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Abstract

Natural language processing researchers have001
identified limitations of evaluation methodol-002
ogy for generation tasks, with new questions003
raised about the validity of automatic metrics004
and of crowdworker judgments. Meanwhile,005
efforts to improve generation models tend to006
focus on simple n-gram overlap metrics (e.g.,007
BLEU, ROUGE). We argue that new advances008
on models and metrics should each more di-009
rectly benefit and inform the other. We there-010
fore propose a generalization of leaderboards,011
bidimensional leaderboards (BILLBOARDs),012
that simultaneously tracks progress in language013
generation tasks and metrics for their eval-014
uation. Unlike conventional unidimensional015
leaderboards that sort submitted systems by016
predetermined metrics, a BILLBOARD accepts017
both generators and evaluation metrics as com-018
peting entries. A BILLBOARD automatically019
creates an ensemble metric that selects and lin-020
early combines a few metrics based on a global021
analysis across generators. Further, metrics022
are ranked based on their correlation with hu-023
man judgments. We release four BILLBOARDs024
for machine translation, summarization, and025
image captioning.1 We demonstrate that a lin-026
ear ensemble of a few diverse metrics some-027
times substantially outperforms existing met-028
rics in isolation. Our mixed-effects model anal-029
ysis shows that most automatic metrics, espe-030
cially the reference-based ones, overrate ma-031
chine over human generation, demonstrating032
the importance of updating metrics as gener-033
ation models become stronger (and perhaps034
more similar to humans) in the future.035

1 Introduction036

Recent modeling advances have led to improved037

natural language generation in applications such as038

machine translation and summarization (Ng et al.,039

2019; Raffel et al., 2020; Brown et al., 2020, in-040

ter alia). This progress is typically measured with041

1Anonymized.
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Figure 1: Bidimensional leaderboard (BILLBOARD).
When a generator developer submits output text
(output.txt), BILLBOARD computes all metric
scores. When a metric developer submits an executable
program (e.g., metric.py), BILLBOARD computes
correlation with the human judgments, updates the en-
semble metric (§2.2), and measures how much the met-
ric overrates machines (§2.3).

automatic scores, such as BLEU (Papineni et al., 042

2002) and ROUGE (Lin, 2004), evaluated by mod- 043

eling researchers themselves. These metrics allow 044

for fast, inexpensive development cycles. They 045

were adopted based on reported correlations with 046

human judgments at the time the metrics were intro- 047

duced, but it has since been established that the cor- 048

respondence can collapse when models of different 049

types are compared (Callison-Burch et al., 2006) 050

or models become increasingly powerful (Ma et al., 051

2019; Edunov et al., 2020). 052

Meanwhile, many evaluation metrics that im- 053

prove correlation with human judgments have been 054

proposed (Clark et al., 2019; Zhang et al., 2020b; 055

Sellam et al., 2020; Hessel et al., 2021, inter alia), 056

but this progress is largely ignored by the commu- 057

nity of researchers focused on advancing models. 058

Indeed, we found that 68% of the machine transla- 059

tion papers from NAACL and ACL 2020 evaluated 060

their models solely by BLEU, and only 5% mea- 061

sured the performance using recent metrics with 062
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contextual representations such as COMET (Rei063

et al., 2020). Similarly, automatic evaluation in064

66% of the summarization papers was done only065

in terms of ROUGE.2 We believe this separation066

between generation modeling and automatic eval-067

uation represents a missed opportunity for each068

subcommunity to more rapidly benefit from the069

advances of the other.070

We therefore propose an abstraction of conven-071

tional leaderboards, bidimensional leaderboards072

(BILLBOARDs), that simultaneously facilitates073

progress in natural language generation and its074

evaluation (Fig. 1). A BILLBOARD accepts two075

types of submissions related to a given task and076

dataset: generators and metrics. Unlike conven-077

tional leaderboards, model ranking is not tied to078

a predetermined set of metrics; the generators are079

ranked based on the metric that currently correlates080

best with human judgments. Metric submissions081

are ranked by their correlations to human judg-082

ments, and each is stored as an executable program,083

which will then be used to evaluate future gen-084

eration submissions. Our BILLBOARD includes a085

sparse regression that selects and linearly combines086

three existing metrics, revealing complementary087

strengths. All leaderboard scores are readily repro-088

ducible, allowing research on generation models089

and automatic metrics to benefit from each other.090

We release four BILLBOARDs spanning three091

generation tasks: the WMT20 EN-DE and WMT20092

ZH-EN machine translation tasks (Barrault et al.,093

2020), the CNNDM summarization task (Hermann094

et al., 2015), and the MSCOCO image captioning095

task (Lin et al., 2014). Using the collective analyses096

of BILLBOARDs, our main findings are as follows.097

• A simple linear combination of a few (diverse)098

metrics can sometimes improve correlation. This099

finding quantifies complementary effects of dif-100

ferent metrics and encourages metric developers101

to seek out aspects of generated text quality not102

yet measured by existing metrics.103

• Using linear mixed-effects models, we find that104

most automatic metrics, especially conventional,105

reference-based ones such as BLEU and ROUGE,106

overrate machines over humans in all tasks. This107

result provides further support for the claim108

that the metrics should be continually evaluated109

and updated as our generation models become110

stronger (and perhaps, closer to humans).111

2We examined all papers whose title contains “machine
translation” and “summarization.” See Appendix A for details.

• When only one reference is available per in- 112

stance, COMET-QE (a strong referenceless met- 113

ric with crosslingual contextual representations; 114

Rei et al., 2020) achieves higher correlation with 115

human judgments than all reference-based met- 116

rics. This raises a concern about the current stan- 117

dard evaluation practice in machine translation 118

and summarization that uses reference-based met- 119

rics with a single reference per instance. 120

• Our findings confirm many others who report 121

that recent metrics achieve substantially higher 122

correlation with human judgments than popular 123

metrics like BLEU and ROUGE in BILLBOARDs. 124

We believe these older metrics continue to be 125

used mainly because modeling researchers value 126

consistency and accessibility of evaluation prac- 127

tice over long periods of time. BILLBOARDs 128

provide a way to maintain long-term compara- 129

bility of system output while also drawing better 130

conclusions about system quality, using advances 131

in evaluation. All generators continue to be eval- 132

uated with new metrics on BILLBOARDs. 133

2 Bidimensional Leaderboards 134

We propose BILLBOARDs to simultaneously drive 135

progress in natural language generation and its eval- 136

uation, which are often disconnected in current re- 137

search. We first describe the general framework 138

(§2.1) and the automatic analyses they provide 139

(§2.2-2.3). We then discuss our design choices 140

(§2.4) and the rubric-based, human judgment data 141

necessary to initialize BILLBOARDs (§2.5). 142

2.1 BILLBOARD Framework 143

The leaderboard paradigm has driven research on 144

state-of-the-art model performance on many tasks 145

in various fields (e.g., ImageNet, Russakovsky 146

et al., 2015; SQuAD, Rajpurkar et al., 2016). As ap- 147

plications and tasks become more diverse, however, 148

the conventional leaderboard paradigm presents 149

a serious challenge: the assumption becomes too 150

strong that predetermined, automatic metrics can 151

reliably score the system performance over time. 152

In particular, scores from automatic metrics often 153

diverge from human judgments in language genera- 154

tion tasks especially when models become increas- 155

ingly powerful (Ma et al., 2019). 156

Much recent work proposed new evaluation met- 157

rics that improve correlations with human judg- 158

ments in certain generation tasks (Clark et al., 2019; 159

Zhang et al., 2020b; Sellam et al., 2020; Hessel 160
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et al., 2021, inter alia), but most developers of161

