Quantifying task-relevant representational similarity
using decision variable correlation

Yu (Eric) Qian Wilson S. Geisler
Department of Neuroscience Department of Psychology
The University of Texas at Austin The University of Texas at Austin
ericqian@utexas.edu w.geisler@utexas.edu

Xue-Xin Wei
Department of Neuroscience
The University of Texas at Austin
weixxQutexas.edu

Abstract

Previous studies have compared neural activities in the visual cortex to repre-
sentations in deep neural networks trained on image classification. Interestingly,
while some suggest that their representations are highly similar, others argued the
opposite. Here, we propose a new approach to characterize the similarity of the
decision strategies of two observers (models or brains) using decision variable
correlation (DVC). DVC quantifies the image-by-image correlation between the
decoded decisions based on the internal neural representations in a classification
task. Thus, it can capture task-relevant information rather than general representa-
tional alignment. We evaluate DVC using monkey V4/IT recordings and network
models trained on image classification tasks. We find that model-model similarity
is comparable to monkey-monkey similarity, whereas model-monkey similarity
is consistently lower. Strikingly, DVC decreases with increasing network perfor-
mance on ImageNet-1k. Adversarial training does not improve model-monkey
similarity in task-relevant dimensions assessed using DVC, although it markedly
increases the model-model similarity. Similarly, pre-training on larger datasets
does not improve model-monkey similarity. These results suggest a divergence
between the task-relevant representations in monkey V4/IT and those learned by
models trained on image classification tasks.

1 Introduction

Deep learning [15 2] has substantially impacted how neuroscientists construct brain models. For vision
neuroscience, deep neural networks offer candidate models for studying the primate ventral pathway
[35 4 5] and, more recently, dorsal pathway [6; [7; 8]. Early work reported that the representations in
convolutional neural networks (CNNs) trained on image categorization tasks can explain a substantial
fraction of variance in high-level visual areas, surpassing classic models for these areas [3]]. Follow-up
research has tested many variants of deep networks on their alignment with the brain using both
neural data [9;10;[11]] and behavior data [[12;[13;[14]]. One appealing hypothesis is that deep networks
that exhibit higher accuracy and robustness in vision tasks, or trained on larger datasets would better
explain visual processing in the brain.

One important question is how to compare deep network models and the brain. One class of methods
seeks to quantify the similarity of internal representations between models and brains. This includes
methods such as representational similarity analysis (RSA) [[15], linear regression [55 [16], and
generalized shape metrics [[17;[18]. More recently, another class of methods that put more emphasis
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on quantifying the behavioral similarity has been proposed, including Cohen’s Kappa [13] and
I2n behavioral predictivity [12;|19]. The goal of these methods is to provide an image-by-image
comparison of the decision strategies used by neural networks and the brain. One challenge has
been how to properly disentangle the model accuracy, decision biases and decision consistency
from behavior [20; [13]. Intriguingly, studies seem to find contradictory trends in model-brain
alignment. While some studies suggest that deep learning systems converge to learning a common
representation [21522]], others suggest that the similarity will not grow indefinitely or has capped [23
24]. The reason for this remains unclear.

Here, we propose a principled approach that combines the merits of model comparisons at the
representation and behavior levels. Our method is based on decision variable correlation (DVC)
developed to measure the behavioral similarity based on choice data [20] in signal detection theory,
and we have generalized it to analyze the consistency of high-dimensional neural representations.
While prior work developed techniques to estimate DVCs from behavioral data [20], we instead
infer DVCs from neural representations. Thus, our proposed DVC metric should be interpreted as
a measure of the representational similarity. Our approach specifically quantifies the trial-by-trial
consistency of two neural representations for solving a classification task, ignoring features that are
irrelevant for the task. In doing so, our approach enables one to infer the consistency of the decision
strategy of two observers from their internal representations based on the assumption of optimal
linear readouts.

Applying our method to compare neural representations for solving image recognition tasks from
monkey brains and deep network models led to several interesting findings. In particular, we
found that model-model and monkey—monkey similarities are comparable, whereas model-monkey
similarity is consistently lower and decreases with increasing ImageNet-1k accuracy. Somewhat
surprisingly, this gap is not remedied by adversarial training or training on larger datasets.

2 Background and relevant work

Community efforts have pushed towards better methods to compare brains and models and for brain-
model alignment. Different factors have been hypothesized to be relevant for alignment, including
model architecture, robustness, and training data, as summarized below.

Model architecture and scale One hypothesis has been that as models improve in task performance or
architectural complexity, their internal representations become more brain-like. The Brain-Scores [19]
of the image classification models were reported to be positively correlated to ImageNet-1k accuracy,
although the trend plateaus at higher accuracy. On the other hand, studies using RSA reported
that neither model scale nor architecture significantly improved alignment to human behavioral
similarity judgments [9]. Another study using RSA reported negative correlation between alignment
to human neural activity and model complexity [25]. Studies using Cohen’s Kappa reported that
human-model behavioral consistency at the image level remains low despite improved performance
on out-of-distribution datasets with scaling[135[14].

Robustness The primate visual system is robust against external and internal noise, prompting the
question of whether robustness to adversarial perturbations or corruptions is related to brain-model
alignment [26]. Recent work proposed that adversarial robustness might promote the learning of
representations better aligned with human perception [27]. By enforcing alignment with monkey IT
representations, models exhibited both enhanced adversarial robustness and increased behavioral
alignment with human subjects [26]. Another study found that model metamers — artificial stimuli
that elicit the same response as natural stimuli, generated by robust models— are more recognizable to
humans, but are not themselves predictive of recognizability [28]. However, studies using Cohen’s
Kappa report that robust models still diverge from humans in their error patterns[14]. Additionally,
there has also been evidence suggesting that even though adversarial training increased model
robustness, these robust networks may not use human-like features unless explicitly aligned [29; 30].

Rich and multimodal training data Using Cohen’s Kappa, [14] reports that models trained on
larger and more diverse datasets become more human-like in their behaviors. On the other hand,
a recent large-scale study using a variation of RSA reported that upgrading from ImageNet-1k to
ImageNet21k does not significantly improve alignment to human brain, but object-oriented ImageNet
datasets lead to much better alignment than datasets containing only places or faces [11]. Similarly, an
ecologically-motivated dataset seems to improve model-brain alignment [31]]. Joint vision-language
models such as CLIP have also been shown to better predict human brain activity [14;[10; [32]].



