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Abstract

Unsupervised domain adaptation aims to learn a prediction model that generalizes
well on a target domain given labeled source data and unlabeled target data. How-
ever, source data sometimes can be unavailable due to data privacy or decentralized
learning architectures. In this paper, we address the source-free unsupervised
domain adaptation problem where only the pretrained source model and unlabeled
target data are given. To this end, we propose an Augmented Self-Labeling (ASL)
method that jointly optimizes the prediction model and the pseudo-labels for the
target data starting from the initial source model. It involves two alternating steps:
augmented self-labeling improves pseudo-labels by solving an optimal transport
problem with the Sinkhorn-Knopp algorithm, and model re-training trains the
model with the supervision of improved pseudo-labels. We further introduce model
regularization terms to improve the model re-training. Experiments show that our
method achieves comparable or better results than the state-of-the-art methods on
the standard benchmarks.

1 Introduction

Unsupervised domain adaptation tackles the setting where labeled source data and unlabeled tar-
get data are available when adapting to target domains. However, source domain data might be
inaccessible in some privacy-sensitive applications. For example, federated learning collaboratively
trains a model using decentralized data on mobile devices without fetching data into a centralized
machine [2]. When adapting the model trained via federated learning, we have no access to the source
data. This induces the source-free unsupervised domain adaptation setting, where only the trained
source model and the unlabeled target data are given. Traditional unsupervised domain adaptation
methods are not applicable to this setting because they usually seek to align distributions of source
and target domains with data samples from both domains. A few methods that tackle this source-free
unsupervised domain adaptation has recently been proposed in the literature. For example, SHOT
[16] alternately refines the pseudo-labels of target data with a prototype classifier and fine-tunes
the feature extractor together with a model regularization term to maximize the mutual information
between model inputs and outputs. PPDA [11] assigns pseudo-labels based on a prototype classifier
and a sample-level re-weighting scheme. 3C-GAN [15] and SDDA [12] utilize the conditional GAN
to generate labeled target data through input-level adversarial training.

In this paper, we propose a new Augmented Self-Labeling (ASL) method for the source-free unsu-
pervised domain adaptation problem. It involves two alternating steps: the augmented self-labeling
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step aims to improve the pseudo-labels of target data and the model re-training step retrains the
target model with the self-labeled target data. These two steps work together to gradually adapt
the prediction model by incorporating the target data into training. In particular, we propose to
ensemble the predicted probabilities corresponding to multiple randomly augmented versions of
the same sample for self-labeling. We derive this problem into an instance of the optimal transport
problem. In order to avoid the degenerate solution, we add the equipartition constraint on the labels
and solve the problem efficiently via a fast version of the Sinkhorn-Knopp algorithm [5]. Moreover,
we also introduce several model regularization terms to improve the model re-training. We apply the
proposed ASL method to the source-free unsupervised domain adaptation tasks. Experiments show
that our method can achieve comparable or even better results than the state-of-the-art methods on
the standard benchmarks.

2 Augmented Self-Labeling (ASL) for Source-Free Domain Adaptation

This paper tackles the source-free unsupervised domain adaptation problem where only the pretrained
source model and the unlabeled target data are available. Specifically, we assume the source prediction
model fs : Xs → Ys trained in the source domain and the unlabeled target data {xi}Ni=1 are given.
The goal is to produce a prediction model f that works well on the target data. We propose to
adapt the source model into the target domain to induce a good target prediction model f by
alternatively performing pseudo-label refinement on the target data through augmented self-labeling
and conducting model retraining with the refined pseudo-labels.

2.1 Augmented Self-Labeling

We initialize the target model f with the parameters of the source model fs. Given the unlabeled
target data {xi}Ni=1, their pseudo-labels can be obtained by choosing the highly confident predictions
based on the current model f , which are further used to fine-tune the model in an alternative manner.

