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ABSTRACT

We describe a neural-based method for generating exact or approximate solutions
to differential equations in the form of mathematical expressions. Unlike other
neural methods, our system returns symbolic expressions that can be interpreted
directly. Our method uses a neural architecture for learning mathematical expres-
sions to optimize a customizable objective, and is scalable, compact, and easily
adaptable for a variety of tasks and configurations. The system has been shown
to effectively find exact or approximate symbolic solutions to various differential
equations with applications in natural sciences. In this work, we highlight how our
method applies to partial differential equations over multiple variables and more
complex boundary and initial value conditions.

1 INTRODUCTION

Much of the physics governing the natural world can be written in the language of differential
equations. Despite their simple appearances, these equations can be as challenging to solve as they
are common. With recent advancements in machine learning, and deep learning in particular, a new
tool became available for finding solutions to problems that previously had seemed impenetrable.

The typical approach that neural networks take for solving differential equations is to model the
solution using a neural network function itself. This network is trained to fit the differential equation
and produces highly accurate approximations to how the solution is supposed to behave. Although
this is practically useful, it does not have the advantage of clarity and conciseness that symbolic
mathematical expressions provide. Unfortunately, the application of deep learning to produce sym-
bolic solutions is relatively underdeveloped.

In this work, we present a method for generating symbolic solutions to differential equations that
takes advantage of the flexibility and strength of deep learning. Our method leverages the power
of gradient-based back-propagation training to provide symbolic solutions for differential equations
that can be easily and directly used and interpreted. We focus on partial differential equations
over multiple variables, as these problems are more common and more complex than differential
equations over a single variable. Indeed, ordinary differential equations can be solved as a special
case using our proposed method, along with other symbolic mathematical tasks such as integration,
function inversion, and symbolic regresson. As an added benefit, when our method fails to obtain an
exact solution, including when no elementary solution exists, it will return a symbolic function that
approximates the true solution, rather than leave you empty-handed.

In the sections that follow, we outline the core of our framework and the architecture of the multi-
variate symbolic function learner, or MSFL. We then show several experiments that demonstrate the
power of our method on practical examples of PDEs.

2 RELATED WORK

There are several papers that apply neural networks for solving both ordinary and partial differential
equations, including those by Meade Jr & Fernandez (1994); Lagaris et al. (1998); Berg & Nyström
(2018); Malik et al. (2020). These approaches typically do not provide symbolic solutions to dif-
ferential equations, but highly accurate approximate functions. There are also interesting works for
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discovering PDEs, such as by Long et al. (2019), which is a different problem from what we are
addressing here.

One excellent work that directly links deep learning with symbolic mathematics is given by Lam-
ple & Charton (2019). This paper attempts to train a transformer model to learn the language of
symbolic mathematics and “translate” between inputs and outputs of mathematical tasks, such as
integration and solving differential equations. Although the results are remarkably impressive, they
depend upon an extremely costly training procedure that cannot scale well to new configurations, for
example, involving a different set of operations than the ones used in the training set. On a deeper
level, the model has faced criticism for issues ranging from the artificiality of its testing to the fact
that it “has no understanding of the significance of an integral or a derivative or even a function or a
number” (Davis, 2019).

3 METHOD

There are two components to our symbolic PDE solution system. The multivariate symbolic function
learning algorithm is a submodule that produces symbolic mathematical expressions over many
variables in order to minimize a given cost function. The equation-solving wrapper is a system that
uses the submodule to find solutions to partial differential equations. We will start by describing the
wrapper system and how it relates to PDEs, and then outline a possible framework for the symbolic
function learner that it uses.

3.1 EQUATION SOLVER SYSTEM

A general form for representing any partial differential equation (PDE) is

g

(
x1, x2, . . . , xd, y,

∂y

∂x1
,
∂y

∂x2
, . . . ,

∂y

∂xd
,
∂2y

∂x21
,

∂2y

∂x1∂x2
, . . .

)
= 0. (1)

Here, g is a real-valued mathematical expression in terms of the variables x1, . . . , xd, a function
over these variables y, and any partial derivative of any order of y over any set of the variables.

It should be noted that this format encompasses far more than just PDEs; in fact, integration, function
inversion, and many functional equation problems can be expressed in the form of Equation 1.

The solution to Equation 1 is the symbolic function f(x1, . . . , xd) that minimizes the expected error

L1(f) = E

[∣∣∣∣g(x1, . . . , xd, f(x1, . . . , xd), ∂f∂x1 , . . . , ∂f∂xd , ∂
2f

∂x21
,

∂2f

∂x1∂x2
, . . .