Similarity measures Classic methods such as linear predictivity measure how well neural responses
can be predicted from network representation [3]. Representational similarity analysis (RSA) [15; 4]]
is a popular approach that quantifies the similarity in the geometrical structure of two representations,
and is blind to the specific features used to solve a task [33]]. Other shape metrics such as centered
kernel alignment (CKA) and canonical correlation analysis (CCA) also do not specifically address
the similarity in task-relevant features. Measures of behavioral similarity such as error consistency
are task-focused [[13]], yet they may be overcalibrated on accuracies of the observers and are therefore
sensitive to the choice of decoders[13}14] as we will show later. Recent studies highlighted the
challenges in the interpretation of results based on these methods [[19;|11]], e.g., different methods
for quantifying the brain-model similarity could lead to different conclusions [34; 35]]. As the field
continues to develop methods for analyzing and interpreting model-brain alignments [36; 37], it
would be desirable to have principled, task-relevant, accuracy-agnoistic measures to better illustrate
the possible divergence between brains and models.

3 DVC: Quantifying the trial-by-trial consistency of two representations

We develop a new method to evaluate the consistency of two neural representations. This method
is based on a principled generalization of signal detection theory. It enables one to estimate how
correlated the decision strategies of two observers are for a classification task. The method is robust
to the observers’ biases and is not confounded by the behavioral accuracy. It operates at the level of
neural representations, and enables one to analyze the internal representation to infer the consistency
of the two representations for solving the classification tasks. Thus, the method can quantify task-
relevant representational similarity. Compared to methods purely based on behavior [20; 13|, it takes
advantage of the richness of the internal representations of neural networks and brains. Meanwhile, in
contrast to methods for analyzing the similarity of two neural representations (such as representational
similarity analysis), our method focuses on the dimensions that are relevant for a behavioral task and
is invariant to variability along other task-irrelevant dimensions.

3.1 Decision variable correlations (DVC) of two neural representations

Signal detection theory is fundamental in the study of perceptual behavior. The idea is that, for binary-
choice tasks, observer uses a continuous decision variable (DV) to make a choice (Fig. [Th). Recently,
[20] proposed to generalize signal detection theory to study the correlation of decision variables of
two observers (Fig. [Ib). Their method inferred the DVC from binary choice data. Here, we develop
a simple new strategy to infer trial-by-trial DVCs from high-dimensional internal representations

(Fig.[Tp).

For a pair of image categories and an observer (a brain area or a particular layer from a neural
network), we can take its neural representation and find the optimal decision axis for solving the
categorization task. We then project the high-dimensional representation for each image onto the
decision axis and obtain its decision variable. Now consider the case of two observers. By performing
the analysis on both observers, we obtain two decision variables for each image. We can compute
the correlation of the decision variables (DVC) for the two observers (Fig. ). This correlation
captures the similarity of the encoding and the decoding into a decision for the two observers in this
classification task.

Note that the method of inferring DVC from behavioral responses only applies to binary choice tasks.
Our new method does not suffer this limitation. Given N (>2) image classes, we can focus on each
pair of categories at a time, and infer the DVC for that particular classification task.

3.2 Implementation of the DVC method

We next discuss how we implement the DVC framework to analyze the high-dimensional neural
representations from the brains or deep networks.

Decoding decision variables (DVs) from neural representations For each pair of classes (e.g.,
cats v.s. dogs), we use Linear Discriminant Analysis (LDA) to find the axis that maximizes class
separation to decode the DV's from the brain or model representations. The projection onto the LDA
axis reflects the model’s tendency to classify the image as one class versus the other; values near
the midpoint indicate greater classification uncertainty. One important practical issue is that LDA
can be unstable under high dimensions with few samples. The reason is that there are many noisy
feature directions with similar class separation, but the projections of image representations along
these dimensions can be different. Consequently, even if two models have the same underlying



a Signal detection theory b Decision variable correlation (DVC)

low DVC high DVC

g

dog

decision variable
(observer 2)
o £
o
«Q
decision variable
(observer 2)

decision variable
decision variable decision variable
(observer 1) (observer 1)

c Inferring decision variable correlation
of two neural representations

_______________________

decision axis

neuron 2

>

decision variable of
> observer 1 for each image

—>
neuron 1

[o)
2

A7

images from N
a pair of classes

%,

----------------------- .
\ decision axis

decision variable
(observer 2)

decision variable
(observer 1)

> decision variable of

observer 2 for each image

—>
neuron 1

Figure 1: The computational framework of decision variable correlation (DVC) for neural
representations. (a) Traditional signal detection theory models how a single observer solve a binary
classification task. The idea is that the observer use a decision variable together with a criterion (dash
line) to make a choice. (b) Decision variable correlation generalizes the signal detection theory to
study the trial-by-trial consistency of the decision variables of two observers. The two panels illustrate
two cases with the same accuracy in solving the task, but with drastically different correlations in the
decision variabless (DVs). (c) We further generalize DVC to compare two neural representations.
The basic idea is to use optimal linear classifier to infer the decision variables of individual observers
and then quantify the consistency of the decision variables.

representations, LDA projections may show low correlation. Note that models examined in this paper
have a wide range of dimensionality in their penultimate layer (103 — 107).

To address this problem, we use dimensionality reduction (e.g., PCA) to reduce the representations
to the same number of features before using LDA to decode the underlying DV ﬂ We measure the
similarity between decoded DV using Pearson Correlation. A DVC value is obtained for each class
in each pair of classes. The final reported number is taken as the average of all DVC values.

Normalization to address measurement noise in DV Measurement noise may limit the accuracy
of the inferred DVC. The otherwise perfect correlation between two identical representations would
be corrupted by adding noise. Low correlation might therefore reflect true underlying dissimilarity or
high noise level. To correct for the under-estimation of DVCs due to measurement noise, we develop
a split-half procedure to infer the impact of noise.

We aim to estimate the true correlation between two decision variable (DV) signals, DV 4 and DV g,
each of which is contaminated by independent noise. To correct for the attenuation bias introduced

125 PC dimensions. See Appendix C.3 and C.4 for experiments that demonstrate the robustness of the results.



by noise, we split each DV into two independent halves: DV 41, DV 49 and DV g1, DV go. For neural
recordings, this would indicate splitting into two sets of neurons, and for model representations, two
sets of hidden units. We then compute a noise-corrected Pearson correlation as follows:

Tcross
Pcorrected = (1
Tself

where the numerator reflects the geometric mean of all pairwise cross-observer correlations:

Teross = [P(DVa1,DVp1) - p(DVa1,DVps) - p(DV 42, DVpy) - p(DVA2,DV132)]1/4 2)

and the denominator normalizes by the geometric mean of the within-observer (split-half) reliabilities:
riair = [p(DV.a1,DV 42) - p(DV 51, DV )] '/2 3)

This correction removes the bias introduced by independent, additive symmetric noise in the estimated
decision variable, yielding an unbiased estimate of the true underlying correlation between the latent
signals driving DV 4 and DV p ﬂ How to best recover DVC under more general noise conditions
remains an interesting question for future work.

