Fusing Highly Specialized Language Models for Comprehensive Expertise

Anonymous ACL submission

Abstract

Underlying data distributions of natural lan-
guage, programming code, and mathematical
symbols vary vastly, presenting a complex chal-
lenge for large language models (LLMs) that
strive to achieve high performance across all
three domains simultaneously. Achieving a
very high level of proficiency for an LLM
within a specific domain often requires exten-
sive training with relevant corpora, which is
typically accompanied by a sacrifice in perfor-
mance in other domains. In this paper, we aim
to “play the dealt cards well” and propose to
fuse models that are already highly-specialized
directly. The proposed fusing framework, UL-
TRAFUSER, consists of different distinct spe-
cialists that are already sufficiently trained on
different domains (we mainly focus on lan-
guage, coding, and mathematics in this paper).
A token-level gating mechanism is introduced
to blend the specialists’ outputs. A two-stage
training strategy accompanied by balanced sam-
pling is designed to ensure stability. To effec-
tively train the fused model, we further con-
struct a high-quality supervised instruction tun-
ing dataset, ULTRACHAT 2, which includes
text, code, and mathematical content. This
dataset comprises approximately 300,000 in-
structions and covers a wide range of topics
in each domain. Experiments show that our
model could simultaneously achieve mastery
of the three crucial domains.

1 Introduction

If a piece of information can be serialized and
tokenized, it is likely to be handled by large
language models (LLMs) (Bommasani et al., 2021;
Brown et al., 2020; OpenAl, 2023). LLMs, as one
of the most advanced manifestations of artificial in-
telligence, have demonstrated proficiency in three
representative symbol systems that are essential to
human progress: natural language (Ouyang et al.,
2022; Bai et al., 2022), which forms the corner-
stone of human interaction; programming code (Li

et al., 2023a; Roziere et al., 2023), the backbone
of our digital ecosystem; and mathematical
reasoning, the framework underpinning scientific
advancement (Luo et al., 2023a; Yang et al., 2023).
The mastery of three domains would equip LLMs
with unparalleled versatility. However, the intrinsic
variability of data distribution across these domains
presents a formidable challenge for an LLM to
achieve consistently high performance at the same
time. One awkward situation is that it is chal-
lenging to integrate professional-level coding and
mathematical abilities into a general conversational
language model without loss. That is, these skills
are more often reflected in the numbers on related
benchmarks rather than a real-world user interface.

Figure 1 (a-c) demonstrates such a struggle by
presenting the performance of three specialized
models on the aforementioned domains, all initially
based on the Llama-2 (Touvron et al., 2023b) 13B
architecture. Our findings reveal a clear trade-off:
specialized training in one domain often comes at
the expense of performance in the others, whereas
training on all three types of data at the same time
results in a simultaneous suboptimal situation.
Delving into this situation, such an issue may
be partially mitigated by careful designs of data
engineering, training strategy, or prompt construc-
tion. However, in general, semantics in language,
logic and structures in code, and abstract symbol
manipulations in math intricately always create
a situation of mutual weakening. To elaborate
further, comparing highly specialized models
(such as those for coding or mathematics) with
general-purpose models capable of performing all
tasks (like GPT-4) for their expertise is a trap that
can easily lead to misinformation.

This paper hopes to integrate specialized abili-
ties into a general chat language model with as little
loss as possible. More specifically, we propose to
leverage separate models that are already highly
specialized via a fusing structure. In this fusing

80 UltraLM-2-13B CodelLlama-13B g0 WizardMath-13B 80 UltraFuser
80 73.51 —— Best Specialists
71.03
70 70 70 70
60 63.05 60
60
60 53.03
50 50 48.78 50 50
40 40 401 32.16 40
30 25.61 30 30 28.44 | 30 3028
20 19.94 20 20.65 20 20
10.98
10 10 10 10
Text Code Math Text Code Math Text Code Math Text Code Math
Domains Domains Domains Domains

(a) Text-specialized model. (b) Code-specialized model.

(c) Math-specialized model. (d) Fused model.

Figure 1: Performance on different domains of specialized models and our ULTRAFUSER. The performance for
the text domain is computed by the average results on Truthful QA (Acc) (Lin et al., 2021) and AlpacaEval (Win
Rate) (Li et al., 2023b) datasets; the performance for the code domain is Pass@ 1 of HumanEval (Chen et al., 2021);
and the performance for the math domain is the average result of GSM8K (Pass@1) (Cobbe et al., 2021), MATH
(Pass@1) (Hendrycks et al., 2021), SAT-Math (Acc) (Zhong et al., 2023), and AQuA-RAT (Acc) (Ling et al., 2017)

datasets. All results are zero-shot.

framework, namely ULTRAFUSER, we use three
well-trained LLMs as initial specialist models in
text, code, and math. ! To ensure that the fused
model benefits from the specialized knowledge of
each specialist model, a dynamic gating mecha-
nism is implemented, which sits on top of the three
specialists and adaptively controls the contribution
of each specialist to the final output logits based
on the input data. Such a mechanism is adopted at
the token level, which allows both the specializa-
tion of individual specialists and the generalization
of the fused model. The key to functioning the
model is to train the gating module. For example,
when the model conducts code generation, we want
the coding specialist to contribute more than the
other two. This necessitates a mixed instruction
tuning dataset that contains the three domains for
the training. Unlike language data, high-quality
instruction-tuning datasets for code and math are
scarcer in the open-source community. Inspired by
ULTRACHAT (Ding et al., 2023), we construct a
comprehensive, diverse dataset with high quality,
ULTRACHAT 2, to facilitate the development of
advanced LLMs with the aforementioned expertise.
ULTRACHAT 2 contains 300,000 diverse and high-
quality data (each part has 100,000), which are
derived from 72 meta-topics and 1587 sub-topics.