generation models are not benefiting from them162

(See Appendix A for our analysis of papers from163

NAACL/ACL 2020). From the perspective of gen-164

eration model developers, it is not clear which of165

these many metrics in the literature is most reliable166

in which generation task or dataset, resulting in167

community-wide overuse of long-standing metrics168

like BLEU and ROUGE. Developers of evaluation169

metrics, on the other hand, are missing the opportu-170

nity to apply their metrics to new generation models171

and compare with the existing ones. We propose172

BILLBOARDs that bridge this gap between genera-173

tion modeling and evaluation development.174

Generators, Metrics, and Scores A BILLBOARD175

for a language generation task consists of sets176

of generators and evaluation metrics: G =177

{Gi}Ii=1,M = {Mj}Jj=1. Each generator Gi takes178

as input Xk (e.g., source text in machine transla-179

tion) and generates text: Yi,k = Gi(Xk). A metric180

Mj assigns a score to each generated text given the181

generation input and the corresponding set of ref-182

erences Rk: si,j,k = Mj(Yi,k,Rk, Xk). The last183

two arguments to the function are optional; some184

metrics do not require references (i.e., reference-185

less or quality estimation metrics) or the generation186

input (e.g., BLEU). We then compute the aggregate187

score si,j by averaging si,j,k over K test examples.188

Rankings In contrast to standard leaderboards,189

BILLBOARDs have a dynamic set of evaluation190

metrics, and generators are not ranked by a pre-191

defined metric. We first rank the metrics by mea-192

suring their correlations to human judgments as193

commonly done in the generation evaluation lit-194

erature (Zhang et al., 2020b; Sellam et al., 2020).195

Let hi,k be a human score for Yi,k (i.e., output196

from generator Gi on input Xk). We compute the197

instance-level Pearson correlation for every metric198

Mj between hi,k and si,j,k (Mj score for Yi,k). All199

metrics are ranked by their correlations. We then200

use the top metric Mj∗ to rank the generators in201

the descending order of si,j∗ . We defer our dis-202

cussions on alternative design choices (§2.4) and203

human evaluations (§2.5). We note, however, that204

the overall framework of BILLBOARDs still holds205

regardless of these decisions.206

2.2 Ensemble of Metrics207

So far, we have assumed that metrics are used in-208

dividually in isolation, but BILLBOARDs provide a209

unique opportunity to examine metrics collectively.210

Different metrics can capture different aspects of 211

generation quality; even if a metric is not suffi- 212

ciently informative in isolation, it might reflect an 213

important aspect of text quality that the existing 214

metrics overlook. Here we consider a straightfor- 215

ward and interpretable ensemble of metrics using a 216

regression model with ℓ1 regularization (Tibshirani, 217

1994). Let the ensemble’s score be 218

ĥi,k =

J∑
j=1

wj · si,j,k, 219

where wj is a scalar coefficient associated with the 220

jth metric. We optimize the vector of coefficients 221

w with the pairs of output text and a human score 222

{Yi,k, hi,k}Kk=1 from the test data: 223

w = argmin
w

K∑
k=1

(
hi,k − ĥi,k

)2
+ λ∥w∥1 224

The ℓ1 regularization produces sparse coefficients 225

and improves interpretability by removing highly 226

correlated metrics. Moreover, it avoids the need for 227

practitioners to run many metrics to obtain an en- 228

semble score when used outside our BILLBOARDs. 229

Our goal for the ensemble is to provide a useful 230

signal to the research community, rather than to 231

achieve the best possible correlation with human 232

judges at a given time; we tune λ to get three non- 233

zero coefficients. Every metric is standardized by 234

its mean and standard deviation on the test data. 235

Similar to the individual metrics, we rank this 236

ensemble metric by its correlation to the human 237

judgments. To make fair comparisons, we simulate 238

situations that the ensemble is applied to a newly 239

submitted generator that has no human evaluations. 240

Specifically, we perform cross validation that holds 241

out the human judgments for each generator Gi and 242

runs regression on the rest; we then apply these I re- 243

gression models to the corresponding held-out data 244

and calculate the overall correlation. We will see 245

that the ensemble metric outperforms all individ- 246

ual metrics in some cases, suggesting that different 247

metrics can capture different aspects. 248

Reproduciblity The ensemble metric is updated 249

every time a new metric is submitted (Fig. 1). For 250

reproducibility, we keep track of every past ensem- 251

ble metric with a signature that indicates its coeffi- 252

cients, λ, and input metrics in the backend. Similar 253

to SACREBLEU (Post, 2018), model developers 254

can report the signature for easy replication of their 255

scores from the ensemble metric.3 Further, all gen- 256

3E.g., ensemble.wmt20-zh-en+refs.AB+version.1.
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eration outputs are saved on the leaderboards, so257