4 DVCs reveal the divergence between deep networks and brains

We apply the new DVC-based methodology to examine (i) the trial-by-trial consistency of the neural
representation of the high-level visual areas (V4/IT) between macaque brains, (ii) the consistency be-
tween individual neural network models & the IT/V4 neural representations, and (iii) the consistency
between different deep neural network models. We specifically consider three classes of deep network
models: (i) models that were pre-trained on ImageNet-1k using standard network training (i.e., no
adversarial training); (ii) "robust models" that were fine-tuned on ImageNet-1k using adversarial
training; (iii) "data-rich models" that were pre-trained on even larger datasets such as ImageNet-21k
and JFT-300M.

4.1 High trial-by-trial consistency of V4 & IT representations across monkey brains

We evaluate the consistency of neural representations in different macaque monkeys. We used the
publicly available dataset of objects rendered on naturalistic scenes [38]]. In these experiments, they
used images from eight classes {animals, boats, cars, chairs, faces, fruits, planes, tables}, with 400
images each, totaling 400 x 8 = 3200 images. Recordings were taken from V4 and IT areas of two
adult macaque monkeys passively viewing these images. The brain representation is taken to be the
time-binned spike counts averaged over 50 repeats. 100 neurons from V4 and IT combined were
obtained from each monkey.

We first examine the classification accuracy based on V4 and IT response, and find that the accuracy
based on LDA is high (0.94 and 0.92, respectively). We combine the neural data from areas V4
and IT, and compute the DVCs. We find that the DVC between the monkeys is about 0.57. We
further compute the DVCs for V4 and IT separately, and find the DVC values to be 0.63 and 0.41,
respectively. Overall, these results suggest that DVCs across the monkeys’ brain are generally high,
implying that the encoding and the decision strategies used by different monkeys are consistent on an
image-by-image basis.

4.2 Deep networks with higher accuracy on ImageNet exhibit lower DVCs with brains

We study a set of models (n=43, obtained from Torchvision, [39]) pretrained on ImageNet-1k, an
influential benchmark in image classification. This also offers a fair comparison between models by
controlling for confounding factors related to different training data. We use the same neural datasets
from [38] as above. We feed the images in [38] into deep vision-based neural networks, subject to
standard transforms. The model representation for an image is defined as the activation taken from
the penultimate layer — the last layer before the final logit layer.

Brain vs. network Evaluating the DVCs between models and monkey brains, we find that the
consistency between models and monkeys are modest, and generally lower than that of monkeys.
For the 43 models we tested, the average is 0.29 £ 0.05. Given the differences in the training data,

2See Appendix A for proof, and Appendix C for discussions on the validity of DVC under different conditions,
including behaviors of split normalization at boundary conditions.
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Figure 2: Results on models trained on ImageNet-1k. (a) Heatmap: DVCs inferred for pairs of
models. Different colors are used to indicate models from different model families. 15 models are
selected to represent this cohort in later analysis. (b) 2D t-SNE embedding of the models using
their dissimilarities, measured as 1 — DV C. (c) There is a strong negative correlation between
the classification performance (top-1 accuracy) of a network and its DVC correlation to the V4/IT
representation. (d) Networks belonging to the same family exhibit higher DVCs compared to those
belonging to different model families (p = 1.33e-56).

learning algorithm, and loss functions between deep networks and brains, this is perhaps not too
surprising. The models we tested differ in their ability to solve image categorization tasks. One
influential hypothesis has been that the more accurate a network can solve the task, the more similar
its representation would be when compared to that of primate visual cortex. Earlier results
supported this hypothesis. This motivated us to examine whether networks with higher performance
on ImageNet-1k also have higher DVC with macaque IT/V4. Surprisingly, we find the opposite,
that is, networks with higher top-1 accuracy on ImageNet-1k generally have lower DVC with IT/V4
representation (Pearson correlation = -0.70, p = 2.28e-07; Fig. k).

Network vs. network We next examine the DVCs between different deep neural networks. Specif-
ically, we evaluate DVCs between deep networks from different model familiesﬂ Using DVC,
models from the same family or otherwise share architectural similarities are clearly clustered to-
gether(Fig. Zh,b). We find that DVCs between pairs of models within the same family (similar model
structures and training processes) are substantially higher than pairs from different families (p =

*We define a model family as a set of architectures sharing a canonical computational graph — such as residual,
attention, or convolutional block structures—with variation limited to hyperparameters like depth, width, patch
size, or token embedding dimension. See Appendix B for more model details



1.33e-56, Fig.[2d), consistent with previous findings [40]. We also find DVCs between models not to
be exceedingly high. Despite being trained on the same dataset, they do not seem to converge to a
single solution, at least not significantly higher compared to the similarity between the two monkeys
(Fig.2ld). These results imply that model structures and training processes still play significant roles in
the task solutions found by the models. Notably, these results differ substantially from results obtained
by computing error consistency. These studies [14]] reported that (i) the consistency between
model and brain is very low; (ii) the consistency between network models is much higher than the
consistency between humans. Later, we will address the difference between the methodologies.
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Figure 3: Results on robustly trained deep networks on ImageNet-1k. (a) Networks based on
adversarial training has lower DVC with V4/IT compared to the representative models (introduced
in Fig. 2)) without adversarial training. (b) Heatmap showing the inferred DVCs between pairs of
models. (c) Robustness networks have high DVCs among themselves, and they have relatively low
DVCs with the representative models.

4.3 Adversarially trained networks, while highly consistent, have low DVCs to the brain

Robustness represents one important difference between deep networks and our perceptual systems.
Small perturbations to images that are imperceptible to humans can lead to qualitative errors in
deep networks (i.e., adversarial examples) [41]. Adversarial examples reflect the misalignment
between representations in deep networks and brains, given certain local perturbations in the inputs.
Adversarial robustness can be increased by using adversarial training, e.g., by finding adversarial
examples and adding them to the training set. Studies suggest that features learned through adversarial
training may be more aligned with human perception [27}; 28]], posing an intriguing hypothesis that
by making networks locally consistent with human perception, network representations may be better
aligned with brain representations globally.

To test this hypothesis, we examine the DVCs of a set of adversarially trained networks and macaque
V4/IT. We obtain robust models fine-tuned for adversarial robustness on ImageNet-1k(n=9, from
Robustbench), [42])). Evaluating the DVCs of these models to V4/IT representations, we observe no
improvement in the similarity to the brain. In fact, we observe a slight decrease of the DVC values
(0.27 £0.02, Fig. E}a). Furthermore, we observe that models based on similar adversarial training
procedures show a high similarity with each other (0.69 & 0.09, Fig. Bt). Meanwhile, their similarities
to models without adversarial robustness drop substantially (p = 5.203e-37, Fig.[Bt). These results
suggest that adversarially trained models converge to a common solution (despite that these models
have different architectures). Their representations diverge from the non-adversarially trained deep
networks, yet they also diverge from the neural representation in macaque V4/IT.

