ¢ reflects the cumulative effect
of all errors at earlier time points 7 < ¢. Another advantage of this formulation is that in Equation
provides a new perspective of viewing the few-step model as a controlled process. Unlike the
standard optimal control formulation, where a control vector field uy is introduced to steer the base
process toward optimizing a predefined objective (e.g. Equation[3), here g is an unknown error that
is implicitly introduced along the generation trajectory of a shortcut model. Our goal is to minimize
its magnitude to ensure that the few-step models closely align with the base model. Accordingly, we
define an objective by setting g = h = 0 in Equation 3]
1
J(ug; zp,t') = / [ug(X(,t),t) di)
t/
The future cost, J, thus becomes the primary quantity of interest. It is important to note that if
ug = 0 for all ¢ and X, the controlled process matches exactly with the base process, and the few-
step method reduces to the base flow-matching model. Next, we show how Equation 9] generalizes
the SL loss.

4.1 SELF-CONSISTENCY LOSS AS AN OPTIMAL CONTROL OBJECTIVE

Lemma 1 Let f(ug(X{,1),t) = [Jug(X{,t)||?6(t' — t) , where §(t) is the dirac delta function.
The objective in Equation[9 becomes:

1
JSL(ue;xt/,t'):/ lug (X,)20t — t)dt = |lug(xe,t)||*, xp = X4 (10)
t/

From Equation if we consider d-step model as shortcut model d;(ttu and 2d-step model as base

drift b(X}*,t), then for the discrete case, uy is the difference between the average of the two steps
taken by the base model and a single step taken by the shortcut model: wg(z¢,t) = sg(a¢,t,2d) —
Starget- The optimal control objective equals to the self-consistency loss term:

JSL(UO;xtat) = ||59(xt; tv 2d) - 5target||2

5 CUMULATIVE SELF-CONSISTENCY Loss (CSL)

In Lemmal|l| the value of f(ug(X}*,t)) is non-zero only at time ¢/, due to the presence of the Dirac
delta function. As a result, the objective Jgr, accounts solely for the error ug at the current step,
ignoring all future errors. To incorporate the errors along the entire trajectory, we relax the delta
function constraint and propose the following two loss functions:

Lemma 2 Let, f(ug(X{,t),t) = |lug(X2, t')||> ,Vt > t, the objective in Equationl?]becomes:
1
Jus(ug; ') =/ lug (X3,)2t = (1 = t') [lug(ze, t)*, e =X5 (1D)
t/

Jirgr consider errors over the entire time ¢ < t < 1, where USL stands for Uniform Self-
Consistency Loss. However, it makes a naive assumption that the error ug is uniform over the
entire trajectory. We further relax the uniformity assumption and propose a CSL objective.

Lemma 3 Let f(ug(X[,t),t) = |luo(X,0)||?,Vt > t', the objective in Equationl?]becomes:

1
Josn(ugs zv,) = / lug (X,)|t wp = X (12)
t/

5.1 ANALYSIS AND COMPARISON WITH SELF-CONSISTENCY LOSS

Using the gradient of Jo gy, with respect to the parameters 6 is given as (assuming o (t) = 1):

dJosr(ug; xy,t') /1 Oug
— 2 . s, t)) ol gt
20 ; ug +V tJCSL('U,e Tt) 20

Under review as a conference paper at ICLR 2026

- = » immediate grad

—> base model - - » cumulative grad /’\u
t=1
U

-

CSL

Figure 2: Illustration of the SL (left) and CSL (right) losses. The solid blue, orange, and red arrows
denote the direction of the base model, the shortcut model, and the error ug, respectively. The
error is the difference between the direction taken by the base model and the shortcut model. For
SL, we calculate the error only at the current time ¢’, while for CSL, we calculate and aggregate
the error at every point from ¢ = ¢’ to the final time ¢ = 1. CSL allows the model to learn from
cumulative gradient in addition to the immediate gradient as denoted by dashed purple and green
arrows respectively.

Analyzing the integrand,

! au(g

(. olPa) 50

8UQ

(2ug + Va, Jesp (ug; x4, t))ﬁ

= (2ug +Va,
<~

immediate grad

cumulative grad

In Equation the gradient of Jo gy, comprises two components: an immediate gradient term cor-
responding to the error at the current step, and a cumulative gradient term corresponding to the
cumulative error along the trajectory. In contrast, the gradient of the Jgr, includes only the imme-
diate gradient. Note that the cumulative gradient is a gradient of the future errors with respect to
the state x;. Optimizing Jcgy, therefore encourages the shortcut model not only to align with the
base model at the current step, but also to guide the trajectory towards a state x; that facilitates
high-quality generation by supporting the alignment in the subsequent steps as well.

