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Abstract

As a fundamental vision task, stereo matching has made re-
markable progress. While recent iterative optimization-based
methods have achieved promising performance, their feature
extraction capabilities still have room for improvement. In-
spired by the ability of vision foundation models (VFMs)
to extract general representations, in this work, we propose
AIO-Stereo which can flexibly select and transfer knowledge
from multiple heterogeneous VFMs to a single stereo match-
ing model. To better reconcile features between heteroge-
neous VFMs and the stereo matching model and fully exploit
prior knowledge from VFMs, we proposed a dual-level fea-
ture utilization mechanism that aligns heterogeneous features
and transfers multi-level knowledge. Based on the mecha-
nism, a dual-level selective knowledge transfer module is de-
signed to selectively transfer knowledge and integrate the ad-
vantages of multiple VFMs. Experimental results show that
AIO-Stereo achieves start-of-the-art performance on multiple
datasets and ranks 1st on the Middlebury dataset and outper-
forms all the published work on the ETH3D benchmark.

Introduction
With the development of 3D vision tasks and their appli-
cations such as robotics and autonomous driving, stereo
matching (Li et al. 2022; Chang and Chen 2018a) becomes a
fundamental vision task since it can provide depth informa-
tion in the real 3D world. Stereo matching models typically
predict the pixel-wise displacement (i.e., disparity) between
a pair of rectified images and further decode the depth infor-
mation with the camera calibration.

Benefiting from the success of deep learning, some works
begin to explore learning-based methods (Kendall et al.
2017; Xu and Zhang 2020). As a milestone, PSMNet (Chang
and Chen 2018a) utilizes 3D convolution to regularize a
4D cost volume and boost the performance. However, such
learning-based methods need large computational costs. Re-
cently, iterative optimization-based methods (Li et al. 2022;
Xu et al. 2023a; Zhao et al. 2023) have shown great poten-
tial on stereo matching tasks by progressively updating the
disparity map. Selective-Stereo (Wang et al. 2024) proposes
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Figure 1: (a) The overview of AIO-Stereo which transfers
selected knowledge from multiple VFMs to a single stereo
matching model. (b) Comparisons between Selective-IGEV
and our AIO-Stereo in dark and low texture areas.

selective recurrent unit and contextual spatial attention mod-
ule to further improve the ability to predict detailed areas.

Despite the great improvement in performance, the gen-
eral feature extraction capabilities of the existing models
are relatively weak which can be attributed as follows:
(1) Recent state-of-the-art (SOTA) works (e.g., Selective-
Stereo (Wang et al. 2024)) mainly focus on refining itera-
tive update mechanisms while partially ignoring the quality
of encoded features. Meanwhile, the task-oriented optimiza-
tion objectives also make it difficult for the encoder to learn
global and contextual information. (2) The amount of stereo
matching data is relatively small and most of them are syn-
thetic data. It is difficult for models to learn general repre-
sentations from insufficient data. For example, as shown in
Fig. 1 (b), previous methods (e.g., Selective-IGEV (Wang
et al. 2024)) fail to predict the depth information in dark
areas with vague texture features since features in these ar-
eas are highly similar. As a result, disparity prediction based
on feature matching between pixels is prone to have large
mismatches. Recently, vision foundation models (VFMs)
have emerged and shown promising performance on vari-
ous tasks. These VFMs are trained on large-scale datasets
and can extract general representations which motivates us
to consider injecting the general feature extraction capabili-
ties of multiple VFMs into the stereo matching models.

ar
X

iv
:2

41
2.

09
91

2v
1 

 [
cs

.C
V

] 
 1

3 
D

ec
 2

02
4



However, directly transferring knowledge from multiple
VFMs to the single stereo matching model is not easy which
is mainly caused by the following two reasons. (1) Most
of the existing VFMs are based on Transformer-architecture
while the stereo matching models are often based on CNN.
The heterogeneity of model architectures will lead to fea-
ture mismatch when simply merging or distilling the inter-
mediate features. (2) Different VFMs have different atten-
tion to feature representations due to the various training
data, methods, and tasks. For example, as shown in 1 (a),
DINO (Caron et al. 2021; Oquab et al. 2023) which are pre-
trained in a self-supervised manner, tend to extract global
semantic information. In contrast, large segmentation mod-
els (Kirillov et al. 2023; Wang et al. 2023) represented by
SAM (Kirillov et al. 2023) pay more attention to capturing
the semantic information of small objects and edges. As a
result, directly using the features of multiple vision founda-
tion models without selecting will cause feature conflicts.