4.4 Networks trained on rich datasets exhibit no increase in DVC to the brain

Whereas ImageNet-1k has been an important benchmark dataset for the image classification commu-
nity for a decade, recent state-of-the-art models are trained on larger datasets such as ImageNet-21k,
which is a scaled-up version of ImageNet-1k, and JFT-300M, which is proprietary. Models trained
on larger, more diverse datasets may generalize within a larger domain, and may show better out-
of-distribution generalization ability. A recent study showed that models trained on these larger
datasets may exhibit better alignment with human behavior [14]]. Furthermore, the negative correla-
tions between classification performance and DVCs to the brains (Fig. 2k) suggest the possibility of
overfitting to a particular dataset that is much smaller than what brains are trained on evolutionarily,
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developmentally, and during the experiments [43]]. Therefore, it is of particular interest to investigate
whether models trained on the richer datasets exhibit higher DVCs to the brain.
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Figure 4: Results on deep networks trained on richer datasets. (a) Networks we examined that
were pre-trained on richer datasets exhibit lower DVC with V4/IT compared to the representative
models (trained on ImageNet-1k). (b) Heatmap showing the inferred DVCs between pairs of models.
(c) DVCs between lower data-rich models and representative models are generally lower than those
within representative models or data-rich models.

We examine models pre-trained on bigger, or multimodal datasets (n=13), namely, 5 SWAG models
from [Torchvision|and 6 BiT (Big Transfer)[43] models, Noisy Student[46]] and CLIP from
Timm) (for details, see Appendix B) [39; [48]. Briefly, BiT (Big Transfer) is a supervised pretraining
approach that trains ResNetV2 models on large-scale datasets like ImageNet-21k. Noisy Student
is a semi-supervised learning framework that iteratively trains a student model on both labeled
(ImageNet-1k) and unlabeled (JEM-300M) data using noise-augmented inputs. CLIP is a contrastive
vision-language model that jointly learns aligned image and text embeddings from web-scale paired
data. SWAG is a training strategy introduced by Meta that improves supervised learning by using
large-scale weak supervision from hashtAGs. All of these models enjoy better performance on
ImageNet-1k than their vanilla counterparts. Comparing these models to V4/IT, surprisingly, we
find that the DVCs to the brains are lower than those trained on ImageNet-1k (0.24 & 0.05, Fig. 4h).
Given that these models generally have high ImageNet-1k accuracy, it seems to follow the previously
reported trend that better performing models tend to show less consistency with brains. These
data-rich models are less similar to the representative models trained on ImageNet-1k compared to
the similarity among themselves (Fig. @).

4.5 Comparison to error consistency based on Cohen’s Kappa

One method that is highly relevant to DVC is Cohen’s Kappa. As a classic statistical measure of
inter-rater consistency [50], Cohen’s Kappa was recently applied to quantify the error consistency
of deep networks and brains [13} [14]. These studies examined human-model alignment using
categorical judgements on assorted out-of-distribution stimuli. For example, ‘edges’ where only
the edges are illustrated, or ‘silhouettes’ which are filled outlines of objects. These studies arrived
at very different conclusions, namely that (i) model-model similarity is significantly higher than
human-human similarity, (ii) model-human similarity is extremely low and that (iii) models trained
on rich datasets are more aligned with humans. At a high level, these results seem to be inconsistent
with our findings, because we found that (i) deep networks exhibit modest consistency with the brain;
(i) DVCs between different deep networks trained on ImageNet-1k are not exceedingly large; (iii)
models trained on rich datasets have lower DVCs with brains.

To understand these potential discrepancies, we performed several analyses. We start by applying
Cohen’s Kappa to study the neural dataset used above. We used 5-fold cross-validated logistic
regression to obtain model decisions as well as monkey ’decisions’. Using this decoder, we find
that DVC shows a high correlation with Cohen’s Kappa, consistent with the theoretical analysis
in [20] (Fig[5p,c). We find that Cohen’s Kappa between deep networks and the brain is modest
(0.134+0.04), and generally larger than the typical values reported in [13]. Furthermore, Cohen’s
Kappa between different deep networks (0.23 4= 0.07) is not substantially larger than that between
the monkeys (0.22). These results suggest that Cohen’s Kappa applied to optimal linear classifiers
leads to generally consistent results on this dataset. What then is causing the difference in network-
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Figure 5: Comparsion to Cohen’s Kappa. (a) Heatmaps showing the DVC and Cohen’s Kappa for
pairs of representative models. (b) There is a strong positive correlation between Cohen’s Kappa and
DVC on model-model consistency (evaluated on this dataset) (c) There is a decent positive correlation
between Cohen’s Kappa and DVC on model-monkey consistency. (d) The values of Cohen’s Kappa
between models (blue) and human subjects (green) are low while Cohen’s Kappa between models
and between human subjects are high, consistent with the original report. Re-analyzed based on
data from [49]]. (e) Scatter plot showing the relationship between Cohen’s Kappa and the difference
in accuracy of pairs of observers, and the theoretical upper bound. (f) The response histogram to
’edges’ distortion based on the model and decision rules used in and the original study [49].
Different colors represent different nerual networks. (g) Simulation results show that Cohen’s Kappa
is sensitive to decision biases, while DVC is invariant to decision biases.

network and network-brain consistency between the results reported in [13]] and DVC? To address
this question, we next analyze the behavioral data used in [13]].

Accuracy difference While Cohen’s Kappa was originally proposed to disentangle the accuracy and
consistency of the observers under certain conditions, it remains possible that the two are intermingled
in practice [13]]. To assess this issue, we examine the behavioral responses to ‘edges’ stimuli from
[49]. From the results shown in Fig.[5d.e, it is evident that Cohen’s Kappa is strongly affected by the
difference in the accuracy of the two observerﬂ When the difference in accuracy is high, Cohen’s

2
“Theoretical upper-bound is given by k < %, where d is the accuracy difference between the two

observers. See Appendix A.2 for the derivation.



kappa is low. This suggests that the low error consistency between humans and models reported in
[L3] is at least partially due to the large differences in accuracy between the two observers. It also
potentially explains why models trained on ‘rich’ datasets, which enjoy better out-of-distribution
performance, also exhibit better alignment with human behavior based on Cohen’s Kappa [[14].