5.2 CSL ESTIMATION AND TRAINING

Since we are working with discrete time steps, the loss Jc gz, in Equation[T2]can be expressed as a
summation of the norm of uy at every discrete step along the trajectory:

R/
1
JCSL(ua;xnd7nd) = Z|‘U9($dk,dk,d>”27 R = ga ne {1a25"'aR/_1} (14)
k=n
Let R = R’ — n + 1 denote the number of terms in the summation. Replacing R’ = % with

R’ = n (ie. R = 1) results in an SL objective. An illustration of the SL and CSL losses is
presented in Figure [2| Estimating summation in Equation [14] requires simulation, which can be
computationally demanding. However, we can approximate the summation by including only a
few terms. Specifically, we find that using only two terms, i.e., R = 2, significantly improves
few-step generation performance with negligible computational overhead. The effectiveness of the
two-term estimation stems from the fact that, for few-step models with two or four steps, even a
two-step simulation covers a substantial portion of the trajectory, covering the full trajectory for a
2-step model and 50% of the trajectory for a 4-step shortcut model. The algorithm for our method
is provided in the Appendix.

5.3 CONNECTION TO REINFORCEMENT LEARNING

In our setting, the reinforcement learning analogy can be drawn by viewing the agent as attempting
to transform noise into a data sample, where the states correspond to intermediate noisy samples
along the generation path, the action is the direction of the next step, and the reward is defined as the
negative magnitude of ug. Under this view, the objective Jogz, in Equation [12] plays a role similar

Under review as a conference paper at ICLR 2026

to a value function: it quantifies the cumulative cost of following a policy along the trajectory.
Moreover, since few-step generation involves a small, fixed number of steps, we do not require
a separate network to approximate Jc gy ; instead, it can be estimated directly by rolling out the
actions. A more detailed discussion on this connection is provided in the Appendix [F|

Table 1: Comparison of FID-50K | scores of the baselines and our method on CelebA-256 and
CIFAR10. (* indicates that results are taken from [Frans et al.[(2025), { indicates that separate models were
trained for different generation step settings.)

| CelebA-256 | CIFAR10

| 128-Step Four-Step Two-Step One-Step| 128-Step Four-Step Two-Step One-Step

Two Phase Training

Reflow | 12.804+0.03 13.7740.05 14.4840.05 16.0740.02 | 13.9340.05 14.9240.05 15.594+0.14 16.98+0.06
PD' 7.96+0.07 14.4940.07 16.7340.02 20.4040.15 | 7.89+0.07 10.7540.09 11.804+0.08 13.2640.09
Single Phase Training
M 7.924+004 62.84004 112.140.07 321.240.04 | 7.9540.09 65.0340.03 177.940.12 385.140.11

CT* 53.7 19.0 - 33.2 - - - -

ST 7.83+0.04 9.36+0.05 12.56+0.02 20.46+0.02 | 7.374£0.03 9.15+0.13 11.79+0.07 19.80+0.03
ST-USL | 7.95+0.02 9.1840.08 12.00+0.05 19.4140.03 | 7.374+008 9.35+0.07 11.65+0.08 19.5740.05
ST-CSL | 7.88+0.04 8.98+0.02 10.96+0.02 18.3740.02 [7.13+0.03 8.10+0.09 9.2440.09 17.76+0.02

6 EXPERIMENTS

In this section, we empirically evaluate the proposed CSL. First, to evaluate the generative perfor-
mance, in section [6.1] we make a comparison of the model’s performance with the baselines. In
sections and we assess if the improvement brought by CSL is consistent across varying
backbone network size and varying ratio of flow-matching to bootstrap targets (B : K) (see algo-
rithm [E)) along with the training time comparison of the methods. Lastly, in section [6.4] we assess
the effect of increasing the number of terms R on the performance. For all evaluations, we use
FID-50K score as the comparison metric. We train the models on the CelebA256 |Liu et al.|(2015)
and CIFAR10 Krizhevsky| (2009) datasets using NVIDIA A100 and RTX A5000 GPUs.