)∣∣∣∣2
]

(2)

where x1, . . . , xd are distributed over the desired domain of f . Note that in most cases, it is sufficient
to use discrete approximations for partial derivatives, such as

∂f

∂xi
≈ f(x + e(i)ε/2)− f(x− e(i)ε/2)

ε

∂2f

∂x2i
≈ f(x + e(i)ε)− 2f(x) + f(x− e(i)ε)

ε2

where e(i) is the unit vector in the ith direction, and ε is some small constant.

PDEs are frequently accompanied by boundary conditions or initial value constraints which solu-
tions must satisfy. Often, these constraints come in the form of an interval, such as f(x, 0) = c(x)
for some specified c. We will approximate these constraints by taking N uniformly spaced points
(xi, yi) along the interval and inserting them into the secondary error function

L2(f) =
∑
i

‖f(xi)− yi‖2 . (3)

Combining these two error functions gives the total error

Ltotal = L1(f) + λL2(f). (4)
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Figure 1: The architecture of the multivariate symbolic function learner (MSFL). Top: The neural
representation of a single operator (interior) node in the symbolic parse tree. The operator function
p takes in two child node as input and applies all available operators on their values. The discretized
softmax function s′ is a gate that allows exactly one of these operators to pass through, determined
by learnable weight ω. This output is then scaled by learnable weight w. (Note: bias scalars b are
omitted from the diagram to save space.) Bottom: After an initial layer of leaf nodes which combine
in a fully connected fashion, a series of operator nodes form the template of a balanced binary parse
tree. The weight parameters determine how to interpret this tree as a single, well-formed symbolic
mathematical expression f over multiple variables.

The best solution to the PDE is the function f that minimizes Ltotal. To find such an f , we must
perform an optimization search using Ltotal as an objective function. While neural networks do this
naturally using back-propagation, it is not immediately clear how to perform this optimization over
all symbolic functions. In the next section, we outline one way in which this can be done.

3.2 MULTIVARIATE SYMBOLIC FUNCTION LEARNER (MSFL)

The multivariate symbolic function learner (or MSFL for short) is an algorithm that generates sym-
bolic mathematical expressions that minimize a given cost function. Any algorithm meeting this
requirement will be a suitable fit for the proposed symbolic PDE solving system. In particular,
many symbolic regression algorithms would fit the role with minor adjustments, including those by
Schmidt & Lipson (2009), Sahoo et al. (2018), and Udrescu & Tegmark (2020). In this section, we
describe one model designed for this task.

Recall that every mathematical expression can be represented as a syntactic parse tree, where nodes
in the interior represent operators and leaf nodes represent variables or constants. To evaluate the
represented expression, each operator takes in the values of its children nodes as input. By introduc-
ing an identity operator and defining unary operators to apply on a pre-specified combination of two
child nodes, these parse trees can be standardized to be balanced and perfectly binary.

If the structure of a parse tree is taken as a template, then it is possible to produce a mathematical
function by identifying what operations and input quantities to use in each node of the tree. This is
the essence of the MSFL algorithm. The goal is to learn what each node represents in the expression
that minimizes the given cost function. We will show how this can be done in a way that is fully
differentiable, and hence caters to deep learning techniques, such as back-propagation.
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Let U be a list of allowable unary operators [u1, . . . , ur] that map R to R, and let V be a list of
binary operators [vr+1, . . . , vk] that map R2 to R, for a total of k allowable operators. We define the
“operate” function p : R2 → Rk by

p(x1, x2) = [u1(x1 + x2), . . . , ur(x1 + x2), vr+1(x1, x2), . . . , vk(x1, x2)].

For example, if U = [id, sin, exp ] and V = [×], then

p(x1, x2) = [x1 + x2, sin(x1 + x2), e
x1+x2 , x1x2].

Note that we use id to refer to the unary identity function that returns its input value unchanged. In
fact, it is equivalent to the addition operator because of how unary operators are defined to combine
two child node inputs into one by using their sum.

We compute the p function in each interior node of the parse tree. In this way, we are applying
all possible operators to the node’s two children as input. In order to interpret the parse tree as a
mathematical expression, one of these operators should be selected to pass on its output value, to the
exclusion of all others. This can be done using a trainable gating operation.

The gate can be set up as follows. Let ω be a learnable weight vector in Rk. Denote by s the softmax
function, i.e.

s(ω) =

[
eωi∑k
j=1 e

ωj

]k
i=1

.

Now s(ω) is a nonnegative vector in Rk with entries summing to 1. The dot product p(h1, h2) · s(ω)
is then a convex linear combination of the outputs over all operators allowed by p, skewed to give
most weight to the operator at the index corresponding to the largest entry of ω. The choice of
operator that is represented by a given node can thus be learned by updating the learnable weight
vector ω during training.