Decoder bias According to signal detection theory, Cohen’s Kappa is determined by both the
correlation of the decision variables and decision criterion. Thus, we wondered if the extremely
high Cohen’s Kappa values between different networks as reported in [[13] are due to biases in the
decisions. We thus perform a second analysis to further investigate the data from [49] and analysis
used in [[13]]. Consistent with our hypothesis, we find that the approach in [13]] introduces high
decision bias (see Fig.[5f) and reduced accuracy, especially when target categories do not align cleanly
with the original training labels. We also find that the origin of this large decision bias is because the
analysis in [[13]] is based on an aggregated decoder that estimates class probabilities by combining
probabilities from related ImageNet-1k classes. Once we substituted the original decoder with a
cross-validated logisitic regression classifier, the estimated Cohen’s Kappa values become largely
consistent with the DVC we obtained on the main dataset we analyzed. These results suggest that the
large Cohen’s Kappa values between different networks are due to the biases in the decoderﬂ

These results highlight the advantages of the DVC method. DVC is insensitive to the decision biases,
while the error consistency quantified based on Cohen’s Kappa captures both shared behavior biases
and consistency in their underlying decision variables. This point is further demonstrated using a
simple simulation (see Fig.[5¢). Here, we add behavioral biases to the two observers by shifting the
decision criteria consistently, so that they both prefer one category over another. Naturally, as the bias
increases, the accuracy drops. Cohen’s Kappa strongly reflects these decision biases, whereas DVC
remains consistent (Fig[3lg). Furthermore, DVC can effectively decouple accuracy v.s. trial-by-trial
consistency of the decision variables [20].

5 Discussion

We have developed a method, DVC, to quantify the consistency of two neural representations. The
focus on task-relevant features makes DVC different from other popular approaches such as RSA[135]
or linear regression [5]. Two representations may have high DVC yet low consistency according to
RSA, or vice versa. For behavioral metrics that aim to characterize trial-by-trial consistency, one
challenge has been to decouple task performance and trial-by-trial consistency. DVC provides a
principled way to do so. For future work, it would be interesting to combine the analysis of DVC at
the behavioral level [20] and the neural representation level to dissect the contribution of consistency
of DVs and the shared biases of the observers. It would also be interesting to systematically compare
DVC to other proposed similarity measures [[155 155 [19; 17ﬂ Applying the DVC method, we find
that there are surprising negative correlations between (i) the classification performance of the deep
networks trained on ImageNet-1k and (ii) the consistency with the neural representation in V4/IT.
Furthermore, training the deep network adversarially or using rich datasets seems to evoke decrease,
rather than increase of DVCs. While it is unclear how to close the gap between the image-by-image
consistency of deep networks to that of the brain, the following directions might be promising: (i)
training networks using datasets that better resemble the stimulus statistics that drives the evolution
of the primate visual system [31]]; (ii) develop training procedures that better capture the stimulus
noise and internal noise of the brain [31], as well as low level properties of the visual system (e.g.,
optics and foveation).

Limitations First, our results are limited by the number of monkey subjects in the datasets and the
number of neurons recorded simultaneously from V4 and IT. Future larger neural datasets would
allow for more accurate estimates of DVCs. Second, despite various adjustments in dimensionality
reduction and DV decoding that we have experimented with, there may be factors that we have not
taken into account that limit the scope and applicability of the results. For example, It is possible
that the high-dimensionality of the feature space of some models affected the estimation of the DV.
However, the DVCs of these models with the monkeys are not systematically lower, thus it is unlikely
that they are underestimated. Third, while monkeys provide access to neural recordings, the objects
shown in the experiments might not have the same behavioral relevance for them as they do for
humans. Thus, caution should be taken when attempting to generalize the result to humans.

5See Appendix D.3 for results on the ‘edges’ data using a logistic regression classifier.
8See Appendix E for some preliminary results on comparison to RSA.
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A Method details

A.1 Split normalization recovers true DVC

Assume the noisy DVs:
DVy=54+¢4 DVp =sg +¢p

Assume mean-centered and all signal-noise and noise-noise covariances vanish:
E[SA] =S E[SB] = E[EA} = E[&B} =0
Cov(sa,ea) = Cov(sa,ep) = Cov(sp,ea) = Cov(sp,ep) = Cov(ep,ep) =0
Note:
Var(sa) = 0%, Var(sp) =o0%, Cov(sa,55) = puueldadp

2 2

Var(es) = o0Z,, Var(ep) =0z,

Then:
Cov(DV4,DVg) = Cov(sa,SB) = PuuedAdB

Var(DV4) = 0% + o Var(DVg) = o3 + 02,

gAY

So the observed correlation is:

gAO0RB
Pobs = Ptrue *
V(0% +02)(0% + 02,)
Now split both DVs:
DVa1 =54 +€41, DVas =54 +ca2, DVp1 = sp +¢ep1, DVpa =sp+ep

Assuming independent, identically distributed splits, and zero-mean and zero-covariances as before:
Var(DVa;) = 03 + 02,, Cov(DVa1,DVas) = 0%

So the within-observer reliability is:

2
g

DV, DVyy) = — 4

P( Al Az) 0?4+03A
Likewise for B: )
g

DV ri.DV ___ "B

,0( B1;, BQ) 0_]23+0_33

And the cross-observer split correlations are:

OAOCRB
p(DV 4;,DV ;) = pire -

V(0% +02,) (0% +02,)

where i, j = (1,2).
Taking the geometric mean of the cross-observer split correlation gives a better estimate of pgps:

Teross = [P(DVa1,DV 1) - p(DV.a1,DVps) - p(DV 42, DVp1) 'P(DVAQaDVBQ)]1/4 = Pobss

While the geometric mean of the within-observer split correlation gives the normalization factor:

2 2
OA Op gA0B

1/2
Tsetf = [P(DVa1,DV.a2) - p(DVp1,DVpa)] '~ = \/ 3 2 3 7 =
UA+0€A UB+085 \/(JEI+O—§A)(O—QB+O—§B)

Then the noise-corrected correlation is:

Tcross ptrueO'AUB/\/(O'?q + J?A)(O—QB + O—EB)
Pcorrected = = = Dirue
Tself gAgB/\/(aj+a§A)(a§3+ggB)
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A.2 Upper bound on Cohen’s Kappa with respect to accuracy difference between the two
observers

Let I, J € {0, 1} be the correctness indicators of two decision makers on the same N items, with
accuracies p; = P(I = 1), p; = P(J = 1), and d = |p; — p;|. Define

Cobs — Cex
Cobs = P(I = J), Coxp = Pibj + (1 — pi)(1 — p;), K = Ol—c P (Coxp < 1).
exp

Cobs 18 maximized when I, J maximally agree, and p;, p; only differ by d. Hence cops < 1 — d, and

Cobs,max — 1—-d.