6.1 PERFORMANCE COMPARISON

We consider two categories of baselines for performance comparison. 1. Two-Phase distillation
approaches: Progressive Distillation (PD) |Salimans & Hol (2022), Reflow [Liu et al.| (2023b). 2.
Single-Phase training approaches: Flow-Matching (FM)|Lipman et al.|(2023), Consistency Train-
ing (CT)[Song et al.[(2023), Shortcut Models (ST)Frans et al.| (2025)

For a fair comparison with the shortcut model, we make sure the training budget is the same for both
methods. We use the same number of flow-matching and bootstrap targets per batch. To achieve
this, since we create two bootstrap targets per datapoint for R = 2, we only make use of K/2
datapoints for bootstrap targets in our case, while for the shortcut model we use K datapoints. We
require additional compute for the additional network forward pass step during bootstrap targets
generation (step 18 in Algorithm [E)), which adds only 7% of extra computation and training time
in practice. Similar to [Frans et al| (2025), we use the medium-scale diffusion transformer model
DiT-B-2 (Peebles & Xie, 2023) as a backbone network. All the other hyperparameters are the
same, and the details are provided in the Appendix. The FID-50K scores for the baselines and
our method are reported in Table [I] the base flow-matching model is the one with 128-steps. Our
method, trained with Jy gy, and Jogy, are referred to as shortcut-USL (ST-USL) and shortcut-CSL
(ST-CSL), respectively. The results show that ST-USL consistently outperforms the baseline ST
in one-, two-, and four-step generation, except for the four-step case on CIFAR10. Notably, the
performance of ST-CSL surpasses both ST and ST-USL on both datasets across all the steps, with

Under review as a conference paper at ICLR 2026

DiT-S-2 (74 M) DiT-B-2 (296 M) DiT-L-2 (1.2 B)
] 20 = =
24 18 ﬁ
% 7
~20 16 7 | 1 B7R7
3
o 16 12 = 12
212 w7z ‘ % °
A | 8
T 8 | % ‘ 6
| 4, | 3 |
1

47197

2
Steps

i

Steps

1
Steps

[CelebA + Shortcut CelebA + Shortcut-CSL I CIFAR1O + Shortcut CIFAR10 + Shortcut-CSL

Figure 3: FID score comparison between shortcut and shortcut-CSL (ours) across different backbone
network sizes (parameter counts). The networks are diffusion transformers (DiT) of varying sizes.
Our model consistently outperforms the shortcut model across all network sizes and generation steps

on both CelebA-256 and CIFAR10 datasets.

the exception of the base 128-step model on CelebA, where it achieves performance comparable
to ST. This shows the effectiveness of using CSL in improving the generation quality of few-step
models. Additionally, while PD achieves superior one-step generation performance on CIFAR-10,
and Reflow does so on CelebA, both methods require a two-phase training procedure. Furthermore,
they offer a less favorable trade-off between computational cost and performance, underperforming
on 2- and 4-step generation tasks compared to our method. PD also requires training and deploying
separate models for each generation budget, which is time-inefficient.

Next, we empirically asses the analysis in section
that our method trains the model to not only
minimize current but also future misalignments. We
compare trained Shortcut and Shortcut-CSL models
for CIFARI10 by generating samples from random
noise at ¢ = 0 and measuring the misalignment uy
between the two-step and it’s base four-step trajecto-
ries at intermediate time steps ¢ = 0.5 and ¢t = 1.0.
For a two-step trajectory, the value of ug at¢t = 0.5 and ¢ = 1.0 correspond to immediate and future
misalignments, respectively. As shown in Table[2] while both methods perform similarly at ¢ = 0.5,
Shortcut-CSL has a notably lower value of ug at ¢ = 1.0, demonstrating its advantage in reducing
future misalignments.

Table 2: Squared misalignment (u2) for
CIFAR-10, averaged over 100 samples.

Method t=0.5 t=1.0

ST 0.5x 1073 2.5 x 1073
ST-CSL 0.5 x 1073 1.4 x 1073

6.2 PERFORMANCE WITH INCREASING BACKBONE NETWORK SIZE

We evaluate whether the improvement of ST-CSL

over ST is consistent across different backbone
network sizes. We train both models using small
(DiT-S-2, 74M parameters), medium (DiT-B-2,

Table 3: Wall-clock time (in hours) for training
(100 epochs) a Flow-Matching (FM), a shortcut
(ST) and Ours (ST-CSL) methods for Diffusion
Transformers of different sizes.