Due to the existence of domain discrepancy, pseudo-labels for target data can be noisy which may
lead to error accumulation in the target model. We thus propose an Augmented Self-Labeling method
to optimize the target labels from the weighted average of multiple output predictions corresponding
to samples with random data augmentations. Specifically, M different augmented version of samples
{xmi }Mm=1 can be obtained from the original sample xi by independently applying random data
augmentations M times, i.e.

{x1i , x2i , · · · , xMi } = RandAugment(xi), (1)

where RandAugment(·) denotes a combination of multiple random data augmentations. The
data augmentations we used include random resized crop, random auto-contrast and random color
distortion [3]. In order to reduce the noise in the predicted probability, we take the ensemble of the
M + 1 probabilities corresponding to the M augmented version and the unaugmented version of
each sample xi to get the following average prediction outcome, which indicates the probability of
the sample xi belonging to class y,

piy =
1

2
p(y|xi; θ) +

1

2M

M∑
m=1

p(y|xmi ; θ). (2)

Here half weight is assigned to the predicted probability on the unaugmented version of the sample.
The reason is that the original data samples still carry most of the useful information and higher
weights assigned to the original samples can make the prediction more stable and reliable.

Next, we propose to improve the pseudo-labels through the following augmented self-labeling:

min
{qiy}

−
N∑
i=1

K∑
y=1

qiy log piy + λ

N∑
i=1

K∑
y=1

qiy log qiy

s.t. ∀i, y : qiy ∈ [0, 1],

K∑
y=1

qiy = 1,

N∑
i=1

qiy =
N

K
.

(3)

where piy is the augmented prediction term in Eq.(2), K is the number of classes, and {qiy} denote
the soft-labels we aim to produce after taking the overall prediction situation into consideration
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through constraints. The negative entropy term in the objective is added to get smoothed soft-labels
while the hyperparameter λ controls the degree of smoothness. Following [25], the equipartition
constraints, {

∑
i qiy = N/K,∀y}, are added to avoid degenerate solutions where the same arbitrary

label is assigned to all the samples. The constraints enforce that each category contains similar
number of samples, which is reasonable in class-balanced datasets. In general, it can be explained as
enforcing maximization over the mutual information between the sample indices and labels [25].

This augmented self-labeling problem for pseudo-label refinement is actually an instance of the
optimal transport problem [5]. To make it more clear, we convert the notations in Eq.(3) to matrix
form by introducing Q with [Q]iy = qiy as the label matrix with dimension of N ×K and P with
[P ]iy = piy as the predicted probability matrix with dimension of N ×K. The objective in Eq. (3)
can be rewritten as:

min
Q∈U(r,c)

〈Q,− logP 〉 − λH(Q) (4)

where 〈·〉 denotes the Frobenius inner product, i.e. the sum of element-wise product between two
matrices. The matrix Q is thus constrained to be an element of the transport polytope [5],

U(r, c) := {Q ∈ RN×K+ |Q1K = r,Q>1N = c}. (5)

where r = 1N , and c = N
K1K ; 1d denotes a column vector with all 1 values and length d. This is

equivalent to the constraints of labels in Eq. (3). This problem can be solved via the fast version of
Sinkhorn-Knopp algorithm [5], which has the following form of solution:

Q = diag(u) · P 1/λ · diag(v), (6)

where u, v are vectors guaranteeing the constraints in Eq. (5) and can be computed with the Sinkhorn’s
fixed point iteration until convergence:

(u, v)← (r./(P 1/λv), c./([P 1/λ]>u)). (7)

Specifically, we initialize v as normalized unit vector and then iteratively compute u and v until v
converges. In practice, this iteration can converge in a few steps.