For cexp, parametrize the accuracies by their mean m = w:
p=mtd p=m-f melfi-g]
Then
2 d®
Cexp(m) = pipj + (L= pi)(L = pj) =1 = (pi + ;) + 2pipj = 2m" = 2m +1 — —,

the expression is minimized at m* = %, yielding

1 &
2 27

Cexp,min —

Since £ = (Cobs — Cexp)/(1 — Cexp) 18 increasing in cops and decreasing in Cexp (for cexp < 1),
combining the results gives

(-0-G-%) _idst_a-ap
To-(i-2y o 14 1442
Tightness is achieved by m* = 1 (i.e., p; = 1%, p; = 15%) and maximum agreement between I, .J,
which realizes cops = 1 — d and Cexp = 3 — §~

A.3 Simulation demonstrates the relationship between bias, accuracy and Cohen’s Kappa

In order to demonstrate that this decision bias could influence Cohen’s Kappa, we did a simple
simulation. Suppose that there are 10 classes with 100 samples each. The observers output a vector
which corresponds to the 10 classes. An unbiased perfect observer outputs DV (decision variable)’ 1
for the corresponding class and O for all other classes (a one-hot vector). For realism, as observers
make mistakes, we simply added gaussian noise to the DV output, which results in both lower Cohen’s
Kappa and lower DVC. To model a biased imperfect observer, a bias is applied after DV, which is
the same for all samples in the same class (e.g. 0.1 for the first class, 0.2 for the second class) etc.
Varying bias levels is achieved by scaling the bias added to the output. The final output is one-hot +
noise + bias.

Here, Cohen’s Kappa is directly inflated by the shared bias between two observers. On the other hand,
because the bias does not affect the underlying DVs, the pre-normalization DVC is unaffected by the
addition of bias. However, DVC does become systematically lower when the DVs are dominated by
noise. Therefore, Cohen’s Kappa and DVC are distinct in that the former cares about the decision
criterion and the latter do not. They can be seen as complementary in certain scenarios. The simple
simulation also hints at the relationship between accuracy, bias, and Cohen’s Kappa. We continue
this discussion in section D, where we reiterate that Cohen’s Kappa is intimately linked to accuracy.
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B Model and dataset details
B.1 Model performances and choices of the penultimate layers

Table A.1: Models Trained on ImageNet-1k

Model Name Top-1 Acc  Top-5 Acc  Model Family Layer
alexnet 56.522 79.066 AlexNet classifier[-3]
vggll_bn 70.37 89.81 VGG classifier[-3]
vggl3_bn 71.586 90.374 VGG classifier[-3]
vggl6_bn 73.36 91.516 VGG classifier[-3]
vggl9_bn 74.218 91.842 VGG classifier[-3]
squeezenetl_0 58.092 80.42 SqueezeNet features[-1]
squeezenet]_1 58.178 80.624 SqueezeNet features[-1]
densenet121 74.434 91.972 DenseNet features.norm5
densenet169 75.6 92.806 DenseNet features.norm5
densenet201 76.896 93.37 DenseNet features.norm5
inception_v3 77.294 93.45 Inception avgpool
resnet18 69.758 89.078 ResNet avgpool
resnet34 73.314 91.42 ResNet avgpool
resnet50 76.13 92.862 ResNet avgpool
resnet101 77.374 93.546 ResNet avgpool
resnetl52 78.312 94.046 ResNet avgpool
shufflenet_v2_x0_5 60.552 81.746 ShuffleNet conv>s
mobilenet_v2 71.878 90.286 MobileNet classifier[0]
resnext50_32x4d 77.618 93.698 ResNet avgpool
resnext101_32x8d  79.312 94.526 ResNet avgpool
wide_resnet50_2 78.468 94.086 ResNet avgpool
wide_resnet101_2  78.848 94.284 ResNet avgpool
mnasnet0_5 67.734 87.49 MNASNet classifier[0]
mnasnetl_0 73.456 91.51 MNASNet classifier[0]
googlenet 69.778 89.53 GoogLeNet avgpool
convnext_base 84.062 96.87 ConvNeXt avgpool
convnext_tiny 82.52 96.146 ConvNeXt avgpool
convnext_small 83.616 96.65 ConvNeXt avgpool
convnext_large 84.414 96.976 ConvNeXt avgpool
efficientnet_b0 77.692 93.532 EfficientNet avgpool
efficientnet_b4 83.384 96.594 EfficientNet avgpool
efficientnet_b7 84.122 96.908 EfficientNet avgpool
efficientnet_v2_s 84.228 96.878 EfficientNet avgpool
efficientnet_v2_m 85.112 97.156 EfficientNet avgpool
regnet_y_8gf 82.828 96.33 RegNet avgpool
regnet_y_16gf 82.886 96.328 RegNet avgpool
swin_b 83.582 96.64 Swin avgpool
swin_v2_b 84.112 96.864 Swin avgpool
Swin_v2_s 83.712 96.816 Swin avgpool
swin_v2_t 82.072 96.132 Swin avgpool
vit_b_16 81.072 95.318 ViT encoder.In
vit_b_32 75.912 92.466 ViT encoder.In
vit_1_16 79.662 94.638 ViT encoder.In
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Table A.2: Robust Models

Model ID Architecture Clean Acc  Robust Acc  Layer
Liu2023Comprehensive_Swin-L Swin-L 78.92 59.56 norm
Liu2023Comprehensive_ConvNeXt-L ~ ConvNeXt-L 78.02 58.48 norm
Liu2023Comprehensive_Swin-B Swin-B 76.16 56.16 norm
Singh2023Revisiting_ViT-B-ConvStem  ViT-B + ConvStem  76.3 54.66 norm
Peng2023Robust WideResNet-101-2  73.44 48.94 avgpool
Chen2024Data_ WRN_50_2 WideResNet-50-2 68.76 40.6 avgpool
Salman2020Do_50_2 WideResNet-50-2 68.46 38.14 avgpool
Salman2020Do_R50 ResNet-50 64.02 34.96 avgpool
Engstrom2019Robustness ResNet-50 62.56 29.22 avgpool
Salman2020Do_R18 ResNet-18 52.92 25.32 avgpool

