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Abstract

Accurate measurement of brain morphometry is essential not only for detecting abnor-
malities, but also for tracking subtle structural changes in healthy individuals—such as
those linked to stress or neuroplasticity. While segmentation of pathological regions (e.g.,
BraTS challenge) has benefited from well-established benchmarks and metrics, the repro-
ducibility of morphometric estimates in healthy brains, particularly across MRI scanners
and protocols, remains underexplored.

In this study, we assess the consistency of brain volume measurements using FreeSurfer
8 with integrated SynthSeg across 73 longitudinal MRI scans from a single individual (SI-
MON dataset). We quantify inter-scan variability on segmentation stability using absolute
volume difference, Dice, and Surface Dice metrics.

Our results show that even state-of-the-art tools exhibit sensitivity to domain shift,
with average variability in regional brain volumes reaching 3.1% and maximum of 19% for
individual subcortical regions. This highlights a critical limitation for using current seg-
mentation pipelines in personalized brain health monitoring or early detection of conditions
such as Alzheimer’s disease.
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1. Introduction

MRI-accurate brain morphometry is essential for studying aging, neurodegeneration, and
tracking structural changes. Although most of the AI work in medical imaging focused on
pathology segmentation (e.g., tumors in BraTS), morphometric analysis in healthy brains,
especially across domains, remains underexplored.

FreeSurfer (Fischl, 2012) has long been a standard tool, with recent versions that inte-
grate SynthSeg (Billot et al., 2023a), a contrast-agnostic model trained on synthetic data.
FastSurfer and Brainchop offer faster alternatives, but SynthSeg remains a benchmark for
healthy morphometry.

Despite clinical relevance (e.g., epilepsy, demential), few studies evaluate the repro-
ducibility of volumetric estimates under real-world conditions.

We evaluated segmentation reproducibility using the SIMON dataset: 73 longitudinal
scans over 17 years. We evaluated nine cortical and eight and eight subcortical regions
using volume difference, surface Dice, and propose outlier filtering based on segmentation
stability.

1. https://icometrix.com/expertise#mri
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2. Methods

Dataset. The SIMON dataset (Duchesne et al., 2019) includes 73 T1-weighted scans of a
healthy male (age 29-46) across multiple sites and scanners over 17 years. Mean interval:
86.2 days; min: 0; max: 1154 days.

Segmentation. T1 scans were segmented using FreeSurfer 8.0.0 Release (Feb 27
2025) with SynthSeg(Billot et al., 2023b,a) and FastSurfer(Henschel et al., 2020). No pre-
alignment was applied to preserve raw T1 contrast.

ROI Analysis. We evaluated 9 cortical and 8 subcortical bilateral structures. Differ-
ences in scan-to-scan for subsecient magnetic resonance imaging sessions were treated as
domain variation.

Registration. For surface metrics, ANTs (Avants et al., 2011) rigid registration was
applied using transforms computed from the original T1s. We compared ANT's interpolation
modes ”"Multilabel”, and ” NearestNeighbor”. And registration to the first session or to MRI
space asymmetric atlas.

Metrics. We report absolute volume differences (native space), and Dice/Surface Dice
scores® post-registration.

Computations. Experiments ran on GCP (64 vCPUs, 512 GB RAM). FreeSurfer 8
used a single core ( 2h/subject). GPU acceleration for SynthSeg failed due to driver issues.?

3. Results

Volumetric changes: FastSurfer recon-all failed on 8 sessions thus we report only
results from FreeSurfer 8 with SynthSeg. Average scan-to-scan variation in subcortical vol-
umes was 3.1%, with individual deviations up to 15% (Thalamus) and 20% (Pallidum).
For cortical parcellations average difference constituted 5% and outliers differed by over 40
(Superior Frontal, Inferior Temporal) to 90% (Insula). Registration: Chose of a registra-
tion template was respondible for maximum 0.07% change from mean values and chose of
interpolation strategy - for 1.72% in mean volume changes from original segmentation.

Table 1: Percentage of subcortical regions filtered out using Dice and Surface Dice thresh-
olds, with 75th and 95th percentile MAPE values across retained regions.

Filtering Metric Threshold — Structures % Filtered 75th (% MAPE) 95th (%)

Surface Dice 0.92 Subcortical 5.0 2.8 8.6
Surface Dice 0.90 Subcortical 3.8 2.8 8.8
Dice 0.80 Subcortical 52.8 2.2 5.8

Filtering segmentation outliers: We applied quality-based filtering to subcortical
segmentations using thresholds on Surface Dice and Dice metrics. A Surface Dice threshold
of 0.92 led to the exclusion of 5.0% of regions as low-quality outliers. In contrast, Dice-based
filtering at 0.80 removed over 50% of regions, showing its higher sensitivity to shape differ-
ences. Mean absolute percentage error (MAPE) across the retained regions is summarized

2. https://github.com/google-deepmind/surface-distance
3. Code: https://github.com/kondratevakate/brain-mri-segmentation
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BRAIN SEGMENTATION VARIABILITY

below.

Conclusion: Even state-of-the-art tools like FreeSurfer 8 with SynthSeg are sensitive to
scanner variability even for typical 1.5 T machines (no low dose, no brain pathologies).
This work highlights the need for robust preprocessing pipelines for longitudinal and multi-
scanner studies.
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Figure 1: Volume deviation from scan-specific means for subcortical structures. Each
boxplot shows segmentation variability across 72 comparisons (for 73 scans) in
MAPE, for both right and left paired structures.
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Figure 2: Distribution of Dice (blue) and Surface Dice (green) scores across 73 MRI sessions
for 16 bilateral subcortical regions. Surface Dice scores are consistently higher
and more stable, highlighting sensitivity of classic Dice to slight boundary mis-
alignments.
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