Based on the observation and analysis, we claim that the
quality of encoded features is equally crucial for the stereo
matching task, as they constitute the main sources of in-
formation for the iterative update modules, directly influ-
encing every step of the iteration process. To this end, we
propose an efficient knowledge transfer framework, named
AIO-Stereo, that sifts and learns advantageous knowledge
from multiple VFMs to obtain sufficiently effective and in-
formative features. To transfer the knowledge from hetero-
geneous VFMs effectively and take full advantage of dif-
ferent VFMs, we develop a dual-level knowledge utiliza-
tion module to bridge the gap between misaligned features
and transfer multi-level knowledge. Furthermore, consider-
ing that the features derived from multiple VFMs are vastly
divergent and potentially conflicting, a dual-level selective
knowledge transfer module is proposed to selectively trans-
fer knowledge and fully leverage the strengths of each VFM.
Our contribution can be summarized as follows:
• To enhance the general understanding of stereo net-

works, we first propose to leverage the diverse and gen-
eral knowledge of multiple vision foundation models for
stereo matching.

• We proposed a flexible knowledge transfer framework,
named AIO-stereo, which consists of dual-level knowl-
edge utilization and a selective knowledge transfer mod-
ule that can effectively and efficiently transfer the multi-
level knowledge from multiple heterogeneous vision
foundation models to a single stereo matching model.

• Experimental results show that the proposed AIO-Stereo
ranks 1st on the Middlebury dataset and outperforms the
published methods on the ETH3D benchmark.

Related Work
Stereo Matching
As a difficult pixel-level 3D task, stereo matching has been
studied for a long time and early works primarily utilize tra-
ditional matching algorithms (Boykov, Veksler, and Zabih
2001; Klaus, Sormann, and Karner 2006; Sun, Zheng, and
Shum 2003; Yang et al. 2008; Hirschmüller, Innocent, and
Garibaldi 2002; Van Meerbergen et al. 2002; Hirschmuller

2005). Since Zbontar and LeCun (Zbontar and LeCun 2015)
first introduced CNN to calculate the matching cost, tra-
ditional matching algorithms have gradually been replaced
by learning-based methods (Kendall et al. 2017; Xu and
Zhang 2020; Mayer et al. 2016). PSMNet (Chang and Chen
2018b) incorporates contextual information with 3D con-
volution and used feature concatenation to construct 4D
cost volume. HITNet (Tankovich et al. 2021a) proposes
a fast multi-resolution initialization step, differentiable 2D
geometric propagation, and warping mechanisms that take
both speed and accuracy into account. More recently, iter-
ative optimization-based methods (Lipson, Teed, and Deng
2021; Xu et al. 2023a) have shown great potential in stereo
matching tasks. Inspired by (Teed and Deng 2020), RAFT-
Stereo (Lipson, Teed, and Deng 2021) first explores the
iteration of multi-scale update blocks to generate the fi-
nal disparity map from coarse to fine. IGEV-Stereo (Xu
et al. 2023b) applies additional Geometry Encoding Volume
to supplement the missing non-local geometry knowledge.
CREStereo (Li et al. 2022) designs an adaptive group cor-
relation layer and releases a new large-scale, high-quality
synthetic dataset. Selective-Stereo (Wang et al. 2024) pro-
poses a selective recurrent unit and a contextual spatial atten-
tion module that can better capture details. However, current
works mainly focus on designing the iterative process and
relatively ignore the feature extraction ability of encoders,
which is also important in the stereo matching task.