Experiments show that highly specialized mod-
els may counter collapse if they are directly fur-
ther trained, but we can effectively integrate their

! Although we treat text, code, and math as three separate
domains in this paper according to their symbol systems, they
are not strictly segregated. For example, language can partially
encompass the other two. This is discussed in Appendix E.

highly professional abilities into a general chat in-
terface via ULTRAFUSER. By training a fused
model with UltraLM-2-13B, CodelLlama-13B, and
WizardMath-13B as the specialists for three do-
mains, we achieve consistently effective perfor-
mance on benchmarks across language understand-
ing, code generation, and mathematical reasoning.
Our proposed model, data, training, and inference
frameworks will be publicly available.

2 Ouwur Approach

Compared to methods like Mixture-of-
Experts (Shazeer et al., 2016), which expands the
inner model structure to develop different expertise
implicitly during training, our approach focuses
on fusing specialist models explicitly aligned
with different skill sets at the output level directly.
This section first describes the constitution of
the proposed model, ULTRAFUSER, and then
introduces the construction of a mixed instruction
tuning dataset, ULTRACHAT 2.

2.1 Model

The proposed fused model consists of n different
specialized models (termed as specialists, and we
mainly consider n = 3 in the paper), collectively
denoted as Mg = {FEiext; Ecodes Emath }>» Where
Flext is mainly trained on natural language text,
FEode 1s trained on programming code, and Ep 1S
trained on mathematical problems. Each specialist
model is essentially a large language model.
They share the same architectural framework
and vocabulary space but are trained on distinct
datasets that are representative of their expertise.

(Wtext x) B (WeodeX) @ (Wmathx)
t)

[Wtext s Weodes Wmath}

|
|
| |
I
Gating Network J¢] p DM Head,

| O 11)

First Stage {
Training

|
M(—J = {Etext: Ecode7 Ema‘th}
| |
EEEN [EE==] [==EE)

hcode T hiath T

- Code Specialist " Math Specialist

Text Specialist

Figure 2: Architecture of our proposed ULTRA-
FUSERframework.

Architecture. As shown in Figure 2, the fused
model aims to utilize the expertise of each spe-
cialist model appropriately based on the nature
of the input data. The integration of specialized
ability is realized by a shared gating layer g that
calculates the weight for each token per specialist.
Specifically, during training, for the token () con-
cerned, the three specialists output token hidden

states h@® = {h{),, h{"

code’ hr(fgnh} and correspond-

ing logits o) = {ot(ez,)mog?de, r(f;z)uh} as a native
language model. Then, the gating layer gg is ap-
plied to each set of specialist outputs to obtain the
final logits.

Practically, the gating layer is implemented as a
linear network that calculates the weight for each
token () based on the last hidden states h(") =
E(2z(1=1). For each token z(*), the final output
logits from the fused model are computed as:

o

ga(Me(z)) = w7 (0l : 0fyye * o).

code math
w(®) = Softmax(g(h() : g(hl)) : g(b{) 1)),
(D

Training. One possible approach to training the
model is to train the gating network only, expecting
it to allocate each token to its optimal distribution
over the three specialists. Such training strategy
highly relies on the gating module’s capacity in
capturing the complex and diverse context in drasti-
cally different instructions. An easier way to boost
the performance is to jointly fine-tune the three
specialists along with the gating module. However,
the specialists can be negatively impacted by gradi-
ents back-propagated from the gating module due

to its poor performance at the early stage, which
may cause irreversible damage to the specialist’s
inherent ability.

To tackle the problem, we propose a two-stage
training strategy to ensure training stability and
mitigate potential specialist ability loss. The first
stage trains only the gating module parameters for
N7 steps and keeps specialists frozen. The purpose
is to retain specialist capability while warming up
the gating module. After the first stage of training,
the gating network is expected to output reasonable
token weights that favor over specific specialists
according to data type. The second stage continues
to fine-tune all model parameters based on the first
stage for No steps. At this stage, the specialist
models are jointly optimized for a better overall
performance. At both stages, the training loss is
the cross-entropy loss given true labels y and the
final model output.

Liz,y) = 3 CE(ga(Mo(a). y). ()

The training proceeds by minimizing the total loss
over all instances in the training set using a suitable
optimization algorithm, such as AdamW. The
gradients are back-propagated through both the
specialist models and the gating networks, allowing
the gating mechanism to learn how to distribute
the inputs effectively among the specialists. The
overall training process is shown in Algorithm 1.