2.2 Model Re-training and Regularization

After pseudo-label refinement through the augmented self-labeling procedure above, we convert the
soft-labels {qiy ∈ [0, 1]} into hard-labels {q̂iy ∈ {0, 1}} by setting the pseudo-label of each instance
as the class label with the maximum probability. Then we perform model re-training to update the
target model f(·; θ) by minimizing the following cross-entropy loss:

Lce = −
1

N

N∑
i=1

K∑
y=1

q̂iy log p(y|xi; θ). (8)

In order to learn a target prediction model that generalizes well, we further incorporate several model
regularization terms into the model re-training process. First, we adopt the following conditional
entropy minimization [8] loss as a regularization term:

Lent = −
1

N

N∑
i=1

K∑
y=1

p(y|xi; θ) log p(y|xi; θ) (9)

This conditional entropy regularization term is suitable for exploiting unlabeled data in a semi-
supervised manner, and it pushes the decision boundary far away from the data dense regions to
support the cluster assumption [22]. However, the conditional entropy above is empirically estimated
using the available target data. According to [8, 22], this approximation holds only if the model
is locally-Lipschitz. Therefore, we further add the following virtual adversarial loss [18] as a
regularization term to guarantee the locally-Lipschitz constraint:

Lvat = Ex
[
max
‖r‖≤ε

DKL(f(x)‖f(x+ r))

]
, (10)

where DKL(·‖·) is the Kullback-Leibler Divergence and f(x) = [p(1|x; θ), · · · , p(K|x; θ)].
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Table 1: Classification accuracy (%) on Office-31 (ResNet-50)

Methods A→ D A→W D→ A D→W W→ A W→ D Avg.
ResNet-50 [9] 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [7] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
ADDA [23] 77.8 86.2 69.5 96.2 68.9 98.4 82.9
CDAN+E [17] 92.9 94.1 71.0 98.6 69.3 100. 87.7
CDAN+BSP [4] 93.0 93.3 73.6 98.2 72.6 100. 88.5
CDAN+TransNorm [24] 94.0 95.7 73.4 98.7 74.2 100. 89.3
CAN [10] 95.0 94.5 78.0 99.1 77.0 99.8 90.6
SDDA [12] 85.3 82.5 66.4 99.0 67.7 99.8 83.5
SHOT [16] 93.1 90.9 74.5 98.8 74.8 99.9 88.7
3C-GAN [15] 92.7 93.7 75.3 98.5 77.8 99.8 89.6
ASL (Ours) 93.4 94.1 76.0 98.4 75.0 99.8 89.5

Moreover, as the optimal classifier would generalize well on both domains according to the theoretical
analysis in [1], we add the following weight regularization term to prevent excessive deviation from
the source model parameters θs:

Lwr = ‖θ − θs‖22. (11)
This weight regularization not only prevents the target hypothesis from getting far away from the initial
source model and helps to preserve the source knowledge in the target model, but also stables the
re-training of the target model during alternative updates. Finally, by integrating these regularization
terms into the cross-entropy loss in Eq. (8), we have the following overall loss function for model
re-training:

L = Lce + λ1(Lent + Lvat) + λ2Lwr, (12)
where λ1 and λ2 are trade-off parameters. The entropy loss and virtual adversarial loss empirically
share the same trade-off parameter [22, 15].

3 Experiments

We conduct experiments on the standard benchmarks under the source-free unsupervised domain
adaptation setting. We compare our ASL method1 with the state-of-the-art source-free domain
adaptation methods and report the comparison results.

Datasets We evaluate our method on the following benchmark datasets. Office-31 [20] is a standard
small-sized visual domain adaptation benchmark which contains images of 31 categories from three
domains: Amazon (A), DSLR (D) and Webcam (W), each containing 2817, 498 and 795 images
respectively. VisDA-2017 [19] is a large-scale synthetic-to-real dataset with images in 12 categories
from two domains, Synthetic and Real, each consists of 152,397 and 55,388 images respectively.

Implementation Details We use the same network architectures as the previous methods to achieve
fair comparisons. On Office-31, we use ResNet-50 [9] as the backbone network. ResNet-101
[9] is utilized as the backbone module on VisDA-2017. The target model is optimized using the
mini-batch SGD algorithm where batch size is set to be 32. The learning rate is fixed to be 10−4

for the backbone, and 10−3 for the bottleneck and FC layers. For trade-off parameters, we set
λ = 2, λ1 = 1, λ2 = 0.1,M = 4 for the Office-31 dataset and λ = 100, λ1 = 1, λ2 = 0.01,M = 1
for the VisDA-2017 dataset.