296M parameters), and large (DiT-L-2, 1.2B pa-

rameters) diffusion transformer networks. The FM ST ST-CSL
FID scores for models trained on CelebA and CI- .

FAR10 images are shown in Figure 3] We ob- D¥T'S'2 (7aM) | - 56 62
serve that as the model size increases, the overall DiT-B-2 (296M) | 6.4 7.4 7.8
few-step generation quality of the shortcut model DiT-L-2 (1.2B) - 114 122

improves. Importantly, ST-CSL consistently out-
performs ST across all model sizes and genera-
tion steps. This shows that the improvement of CSL over SL is robust across varying network sizes.

Training Time Comparison: In Table 3] we compare the time taken to train the flow-matching
(FM), shortcut(ST), and our methods. Training FM is efficient of all but it doesn’t support few-step
generation. Compared to ST, our method only consumes 7% more training time on average. Please
refer to Appendix |G|for detailed time and memory consumption analysis.

Under review as a conference paper at ICLR 2026

Table 4: FID score comparison between shortcut and shortcut-CSL (ours) for different ratios of
flow-matching to bootstrap targets (B : K). Our model consistently outperforms shortcut model
across all ratios and generation steps on both CelebA-256 and CIFAR10 datasets.

| CelebA-256 CIFAR10

B:K Method |12&Slep Four-Step Two-Step OnefStepl 128-Step Four-Step Two-Step One-Step

41 ST 7.83 9.36 12.56 20.46 7.37 9.15 11.79 19.80
' ST-CSL 7.88 8.98 10.96 18.37 7.13 8.10 9.24 17.76
21 ST 7.73 9.00 11.51 18.50 6.98 8.53 11.00 18.33
’ ST-CSL 7.75 8.58 10.09 16.37 6.95 7.98 9.08 16.51
1 ST 8.01 9.00 11.14 16.51 6.56 8.17 10.54 16.43
' ST-CSL 7.56 8.54 9.91 15.51 6.67 6.95 7.94 13.96

6.3 ANALYSING THE EFFECT OF THE RATIO B : K

We further evaluate whether the improvement of ST-CSL is consistent if we vary the ratio of flow-
matching to bootstrap targets (B : K) while training. We report the FID scores with varying ratio in
Table[d] Although increasing the percentage of bootstrap targets introduces additional computational
cost, our results show that it significantly enhances the generation performance. Importantly, our ST-
CSL consistently outperforms the ST baseline in few-step generation across all ratios. Moreover,
we observe that at the 1 : 1 ratio, our method achieves two-step performance within 2.0 points of
the ST’s 128-step performance on CelebA, and within 1.5 points on CIFAR-10.

6.4 EFFECT OF R

We investigate the effect of increasing the number of terms in the CSL objective in Equation [I4]
Specifically, we experiment with R = 1,2, 4, where larger values of R yield more accurate estima-
tions of the CSL. Note that R = 1 corresponds to the SL loss used in the shortcut models. For all
settings of R, the number of flow-matching and bootstrap targets per batch is kept constant. We ob-
serve that, compared to R = 1, R = 2 incurs approximately a 5% more training time, while R = 4
incurs about 30% more time. The FID scores for few-step generation under different values of R
are reported in Table[5] The results demonstrate that increasing R consistently improves generation
performance, highlighting the benefit of more accurate CSL estimation.

Table 5: FID-50K scores for one- and few-step generation for different values of R. Increasing the
value of R results in more accurate estimation of the CSL loss and results in better sample quality.

CelebA-256 CIFAR10
R | Four-Step Two-Step One-Step | Four-Step Two-Step One-Step

9.00+£006 11.14+0.03 16.51+0.06 | 8.17+0.10 10.54+0.08 16.43+0.06
2 |18.54+006 9914005 15514004]6.95+007 7.944+007 13.96+0.10
8.37+0.03 9.38+0.03 14.80+0.09 | 6.66+0.11 7.11+0.05 13.10+ 0.06

7 CONCLUSION AND FUTURE WORK

We formulate few-step generation as a controlled process, using the flow-matching model as its
base process. This perspective provides the theoretical foundation for the self-consistency loss and
motivates our proposed cumulative self-consistency loss. By training with this objective, we achieve
significant improvement in one- and few-step generation performance over the baselines.