Data-level Balancing. Since all specialists are
well aligned to one specific type of instruction, they
may demonstrate different activation patterns that
are highly sensitive to inputs. Therefore, to fully
take advantage of the specialized ability, we use
specialist-specific templates to format our training
data (see Appendix C). Each training sample is
wrapped up by three different templates and fed
into the respective specialist model. Since the loss
is only calculated for the model response part, the
response tokens will still be aligned, and their log-
its can be fused together seamlessly. We also adopt
a batch-level class-balance sampler during train-
ing. The sampler ensures that each training batch
contains the same number of training instances
from the three categories, thus ensuring that the
three specialists are activated and optimized at sim-
ilar level for each batch, preventing from biased
training that favor over one specific specialist. As
shown in Algorithm 1, each batch of data contains
n X 3 instances in total. We explain the reason
to alleviate the imbalance issue in the data-level

Algorithm 1 Algorithm for two-stage training with
balanced data sampler, where S(D, n) means ran-
domly sampling n examples from dataset D. N}
and N are total training steps, and 7; and 7, are
the scheduled learning rate for the two stages, re-
spectively.

Input: specialized models Mg, gating gg, train-
ing data Diext, Dcode , Pmath
for : = 1to N7 do

i %
D' = Ute{text,code,math} Dt

- Ute{text,code,math} S(Dt7 n)
9o = 9o — MAs o7 L(ayyeni L(2,9)
end for
for j = 1to Ny do ‘
Di = Ute{text,code,math} Dg

= Ute{text,code,math} S(Dt7 n)
go = 9o — 772A<1>ﬁ X (ey)eni L(@,y)
Mo = Mo — 772&9@ Y (ay)eni L@, Y)
end for

and validate the effectiveness of the class-balance
sampler in Section 3.3.

Inference. The model design adopts post-specialist
token-level gating, meaning that all specialists are
activated during inference. For each token @ the
three specialist models Mg are queried, and their
logits are fused using the gating module g4(-) as in
the training phase. The softmax is applied to the
aggregated logits to generate probabilities for the
next token. The selected token is then used as part
of the input for the subsequent inference step in
an autoregressive manner. Our design opens doors
for sophisticated, real-time adaptability that mono-
lithic models lack. For example, in a text string
interwoven with mathematical equations and code
snippets—common in scientific papers, the fused
model can shift its “attention” between specialists
within the same sequence, ensuring that each token
is treated with the most appropriate domain exper-
tise. But on the other hand, since all specialists are
activated in inference, computational overheads are
inevitably introduced. In experiments, we adapt
the vLLM project (Kwon et al., 2023) to our fused
model to accelerate inference, which is elaborated
in Appendix D.

2.2 Data Synthesis

Currently, within the open-source community,
there are already multiple instruction-tuning

Figure 3: t-SNE visualization of ULTRACHAT 2.

datasets for text-based conversations. However,
there is a relatively limited amount of systematic
code and mathematical instruction tuning data
available. In this section, we construct ULTRA-
CHAT 2, a comprehensive dataset tailored for
training our proposed model. ULTRACHAT 2 spans
a wide range of subject matter, covering natural
language, coding, and mathematical instructions.
We employ a multi-stage pipeline to generate a
rich set of instructional data. First, we engage in
multi-turn interactions with GPT-4, constructing
meta-topics that best represent each domain. Then,
each meta-topic is utilized to generate multiple
sub-topics. For each sub-topic, LLM is tasked
with generating diverse and informative specific
instructions. After obtaining these instructions, we
continue with in-context learning, generating both
strong and weakly related instructions for each
directive to fully leverage LLM’s generalization
capabilities. Finally, we extract 30% of the
instruction data and make them more complex.
Once we have the complete pool of instructions,
we synthesize the responses and construct the
whole dataset. Statistics and details of each part
of the dataset are shown in Table 12 in Appendix.

Data Analysis. We randomly sample 5000
instructions from each category and visualize the
data distribution in Figure 3. The representations
are obtained by averaging the last layer of hidden
states from Llama-2-13B, and dimensions are
further reduced by the t-SNE algorithm (Van der
Maaten and Hinton, 2008). The visualization
clearly demonstrates the diversity and distinc-
tiveness of different types of ULTRACHAT 2,
which aligns with the intuition and discussion in
Section 1. ULTRACHAT 2 provides high-quality
resources for the facilitation of specialized models.

80
LLaMA-2-13B + UltraChat
70+ $-474% mmm [LaMA-2-13B + UltraChat 2
601
501
401 +10.37%
A
301 A
+9.37%
201 4
v
10
Text Code Math

Figure 4: Performance comparison of Llama-2 model
trained on ULTRACHAT and ULTRACHAT 2. The per-
formance for the text domain is computed by the aver-
age results on Truthful QA (Acc) and AlpacaEval (Win
Rate) datasets; the performance for the code domain
is Pass@1 of HumanEval; and the performance for the
math domain is the average result of GSM8K (Pass@1)
and MATH (Pass@1).

We train a Llama-2-13B on ULTRACHAT 2 to give
a glance at the effectiveness. As shown in Figure 4,
in the text domain, the Llama-2-13B + UltraChat
2 configuration exhibits a 3.9% decrement in
performance relative to the baseline only trained on
the text domain. Conversely, in the code domain,
there is a significant performance increment
of 10.4% with the UltraChat 2 enhancement.
The math domain also shows a performance
increase of 9.4% with the UltraChat 2 integration,
indicating a clear advantage of the updated system
in code-related and mathematical reasoning tasks.