model developers can download outputs from all258

past models and compare in any way.259

2.3 Mixed-Effects Model Analysis260

Recent work (Kasai et al., 2021b) observed that au-261

tomatic metrics tend to overrate machine-generated262

text over human one on the MSCOCO image cap-263

tioning task (Chen et al., 2015). This problem264

is particularly severe in conventional metrics that265

are based on n-gram overlap such as BLEU and266

CIDEr (Vedantam et al., 2015). This raises a sig-267

nificant concern about the continuous use of these268

conventional metrics in generation tasks as mod-269

els become increasingly powerful (and more simi-270

lar to humans); those metrics unintentionally dis-271

courage researchers from developing human-like,272

strong generation models. To quantify this unde-273

sirable property, we propose a linear mixed-effects274

model that compares the two groups of machine-275

and human-generated text. The underlying model276

assumes that si,j,k, the score from metric Mj for277

generator Gi and test example k, can be expressed278

as (the intercept term is suppressed for brevity):279

si,j,k=βj
01{Gi is machine}+βj

1hi,k+γk+ϵi,j,k280

where γk is the random effect for example k, and281

ϵi,j,k is Gaussian noise. Intuitively, βj
0 measures282

how much metric Mj overrates machine genera-283

tion over human one, compared against the human284

judgment hi,k. βj
0 = 0 means being neutral, and in-285

deed we will find that βj
0 is significantly positive in286

most cases (§4). We standardize all metric scores287

over the test samples to compare the size of βj
0. We288

apply the lme4 package (Bates et al., 2015).289

2.4 Design Choices and Discussion290

In our current setup, we make several design291

choices for metrics and their rankings:292

• M.1 Metrics are expected to positively correlate293

with the generation output quality.294

• M.2 Metrics are ranked by their instance-level295

Pearson correlations with human judgments.296

• M.3 When available, reference-based metrics use297

multiple references per instance.298

M.1 implies that we need to take the negative of299

metric scores that are intended to negatively corre-300

late (e.g., TER, Snover et al., 2006). This normal-301

ization is also done in WMT metric competitions302

(Callison-Burch et al., 2007, 2008, inter alia).303

While instance-level correlations are commonly304

used to evaluate and compare automatic metrics for305

various language generation tasks (Sellam et al., 306

2020; Fabbri et al., 2021; Hessel et al., 2021, inter 307

alia), there are several alternatives to M.2. For ex- 308

ample, Pearson, Spearman’s rank, or Kendall rank 309

correlations can be used on a system (i.e., genera- 310

tor) level (Callison-Burch et al., 2007; Macháček 311

and Bojar, 2014; Mathur et al., 2020b). However, 312

such system-level correlations would substantially 313

reduce data points to compare automatic scores, 314

resulting in many ties in the ranking. Spearman’s 315

and Kendall rank correlations become brittle when 316

multiple generators are similar in overall output 317

quality; penalizing a metric for swapping two simi- 318

lar generators is misleading (Macháček and Bojar, 319

2014). Moreover, if a metric can perform well on 320

an instance level, it can be used to augment human 321

judgments by, for example, flagging likely wrong 322

ratings (Mathur et al., 2020b). Thus, we encourage 323

researchers to develop metrics that correlate well 324

with human judgments on an instance level. Prior 325

work also points out other problems in ranking 326

metrics like outlier effects where outlier systems 327

have a disproportionately large effect on the overall 328

correlation (Mathur et al., 2020b,a). We therefore 329

assume M.2 in the current version of BILLBOARDs, 330

but this can be modified in a future version. 331

M.3 is supported by our experimental results in 332

§4 that multiple references substantially improve 333

reference-based metrics, and a single reference is 334

often insufficient to outperform strong reference- 335

less metrics. Some metrics have specifications for 336

multiple references (e.g., BLEU, CIDEr). In the 337

other cases, we evaluate outputs against every refer- 338

ence and take the maximum score, following prior 339

work on image captioning evaluation (Zhang et al., 340

2020b; Hessel et al., 2021).4 341

2.5 Human Evaluation 342

Human evaluations are required to initialize BILL- 343

BOARDs; they are used to rank metrics, train the 344

metric ensembling model, and assess how much 345

each metric overrates machines. Recent work, how- 346

ever, points out problems when evaluations are 347

done by crowdworkers even when extensive qual- 348

ity controls are performed (Gillick and Liu, 2010; 349

Toral et al., 2018; Freitag et al., 2021; Clark et al., 350

2021). Freitag et al. (2021) show that rubric-based 351

machine translation evaluations by professional 352

translators led to substantially different genera- 353

4Intuitively, the maximum score measures the distance to
the closest out of equally valid generations.
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Article
It may have been her impressive vocals... It’s
now been revealed that X Factor finalist and
pop star Ella Henderson has joined forces
with dry shampoo brand Batiste. The 19-
year-old has been announced as the official
face of the Batiste’s 2015 “Ready For It” cam-
paign, and this will mark the star’s first brand
collaboration... The partnership between the
platinum award-winning artist and the UK’s
number 1 dry shampoo brand...
Generated Summary
Ella, 19, announced as face of Batiste’s 2015
“Ready for It” campaign. X Factor Finalist’s
first brand collaboration with the UK’s No 1
dry shampoo.

Reference
Japanese Prime Minister Shinzo Abe posted a
video to celebrate the 70th anniversary of the
founding of the People’s Republic of China.
Generated Translation
Japanese Prime Minister Shinzo Abe congrat-
ulated the 70th anniversary of the founding of
the People’s Republic of China via video.

Reference
Xining will implement the Xining Civilized Behav-
ior Promotion Regulations from October 1st, which
focus on 15 types of uncivilized behavior, such as
pedestrians who do not follow the traffic lights and
throw objects from buildings.
Generated Translation
Xining City will implement the “Xining City Civi-
lized Behavior Promotion Regulation” from October
1, focusing on 15 types of uncivilized behaviors such
as pedestrians not passing traffic lights and throwing
objects from buildings.

Article
Arsenal manager Arsene Wenger does not know the
exact reason Alexis Sanchez chose the Emirates Sta-
dium over Anfield – but he is glad the Chile forward
will be lining up for his side rather than against them
for Liverpool on Saturday...
Generated Summary
Alexis Sanchez was courted by a number of elite clubs
last summer. Sanchez has scored 19 goals so far this
season. Arsenal boss Arsene Wenger does not know
if Sanchez decided to join the North London club.

Ex
pe

rt

19

25

Figure 2: Comparisons and meta-evaluations of crowdworker and rubric-based, expert evaluations for WMT20
ZH-EN and CNNDM summarization. Every dot represents one test instance that is evaluated by the same numbers
of experts and crowdworkers (one for WMT20 ZH-EN and three for CNNDM) for fair comparisons. We randomly
sampled instances with diverging evaluations in two areas and conducted binary meta-evaluations (good or
bad quality ). Meta-evaluations agree more with the expert evaluations ( > in the upper left squares).

tor rankings from the crowdsource evaluations in354

WMT 2020 (Barrault et al., 2020), where WMT par-355

ticipants or Amazon Mechanical Turkers directly356

assess each translation’s adequacy by a single score357

(direct assessment). These crowdworker evalua-358

tions depend highly on individual annotators’ dis-359

cretion and understanding of the annotation scheme360

(Freitag et al., 2021; Clark et al., 2021), making361

it difficult to decompose, interpret, and validate362

(Kasai et al., 2021b). Moreover, these direct assess-363

ment scores make it difficult to interpret evaluation364

results for downstream applications where some365

aspects are particularly important (e.g., accessibil-366

ity for people with visual impairments in image367

captioning, Gleason et al., 2020; gender bias in368

machine translation, Stanovsky et al., 2019).369

Motivated by this line of work, we perform meta-370

evaluations to compare crowdsourced and rubric-371

based expert evaluations. Fig. 2 plots overall scores372

for test examples from WMT20 ZH-EN (Barrault373

et al., 2020; Freitag et al., 2021) and CNNDM sum-374

marization (Fabbri et al., 2021). Each instance is375

evaluated by averaging the same number of crowd-376

workers and expert scores for fair comparisons. We377

see that substantially many instances fall into dis-378

agreement: crowdworkers give much higher scores379

than experts (lower right square) or the reverse380

(upper left square). We sample and shuffle 20/25 381

examples from either type and ask a meta-evaluator 382

to make a binary decision (good or bad quality 383

).5 Meta-evaluations agree more with the ex- 384

pert evaluations (e.g., 22 and 0 in the upper left 385

and lower right squares for CNNDM, respectively). 386

In the examples on the left, crowdworkers fail to 387

properly assess a valid translation with different 388

structure than the reference (posted a video to cel- 389

ebrate vs. congratulated via video) or a summary 390

that combines information from different parts of 391

the article. The examples on the right illustrate that 392

crowdworkers can be fooled by inaccurate yet flu- 393

ent generations (does not know the reason vs. does 394

not know if Sanchez decided). Given this result, we 395

decide to initialize our BILLBOARDs with rubric- 396

based expert evaluations for all generation tasks. 397

We still encourage future work to explore ways to 398

improve crowdsourced evaluations for scalability. 399

3 Experiments 400

Having established the framework, we set up BILL- 401

BOARDs for three natural language generation 402

tasks: machine translation, summarization, and im- 403

age captioning. To maximize the performance of 404

5The meta-evaluations were done by a bilingual speaker
(WMT20 ZH-EN) and the first author of this paper (CNNDM).
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reference-based metrics, we use as many references405