Vision Foundation Models
In recent years, thanks to the improvement of hardware per-
formance and the construction of large-scale datasets, vi-
sion foundation models (VFMs) with extremely high perfor-
mance have emerged. These VFMs can process and under-
stand image or video information effectively and facilitate
the development of other vision tasks. In image-level tasks,
for example, CLIP (Radford et al. 2021) which is trained on
image-text pairs shows a strong zero-shot classification ca-
pability. In pixel-level tasks, Depth Anything family (Yang
et al. 2024a,b) demonstrates a strong generalization abil-
ity in different depth estimation scenarios. SAM (Kirillov
et al. 2023) explores a semi-supervised pipeline and achieves
promising object category-agnostic segmentation capabili-
ties. Besides, lots of studies (Oquab et al. 2023; Darcet et al.
2023; Liu et al. 2021) introduce more general backbone net-
works through pre-training. As a representative, DINO fam-
ily (Caron et al. 2021; Oquab et al. 2023) explores self-
supervised learning on vision transformer and boosts the
performance on various downstream tasks. Although these
VFMs have shown great generalization and zero-shot ability,
how to effectively utilize them to improve the performance
of stereo matching still remains unexplored.

Knowledge Distillation
Knowledge distillation (KD) was first proposed by Hin-
ton (Hinton, Vinyals, and Dean 2015) and has been widely
used in model compression (Kim, Park, and Kwak 2018;
Bai et al. 2020) and knowledge transfer (Komodakis and
Zagoruyko 2017). Recently, with the expansion of model
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Figure 2: The Overall framework of AIO-Stereo. Left: AIO-Stereo selectively learns knowledge from SAM, DINO and Depth
Anything by the proposed dual-level selective knowledge transfer module. Right: The detailed structure of our proposed dual-
level selective knowledge transfer module.

zoos and the development of large models, learning knowl-
edge from multiple teachers and heterogeneous teachers
has attracted increasing attention. Following the trend, re-
searchers began to study multi-teacher distillation (Mehak
and Balasubramanian 2018; Fukuda et al. 2017) and distil-
lation from heterogeneous architectures (Shen et al. 2019;
Touvron et al. 2021; Hao et al. 2024). To take advantage of
multiple teachers, FEED (Park and Kwak 2019) and Knowl-
edge Flow (Liu, Peng, and Schwing 2019) add non-linear
transformations to align the features between the student
model and multiple teacher models. Besides, since mod-
els of different architecture (i.e., CNN, ViT, MLP) have
their own distinct inductive bias, directly distilling knowl-
edge between heterogeneous models will result in signifi-
cant degradation of the performance. To handle such a prob-
lem, OFA-KD (Hao et al. 2024) transfers the mismatched
feature representations into the aligned logits which contain
less architecture-aware information. In this paper, we ex-
plore the knowledge transfer problem from multiple VFMs
to a single stereo matching model for the first time.

Method
In this section, we first introduce the VFMs we utilized.
Then, we analyze the challenges in transferring abundant
knowledge from multiple heterogeneous VFMs to single
stereo matching model. Finally, we detail our AIO-Stereo,
which can flexibly transfer the required knowledge from
multiple VFMs for the stereo matching task.

Preliminaries: VFMs
DINO (Caron et al. 2021; Oquab et al. 2023) is built upon
the Vision Transformer (ViT) (Dosovitskiy et al. 2020) ar-
chitecture. In the training process, DINO aligns the feature
representations of the same image with different augmen-

tation methods in a self-supervised learning manner. As a
result, DINO is encouraged to develop invariant and robust
feature representations, especially the foreground areas and
salient regions of the input image.

SAM (Kirillov et al. 2023) is an image segmentation
model that includes a ViT-based image encoder, a prompt
encoder, and a lightweight mask decoder. The model is
trained on a large amount of semi-supervised data in which
the unlabeled data is automatically annotated by the model.
Thus, features in SAM demonstrate strong zero-shot gener-
alization to unfamiliar objects and images. Besides, as a seg-
mentation model, SAM can extract abundant representations
of diverse objects and edges and generate the segmentation
mask in any location of the image according to the prompt.

Depth Anything family (Yang et al. 2024a,b) is a se-
ries of VFMs for monocular depth estimation, leveraging the
Transformer architecture. The model is trained on a wide va-
riety of supervised and extensive unlabeled data, which cap-
tures depth information at multiple scales. Therefore, Depth
Anything exhibits impressive generalization abilities across
diverse data. It adeptly captures subtle visual cues to differ-
entiate depth variations between objects and their surround-
ings, especially in dark and low-texture areas.