Table A.3: Data-rich Models

Model Name Architecture Top-1 Acc  Training Layer
resnetv2_50x1_bitm ResNetV2 (BiT-M) 80 ImageNet-21k norm
resnetv2_50x3_bitm ResNetV2 (BiT-M) 82.6 ImageNet-21k norm
resnetv2_101x1_bitm ResNetV2 (BiT-M) 81.5 ImageNet-21k norm
resnetv2_101x3_bitm ResNetV2 (BiT-M) 84 ImageNet-21k norm
resnetv2_152x2_bitm ResNetV2 (BiT-M) 83.7 ImageNet-21k norm
resnetv2_152x4_bitm ResNetV2 (BiT-M) 84.3 ImageNet-21k norm
tf_efficientnet_I12.ns_jft_inlk_475 EfficientNet-L2 88.4 Noisy Student + JFT  pool
regnet_y_l6gf swag_e2e RegNetY-16GF 86 hashtAGs avgpool
regnet_y_32gf_swag_e2e RegNetY-32GF 86.8 hashtAGs avgpool
regnet_y_128gf swag_e2e RegNetY-128GF 88.2 hashtAGs avgpool
vit_b_16_swag_e2e ViT-B/16 85.3 hashtAGs encoder.In
vit_1_16_swag_e2e ViT-L/16 88.1 hashtAGs encoder.ln
CLIP ViT-B/32 NA Image-text pairs NA

While we do not have a strict criterion for selecting which models to test, we do follow certain
principles. First of all, we try to cover a diverse set of model architectures and span the range of
model accuracy, which is why we included older models with mediocre performances. Secondly, we
try to include models that other studies have previously examined, so it is easier to compare our study
with the previous studies. We did exclude some models due to time limits. We intend to examine an
even more comprehensive set of models in future work.

B.2 Licenses for Third-Party Assets

The models used in this study were sourced from RobustBench, Torchvision, and Timm (PyTorch
Image Models). We use these pretrained models as a cohort to study representational similarity,
without referring to their individual implementation details.

We make use of publicly available datasets and pretrained models in accordance with their respective
licenses:
* Brain-Score/Vision dataset (Majaj et al., 2015) were used solely for non-commercial aca-
demic research. We follow the terms of use as outlined.
* Models from Torchvision are provided under the BSD 3-Clause License.
* Robustbench models are used under the MIT License.

* Timm models are used under the Apache License 2.0.
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C Implementation and verification

C.1 General information on the DVC framework

The DVC method is computationally efficient and stable, as dimensionality reduction is applied
before attempting to decode the DV using LDA. All experiments were performed on Intel(R) Core
17-14700K CPU without resorting to GPU usage. Computing DVC between a pair of models takes
30 seconds on average, with the total compute rounding to 30 hours.

a b

Split model activations into two halves

|PCA| —>| LDA|—> | Pearson's p|

Y

. . . . ———-1  DVC between splits across models
Normalize for noise using splits

+ T O0O® -
Average between pairs of classes (" <>) 12

DVC between splits within models

Figure A.1: Implementation of the DVC framework. (a) The diagram of our anlaysis pipeline.
To increase the accuracy of the decision variable inferred in the regime of huge dimensionality
and few samples, we first reduce the dimensionality of the neural representation (or hidden layer
representations in neural networks) before applying the optimal linear classifier to infer the decision
variables. (b) To correct for the under-estimation of the magnitude of the inferred decision variable
due to noise, we develop a normalization procedure based on estimating the effective noise from two
splits of the data. See text for more details.
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C.2 Verification of the robustness of DVC results

While the guiding principle behind DVC is general and intuitive, specific implementation choices
carry implications on the numerical stability and robustness to different data distributions. We thus
experimented with different algorithms and hyperparameter choices and found that they do not
affect the main conclusions drawn in this study. Specifically, we want to verify if the choice of PC
dimensions might change the conclusions in this study. First we note that with 25 PC dimensions (for
each split), all the monkey recordings and model representations achieve high binary linear seprability
(Fig.[AZh), and that 8-way logistic regression accuracy plateaus early on (Fig.[A2p). In addition, the
main result is robust with varying PC dimensions (Fig.[A-3j,b).

Other choices also do not affect the results. Pearson’s correlation is easily biased by extreme
values. Although the DVs appear normally distributed, we substituted Pearson’s correlation with
Spearman rank correlation and found that the trend persists (Fig.[A.3k). In addition, we tested shrink
regularization for LDA, which could enhance stability of the procedure, and find that the result is
robust to the choice of LDA solver (Fig.[A3[).
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Figure A.2: Dimensionality reduction retains task-relevant information. (a) LDA score of all monkeys
(red) and networks are high. (b) As the dimensionality increases, decoding performance using logistic
regression plateaus.

C.3 Consistency of the DVC results across different linear decoders

The choice of using LDA as a decoder is not coincidental. Under the assumption of Gaussian
distribution and in the setting of pairwise classification, a linear decoder provides the best classifier.
We calculated DVC between the two monkey subjects using logistic regression and linear support
vector machine (SVM). We find that the DVC is highly consistence across different linear decoders. In
addition, across repeats (random split normalization), DVC estimation varied little. On the other hand,
DVC values calculated using nonlinear decoders such as kernel SVM and multi-layer perceptron are
significantly lower, suggesting overfitting (Fig.[A3p).
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Figure A.3: The main results are robust to particular choices in the implementation. We tested the
result in Fig. 2k where networks with better ImageNet-1k performance are less alignment under
different conditions when (a) using the top 10 principal components (PCs) instead of 25. (b) Using
the top 50 PCs instead of 25. (c) Using Spearman’s rank correlation instead of Pearson’s correlation.
(d) Using an eigen SVD solver with shrinkage instead of a SVD solver for LDA. (e) Measure of

monkey-monkey DVC is consistent across linear decoders and across random splits. Error bar
indicates the standard deviation.



C.4 DVC results are consistent in another neural datasets

To alleviate concern that the dataset from which we derived the main results contains only two
monkeys, we verified the result on an additional dataset from Bashivan et al [52]]. The dataset contains
three monkey subjects viewing natural and synthesized images. Among the three subjects, only one
(’monkey M’) has sufficient neuron count for this test (n = 168). The neurons are pooled across four
recording sessions. We used data from monkey M viewing naturalistic images and calculated its
DVC against neural networks viewing the same images. The main results are also significant in this
case (Pearson’s correlation = -0.84, p = 0.87e-05, Fig[A:4h).
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Figure A.4: The main result is confirmed in an additional dataset from [52]]. (a) DVC of monkey
M against representative models. Again, these is a strong negative correlation between the top-1
accuracy of the deep networks and the DVC to the monkey brain. (b) DVC between representative
models.

C.5 DVC between representations and raw image pixels

We calculated the DVC between the V4/IT representations and model hidden representations to
flattened image pixels and found that the DVC between the two monkeys and raw image pixels are
0.153 and 0.195, respectively. The DVC between model hidden representations and network DVC
are generally lower but still substantial (Fig.[A-3p)). The results suggest that part of the DVC results
might come from remnants of linear separability in the image pixels, which is reduced by nonlinearity
in the brain and models. Indeed, the LDA score for categorization using raw image pixels is 0.70,
which is smaller than that of brain and model representations (>0.90) but still very high. We plotted
the LDA axis for classifying ’chair’ and ’car’ in image pixel space and see clear silouettes of the
objects (Fig.[A:3p), suggesting that high DVC to image pixels may be due to simplicity of generated
image samples. It would be interesting to test the result on datasets with more complex and diverse
images.