Although the softmax gate places most weight on a single entry of the vector of outputs passing
through, it still retains nonzero contributions from all other operators in the output of p. This can be
corrected by adjusting the output of s(ω) to become s′(ω), where s′ is a discretized form of softmax
that returns a vector with 1 at the entry corresponding to the largest value of ω and 0 at all other
entries. One way to compute the discretized softmax is

s′(ω) =
[
H1

(
s(ω)i

max s(ω)

)]k
i=1

where H1 is a narrow hump function centred at 1, such as H1(x) = e−1000(x−1)
2

. Since the
division operator, maximum function, and hump function are all differentiable almost everywhere,
the discretized softmax preserves the differentiability of our model that allows deep learning using
gradient-based training methods.

The above framework for a single operator node forms the foundational unit for the larger parse tree
structure. Let m represent the number of layers in the entire parse tree. The number of layers is
a measure of how complex the represented mathematical expression is allowed to be. Trees with
more layers form a richer space of mathematical functions, but provide a challenge by expanding
the search space significantly.

For i = 0, . . . , 2m − 1, define
h
(0)
i = w(0)

i · x + b
(0)
i

where x = [x1, . . . , xd] is a vector of the variable in the mathematical expression being constructed,
and w(0)

i ∈ Rd and b(0)i ∈ R are learnable parameters. This represents the lowest layer of the tree,
consisting of leaf nodes that denote numerical quantities. Each of these quantities is in the form of
a learnable linear combination of all possible variables.

Working up the layers of the tree, as n = 1, . . . ,m, the value of each node in recursively defined as

h
(n)
i = w

(n)
i

(
s′
(
ω
(n)
i

)
· pδ

(
h
(n−1)
2i , h

(n−1)
2i+1 )

))
+ b

(n)
i
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for each i = 0, . . . , 2m−n−1. Here, each ω(n)
i ∈ Rk and w(n)

i , b
(n)
i ∈ R are learnable weights whose

values will be learned during the training process.

The value at the root node of the tree, h(m)
0 , is the value of the mathematical expression represented

by the tree when evaluated using the input x. It is by using this value for f̂(x) that the MSFL can be
trained using the cost function in Equation 4. Note that f̂(x) = h

(m)
0 is obtained as a differentiable

function over x and all learnable weights in the MSFL.

At the end of the training procedure, the MSFL returns the symbolic expression represented by the
final state of the parse tree. That is, it interprets each interior tree node as the operator determined
by the weight in its ω vector, and applies an affine transformation to each node using the defined by
the corresponding w and b values. If the resulting function is not the exact solution to the PDE, it
will usually be a close approximation, as it is the result of a training procedure designed to optimize
for a low fitting error.

4 EXPERIMENTS

We test our system on a number of PDE problems and demonstrate the results below.

In each problem, we run our system over a function g in the form of Equation 1. The MSFL
algorithm is run using the unary operators U = [id, sin, exp ] and the binary operator V = [×]. In
order to avoid illegal argument errors, we automatically compute the absolute value before entering
any value as input to operations defined only on the positive half-plane, such as the square root
function. As mentioned in Section 3.2, the nature of the id operator removes the need for an explicit
addition operator.

For each task, we run our method 20 times, training a model on 5000 randomly generated points
within the domain of f each time. Each run returns the function represented by the parse tree after
6000 iterations. The standard softmax function s is used for the first 1250 (= 25%) of iterations
of each run, and the discrete form s′ is used for the remainder of the training. This allows an
introductory exploratory training phase before the model converges to a single expression structure,
spending the remaining iterations fine-tuning the values of constants. After 20 runs are complete,
we select from the 20 returned functions the one with the lowest validation error, as per Equation 4.

In all of the solution visualizations shown below, the left-most graphs are plots of the learned sym-
bolic functions. The central graphs show the residual error from the learned functions, that is, the
value of g evaluated at x as in L1(f) used in Equation 2. The right graphs demonstrate how the
learned functions fit the specified boundary conditions.

4.1 WAVE EQUATION

The motion of wave travelling in one spatial dimension over time can be modelled by a function
u(x, t) that satisfies the PDE

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) (5)

for x ∈ [0, π], t > 0. This type of motion can be found in particles vibrating around a rest position
along a single direction (Speiser & Williams, 2008).

Consider the case where c = 1 and we are given the boundary conditions

u(0, t) = 0

u(π, t) = 0

for t > 0, and initial conditions

u(x, 0) = 0

∂u

∂t
(x, 0) = sinx

for x ∈ [0, π].
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This system has the exact solution u(x, t) = sinx sin t. Our method produced the symbolic solution

û(x, t) = 1.0002 sin(1.000x) sin(0.9998t).

This result is represented visually in Figure 2.

Figure 2: The learned solution to the wave equation (5), with residual error and boundary values.

4.2 HEAT EQUATION

The diffusion of heat through a medium along a single spatial dimension over time can be modelled
by a function u(x, t) that satisfies the PDE

∂u

∂t
=
∂2u

∂x2
(6)

for x ∈ [0, π], t > 0. For example, this equation might be used to model how an uneven initial
distribution of heat disperses and levels out along a rod of uniform composition.