Results on Office-31 Table 1 reports the results of different methods on the six domain adaptation
tasks of this small sized dataset, where the top section includes results of the source-only and
unsupervised domain adaptation (UDA) methods that use the source domain data and the bottom
section presents the comparison results of the source-free unsupervised domain adaptation methods.
We can see that our proposed ASL method outperforms most previous UDA methods that exploit the
source data. Among the source-free UDA methods, our method achieves better performance than
SHOT [16] and SDDA [12], and achieves similar performance as 3C-GAN [15], while 3C-GAN
uses generative models to generate lots of labeled target data and is time-consuming and resource-
extensive. In particular, our ASL method achieves the state-of-the-art performance on the first three

1Code is available at https://github.com/cnyanhao/ASL.
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Table 2: Class-wise accuracy (%) on VisDA-2017 (ResNet-101)

Methods plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
ResNet-101 [9] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [7] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD [21] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
CDAN [17] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
CDAN+BSP [4] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SWD [13] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
CAN [10] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
PPDA [11] 81.5 79.4 80.3 61.8 92.3 91.9 84.5 82.7 86.5 58.4 74.2 43.5 76.4
SHOT [16] 92.6 81.1 80.1 58.5 89.7 86.1 81.5 77.8 89.5 84.9 84.3 49.3 79.6
3C-GAN [15] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
ASL (Ours) 97.3 85.3 86.9 70.7 96.4 72.8 93.0 80.1 95.5 78.1 87.7 50.3 82.8

Table 3: Ablation study: test accuracies (%) of different variants.

Methods Office-31
Source Only 76.1
Naive Pseudo-Labeling (PL) [14] 76.7
Naive PL + Lent + Lvat + Lwr 83.3
Self-Labeling (SL) 83.8
SL + Lent + Lvat + Lwr 86.7
Augmented Self-Labeling (Asl) 88.0
Asl + Lent + Lvat 88.4
ASL = Asl + Lent + Lvat + Lwr 89.5

tasks, i.e. A→D, A→W and D→A, under the source-free unsupervised domain adaptation setting.
These results demonstrate the effectiveness of the proposed augmented self-labeling method.

Results on VisDA-2017 Table 2 reports the test accuracy results for different methods on this large
scale benchmark. Again the top section reports the results of source-only and UDA methods and
the bottom section reports the results of source-free UDA methods. We can see our ASL method
achieves the state-of-the-art performance under the source-free unsupervised domain adaptation
setting: it outperforms PPDA [11], SHOT [16] and 3C-GAN [15] in most classes and produces the
best per-class average result. It also outperforms most previous unsupervised domain adaptation
methods that exploit source data. This again validates the efficacy of the proposed ASL method.

Ablation Study As shown in Table 3, we investigated the contribution of different components of
the proposed method and compared the variants with the naive pseudo-labeling (PL) method [14],
which directly fine-tunes the source model with the pseudo-labeled target data. We can see that both
self-labeling (SL) and augmented self-labeling (Asl) can easily outperform the naive PL method
with or without the model regularization terms. The model regularization terms can improve the
performance of all the methods: naive PL, SL, and Asl. Nevertheless, our proposed augmented
self-labeling can promote the results by a large margin comparing with the self-labeling. This
demonstrates the effectiveness of all the components of our overall ASL method for source-free
unsupervised domain adaptation.

4 Conclusion

In this paper, we proposed a new Augmented Self-Labeling method for the source-free unsupervised
domain adaptation, where only the source model and the unlabeled target data are available. We treated
this problem as a joint optimization over the pseudo-labels and the prediction model, and solved it
with two alternating steps, where augmented self-labeling improves the pseudo-labels and re-training
improves the model with the self-labeled target data. We exploited data augmentation to improve
the self-labeling quality by ensembling multiple prediction probability matrices corresponding to
the augmented versions of samples. We also deployed model regularization terms to help model
re-training. Experiments on the benchmarks validated the effectiveness of our proposed method for
source-free unsupervised domain adaptation.
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