as possible for each task. See §4 for an analysis on406

the effect of varying numbers of references.407

3.1 Tasks408

Machine Translation We experiment with two409

language pairs from the WMT 2020 news transla-410

tion task (Barrault et al., 2020): Chinese→English411

(WMT20 ZH-EN) and English→German412

(WMT20 EN-DE). We use outputs from all sub-413

mitted translation systems.6 These two language414

pairs have expert, rubric-based scores (MQM) from415

Freitag et al. (2021) for a subset of 10 submitted416

systems, including the top-performing systems417

and human translations. Each output sentence418

is evaluated by three professional translators.419

Following Freitag et al. (2021), the three scores are420

averaged to get an instance-level score.421

We use all human translations available as a422

reference set for reference-based metrics. Con-423

cretely, every test instance in WMT20 ZH-EN424

has two translations provided by different human425

translation services: Human-A and Human-B (Bar-426

rault et al., 2020). In addition to Human-A and427

Human-B, WMT20 EN-DE provides a translation428

that is created by linguists who are asked to para-429

phrase Human-A and Human-B as much as pos-430

sible (Human-P, Freitag et al., 2020). These para-431

phrased translations are shown to increase corre-432

lations with human judgments by mitigating the433

translationese effect and diversifying the refer-434

ence when the generation quality is measured by435

reference-based metrics (Freitag et al., 2020).436

Along with all submitted generators in WMT20437

ZH-EN and WMT20 EN-DE, we train three438

transformer baselines with the fairseq library439

(Ott et al., 2019) and place them in our BILL-440

BOARDs: transformer-base, transformer-large,441

and transformer-large-ensemble with similar hy-442

perparameters (e.g., 6-layer encoder and decoder)443

to the ones trained on the WMT16 EN-DE data444

in Vaswani et al. (2017).7 These baselines al-445

low researchers to compare their translation mod-446

els without resource-intensive techniques such as447

backtranslation (Sennrich et al., 2016a), model en-448

sembling, and deep encoders (Kasai et al., 2021a).449

These techniques are all used in top-performing450

systems of WMT20 (Wu et al., 2020a; Kiyono451

et al., 2020) but might be infeasible in many re-452

6https://www.statmt.org/wmt20/
translation-task.html.

7Data and models are available at anonymized.

search settings. See Appendix B for a list of all 453

hyperparameters for the baselines. 454

Summarization We use the CNN/DailyMail cor- 455

pus (CNNDM, Hermann et al., 2015; Nallapati 456

et al., 2016). We use the standard train/dev./test 457

split and 24 models from Fabbri et al. (2021). 100 458

test articles are annotated with 10 summaries writ- 459

ten by humans (Kryscinski et al., 2019). For those 460

100 articles, rubric-based, expert evaluations for 18 461

generators, including human-written highlights, are 462

provided by Fabbri et al. (2021).8 Each output sum- 463

mary is evaluated by three experts along four di- 464

mensions: coherence (collective quality of all sum- 465

mary sentences), consistency (factual alignment 466

with the article, penalizing for hallucinations), flu- 467

ency (quality of the individual sentences), and rele- 468

vance (selection of important content). An instance- 469

level score is computed by averaging scores over 470

all these categories and the three experts. Note 471

that this aggregation method can be modified, de- 472

pending on the downstream of interest (Kasai et al., 473

2021b). All 10 human-written summaries are used 474

as the reference set for reference-based metrics.9 475

Image Captioning We use the MSCOCO dataset 476

(Lin et al., 2014) that consists of everyday-scene 477

photos sampled from Flickr. Every image is anno- 478

tated with five captions written by crowdworkers 479

(Chen et al., 2015). We apply the standard Karpa- 480

thy split (Karpathy and Fei-Fei, 2015). For each of 481

500 test images, rubric-based evaluations (THUMB 482

1.0) are available for five systems, including one 483

caption from a crowdworker (Kasai et al., 2021b). 484

Similar to machine translation and summarization, 485

we use all five crowdworker captions as a reference 486

set for reference-based metrics. 487

3.2 Mixed-Effects Models 488

Our mixed-effects model analyzes how much every 489

automatic metric overrates machines over humans 490

(§2.3). This means that we need to free up one hu- 491

man generation per instance to measure its scores 492

in the reference-based metrics. For machine trans- 493

lation, we score Human-B using the reference set 494

of Human-A (WMT20 ZH-EN) or Human-A and 495

Human-P (WMT20 EN-DE). For CNNDM, we use 496

8Some of the outputs are lowercased and/or tokenized. In
these cases, we apply the NLTK detokenizer (Bird et al., 2009)
and/or Stanford CoreNLP truecaser (Manning et al., 2014).

9Prior work used a concatenation of author-written high-
lights as a reference, but here we do not add it to the reference
set. This is because these highlights are sometimes noisy (e.g.,
containing urls) or lack coherence (Fabbri et al., 2021).
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Single Metrics Ensemble of Metrics
Dataset |G| |M| Top Gen. Top Metric Corr. Linear Combination Corr.
WMT20 ZH-EN 19 15 Huoshan COMET 0.55 1.72·COMET-QE+1.48·COMET+1.21·BLEURT 0.61
WMT20 EN-DE 17 11 Tohoku COMET 0.49 1.19·COMET+0.36·COMET-QE+0.02·Prism-ref 0.51
CNNDM 26 15 Lead-3 COMET 0.41 2.85·COMET+0.26·COMET-QE+0.01·BERTScore 0.29
MSCOCO 4 15 VinVL-large RefCLIP-S 0.45 2.08·RefCLIP-S+1.51·RefOnlyC+0.82·CIDEr 0.45

Table 1: Summary of BILLBOARDs as of Jan. 10th, 2022. Huoshan: Wu et al. (2020a); Tohoku: Kiyono et al.
(2020); VinVL-large: Zhang et al. (2021); COMET, COMET-QE: Rei et al. (2020); BLEURT: Sellam et al. (2020);
Prism-ref: Thompson and Post (2020); BERTScore: Zhang et al. (2020b); RefCLIP-S: Hessel et al. (2021);
RefOnlyC: Kasai et al. (2021b). COMET-QE is a referenceless metric. BLEURT is specifically trained to evaluate
into-English translations. RefCLIP-S uses image features unlike most metrics for image captioning.