Consider the case given by the boundary conditions

u(0, t) = 0

u(π, t) = 0

for t > 0, and initial conditions

u(x, 0) = sinx

for x ∈ [0, π].

This system has the exact solution u(x, t) = e−t sinx. Our method produced the symbolic solution

û(x, t) = (1.005e−0.994t − 0.005) sin(0.9996x+ 0.001t).

This result is represented visually in Figure 3.

Figure 3: The symbolic solution to the heat equation (6), with residual error and boundary values.

6



Under review as a conference paper at ICLR 2021

4.3 FOKKER-PLANCK EQUATIONS

The Fokker-Planck equation is a general model describing the behaviour of particles undergoing
Brownian motion, with applications ranging from astrophysics to economics (Risken, 1996). The
general format of a linear Fokker-Planck (FP) equation, also called a forward Kolmogorov equation,
is

∂

∂t
u(x, t) = − ∂

∂x
A(x, t)u(x, t) +

∂2

∂x2
B(x, t)u(x, t) (7)

with initial condition u(x, 0) = f(x), where A(x, t) and B(x, t) (known as drift and diffusion
coefficients, respectively), along with f(x), are specified real-valued functions.

In order to fit the structure of Equation 1, we can reformulate Equation 7 as

g

(
u,
∂u

∂t
,
∂x

∂t
,
∂2x

∂t2

)
=
∂u

∂t
−
((

∂2B

∂x2
− ∂A

∂x

)
u+

(
2
∂B

∂x
−A

)
∂u

∂x
+B

∂2u

∂x2

)
= 0. (8)

An alternative version for an FP equation, known as the backward Kolmogorov equation, is

∂

∂t
u(x, t) = −A(x, t) ∂

∂x
u(x, t) +B(x, t)

∂2

∂x2
u(x, t) (9)

with initial condition u(x, 0) = f(x), where A(x, t), B(x, t), and f(x) are specified real-valued
functions. Note that this formulation is already close to matching the format of Equation 1, and does
not need to be significantly rearranged.

We will look at three common examples of FP equations with known analytic solutions. These
examples have been investigated in several existing works on FP equations, including those by
Lakestani & Dehghan (2009), Dehghan & Tatari (2006), and Kazem et al. (2012).

4.3.1 EXAMPLE 1

Consider the case of Equation 7 over x, t ∈ [0, 1] where A(x, t) = −1 and B(x, t) = 1, subject to
the initial condition f(x) = x.

This system has the exact solution u(x, t) = x+ t. Our method produced the symbolic solution

û(x, t) = 1.0001x+ 1.0001t.

This result is represented visually in Figure 4.

Figure 4: The symbolic solution to FP Example 1, with residual error and boundary values.

4.3.2 EXAMPLE 2

Consider the case of Equation 7 over x, t ∈ [0, 1] where A(x, t) = x and B(x, t) = x2/2, subject
to the initial condition f(x) = x.

This system has the exact solution u(x, t) = xet. Our method produced the symbolic solution

û(x, t) = (0.972x− 0.001t+ 0.002)e1.024t + 0.029x− 0.002.

This result is represented visually in Figure 5.
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Figure 5: The symbolic solution to FP Example 2, with residual error and boundary values.

4.3.3 EXAMPLE 3

Consider the case of Equation 9 over x, t ∈ [0, 1] where A(x, t) = −(x + 1) and B(x, t) = x2et,
subject to the initial condition f(x) = x+ 1.

This system has the exact solution u(x, t) = (x+1)et. Our method produced the symbolic solution

û(x, t) = (0.923x− 0.006t+ 0.866)e0.011x+1.121t + 0.057x+ 0.136.

This result is represented visually in Figure 6.

Figure 6: The symbolic solution to FP Example 3, with residual error and boundary values.

5 CONCLUSIONS AND FUTURE WORK

In this work, we have shown a framework for producing symbolic solutions to partial differential
equations over many variables using deep learning techniques. We have illustrated the utility of our
system on a number of examples of PDEs taken from classical physics. Our method has shown
its ability to generate solutions that are either exactly or approximately correct in many cases. In
particular, the linear Fokker-Planck equations have provided good testing grounds for the strengths
of our method.

Although the multivariate symbolic function learner has shown its capability, there is still room for
improvement. As with all algorithms that seek to optimze over symbolic functions, the problem of
an immensely vast search space poses a great challenge. It would be rewarding to see an MSFL
sucessfully scale to spaces of increasingly complex functions over large sets of operators and vari-
ables. The modularity of our system allows the MSFL to be easily swapped with any other function
learning algorithm, offering a good opportunity for future experiments.

In the bigger picture, we look forward to seeing more applications of deep learning in the realm of
symbolic mathematics, and hope that this contribution will be a step towards that direction.
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