Challenges of Transferring Knowledge from
Multiple Heterogeneous Vision Foundation Models
Heterogeneity between Stereo Matching Models and var-
ious vision foundation models Based on the character-
istics of the stereo matching task, as well as the consid-
erations of computation cost and inference speed, most of
the stereo matching models are built upon CNN structures,
while vision foundation models predominantly adopt the
Transformer architecture. As revealed in (Hao et al. 2024),
features from heterogeneous models reside in different la-



tent spaces. For example, features in CNN have a strong
inductive bias of locality and spatial invariance, while fea-
tures in Transformer represent more global and contextual
information with the self-attention module. Consequently,
simply merging or distilling features between vision foun-
dation models and stereo matching models is unsuitable and
could potentially prevent the feature learning of the stereo
matching network. In the experiment process, it has a neg-
ative impact (i.e., -0.71 in terms of EPE) on our results and
causes unstable performance.

Knowledge Discrepancies and Conflicts Among Vision
Foundation Models Despite the strong generalization and
semantic understanding capability of VFMs, they still have
their independent characteristics due to different training
methodologies and optimization objectives. As mentioned
above, DINO pays more attention to the foreground areas
of objects. SAM is better at extracting features of small
objects and edge areas by training on the segmentation
tasks. Depth Anything, the large monocular depth estimation
model trained on various datasets, achieves superior gener-
alization across data from different sources. Thus, features
in the model excel at discerning subtle visual cues to infer
the relative depth changes on the surfaces of objects.

Therefore, each VFM pays attention to different areas of
the image and there exist differences and conflicts between
features and knowledge from different VFMs as shown in
Fig. 1. As a result, indiscriminate acceptance of knowledge
from multiple VFMs can lead not only to potential interfer-
ences among the disparate sources of knowledge but might
also impede the model’s learning process and convergence.

AIO-Stereo
In this section, we detail AIO-Stereo, a simple but effective
method that can transfer knowledge from multiple VFMs
flexibly and selectively. To take advantage of VFMs, a dual-
level knowledge utilization is designed to effectively trans-
fer knowledge between heterogeneous models, and a se-
lective knowledge transfer module is proposed to integrate
knowledge from multiple VFMs into a single stereo match-
ing model which will be introduced later.

Overview of AIO-Stereo As shown in Fig. 2, the feature
extractor can be divided into a feature network to calculate
cost volumes and a context network to generate context fea-
tures for GRU refinement. Specifically, the context network
contains three residual blocks with each block consisting of
a series of residual and downsampling layers. Our dual-level
selective knowledge transfer (DLSKT) module is adapted to
transfer the rich knowledge of the vision foundation mod-
els to the context network. In detail, given the left images
or the right images Il(r) ∈ R3×H×W as inputs, local features
cl(r) are extracted by the feature network and the pixel-wise
correlation volume can be calculated by:

Corr(x, y, z) = ⟨cl(x, y), cr(x− z, y)⟩, (1)

where ⟨·, ·⟩ is the inner product. Meanwhile, context features
can be obtained by the context network taking the left im-
ages Il as the input. In this process, a single layer convolu-
tion with a kernel size of 7 is first applied to the image to get

the original features f0 ∈ RC0×H×W , where C0 is the num-
ber of channels. Then, the original features are fed into the
residual blocks, with knowledge gradually learned from the
VFMs by the DLSKT module. Specifically, a series of in-
termediate features fi ∈ RCi× H

2i−1 × W
2i−1 (i = 1, 2, 3) can be

obtained, where Ci is the feature channels. For the ith block,
fi−1 is taken as the input, and fi is the output feature. Fol-
lowing RAFT-Stereo (Lipson, Teed, and Deng 2021), corre-
lation volumes at four resolutions are obtained by average
pooling. Since the context features of the left image and the
right image are semantically similar, the correlation volumes
and the context features of the left image are injected into
every step of the GRU updating operator to refine the dis-
parity map step by step. With a series of intermediate predic-
tions {pi}Ni=1, the prediction loss can be calculated following
(Lipson, Teed, and Deng 2021):

LP =

N∑
i=1

γN−i
P ||pi − pGT ||1, (2)

where γP is the decay factor and pGT is the ground truth.