3 Experiments

We conduct extensive experiments to analyze
the effectiveness and behaviors of ULTRAFUSER.
Implementation details are reported in Appendix C.

3.1 Experimental Settings

Backbone Models. To validate the effectiveness
of our approach, we adopt Llama-2-13B (Touvron
et al., 2023b) as the backbone for experiments.
Specifically, we use UltraLM-13B-V2.0 (Ding
et al., 2023), CodeLlama-13B-instruct (Rozicre
et al., 2023), WizardMath-13B-V1.0 (Luo et al.,
2023a) as the three specialist models. All model
parameters are fine-tuned under the proposed
ULTRAFUSER framework.

Baselines. We mainly gather three types of
baseline methods for comparison: (1) Specialized
Models: The original specialized backbone models
are adopted to show the initial ability of separate
specialized models and to validate the fusing ability
of the proposed method. (2) Single Further-tuned

Models: We also apply supervised fine-tuning with
ULTRACHAT 2 on different backbone models. In
order to comprehensively evaluate the advantage
of the fused model design, both single specialized
model and single model with similar parameter
volume (Llama-30B (Touvron et al., 2023a)) are in-
corporated. (3) Model Merging: A large body of ex-
isting works merge specialized models into a single
dense model with arithmetic operation on model
parameters. Direct model merging methods in-
clude Average Merging (Wortsman et al.) and Task
Arithmetic (Ilharco et al., 2023). FuseChat adopts
pair-wise model merging and fine-tuning before fi-
nal merging. BTX (Sukhbaatar et al., 2024) merges
models with MoE structure at each linear layer and
tunes with new data. For BTX and FuseChat (Wan
et al., 2024b), we uniformly use ULTRACHAT 2
for further fine-tuning as our proposed method.
Evaluation. For the text domain, we use Truth-
ful QA (Lin et al., 2021) and AlpacaEval (Li et al.,
2023b) for evaluation. The former is more focused
on the truthfulness of LLMs, and the latter consists
of more general natural language questions. For
the code domain, we use HumanEval (Chen et al.,
2021) for evaluation, which is a code completion
task. For the math domain, we use GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2020), SAT-
MATH (Zhong et al., 2023) and AQuA (Ling et al.,
2017) for evaluation. For evaluation, we trans-
form each dataset into instruction format, and use
the consistent template as training for inference.
Specifically, we evaluate under the MC2 setting
in Truthful QA, where each option is fed into the
model independently and the model is queried for
true or false judgment. For HumanEval, we use
InstructHumanEval that transforms the original
dataset into instruction format. All results are zero-
shot and produced by our experiments. We do not
use any chain-of-thought (CoT) techniques to boost
the performance.

3.2 Results

Benchmark Results. Our approach involves
further training already highly specialized models,
but to what extent can this retraining be effective
without the ULTRAFUSER framework? Comparing
to the original specialist models as shown in
Table 1, ULTRAFUSER can consistently produce
on-a-par or even superior performance across
benchmarks from different domains and achieves
the highest overall results. Notably, ULTRAFUSER
significantly outperforms respective specialists on

Model TruthfulQA AlpacaEval HumanEval GSMS8K MATH SAT-Math AQuA Avg.
Acc Win Rate Pass@1 Pass@1 Pass@1 Acc Acc
UltraLM-2 58.82 83.23 25.61 25.09 4.48 25.00 2598 35.46
CodeLlama 56.89 69.21 48.78 23.12 6.16 27.73 25.59 36.78
WizardMath 26.81 51.50 10.98 56.18 12.2 29.55 22.05 2991
W UltraLM-2 + FT 58.82 73.34 40.24 54.59 10.46 25.00 28.74 41.60
W CodeLlama + FT 41.02 17.90 31.71 13.42 5.34 17.73 2520 21.76
W WizardMath + FT 50.17 61.25 26.83 52.08 9.98 29.55 28.74 36.94
W Llama 30B + FT 46.99 65.33 38.41 52.31 8.88 35.00 32.28 40.03
£ Task Arithmetic 12.99 1.75 0.00 3.71 1.46 3.64 0.79 3.48
S Average Merging 53.62 67.08 25.00 51.48 12.06 2591 1890 36.29
% BTX 34.82 9.76 20.73 11.14 4.14 21.82 2047 17.55
W £ FuseChat 64.98 74.77 27.44 27.90 5.54 15.91 1220 3268
ULTRAFUSER 64.67 82.35 53.03 54.59 11.36 30.00 26.38 47.48

Table 1: Results of baselines and our proposed models across different benchmarks. All the numbers are zero-shot
results produced by our experiments under the same inference framework. No Chain-of-thought (CoT) techniques
are employed in evaluation. Results marked by W means use the same datasets with ours for fine-tuning, results
marked by ¥ means fusing or merging methods use the same specialized models.