In this work, we consider the objective J without any intermediate state cost, i.e., g(X*,t) = 0.
An interesting direction for future work is to explore ways of incorporating this cost to influence the
trajectory by penalizing undesirable intermediate states. Furthermore, the connection of our formu-
lation to reinforcement learning offers opportunities to leverage techniques from the reinforcement
learning literature to further enhance few-step generation quality.

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unify-
ing framework for flows and diffusions. CoRR, 2023.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Arthur E. Bryson and Yu-Chi Ho. Applied Optimal Control: Optimization, Estimation, and Control.
Taylor & Francis, New York, 1975.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP.
In International Conference on Learning Representations (ICLR), 2017. URL https://
openreview.net/forum?id=HkpbnH91x.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control. In
International Conference on Learning Representations (ICLR), 2025.

Floor Eijkelboom, Grigory Bartosh, Christian A. Naesseth, Max Welling, and Jan-Willem van de
Meent. Variational flow matching for graph generation. In Neural Information Processing Systems
(NeurIPS), 2024.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germani-
dis. Structure and content-guided video synthesis with diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
International Conference on Machine Learning (ICML), 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In International Conference on Learning Representations (ICLR), 2025.

Sandesh Ghimire, Jinyang Liu, Armand Comas, Davin Hill, Aria Masoomi, Octavia Camps, and
Jennifer Dy. Geometry of score based generative models. arXiv preprint arXiv:2302.04411,
2023.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Informa-
tion Processing Systems (NeurlPS), 2014.

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free dis-
tillation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop on Structured
Probabilistic Inference and Generative Modeling, 2023.

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Fei-Fei Li, Irfan Essa, Lu Jiang, and
José Lezama. Photorealistic video generation with diffusion models. In European Conference on
Computer Vision(ECCV), 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
diffusion models. In International Conference on Machine Learning (ICML), 2023.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning
(ICML), 2022.

10

https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx

Under review as a conference paper at ICLR 2026

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems (NeurIPS), 2018.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations

(ICLR), 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. Technical Report.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. In Neural
Information Processing Systems (NeurIPS), 2024.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In Conference on Learning Representations (ICLR), 2023.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In Inter-
national Conference on Machine Learning (ICML), 2023a.

Xingchao Liu, Chengyue Gong, and giang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations (ICLR), 2023b.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and qiang liu. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations (ICLR), 2024.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In International Conference on Learning Representations (ICLR), 2025.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023a.

Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liangsheng Wang, Yujun Shen, Deli
Zhao, Jinren Zhou, and Tien-Ping Tan. Videofusion: Decomposed diffusion models for high-
quality video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Hannes Risken. The Fokker-Planck Equation: Methods of Solution and Applications. Springer
Series in Synergetics. Springer, 2nd edition, 1996. ISBN 978-3-540-61543-6.

11

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations (ICLR), 2022.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In The
Twelfth International Conference on Learning Representations (ICLR), 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning (ICML), 2023.

Christopher Iliffe Sprague, Arne Elofsson, and Hossein Azizpour. Stable autonomous flow match-
ing. arXiv preprint arXiv:2402.05774, 2024.

Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In International Conference
on Learning Representations (ICLR), 2023.

Luran Wang, Chaoran Cheng, Yizhen Liao, Yanru Qu, and Ge Liu. Training free guided flow-
matching with optimal control. In The Thirteenth International Conference on Learning Repre-
sentations (ICLR), 2025.

Tianwei Yin, Micha€l Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. UniPC: A unified predictor-
corrector framework for fast sampling of diffusion models. In Neural Information Processing
Systems (NeurIPS), 2023.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
sampling of diffusion models via operator learning. In International Conference on Machine
Learning (ICML), 2023.

12

Under review as a conference paper at ICLR 2026

APPENDIX

A DERIVATION OF EQUATION

‘We have,
1
Tussae,t) = [(F(X00.0) + 9068 0) de4 HXD), w0 =XE(5)
tl
We can write the gradient of J as:

d 1
T |, fn(xe0.0 + g2 0 e nx)
1

0 PO[f (g (X 1), 1) + g(Xy 0] OXp Oh(XY)
= — X2 t),t)dt > . dt 16
Using the st opgrad notation as in|Domingo-Enrich et al.|(2025)) for the last two terms
1 u u u u
o oxX} o0 o0
8 1
— o | [a0+ x| (13)
¢ v=stopgrad(ug)
Using the result from |Domingo-Enrich et al.[(2025). (Lemma 5),
a 1
a5 | FOOEED,0) % 90X,) de -+ h(x)
t/
1
Xit
:/ Ma(t)vmtJ(ue;xt,t) dt (19)
" 00
Plugging this into Equation [T
dJ (ug; xp,t') Lo /1 dug (X, 1)
—_ = — XM _— : 2
= a6 (ug(X3',t),t) dt + y 5 o(t)Va, J(ug; z,t)dt (20)