Dual-Level Knowledge Utilization To better integrate
knowledge from the heterogeneous VFM into our stereo
matching model, we propose dual-level knowledge utiliza-
tion which utilizes the knowledge in both distillation and
fusion levels. For simplicity and better understanding, we
take a single large model, SAM, as an example to show our
knowledge utilization method. As mentioned above, since
VFMs and our conv-based backbone are heterogeneous, di-
rect feature distillation or feature fusion is not appropriate
since the features are in different latent spaces and will re-
sult in misalignment. To bridge the architectural gap be-
tween SAM and the CNN backbone, we integrate an ex-
pert network and a feature alignment network to align the
features between heterogeneous models and transfer gen-
eral representations from the VFM to the stereo matching
model. Specifically, a lightweight expert network Es

i is de-
signed and takes the intermediate features fi as the input to
get the expert features esi which can be calculated as follows:

esi = Es
i (fi | φs

i ), (3)

where φs
i denotes the parameter of the expert network. Then,

the expert features esi subsequently pass through a heavier
feature alignment network Ai

s which reconciles the feature
space of the stereo network with that of SAM. A distillation
loss is finally designed to make the stereo matching model
learn from the VFM in the aligned feature space which can
be written as follows:

Ls
KD,i = MSE(As

i (e
s
i | θsi ),Fs(si)), (4)

where si represents the features extracted from the ith stage
of SAM, Fs denotes the interpolate function to align the
resolutions, and θsi is the parameter of feature alignment net-
work. During the distillation process, the knowledge derived
from SAM is propagated to the expert and the backbone
network through the feature alignment network. A heav-
ier feature alignment network can reduce the misalignment



among features, but may also lead to greater knowledge at-
trition. Thus, we initialize the feature alignment network
with a higher learning rate to rapidly learn the mapping re-
lationships within the feature space and a larger learning
rate decay factor to prevent excessive retention of knowl-
edge within the network. Through the distillation process,
knowledge is conveyed to the preceding blocks by backprop-
agation, while the forward propagation of the current block
may attenuate the knowledge to some extent. To enhance the
knowledge, we add the output of the expert network back
into the output of the of the current residual block:

fi+1 = Bi(fi | ζi) + esi , (5)

where Bi is the residual block with ζi to be its parameter.
This dual-level design ensures a more effective knowledge
transfer from the heterogeneous vision foundation model.

Selective Knowledge Transfer To facilitate effective
knowledge transfer from multiple distinct VFMs while pre-
venting knowledge interference between different models,
we design a dual-level selective knowledge transfer mod-
ule. Inspired by the mechanism of the mixture of experts
(MoE) (Jacobs et al. 1991), we employ a selective knowl-
edge transfer mechanism with a trainable gating network to
select the experts for the features of each pixel. Specifically,
for the ith block, we extract the features from the ith stage
of DINO, SAM, and Depth Anything, represented as di, si,
and ai respectively. As shown in Fig. 2, each VFM is associ-
ated with an expert network that learns the knowledge from
the corresponding VFM through distillation. Taking fi as in-
puts, edi , esi , eai can be obtained by the expert networks Ed

i ,
Es

i , and Ea
i respectively. The distillation loss for multiple

VFMs can be calculated as follows:

LKD,i =
∑

x∈{d,s,a}

Lx
KD,i (6)

gi = KeepTopK(Softmax(Gi(fi) | ψi), k, dim = 0), (7)

where k is the number of experts to be retained at each pixel,
and KeepTopK(·, k, ·) is a function that keeps the top-k val-
ues with the highest weight at the specific dimension. Sub-
sequently, we use selection weights to determine the impor-
tance of the features from three experts, selectively fusing
and discarding certain features. Finally, the selected features
are then added to the output of the current residual block as
the input of the next block.

fi+1 = Bi(fi | ζi) +
∑

x∈{d,s,a}

exi ⊙ gi(x) (8)

By selecting the features from experts, we indirectly choose
the knowledge from multiple VFMs at different regions
of the image to transfer the most beneficial and effective
knowledge from each large model.