Truthful QA and HumanEval datasets by 5.86% and
4.25%, indicating that the three specialist models
interact with each other in helpful ways to boost
performance on more comprehensive datasets. The
result demonstrates the effectiveness of directly
fusing specialist models with the proposed frame-
work in both retaining and potentially synthesizing
expertise to achieve even better performance.
Furthermore, directly fine-tuning single models
on our training data may not produce desirable
performance, as shown in Table 1 and Figure 7. Re-
sults on further training a Llama 30B model, which
is comparable to ULTRAFUSER in terms of param-
eter volume, highlights the importance of fusing
existing models’ expertise. As for further training a
specialist model, although it indeed boosts other ex-
pertise domains, it also severely harms the original
expertise of the model. Among the three special-
ists, UltraLM-2 seems to benefit the most in terms
of overall performance after further tuning, indi-
cating that a “specialist” in text may be equipped
with much broader expertise and have more po-
tential in expanding to new expertise by further
fine-tuning. Meanwhile, it should be aware that the
three models also differ in the training stages they
have gone through. Models directly instruction-
tuned based on Llama improve significantly on new
domains. WizardMath improves up to 15.8% on
coding tasks after further tuning, while UltraLM’s
accuracy on solving math problems doubles. How-
ever, CodeLlama’s performance, unfortunately, de-
grades on every benchmark, especially in instruc-
tion following tasks like Alpaca. It is probably be-
cause CodeLlama has undergone thorough code in-

" — BTX
w5
9 —— LlamaFuser
o4 UltraFuser
C
£
©
't 3
(]
82
S
<1
0 2000 4000 6000 8000 10000

Training Steps

Figure 5: Training loss changes for BTX, LlamaFuser,
and UltraFuser over the first 10k steps.

filling pre-training (500B tokens) before instruction
fine-tuning. Further results on training on subset
of ULTRACHAT 2 can be found in Appendix A.2.
The specialty of CodeLlama also impairs model
merging methods. We find that Average Merging
reports near zero on all benchmarks when merging
all three models and merging only UltraLM and
WizardMath has a clear performance drop (results
in Table 1), meanwhile Task Arithmetic barely ob-
tains scores. FuseChat and BTX are methods that
involve the same further tuning stage on ULTRA-
CHAT 2 after merging the three models, and both
cannot achieve satisfactory results on the bench-
marks after adequate fine-tuning. This points to
the fact that the outcome of different fusing meth-
ods for well-aligned models highly relies on the
previous training data schedule and training strat-
egy adopted, while the proposed framework could
seamlessly bridge distinctive model expertise with
simple tuning methods and mixed data.
Training Analysis. ULTRAFUSER involves both

Strategy Truth H-Eval GSMSK Strategy Truth H-Eval GSMSK
Direct Training 51.17 46.95 53.83 w/o Balance 57.54+2.80 48.27+4.92 5291+1.76
+ Two-Stage 61.72 50.00 52.69 w/ Balance 59.91+1.96 53.68+2.74 53.77+1.74
+ Two-Stage + Balanced 64.67 53.05 54.59

Table 2: Results across Truthful QA (Truth), HumanEval
(H-Eval), and GSM8K with different training strategies.

Model AlpacaEval HumanEval GSMSK
UltraLM-2 0.046 0.055 0.063
CodeLlama 0.060 0.042 0.056
WizardMath 0.062 0.064 0.036

Table 3: Average losses on different tasks with different
specialized models. This phenomenon supports our
hypothesis, leading us to forgo the introduction of an
objective function that explicitly balance the loss.

specialized backbone model initialization and new
model fusing structure that requires further tun-
ing. To inspect the effect of both components,
we also implement a fuser model based on three
identical raw Llama-13B model without specializa-
tion as LlamaFuser. Figure 5 compares the train-
ing loss curve for ULTRAFUSER, BTX, and Lla-
maFuser. It can be seen that our proposed Fuser
structure has advantage over BTX’s design as loss
decreases much faster in the early stage of train-
ing. Fuser structure can be trained to converge at
around 5000 steps while BTX’s training loss keeps
decreasing slowly after 9000 steps. Meanwhile,
highly-specialized backbones also help learning.
The loss of ULTRAFUSER is consistently smaller
than LlamaFuser but does converge to similar level
after adequate training. Overall, ULTRAFUSER’s
success is attributed to both backbone model exper-
tise and fusing structure design.

3.3 Ablation Study

Training fused models could cause load imbalance,
leading to the collapse of the routing mechanism. A
typical approach to mitigate this issue in MoE is to
introduce a balance loss to prevent certain models
from being over-selected or under-selected. In our
framework, we do not introduce explicit balance
loss based on a simple hypothesis: A model that has
been highly specialized can automatically produce
a lower loss on the data it is good at, which is
verified in Table 3.

Now that the model already has data that is good
at processing, we hope to solve the problem from
the data level, not force the specialist models to

Table 4: Mean results and standard deviation over 12
checkpoints with and without the balance sampler (two-
stage training are both applied).

participate to a certain extent during the calcula-
tion. We find that designing some training methods
can make the progress more stable. Two key com-
ponents of our framework are two-stage training
and balanced sampler. The former plays a role
similar to warm-up, allowing the randomly initial-
ized gating module to adapt to the current expert
model. The latter, as mentioned, ensures load bal-
ance at the data level. In Table 2, we report the
best performance under each training strategy. It
can be observed that the beneficial effects of these
two modules are obvious, and their use has im-
proved the overall performance of the fused model
considerably.