B LATENT SPACE INTERPOLATABILITY

To analyze whether the one-step model learned by our approach captures an interpolatable latent
space, we examine the model’s outputs when fed with interpolated noise samples between two in-
dependently drawn Gaussian noise vectors. Specifically, given zg,z[~ N(0,I), we generate
interpolated inputs using

To =V1—axe+Vaz, «acl0,1].

We then apply one-step denoising to each interpolated sample using our shortcut-CSL model. The
resulting images shown in Figured]exhibit smooth transitions across the interpolation path, suggest-
ing that the model has an interpolatable latent space.

C SAMPLES FROM SHORTCUT-CSL

In Figure 5] we provide some samples from the proposed shortcut-CSL method for different gener-
ation budgets.

13

Under review as a conference paper at ICLR 2026

Figure 4: Image generated using the shortcut-CSL (ours) method with one-step denoising applied
to a variance-preserving interpolation between two Gaussian noise samples. The leftmost and right-
most images correspond to independently drawn noise samples, while the intermediate images were
produced from interpolated samples.

128
Steps

Four
Steps

Two
Steps

One
Step

Figure 5: Image generated by the shortcut-CSL (ours) method by four-, two-, and one-step denois-
ing. 128 steps denoising corresponds to the base flow-matching model.

D HYPERPARAMETER DETAILS

For the experiment in Table 1, we use the medium-scale diffusion transformer DiT-B-2
(2023) as the backbone network for both the shortcut baseline and our method. For CelebA-
256, we downsample images from 3x256x256 to 4x32x32 using the VAE encoder from the
Stable Diffusion framework [Rombach et al|(2022), specifically the sd-vae-ft—ema variant. We
then train the diffusion model in this compressed latent space. Detailed hyperparameters for our
(ST-CSL) approach are provided in Table[§] Here, M denotes the total number of denoising steps
in the base flow-matching model. The baseline shortcut method (ST) uses the same hyperparameter
configuration, except with R = 1. The experiments were run on NVIDIA A100 and RTX A5000
GPUs and took about 24 hours to run.

14

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters used for training on CelebA-256 and CIFAR10.

Hyperparameter Value
batch size 64
epochs 300 (CelebA-256), 500 (CIFAR10)
M 128
B 64

K 16

R 2
ema 0.9999
optimizer AdamW
learning rate 0.0001
weight decay 0.1

E ALGORITHM

The algorithm for training shortcut models with the proposed CSL loss is detailed in Algorithm .

Algorithm 1 Training Shortcut Models with cumulative Self-Consistency Loss (Shortcut-CSL)

1: K < #bootstrap targets

2: B « #flow-matching targets
3. R < #terms in Jo gy, estimation
4: while not converged do
5: xo ~N(,I), x1~D, (dt)~p(dt)
6: xp < (1 —t)zp + taq
7: for B batch elements do
8: Starget <~ T1 — T
9: d<0
10: end for
11: for K/R batch elements do
12: t' < t, 2} @, Starget = []
13: for R iterations do
14: s1 sg(a, ', d)
15: xh +) + s1d
16: 89 + sg(xh,t' + d,d)
17: APPEND (Sarger, sStopgrad((sy + 52)/2))
18: @)+ o) + sg(ah, ' +d,2d).2d
19: =t +2d
20: end for
21: end for
22: t ot ah — xy
23: forr=1to R do
24: 0 < Vo|lso(z,t,2d) — Starget[7]||*
25: xh =) + se(2), t,2d).2d
26: =t +2d
27:
28: end for

29: end while

F CONNECTION TO REINFORCEMENT LEARNING

Regarding the connection to reinforcement learning, we can formulate our method as a reinforce-

ment problem as follows:

15

Under review as a conference paper at ICLR 2026

Starting with random noise at ¢ = 0, an agent aims to transform it into a meaningful image in (1/d)-
steps, taking a each step of size d going from ¢ = 0 to ¢ = 1. The agent is trained to take a direction,
moving along which generates the best image (i.e., same as the direction taken by the base 128-step
model in our case). For this, we define the reward as the negative of the CSL (—J¢s1), which we
aim to maximize.