concatenated highlights as human-generated sum-497

maries and use the 10 human-written summaries498

from Kryscinski et al. (2019) as the reference. We499

follow Kasai et al. (2021b) for MSCOCO and score500

their randomly-selected Human caption using the501

other four as the reference. As the distinction be-502

tween the reference and human generation (e.g.,503

Human-A vs. Human B on WMT20 ZH-EN) is504

arbitrary, we found that swapping the roles would505

still lead to similar results (See Appendix E).506

4 Results and Analysis507

Here we discuss the current results and make sev-508

eral key observations about the state of language509

generation evaluation. Table 1 summarizes the four510

BILLBOARDs. It is particularly noteworthy that511

COMET, a metric designed for machine transla-512

tion, achieves the best correlation on the CNNDM513

summarization task as well. COMET evaluates the514

similarity between the crosslingual representations515

from XLM-RoBERTa (Conneau et al., 2020) for516

input text and its translation candidate. But these517

crosslingual representations can, of course, be used518

monolingually for English summarization. This il-519

lustrates an additional benefit of BILLBOARDs that520

centralize different generation tasks and find sur-521

prising task transferability of learning-based met-522

rics. See Appendices B and C for lists of all partic-523

ipating generators and metrics.524

Ensemble Metric The rightmost section of Table525

1 shows the chosen metrics and their coefficients526

in the ensemble (§2.2). On the machine translation527

tasks, the ensemble metric outperforms the top indi-528

vidual metric.10 In particular, we see a substantial529

gain of 0.06 points in WMT20 ZH-EN. The ref-530

10We found a major reason for the anomaly in CNNDM; an
outlier generator (the GPT-2 zero-shot model; Ziegler et al.,
2019) has a disproportionately large effect on the regression
models. The ensemble metric outperformed the top individual
metric of COMET when the zero-shot model was removed.

erenceless metric of COMET-QE is selected both 531

for WMT20 ZH-EN and WMT20 EN-DE, suggest- 532

ing complementary effects of diverse metrics. To 533

further test this hypothesis, we perform ablations 534

that drop one out of the three metrics at a time 535

(Table 2). We see that only dropping COMET-QE 536

would result in a decrease in the correlation score. 537

This implies that the referenceless metric provides 538

important information that the others do not.

Removed Metric – COMET COMET-QE BLEURT

Correlation 0.61 0.61 0.57 0.61

Table 2: Ensemble ablation studies on WMT20 ZH-EN.
Only removing COMET-QE leads to a correlation drop.
See Appendix D for the other datasets.

539
Mixed-Effects Models Seen in Table 3 are the re- 540

sults from our analysis that measures how much 541

metrics overrate machines over humans (§2.3). We 542

see that the fixed-effect coefficient β0 is signifi- 543

cantly positive in most cases. Referenceless met- 544

rics tend to have smaller coefficients. This can be 545

due to the more diverse nature of human text than 546

machine-generated text; reference-based metrics 547

give a low score to human text that differs from the 548

references even if it is of high quality. The con- 549

ventional n-gram overlap-based metrics (BLEU, 550

ROUGE, and CIDEr) have particularly large co- 551

efficients. These results suggest that the evalua- 552

tion practice should be regularly updated as our 553

generation model becomes stronger (and perhaps, 554

more similar to human generation) in the future. 555

Note that unlike the other tasks, “human-generated 556

text” for CNNDM summarization is an automatic 557

concatenation of author highlights, which contains 558

substantial noise (Fabbri et al., 2021). This might 559

explain the neutral and negative coefficients. 560

Effects of the Number of References Fig. 3 plots 561

correlations over varying numbers of references. 562
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ZH-EN
COMET COMET-QE BLEURT BLEU
0.27±0.02 0.13±0.01 0.32±0.02 0.62±0.02

EN-DE
COMET COMET-QE Prism-ref BLEU
0.08±0.03 −0.17±0.02 0.44±0.02 0.33±0.03

CNNDM
COMET COMET-QE BERTScore ROUGE-L

−0.17±0.12 0.02±0.11 −0.04±0.12 0.33±0.13

COCO
RefCLIP-S RefOnlyC CIDEr CLIP-S
0.09±0.06 0.24±0.06 0.43±0.06 −0.04±0.05

Table 3: β0 (fixed-effect coefficients) from the linear
mixed-effects models that analyze how much automatic
metrics overrate machines over humans, relative to hu-
man raters. β0 = 0 is neutral, and statistical significance
is indicated by red (positive) or blue text (negative). The
subscripts indicate 90% confidence intervals. Three met-
rics that correlate best with the human judgments are
shown as well as one popular metric. COMET-QE and
CLIP-S are referenceless. See §E for the other metrics.

1 2
0.4

0.6

# References

C
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re
la
ti
on

(A) ZH-EN

1 2 3
0.2

0.4

# References

(B) EN-DE

2 4 6 8 10

0.2

0.4

# References

(C) CNNDM

COMET COMET-QE BLEU ROUGE-L

Figure 3: Correlations with varying numbers of refer-
ences. In all cases, one reference is not sufficient to
outperform the referenceless COMET-QE metric. The
default ROUGE assumes English input.