We further investigate the impact on the train-
ing stability of the balance sampler. We train two
versions of the model with the same dataset and
sample 12 checkpoints, respectively, from 2000
steps to 9000 steps, and conduct evaluations. As
shown in Table 4, with the help of the balance sam-
pler, the fused model could achieve superior perfor-
mance and lower standard deviations on all datasets.
GSMBSK is relatively stable during training, how-
ever, HumanEval may face larger fluctuations.

3.4 Analysis

Expertise Analysis. In our training, there is no ex-
plicit mechanism to make certain specialists “pay
more attention” to the corresponding data. But as
mentioned, we expect that the specializations could
still be separated, and a type of data will receive
different gating weights from the specialist models.
We randomly sample 100 data instances from the
three domains and conduct analysis by directly go-
ing through the inference to the fused model, and
calculate the weight from three specialist models
of each token. Table 6 shows the average weights
of all the tokens in each set of data from three spe-
cialist models. And intuitively, each set of data
is primarily driven by the corresponding specialist
model. The prominence of code data is evident,
with the corresponding expert models significantly
outweighing the other two models. In mathemat-
ical data, code and mathematical models almost

Model

‘Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Overall

ArmoRM Selection 8.23 7.79 4.13 445 4.75 7.55 8.53 9.43 6.84
GPT-40 Selection 8.35 7.90 5.30 4.00 5.13 6.65 8.38 8.99 6.84
ULTRAFUSER \ 8.60 8.11 5.00 5.15 5.10 6.53 8.23 9.43 7.02

Table 5: Results of post-generation selection on MT-Bench. The highest results are bold.

Code -
Math -

Text II fose

-0.25

(a) Weights distribution of three specialist models for 100 text data samples.

Text -

code -J N NNNNNERRNERNRRRRRRER RN AR R AR RN RARNAR A RNRNRARNARRARNARRA R RRARNANENY
Math -

|* 0.50

-0.25

(b) Weights distribution of three specialist models for 100 code data samples.

code -JHi INRRARNRRANAR

|> 0.50
NRRRRARRNRRARNAE i

IR
vt - NN AR RN RO R R AR RN AR R RN RN R RN R RN AR RN R AR RR R A RN °%

(c) Weights distribution of three specialist models for 100 math data samples.

Figure 6: Weight distributions of 300 data samples from text, code, and math domains. Each column is a data point,
and each row is the average weight of one specialist model. The darker the color, the more average weight the model

gives to the tokens of this data point.

Avg. Weight Text Data Code Data Math Data

Wiext 0.45 0.23 0.18
Weode 0.29 0.59 0.39
Wmath 0.26 0.18 0.43

Table 6: Average weights from three specialist models
of different data.

equally dominate inference, with a marginal dif-
ference. This is more distinctly observable in the
sample-level distribution illustrated in Figure 6. De-
spite the fusion and further training of the models,
it’s evident that these specialized models still retain
their original functionalities and are now capable
of synergistic performance.

Post-Generation Selection. While ULTRAFUSER
merges specialist output at the token level, one
intuitive method is post-generation selection, i.e.
to choose one single output response for a spe-
cific sample out of three candidate answers pro-
duced by specialized models. Note that the selec-
tion technique is orthogonal to the ULTRAFUSER
framework and presumably can be applied to any
model-generated answers. In this part, we conduct
response selection with the three specialist mod-
els’ respective generations as well. We use reward
model ArmoRM (Wang et al., 2024) and GPT-40
to score and select response. As shown in Table 5,
ULTRAFUSER outperforms answer selection meth-
ods in general instruction following. Closed-source

reward model is better at selecting objectively cor-
rect answers for information extraction and STEM
problems, but falls behind in judging reasoning
problem. Overall, it suggests that post-generation
response selection for general instruction following
still faces great challenge and token-level merging
methods is promising.

4 Conclusion

This paper aims to integrate coding and mathe-
matical reasoning capabilities into a general lan-
guage model with as little loss as possible. We
present ULTRAFUSER, a simple framework to train
high-specialized models with a token-level gating
mechanism and a two-stage balanced training strat-
egy. Accompanied by the goal, we construct a
high-quality and diverse instruction tuning dataset,
ULTRACHAT 2, that contains 300,000 instructions
and responses from 3 domains, 72 meta-topics, and
1587 sub-topics. Our experiments demonstrate the
effectiveness of the proposed framework by show-
ing that fused models can be performative simul-
taneously in text understanding, code generation,
and mathematical reasoning and superior efficiency
over other fusing methods. In future work, the
proposed ULTRAFUSERcan also be adapted to do-
mains beyond the mentioned ones, for example, to
fuse language models that are specialized in differ-
ent languages.