Loss Function The overall loss function consists of the
prediction loss LP and the distillation loss LKD. The L1
Loss is calculated between the predicted disparity maps and

the ground truth. And the MSE Loss is applied for knowl-
edge distillation. The final loss is defined as:

LAIO = LP + LKD = LP +

3∑
j=1

γ4−j
KDLKD,j , (9)

where γKD is the decay factor and LP , LKD,j are defined
in Eq. (2) and Eq. (4), respectively.

Experiments
Datasets
Following Selective-Stereo (Wang et al. 2024), we ver-
ify the effectiveness of AIO-Stereo on four widely used
datasets including Scene Flow (Mayer et al. 2016), Mid-
dlebury 2014 (Scharstein et al. 2014), KITTI-2015 (Menze
and Geiger 2015) and ETH3D (Schops et al. 2017). Scene
Flow (Mayer et al. 2016) contains more than 39000 synthetic
stereo frames which are divided into training and testing set.
Middlebury 2014 (Scharstein et al. 2014) provides a training
set with images of 23 indoor scenes and a testing set with
images of 10 indoor scenes, and both sets have three resolu-
tions to use. KITTI-2015 (Menze and Geiger 2015) contains
200 training pairs and 200 testing pairs with sparse dispar-
ity maps which were collected in real-world driving scenes.
ETH3D (Schops et al. 2017) provides gray-scale image pairs
covering both indoor and outdoor scenes.

Implementation Details
We implement our AIO-Stereo with Pytorch framework and
perform our experiments using NVIDIA A100 GPUs while
using the AdamW optimizer. For pre-training, we trained
our model on the augmented Scene Flow training set (i.e.,
both cleanpass and finalpass) for 200k steps with a batch
size of 8, and we use a random crop size of 320 × 720. We
use a one-cycle learning rate schedule with warm up strat-
egy and the learning rate gradually increases to 0.0002 in the
first 1% of steps and gradually decreases thereafter. And for
finetune, the learning rate linearly decays from 0.0003 to 0.

Ablation Study
Ablation for Each VFM AIO-Stereo leverages the
knowledge from three VFMs (i.e., DINOv2, SAM, and
Depth Anything v2) to enhance feature representation and
improve overall accuracy. To verify our method can effec-
tively integrate the advantage of multiple VFMs, we con-
duct experiments on using different numbers of VFMs (i.e.,
only DINO, DINO and SAM, DINO, SAM and Depth Any-
thing). As shown in the upper part of Tab. 1, performance
improves when using VFMs which verifies that AIO-Stereo
can effectively learn from VFMs. Besides, as the number of
used VFMs increases, the performance is consistently im-
proved. This is because each VFM has its unique advantages
and knowledge from different VFMs can be integrated effec-
tively by our AIO-Stereo. Moreover, the results highlight the
inherent flexibility of our AIO-Stereo, which is not depen-
dent on a single foundation model but is designed to effec-
tively orchestrate multiple models, leveraging their strengths
to serve our stereo matching task. It suggests that our AIO-
Stereo can flexibly take advantage of various VFMs.



Method Distillation Forward Selection DINOv2 SAM Depth Anything v2 EPE
(px)

>2px
(%)

Baseline 0.74 4.68

w/o Selection ✓ ✓ ✓ ✓ ✓ 0.68 3.57
w/o Distillation ✓ ✓ ✓ ✓ ✓ 0.72 3.87
w/o Forward Fusion ✓ ✓ ✓ ✓ 0.67 3.52
Only DINO ✓ ✓ ✓ ✓ 0.66 3.64
DINO+SAM ✓ ✓ ✓ ✓ ✓ 0.68 3.61

full* ✓ ✓ ✓ ✓ ✓ ✓ 0.66 3.48

Table 1: Ablation study of proposed networks on the MiddEval v3 training set in full resolution and all metrics are on all pixels.
The baseline is the Selevtive-IGEV (Wang et al. 2024).* means the final version of our method.