COMET was the top-performing reference-based563

metric regardless of the number of references,564

but we observe that it underperforms the referer-565

enceless metric when only one reference is given.566

Model performance in machine translation and567

summarization is commonly measured by apply-568

ing reference-based metrics against one reference569

per instance in the research community. Our find-570

ing thus raises a further concern about the current571

evaluation practice. Finally, we see that popular572

choices of BLEU and ROUGE metrics have much573

lower correlations than the recent metrics over var-574

ious numbers of references, in line with the recent575

studies (Mathur et al., 2020a, inter alia).576

5 Related and Future Work577

Related Benchmarks WMT organizes the metric578

competition track in parallel with the translation579

task every year (Mathur et al., 2020b; Barrault et al.,580

2020, inter alia). Participants submit automatic581

scores for the translation outputs from the paral-582

lel translation task. Unfortunately, most of these 583

new metrics are not used by subsequent machine 584

translation work, perhaps because they are tested 585

solely against the concurrent translation submis- 586

sions and it is up to model developers to execute 587

or even implement new metrics. The GEM work- 588

shop (Gehrmann et al., 2021) conducts extensive 589

analysis of models and evaluation methods over a 590

wide set of generation tasks. BILLBOARDs ease the 591

burden through standard leaderboard experience 592

where generator developers only need to upload 593

generation outputs for the test split. BILLBOARDs 594

also offer automatic ensembling of metrics and 595

quantify the diversity that a new metric adds. The 596

human-in-the-loop GENIE leaderboard (Khashabi 597

et al., 2021) centralizes crowdsourced evaluations 598

for generation tasks. The current BILLBOARD 599

setup is based on rubric-based, expert evaluation 600

data from previous work, but future work can ex- 601

plore ways to improve crowdsourced evaluations 602

and use them to update BILLBOARDs. 603

From Bidimensional to Multidimensional BILL- 604

BOARDs lend themselves to a natural extension: 605

multidimensional leaderboards. In particular, gen- 606

eration models have more aspects than genera- 607

tion quality, such as training and inference effi- 608

ciency, sample efficiency, and robustness. These 609

aspects are often ignored in the current leaderboard 610

paradigm but are important to better serving prac- 611

titioners’ needs (Schwartz et al., 2019; Ethayarajh 612

and Jurafsky, 2020). There are ongoing modeling 613

and benchmarking efforts especially for efficient 614

machine translation (Heafield et al., 2020; Peng 615

et al., 2021, inter alia). We leave this extension to 616

future work and specifically target the gap between 617

generation modeling and evaluation. 618

6 Conclusion 619

We introduced BILLBOARDs, a simple yet pow- 620

erful generalization of leaderboards that bridges 621

the gap between generation modeling and evalua- 622

tion research. We established four BILLBOARDs 623

on machine translation, summarization, and image 624

captioning tasks. We demonstrated that their built- 625

in analysis of metric ensembling and mixed-effects 626

modeling revealed key insights into the current 627

state of natural language generation and its evalua- 628

tion methods. BILLBOARDs allow for a standard 629

leaderboard experience both on the modeling and 630

evaluation sides. We invite submissions from re- 631

searchers through our website. 632
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Appendices1089

A Case Studies of Evaluation Practice1090

Fig. 4 depicts breakdowns of evaluation metrics1091

used in the papers on machine translation and sum-1092

marization from NAACL and ACL 2021. We ex-1093

amined all papers whose title contains “machine1094

translation” and “summarization.” We see the clear1095

gap between generation modeling and evaluation1096

research; most researchers do not take advantage1097

of recent metrics that correlate better with human1098

judgments.1099

B Participating Generators1100

Here we list the generators submitted in the initial1101

BILLBOARDs.1102

B.1 WMT20 ZH-EN1103

Hyperparameter Value

label smoothing 0.1
# max tokens 1024
dropout rate 0.1
encoder embedding dim 512
encoder ffn dim 2048
# encoder attn heads 8
decoder embedding dim 512
decoder ffn dim 2048
# decoder attn heads 8
max source positions 1024
max target positions 1024
Adam lrate 5× 10−4

Adam β1 0.9
Adam β2 0.98
lr-scheduler inverse square
warm-up lr 1× 10−7

# warmup updates 4000
# max updates 600K
# GPUs 8
length penalty 0.6

Table 4: Transformer-base fairseq hyperparameters
and setting.

We use all 16 submissions for the WMT20 ZH-1104

EN task (Barrault et al., 2020)11 as well as our own1105

three transformer baselines that were implemented1106

in fairseq (Ott et al., 2019). Our baselines al-1107

low researchers to compare their translation mod-1108

els without resource-intensive techniques such as1109

backtranslation (Sennrich et al., 2016a), model en-1110

sembling, and deep encoders (Kasai et al., 2021a).1111

Tables 4 and 5 list the hyperprameters. We gener-1112

ally follow the setting from Vaswani et al. (2017).1113

11https://www.statmt.org/wmt20/results.
html.

Hyperparameter Value

label smoothing 0.1
# max tokens 4096
dropout rate 0.1
encoder embedding dim 1024
encoder ffn dim 4096
# encoder attn heads 16
decoder embedding dim 1024
decoder ffn dim 4096
# decoder attn heads 16
max source positions 1024
max target positions 1024
Adam lrate 5× 10−4

Adam β1 0.9
Adam β2 0.98
lr-scheduler inverse square
warm-up lr 1× 10−7

# warmup updates 4000
# max updates 600K
# GPUs 8
length penalty 0.6

Table 5: Transformer-large and transformer-large-
ensemble fairseq hyperparameters and set-
ting. Transformer-large-ensemble ensembles four
transformer-large models with different random
initializations.

We use newstest-2019 as the dev. set and the 1114

official training data.12 We apply Moses tokeniza- 1115

tion (Koehn et al., 2007) and BPE with 32K op- 1116

erations (Sennrich et al., 2016b) to English text. 1117

We tokenize Chinese text with the Jieba package,13 1118

following Hassan et al. (2018). Separately from En- 1119

glish, BPE with 32K operations is then applied to 1120

Chinese. The decoder input and output embeddings 1121

are tied. Moses detokenization is applied to get the 1122

final outputs in the last step. We make the three 1123

models and preprocessed train/dev. data publicly 1124

available.14 Table 6 lists all generators and their au- 1125

tomatic evaluation scores from the top-performing 1126

metric (ensemble in this case). 1127

B.2 WMT20 EN-DE 1128

Similar to WMT20 ZH-EN, we use all 14 submis- 1129

sions for the WMT20 EN-DE task along with our 1130

three transformer baselines. The same hyperparam- 1131

eters are chosen as in WMT20 ZH-EN (Tables 4 1132

and 5). We preprocess both English and German 1133

text by the Moses tokenizer and joint BPE with 1134

32K operations. All embeddings are shared. We 1135

apply the Moses detokenizer to get the final outputs. 1136

Table 7 shows the generators and their automatic 1137

12http://www.statmt.org/wmt20/
translation-task.html.

13https://github.com/fxsjy/jieba.
14Anonymized.
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Figure 4: Breakdowns of evaluation metrics used in the papers on machine translation and summarization from
NAACL and ACL 2021. We examined all papers whose title contains “machine translation” and “summarization”
and disregarded papers primarily on evaluation metrics. “QA” metrics use a QA system to evaluate summaries (e.g.,
Eyal et al., 2019). “Specialized” indicates specialized evaluation in a particular dimension, rather than the overall
generation quality, such as document-level evaluations on contrastive sets (Voita et al., 2019).

Generator Description Score

Huoshan Translate Wu et al. (2020a) 78.85
THUNLP Not available 78.81
Huawei TSC Wei et al. (2020) 78.79
DeepMind Yu et al. (2020) 78.76
WeChat AI Meng et al. (2020) 78.75
Tencent Translation Wu et al. (2020b) 78.74
DiDi NLP Chen et al. (2020) 78.66
OPPO Shi et al. (2020) 78.59
Online-B Not available 78.36
SJTU-NICT Li et al. (2020) 78.27
trans-large-ensemble §B.1 77.35
trans-large §B.1 76.98
Online-A Not available 76.86
trans-base §B.1 76.79
dong-nmt Not available 76.74
Online-G Not available 76.44
zlabs-nlp Not available 75.79
Online-Z Not available 75.05
WMT Biomed Baseline Bawden et al. (2020) 73.89

Table 6: WMT20 ZH-EN generators and reference pa-
pers. The score column indicates the score from the
metric that currently correlates best with the human
judgments (ensemble).

evaluation scores from the top-performing metric1138

(ensemble).1139

B.3 CNNDM Summarization1140

We submit all 26 models from Fabbri et al.1141

(2021).15 Table 8 shows all models and their au-1142

tomatic evaluation scores from the top-performing1143

metric (COMET).1144

B.4 MSCOCO Image Captioning1145

We submit the four strong models from the liter-1146

ature (Kasai et al., 2021b).16 They share similar1147

15https://github.com/Yale-LILY/SummEval.
16https://github.com/jungokasai/THumB/

tree/master/mscoco.