Limitations

We regard the data distribution in training language
models in three domains in this study according to
the symbol systems and achieve promising empiri-
cal results in our experiments. However, the realis-
tic situation is far more sophisticated. In the field of
“text domain” alone, there are different tasks such as
common sense knowledge, specialized knowledge,
natural language reasoning, etc., not to mention the
existence of multilingualism. Our fused model may
yield less favorable results on other benchmarks.
In our training, no explicit selection mechanism is
introduced in order to make the method scalable
(force specialist models to process certain types of
data). We believe finer-grained models could be
trained under the spirit of ULTRAFUSER; that is,
the number of specialists is not necessarily three,
and the domains are also necessarily divided as
the same as the paper. For example, other sym-
bol systems (like DNA sequences) may also be
integrated into the framework. However, as more
specialized models are included, this may bring
unaffordable cost in terms of memory and time in
both training and inference as our method does not
display sparsity. More parameter-efficient training
and inference methods are potential research di-
rections under ULTRAFUSER’s framework. As for
the dataset used in this work, the ULTRACHAT 2
dataset is fully synthetically generated and fully ex-
cludes human engagement. Besides efficiency and
privacy benefits, the factuality and trustworthiness
of generated content can not be guaranteed.

References

Abien Fred Agarap. 2018. Deep learning using rectified
linear units (relu). ArXiv, abs/1803.08375.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Rachit Bansal, Bidisha Samanta, Siddharth Dalmia,
Nitish Gupta, Shikhar Vashishth, Sriram Ganap-
athy, Abhishek Bapna, Prateek Jain, and Partha
Talukdar. 2024. Llm augmented llms: Expanding

capabilities through composition.
arXiv:2401.02412.

arXiv preprint

Peter L Bartlett and Shahar Mendelson. 2002.
Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning
Research, 3(Nov):463-482.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregres-
sive language model. In Proceedings of BigScience
Episode# 5—Workshop on Challenges & Perspectives
in Creating Large Language Models, pages 95—-136.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proceedings of NeurIPS.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Aidan Clark, Diego De Las Casas, Aurelia Guy, Arthur
Mensch, Michela Paganini, Jordan Hoffmann, Bog-
dan Damoc, Blake Hechtman, Trevor Cai, Sebastian
Borgeaud, et al. 2022. Unified scaling laws for routed

https://api.semanticscholar.org/CorpusID:4090379
https://api.semanticscholar.org/CorpusID:4090379
https://api.semanticscholar.org/CorpusID:4090379
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2401.02412
https://arxiv.org/abs/2401.02412
https://arxiv.org/abs/2401.02412
https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
https://www.jmlr.org/papers/volume3/bartlett02a/bartlett02a.pdf
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2202.01169
https://arxiv.org/abs/2202.01169

language models. In International Conference on
Machine Learning, pages 4057-4086. PMLR.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Nico Daheim, Thomas Modllenhoff, Edoardo Maria
Ponti, Iryna Gurevych, and Mohammad Emtiyaz
Khan. 2023. Model merging by uncertainty-based
gradient matching. Preprint, arXiv:2310.12808.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547-5569. PMLR.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parame-
ter models with simple and efficient sparsity. The
Journal of Machine Learning Research, 23(1):5232—
5270.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764-10799. PMLR.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

10

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Gabriel Ilharco, Marco Tuilio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-
Enrich, Yuhuai Wu, Yuanzhi Li, and Francgois Char-
ton. 2023. Length generalization in arithmetic trans-
formers. arXiv preprint arXiv:2306.15400.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b. Preprint,
arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023b.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv
preprint arXiv:2306.02561.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. 2023.
Sparse upcycling: Training mixture-of-experts from
dense checkpoints. Preprint, arXiv:2212.05055.

Sneha Kudugunta, Yanping Huang, Ankur Bapna,
Maxim Krikun, Dmitry Lepikhin, Minh-Thang Lu-
ong, and Orhan Firat. 2021. Beyond distillation:
Task-level mixture-of-experts for efficient inference.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3577-3599.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.

https://arxiv.org/abs/2202.01169
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2310.12808
https://arxiv.org/abs/2310.12808
https://arxiv.org/abs/2310.12808
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2212.04089
https://www.cs.toronto.edu/~hinton/absps/jjnh91.pdf
https://www.cs.toronto.edu/~hinton/absps/jjnh91.pdf
https://www.cs.toronto.edu/~hinton/absps/jjnh91.pdf
https://arxiv.org/abs/2306.15400
https://arxiv.org/abs/2306.15400
https://arxiv.org/abs/2306.15400
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2212.05055
https://arxiv.org/abs/2212.05055
https://arxiv.org/abs/2212.05055
https://arxiv.org/abs/2110.03742
https://arxiv.org/abs/2110.03742
https://arxiv.org/abs/2110.03742
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180

Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Aitor Lewkowycz, Anders Johan Andreassen,
David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem
Anil, Imanol Schlag, Theo Gutman-Solo, et al.
2022. Solving quantitative reasoning problems with
language models. In Advances in Neural Information
Processing Systems.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092—-1097.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158—167, Vancouver,
Canada. Association for Computational Linguistics.

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:
Fine-tuned llama outperforms gpt-4 on arithmetic
tasks. arXiv preprint arXiv:2305.14201.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yuxuan Lou, Fuzhao Xue, Zangwei Zheng, and Yang
You. 2021. Cross-token modeling with conditional
computation. arXiv preprint arXiv:2109.02008.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

11

Basil Mustafa, Carlos Riquelme, Joan Puigcerver,
Rodolphe Jenatton, and Neil Houlsby. 2022. Multi-
modal contrastive learning with limoe: the language-
image mixture of experts. Advances in Neural Infor-
mation Processing Systems, 35:9564-9576.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023. Codegen?2:
Lessons for training llms on programming and natu-
ral languages. arXiv preprint arXiv:2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2022. Show your work: Scratch-
pads for intermediate computation with language
models. In Deep Learning for Code Workshop.