Method Middlebury ETH3D KITTI 2015
bad1.0 bad2.0 avgerr A90 bad0.5 bad1.0 bad2.0 avgerr D1-bg D1-fg D1-all

PSMNet (2018a) 63.9 42.1 6.68 17.0 - - - - 1.86 4.62 2.32
HITNet (2021b) 13.3 6.46 1.71 2.32 7.83 2.79 0.80 0.20 1.54 2.72 1.74
RAFT-Stereo (2021) 9.37 4.74 1.27 1.10 7.04 2.44 0.44 0.18 1.75 2.89 1.96
LEAStereo (2020) 20.8 7.15 1.43 1.68 - - - - 1.74 3.20 1.98
CREStereo (2022) 8.25 3.71 1.15 0.92 3.58 0.98 0.22 0.13 1.45 2.86 1.69
GMStereo (2023c) 23.6 7.14 1.31 1.64 5.94 1.83 0.25 0.19 1.49 3.14 1.77
IGEV-Stereo (2023a) 9.41 4.83 2.89 4.87 3.52 1.12 0.21 0.14 1.38 2.67 1.59
DLNR (2023) 6.82 3.20 1.06 0.85 - - - - 1.60 2.59 1.76
Selective-IGEV (2024) 6.53 2.51 0.91 0.79 3.06 1.23 0.22 0.12 1.33 2.61 1.55
AIO-Stereo (Ours) 6.08 2.36 0.85 0.76 2.91 0.94 0.21 0.13 1.35 2.46 1.54

Table 2: Quantitative evaluation on Middlebury(Scharstein et al. 2014), ETH3D (Schops et al. 2017), and KITTI 2015 (Menze
and Geiger 2015). Bold: Best. Underline: Second best.

Effectiveness of Dual-level Knowledge Utilization To
effectively transfer the knowledge between heterogeneous
models, we use the knowledge in both distillation and fusion
levels. In this section, we evaluate the effectiveness of our
dual-level approach to knowledge utilization from VFMs.
In detail, we first exclude the aligned knowledge distillation
to eliminate the effect of extra parameters brought by the
expert networks. It can be observed from Tab. 1 that the per-
formance decreases largely (i.e. 3.48 to 3.87 on the 2 pixels
error index) which is because the model will be unable to
learn from the knowledge of VFMs without the distillation
process. Besides, there is also a performance drop without
the forward fusion. This is because the model is more prone
to forgetting the knowledge it has acquired, leading to a di-
minished effect in knowledge transfer. By utilizing knowl-
edge at both levels, our approach achieves a more compre-
hensive and rich transfer of visual knowledge.

Exploration of DLSKT In this section, we explore the
expert selection mechanism of our DLSKT module. In par-
ticular, we apply a non-selective knowledge transfer which
accepts all the knowledge from VFMs indiscriminately to
compare with our selective knowledge transfer. The results
in Tab. 1 (i.e., w/o selection) indicate that the non-selective
knowledge transfer underperforms our selective methods on
both EPE and 2 pixels error index, attributed to the incom-

patible and sometimes contradictory knowledge among dif-
ferent VFMs.

Comparisons with State-of-the-art
To evaluate the effectiveness of our method, we compare
AIO-Stereo with the current SOTA methods on the Middle-
bury, ETH3D, and KITTI 2015 datasets as shown in Tab. 2.
Note that AIO-Stereo ranks 1st on the Middlebury leader-
board and achieves SOTA on multiple datasets.

Middlebury. For the Middlebury dataset, follow-
ing (Wang et al. 2024), we first finetune our pre-trained
model on the mixed Tartan Air (Wang et al. 2020),
CREStereo Dataset (Li et al. 2022), Scene Flow, Falling
things (Tremblay, To, and Birchfield 2018), InStereo2k (Bao
et al. 2020), CARLA HR-VS (Yang et al. 2019), and Mid-
dlebury datasets 200k steps using a crop size of 384 × 512
with a batch size of 8. Then we finstune it on the mixed
CREStereo Dataset, Falling Things, InStereo2k, CARLA
HR-VS, and Middlebury datasets using a crop size of 384 ×
768 with a batch size of 8 for another 100k steps. As shown
in Tab. 2, our method achieves SOTA performance on the
Middlebury test set. Specifically, our method surpasses
Selective-IGEV (Wang et al. 2024) and DLNR (Zhao et al.
2023) by 5.98% and 26.25% on the bad 2 pixels error
respectively without extra design to the refinement process,