Generator Description Score

Tohoku-AIP-NTT Kiyono et al. (2020) 90.50
Tencent Translate Wu et al. (2020b) 90.43
OPPO Shi et al. (2020) 90.42
eTranslation Oravecz et al. (2020) 90.39
Online-B Not available 90.38
Huoshan Translate Wu et al. (2020a) 90.32
AFRL Gwinnup and Anderson (2020) 90.16
Online-A Not available 90.12
UEDIN Germann (2020) 89.98
PROMT NMT Molchanov (2020) 89.66
trans-large §B.2 89.60
trans-large-ensemble §B.2 89.59
trans-base §B.2 89.35
Online-Z Not available 89.26
Online-G Not available 88.98
zlabs-nlp Not available 88.65
WMT Biomed Baseline Bawden et al. (2020) 88.23

Table 7: WMT20 EN-DE generators and reference pa-
pers. The score column indicates the score from the
metric that currently correlates best with the human
judgments (ensemble).

pipeline structure but vary in model architecture, 1148

(pre)training data, model size, and (pre)training 1149

objective. Table 9 shows the models with their pa- 1150

pers and automatic scores from the top-performing 1151

metric (RefCLIP-S). 1152

C Participating Metrics 1153

Table 10 discusses details and configurations of the 1154

automatic metrics that we implement in our initial 1155

BILLBOARDs. 1156

17Model with CIDEr optmization, https://github.
com/microsoft/Oscar/blob/master/VinVL_
MODEL_ZOO.md#Image-Captioning-on-COCO.

18Model with CIDEr optmization.
19Model with cross-entropy optimization, https:

//vision-explorer.allenai.org/image_
captioning.
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Generator Description Score

Lead-3 First 3 sentences -0.011
T5 Raffel et al. (2020) -0.030
BART Lewis et al. (2020) -0.032
Pegasus-dynamic-mix Zhang et al. (2020a) -0.044
RNES Wu and Hu (2018) -0.049
Unified-ext-abs Hsu et al. (2018) -0.056
Pegasus-huge-news Zhang et al. (2020a) -0.056
REFRESH Narayan et al. (2018) -0.067
ROUGESal Pasunuru and Bansal (2018) -0.073
Human-H Highlights -0.075
NEUSUM Zhou et al. (2018) -0.083
BanditSum Dong et al. (2018) -0.083
LATENT Zhang et al. (2018) -0.099
Closed-book-decoder Jiang and Bansal (2018) -0.112
Multi-task-Ent-QG Guo et al. (2018) -0.117
Pointer-Generator See et al. (2017) -0.144
UniLM Dong et al. (2019) -0.151
Bottom-Up Gehrmann et al. (2018) -0.160
JEC Xu and Durrett (2019) -0.167
Fast-abs-rl Chen and Bansal (2018) -0.189
NeuralTD Böhm et al. (2019) -0.215
Improve-abs Kryściński et al. (2018) -0.329
BertSum-abs Liu and Lapata (2019) -0.341
STRASS Bouscarrat et al. (2019) -0.405
GPT-2-zero-shot Ziegler et al. (2019) -0.441
SENECA Sharma et al. (2019) -0.735

Table 8: CNNDM summarization generators and ref-
erence papers. They are from Fabbri et al. (2021), but
we apply detokenization (Bird et al., 2009) and/or true-
casing (Manning et al., 2014) to standardize the model
outputs for better, reproducible evaluations. The score
column indicates the score from the metric that currently
correlates best with the human judgments (COMET).

Generator Description Score

VinVL-large17 Zhang et al. (2021) 83.78
VinVL-base18 Zhang et al. (2021) 83.45
Unified-VLP Zhou et al. (2020) 82.59
Up-Down19 Anderson et al. (2018) 80.63

Table 9: MSCOCO image captioning generators and
reference papers. The score column indicates the score
from the metric that currently correlates best with the
human judgments (RefCLIP-S).

20SACREBLEU implementation of sentence-level BLEU-
4; https://github.com/mjpost/sacreBLEU/
blob/v1.2.12/sacrebleu.py#L999.

21HuggingFace implementation (Wolf et al., 2020).
22https://github.com/mjpost/sacrebleu.
23https://www.nltk.org/_modules/nltk/

translate/meteor_score.html.
24https://github.com/m-popovic/chrF.
25https://github.com/salaniz/

pycocoevalcap.
26https://github.com/rwth-i6/CharacTER.
27https://github.com/ThomasScialom/

summa-qa.
28https://huggingface.co/metrics/bleurt.
29https://github.com/Unbabel/COMET/.
30https://github.com/thompsonb/prism.

Metric Description Refs. Src. Cont.

BLEU20 Papineni et al. (2002) ✓ ✗ ✗

ROUGE-321 Lin (2004) ✓ ✗ ✗
ROUGE-L Lin (2004) ✓ ✗ ✗
METEOR Banerjee and Lavie (2005) ✓ ✗ ✗

TER22 Snover et al. (2006) ✓ ✗ ✗

METEOR23 Banerjee and Lavie (2005) ✓ ✗ ✗

chrF24 Popović (2015) ✓ ✗ ✗

CIDEr25 Vedantam et al. (2015) ✓ ✗ ✗
SPICE Anderson et al. (2016) ✓ ✗ ✗

CharacTER26 Wang et al. (2016) ✓ ✗ ✗
chrF++ Popović (2017) ✓ ✗ ✗

SummaQA27 Scialom et al. (2019) ✗ ✓ ✓
BERTScore Zhang et al. (2020b) ✓ ✗ ✓

BLEURT28 Sellam et al. (2020) ✓ ✗ ✓

COMET29 Rei et al. (2020) ✓ ✓ ✓
COMET-QE Rei et al. (2020) ✗ ✓ ✓

Prism-ref30 Thompson and Post (2020) ✓ ✗ ✓
Prism-src Thompson and Post (2020) ✗ ✓ ✓

CLIP-S31 Hessel et al. (2021) ✗ ✓ ✓
RefCLIP-S Hessel et al. (2021) ✓ ✓ ✓
RefOnlyC Kasai et al. (2021b) ✓ ✗ ✓

Table 10: Automatic metrics and their reference papers.
The refs., src., and cont. columns indicate whether they
use references, input source features, and pretrained
contextual representations (e.g., BERT; Devlin et al.,
2019), respectively.