Doing it in the reinforcement learning way, —Jc sz, acts as our value function, and we can train a
value network to estimate it. We can use the following temporal difference learning to learn a value
network V:

V¢(xt7 t, d) = _HUQ(xtr t, d)”2 +7 V¢(It+d7 t+ d7 d) (21)

where x4 4 is calculated using Equation@ Here, ug (x4, t, d) is the immediate misalignment where
6 is the parameter of the few-step model, and V, represents the future misalignment from time ¢ 4 d
onwards, predicted by the value network.

In reinforcement learning terms, the (1/d)-step model serves as an actor, and the value model serves
as a critic, where the actor tries to maximize the estimated value. Instead of training a separate value
network to estimate CSL, we opted for K -rollout as it offered a good balance of performance and
efficiency. We leave further exploration with techniques from the reinforcement learning literature
for future work.

G EMPIRICAL TIME AND MEMORY CONSUMPTION COMPARISON

Table 7: Wall-clock time (in hours) and GPU memory usage (in GB) for training a Flow-Matching
(FM), a shortcut (ST) and Ours (ST-CSL) methods for Diffusion Transformers (parameter counts)
of small, medium, and large sizes.

Model Time (hours) Memory (GB)
FM ST ST-CSL, FM ST ST-CSL
DiT-S-2 (74M) - 56 6.2 - 21.35 21.35
DiT-B-2 (296M) | 6.4 7.4 7.8 28.66 31.67 28.96
DiT-L-2 (1.2B) - 114 122 - 4547 38.52

Table [/ reports the wall-clock time (in hours) and GPU memory usage (in GB) for training Flow-
Matching (FM), shortcut model (ST), and our method (ST-CSL) on the CelebA dataset for 100
epochs, using small, medium, and large Diffusion Transformer (DiT) models. All experiments were
conducted on a single NVIDIA A100 GPU.

FM is the most efficient of all in time and memory, but does not support few-step generation.

Our method requires slightly more time than the shortcut model but uses less memory in larger
models. This trade-off arises from how each method processes batches during training. The shortcut
model processes the entire batch in a single step from the current state, which minimizes time but
leads to high memory consumption. In contrast, our method uses a two-step process: it first com-
putes an intermediate step using part of the batch, then computes the next step using the intermediate
outputs (as described in lines 23-26 in Algorithm [E). Splitting the batch this way reduces memory
usage but requires additional time for the extra computation.

For two-stage methods like Progressive Distillation (PD) and Reflow, we first need to train the FM
model and distill the knowledge to the student model. Reflow requires twice the time taken by FM.
For PD, we train a student model that learns to generate samples in half as many steps as the teacher
model. Therefore, a separate model needs to be trained for 128, 64, 32, 16, 8, 4, 2, and 1 step
generation successively, consuming a significantly large amount of time.

16

Under review as a conference paper at ICLR 2026

H CONVERGENCE WITH TRAINING STEPS

FID-50K (!)
S w
o =]

w
o

N
o

100K 150K 200K 250K 300K
Training Steps

Figure 6: We evaluate the convergence of shortcut-CSL by tracking the FID score at regular training
intervals across different backbone DiT network sizes on the CelebA-256 dataset. Our results show
that performance consistently improves with increasing model size at every stage of training.

I LLM USAGE

LLM is lightly used to polish writing in the paper. The used prompt is Please polish the
following sentence/sentences

17

	Introduction
	Related Works
	Few-Step Generation
	Leveraging Control Theory to Guide Diffusion-Based Generation

	Background
	Optimal Control
	Flow Matching
	Shortcut Models

	Control Theoretic Formulation of Few-Step Models
	Self-Consistency Loss as an Optimal Control Objective

	Cumulative Self-Consistency Loss (CSL)
	Analysis and Comparison with Self-Consistency Loss
	CSL Estimation and Training
	Connection to Reinforcement Learning

	Experiments
	Performance Comparison
	Performance with Increasing Backbone Network Size
	Analysing the Effect of the Ratio B:K
	Effect of R

	Conclusion and Future Work
	Derivation of Equation 4
	Latent Space Interpolatability
	Samples from Shortcut-CSL
	Hyperparameter Details
	Algorithm
	Connection to Reinforcement Learning
	Empirical Time and Memory Consumption Comparison
	Convergence with Training Steps
	LLM Usage