Method F H
EPE D1 EPE D1

PSMNet (2018a) 40.51 57.93 9.79 32.19
RAFT-Stereo (2021) 3.84 15.64 1.44 11.21
IGEV-Stereo (2023a) 5.87 11.85 1.36 7.21
GMStereo (2023c) 4.10 29.15 1.92 15.69
EAI-Stereo (2022) 6.16 18.25 2.15 11.74
DLNR (2023) 6.57 14.46 1.45 9.46
Selective-IGEV (2024) 5.28 12.07 1.35 7.31
AIO-Stereo (Ours) 4.16 11.67 0.89 6.48

Table 3: Zero-shot evaluation on Middlebury. Bold: Best.
Underline: Second best.

Image RAFT-Stereo CREStereo IGEV-Stereo Ours

Figure 3: Visual comparison on the Middlebury dataset.

demonstrating the effectiveness of our designs.

ETH3D. For the ETH3D dataset, following (Wang et al.
2024), we finetune the pre-trained model on the mixed Tar-
tan Air, CREStereo Dataset, Scene Flow, Sintel Stereo (But-
ler et al. 2012), InStereo2k, and ETH3D datasets for 300k
steps. Then we fintune it on the mixed CREStereo Dataset,
InStereo2k, and ETH3D datasets for another 90k steps.
Our method achieves the best performance among all pub-
lished methods for most metrics, and outperforms Selective-
IGEV (Wang et al. 2024) by 23.58% on bad 1.0 metric.
quantitative results are shown in Tab 2.

KITTI-2015. For the KITTI-2015 dataset, following
(Wang et al. 2024), we finetune the pretrained model on the
mixed dataset of KITTI-2012 (Geiger, Lenz, and Urtasun
2012) and KITTI-2015 with a batch size of 8 for 50k steps.
As shown in Tab. 2, our method achieves comparable results
and surpasses Selective-IGEV by 5.75% on D1-fg metric.

Zero-Shot Generalization

To evaluate the generalization capabilities of our proposed
method, we pre-train our model on the synthetic Scene Flow
dataset and directly test it on the Middlebury dataset, an un-
seen real-world dataset with challenging indoor scenes. As
shown in Tab. 3, AIO-Stereo achieves state-of-the-art perfor-
mance at most of the metrics. Attributed to the knowledge
transferred from the vision foundation models, our method
performs well on unseen environments.

(a) (b)

(c) (d)

Figure 4: Visualization of the selection weights for each
VFM. (a) Reference image. (b-d) Selection weights of
DINO, SAM, and Depth Anything respectively.

Visualization
Visual Comparisons on Middlebury Further, we com-
pare the visualization results with other works (i.e., RAFT-
Stereo (Lipson, Teed, and Deng 2021), CREStereo (Li et al.
2022), and IGEV-Stereo (Xu et al. 2023a)). It can be seen
from Fig. 3 that AIO-Stereo can achieve better visualization
quality, especially in texture and dark areas. This is because
our method can take advantage of multiple VFMs and learns
general representations from them.

Visualization of Selection Weights for Each Expert Our
method indirectly selects different VFMs by selecting differ-
ent experts. We visualize the selection weight for each VFM
in Fig. 4 to show our strategy of selecting from different re-
gions based on the independent strengths of various models.
The visualization indicates a clear preference for foreground
regions when integrating features from DINO, attributable to
its enhanced focus and robustness within these regions. For
SAM, features are mainly selected on the edges, aligning
with SAM’s capability for identifying differences between
objects. As for Depth Anything, our model learns features of
dark and low-texture areas, where Depth Anything performs
well. The visualization results further verify that AIO-Stereo
can combine the advantage of different VFMs.

Conclusion
In this paper, for the first time, we explore leveraging the
knowledge of VFMs to improve the performance of stereo
matching. Specifically, we propose AIO-Stereo which can
transfer knowledge from multiple VFMs into a single stereo
matching model. Our AIO-Stereo combines the advantages
of multiple VFMs by selective knowledge transfer mod-
ule and effectively adapts the knowledge from heteroge-
neous VFMs to our stereo matching model by dual-level
knowledge utilization module. Experimental results show
that our AIO-Stereo achieves SOTA performance on mul-
tiple datasets and rank 1st on the Middlebury dataset.
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