C.6 Split normalization under uncommon conditions

The split normalization procedure could behave counterintuitively under extreme conditions. For
example, it could result in a DVC value larger than 1 when the internal noise is high. None of the
normalized correlations between different representations reached the cap. In addition, we took
the absolute value before calculating the geometric means. When there is no correlation between
two representations, this would bias the normalized DVC to a small positive value. None of the
representations in this study fall in this range.
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Figure A.5: DVC between the monkey and model representations and raw image pixels. (a) The DVC
between models and raw image pixels are markedly lower than DVC between models and monkeys
yet still substantial. (b) The LDA axis between categories "chair’ and ’car’ in image pixel space.
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D Additional results on the effect of behavioral decoding on Cohen’s Kappa

Geirhos et al. have discussed several caveats of applying Cohen’s Kappa, including that Cohen’s
Kappa is bounded by error overlap expected by chance c.,,. We also explicitly showed that the
accuracy difference d = |p; — p;| provides an upper bound on Cohen’s Kappa (see Section A.2).
When the accuracy difference is high, one subject is often right, while the other is often wrong,
then their behaviors cannot be consistent. From the original behavioral data, it is clear that human
subjects perform with high accuracy but models perform poorly(Fig.[A.6). While Geirhos et al used
simulations to show that under the condition that the subjects act independently, accuracy is not

necessarily correlated with model performance, Cohen’s Kappa may still depend on accuracy under
more general conditions.
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Figure A.6: Re-plotting of the data (based on "edge" stimuli from [13]]. Red: accuracy of human

subjects. Blue: accuracy of deep network models tested. Overall, the accuracy of the deep network
models are much lower than that of human subjects.

We would like to verify whether the high model-model consistency reported in the original work
might be inflated by the low-accuracy high-bias condition caused by the choice of decoder (directly
aggregating the probabilities). To test this, we take the original stimuli provided by Geirhos et al.,
and calculate Cohen’s Kappa between the models by (i) taking the average of the probability of the
corresponding ImageNet-1k subclasses or (ii) training a 5-fold cross-validated logistic regression
decoder on the representations in the penultimate layer. The result shows that compared to (i),
approach (ii) achieves higher accuracy (Fig.[A.7p,c), exhibits less bias towards certain categories

(Fig.[A.7d,e) and results in significantly lower model-model consistency as measured by Cohen’s
Kappa (Fig. [A.7h).

While the shared behavioral bias that results from aggregating probabilities from the original
ImageNet- 1k classes is very interesting, it does make the human-model consistency and the model-
model consistency a lot more ambiguous. Thus, it may be more appropriate to use a stronger decoder
for classification or to use DVC when applicable.
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Figure A.7: Using logistic regression decoder results in higher accuracy, lower bias and lower Cohen’s
Kappa estimate compared to mean probability decoder, estimated on the edges’ images. (a) Cohen’s
Kappa estimated using a mean probability decoder is significantly higher than that estimated by a
logistic regression decoder. (b) Behavioral accuracy of mean probability decoder. (c) Behavioral
accuracy of logistic regression decoder. (d) Choice histogram of the mean probabilities decoder. (e)
Choice histogram of the logistic regression decoder.
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E Comparison to Representational Similarity Analysis

Representational similarity analysis (RSA) measures the similarity between the general arrangement
of categories (or samples) between two representations. Under appropriate conditions, it can be seen
as equivalent to centered kernel alignment (CKA) and canonical correlation analysis (CCA) [33].
In the monkey dataset that we tested, RSA is positively correlated with DVC when measuring both
model-monkey alignments and model-model alignments (see Fig. [A-8p-d)).

While RSA may contain information about the correlations of task-related dimensions, they may
be confounded by task-irrelevant correlations. We demonstrate this point using a simple simulation.
Given the same baseline decision variables ("task-relevant correlation’), we introduced independent
fluctuations ("noise’) and shared fluctuations (’task-irrelevant correlation’). We find that while DVC
is generally unaffected by the introduction of stronger task-irrelevant correlation (Fig. [A.8). In
contrast, RSA quickly plateaus as task-irrelevant correlation overshadows task-relevant ones. This
simulation demonstrates that RSA and DVC capture different aspects of the representation. The
ability of DVC to focus on only task-relevant dimensions makes it suitable when applied to scenarios
with high shared fluctuation based on common stimulus input, where only some dimensions encode
task-relevant information.
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Figure A.8: Comparison to Representational Similarity Analysis (RSA). (a) Heatmaps showing
the DVC and representational similarity (RS) for pairs of representative models. (b) There is a strong
positive correlation between DVC and RS on model-model consistency (evaluated on this dataset).
(c) The correlation between category-level RSA. (d) Category-level RSA recreates the main result
that alignment between model and brain declines with ImageNet top-1 accuracy. (e) Simulation
results show that RSA is conflated with task-irrelevant correlations whereas DVC only cares about
task-relevant ones.
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F Broader Impacts

We expect DVC to be a broadly applicable approach to study the similarity of brain and neural
network models. On the positive side, the method and results discussed in this paper could redirect
community focus away from brute-force scaling and toward more targeted investigations into task-
relevant representation alignment and model-brain convergence. It could in the long term lead to
models that are more brain-like, thus greatly facilitating research in fields like neuroscience, cognitive
science and Al interpretability and safety. However, while DVC offers a biologically grounded lens
for comparing model and brain representations, promoting alignment with biological brains might
inadvertently constrain models in certain domains where brain cognition is suboptimal.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction sections of this paper we only included the
main discoveries of this paper, and we did so in a way that respects the scope of the study.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed limitation the limitations section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We included full proof with assumptions in Appendix A.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We discussed the model and methods in detail in Appendix B and Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the code we use to derive our main results in the supplementary
materials. Full repository will be posted in the future on https://github.com/wei-bbc-lab/DVC
or another page affiliated with the lab.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We discussed all the details in the main text, the footnote, and Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We marked significance and reported error wherever applicable (see for
example figure 2-4).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discussed this in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This experiment does not involve humans. The dataset and the models used
are properly cited. We discussed concerns in the Broader impacts section.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed potentail societal impacts in the Broader impacts section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used Brain-score for academic purposes only. RobustBench is cited in
the main text. Torchvision and Timm are widely used model repositories maintained by

the community. While not cited individually, we acknowledge their use and respect the
associated licenses. The licensing is summarized in Appendix B.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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