D Additional Ensemble Metric Ablations 1157

Seen in Table 11 are ablation studies for the ensem- 1158

ble metrics where one of the three selected metrics 1159

is removed at a time. Dropping one metric often 1160

has no impact on the correlation score, suggesting 1161

that these metrics are highly redundant and capture 1162

similar aspects of the output quality. BILLBOARDs 1163

encourage researchers to explore ways to diversify 1164

automatic evaluations by updating the ensemble 1165

metric every time a new metric is submitted. 1166

E Additional Mixed-Effects Analysis 1167

Table 12 presents fixed-effect coefficients that mea- 1168

sure how much each automatic metric overrates ma- 1169

chines over humans (§2.3). With some exceptions 1170

in CNNDM summarization, almost all automatic 1171

metrics underrate human generations (significantly 1172

positive coefficients). Table 13 swaps the roles of 1173

human-generated text, but we still see similar pat- 1174

terns: almost all metrics overrate machines over 1175

humans, but the problem is mitigated in COMET- 1176

QE, a referenceless, quality estimation metric. This 1177

confirms that our findings hold independently of 1178

the design choice. 1179

31https://github.com/salaniz/
pycocoevalcap.
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ZH-EN
– COMET COMET-QE BLEURT

0.61 0.61 0.57 0.61

EN-DE
– COMET COMET-QE Prism-ref

0.51 0.52 0.52 0.52

CNNDM
– COMET COMET-QE BERTScore

0.29 0.23 0.31 0.31

COCO
– RefCLIP-S RefOnlyC CIDEr

0.45 0.44 0.42 0.43

Table 11: Correlations from ensemble ablation studies.
One of the three selected metrics is removed at a time,
and a new Lasso regression model is trained on the
remaining metrics. The bigger the correlation drop is,
the bigger the contribution is from the removed metric.
COMET-QE is a referenceless metric.

F Crowdworker vs. Rubric-based Expert1180

Evaluations1181

Seen in Table 14 are examples where crowdworker1182

evaluators (Barrault et al., 2020) and professional1183

translators (Freitag et al., 2021) disagree: crowd-1184

workers give lower scores to the human-generated1185

translations than the machine-generated ones. The1186

first case requires document-level context to prop-1187

erly evaluate. Document-level context and diver-1188

sity in high-quality human translations can mislead1189

crowdworkers.1190
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ZH-EN

COMET-QE Ensemble COMET BLEURT BERTScore CharacTER MoverScore METEOR
0.13±0.01 0.26±0.01 0.27±0.02 0.32±0.02 0.52±0.02 0.56±0.02 0.57±0.02 0.57±0.02

Prism-ref chrF TER chrF++ ROUGE-3 BLEU ROUGE-L Prism-src
0.58±0.02 0.58±0.02 0.59±0.02 0.60±0.02 0.61±0.02 0.62±0.02 0.64±0.02 1.13±0.02

EN-DE

COMET-QE Ensemble COMET MoverScore chrF chrF++ BLEU CharacTER
−0.17±0.02 0.03±0.02 0.08±0.02 0.22±0.03 0.29±0.02 0.32±0.02 0.33±0.03 0.33±0.03

BERTScore Prism-ref TER Prism-src
0.43±0.02 0.44±0.02 0.49±0.03 1.46±0.03

CNNDM

TER COMET Ensemble BERTScore MoverScore COMET-QE CharacTER BLEURT
−0.58±0.14 −0.17±0.12 −0.16±0.12 −0.04±0.12 −0.03±0.11 0.02±0.11 0.14±0.15 0.25±0.12

SummaQA ROUGE-L BLEU Prism-ref chrF chrF++ ROUGE-3 METEOR
0.27±0.10 0.33±0.13 0.37±0.11 0.38±0.12 0.43±0.13 0.45±0.13 0.49±0.11 0.53±0.12

COCO

CLIP-S RefCLIP-S CharacTER chrF ROUGE-3 chrF++ RefOnlyC Ensemble
−0.04±0.05 0.09±0.06 0.13±0.07 0.18±0.07 0.22±0.07 0.23±0.07 0.24±0.06 0.24±0.06

SPICE METEOR BLEU CIDEr ROUGE-L BERTScore TER MoverScore
0.25±0.07 0.32±0.07 0.39±0.07 0.43±0.06 0.44±0.07 0.45±0.06 0.45±0.07 0.51±0.05

Table 12: Fixed-effect coefficients β0 from the linear mixed-effects analysis that measures how much automatic
metrics overrate machine text over human, as compared to human raters (§2.3). β0 = 0 is neutral, and statistical
significance is indicated by red (positive) or blue text (negative). The subscripts indicate 90% confidence intervals.
COMET-QE, Prism-src, SummaQA and CLIP-S are referenceless metrics. In both WMT20 ZH-EN and WMT20
EN-DE, Human-B is evaluated as human-generated translations. Human-A (WMT20 ZH-EN) and Human-A and
Human-P (WMT20 EN-DE) are used as the reference set for reference-based metrics.

ZH-EN

COMET-QE Ensemble COMET BLEURT TER BERTScore ROUGE-3 Prism-ref
0.03±0.01 0.07±0.01 0.08±0.02 0.09±0.02 0.23±0.02 0.24±0.02 0.24±0.02 0.25±0.02

CharacTER ROUGE-L chrF MoverScore METEOR chrFpp BLEU Prism-src
0.25±0.02 0.26±0.02 0.27±0.02 0.27±0.02 0.29±0.02 0.29±0.02 0.30±0.02 0.79±0.02

EN-DE

COMET-QE Ensemble COMET MoverScore Prism-ref chrF BERTScore CharacTER
−0.09±0.02 −0.07±0.02 -0.06±0.03 0.02±0.02 0.18±0.02 0.20±0.02 0.21±0.02 0.22±0.02

chrF++ BLEU TER Prism-src
0.22±0.02 0.23±0.02 0.32±0.02 1.38±0.03

Table 13: Fixed-effect coefficients β0 from the linear mixed-effects analysis that measures how much automatic
metrics overrate machine text over human, as compared to human raters (§2.3). The roles of human translations
are swapped: Human-A is evaluated, and Human-B (WMT20 ZH-EN) and Human-B and Human-P (WMT20
EN-DE) are used as the reference. We still see similar patterns to Table 12: almost all automatic metrics overrate
machines over humans, but the problem is less severe in the referenceless metric of COMET-QE.

WMT20 ZH-EN
Source 希望兴安省继续为白俄罗斯企业提供便利条件。 凭的是相机而动的时势驾驭。
Huoshan It is hoped that Xing’an Province will continue to pro-

vide convenient conditions for Belarusian enterprises.
It is based on the current situation of the camera.

Human-A He hoped that Hung Yen Province would continue to
provide convenient conditions for Belarusian enterprises.

This relies on the ability to seize opportunities.

Human-B He hoped that this could continue in the future. It is based on the observation of various situa-
tions at different times.

Table 14: Examples where crowdsource evaluators (Barrault et al., 2020) and professional translators (Freitag et al.,
2021) disagree: crowdworkers give lower scores to the human-generated translations than the machine-generated
ones. The first case requires document-level context to properly evaluate. 兴安省 is Hung Yen Province in Vietnam
in this context, but there is entity ambiguity. (Xing’an Province that existed in Republic of China.) The second one
illustrates the diversity of human generations that misleads crowdworkers.

18