OpenAl. 2023. Gpt-4 technical report. arXiv.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. 2021.
Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems,
34:8583-8595.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2016. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In Inter-
national Conference on Learning Representations.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne
Longpre, Jason Wei, Hyung Won Chung, Barret
Zoph, William Fedus, Xinyun Chen, Tu Vu, Yuexin
Wu, Wuyang Chen, Albert Webson, Yunxuan Li, Vin-
cent Zhao, Hongkun Yu, Kurt Keutzer, Trevor Darrell,
and Denny Zhou. 2023a. Mixture-of-experts meets
instruction tuning:a winning combination for large
language models. Preprint, arXiv:2305.14705.

https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2305.06161
https://tatsu-lab.github.io/alpaca_eval/
https://tatsu-lab.github.io/alpaca_eval/
https://tatsu-lab.github.io/alpaca_eval/
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://arxiv.org/abs/2109.02008
https://arxiv.org/abs/2109.02008
https://arxiv.org/abs/2109.02008
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2206.02770
https://arxiv.org/abs/2206.02770
https://arxiv.org/abs/2206.02770
https://arxiv.org/abs/2206.02770
https://arxiv.org/abs/2206.02770
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2106.05974
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2305.14705
https://arxiv.org/abs/2305.14705
https://arxiv.org/abs/2305.14705
https://arxiv.org/abs/2305.14705
https://arxiv.org/abs/2305.14705

Sheng Shen, Zhewei Yao, Chunyuan Li, Trevor Dar-
rell, Kurt Keutzer, and Yuxiong He. 2023b. Scaling
vision-language models with sparse mixture of ex-
perts. arXiv preprint arXiv:2303.07226.

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik
Ramesh, Taylor Hearn, and Judy Hoffman. 2024.
Zipit! merging models from different tasks without
training. Preprint, arXiv:2305.03053.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma,
Hu Xu, Xi Victoria Lin, Baptiste Roziere, Jacob
Kahn, Daniel Li, Wen-tau Yih, Jason Weston, and
Xian Li. 2024. Branch-train-mix: Mixing ex-
pert llms into a mixture-of-experts LLM. CoRR,
abs/2403.07816.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A strong,
replicable instruction-following model. Stanford
Center for Research on Foundation Models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan,
Wei Bi, and Shuming Shi. 2024a. Knowledge
fusion of large language models. arXiv preprint
arXiv:2401.10491.

Fanqi Wan, Ziyi Yang, Longguang Zhong, Xiao-
jun Quan, Xinting Huang, and Wei Bi. 2024b.
Fusechat: Knowledge fusion of chat models. CoRR,
abs/2402.16107.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-
j-6b: A 6 billion parameter autoregressive lan-
guage model. https://github.com/kingoflolz/
mesh-transformer-jax.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao,
and Tong Zhang. 2024. Interpretable preferences
via multi-objective reward modeling and mixture-of-
experts. Preprint, arXiv:2406.12845.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8696-8708.

12

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak
Gadre, Rebecca Roelofs, Raphael Gontijo Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi,
Yair Carmon, Simon Kornblith, and Ludwig Schmidt.
Model soups: averaging weights of multiple fine-
tuned models improves accuracy without increasing
inference time. In International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 23965-23998.
PMLR.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang,
Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang. 2023.
Gpt can solve mathematical problems without a cal-
culator. arXiv preprint arXiv:2309.03241.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron
Courville, Behnam Neyshabur, and Hanie Sedghi.
2022a. Teaching algorithmic reasoning via in-
context learning. arXiv preprint arXiv:2211.09066.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yan-
ping Huang, Vincent Y Zhao, Andrew M Dai,
Zhifeng Chen, Quoc V Le, and James Laudon. 2022b.
Mixture-of-experts with expert choice routing. In Ad-
vances in Neural Information Processing Systems.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable and
transferable sparse expert models. arXiv preprint
arXiv:2202.08906.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jian-
feng Gao. 2021. Taming sparsely activated trans-
former with stochastic experts. arXiv preprint
arXiv:2110.04260.

https://arxiv.org/abs/2303.07226
https://arxiv.org/abs/2303.07226
https://arxiv.org/abs/2303.07226
https://arxiv.org/abs/2303.07226
https://arxiv.org/abs/2303.07226
https://arxiv.org/abs/2305.03053
https://arxiv.org/abs/2305.03053
https://arxiv.org/abs/2305.03053
https://arxiv.org/abs/2403.07816
https://arxiv.org/abs/2403.07816
https://arxiv.org/abs/2403.07816
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://arxiv.org/abs/2401.10491
https://arxiv.org/abs/2401.10491
https://arxiv.org/abs/2401.10491
https://arxiv.org/abs/2402.16107
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2309.03241
https://arxiv.org/abs/2309.03241
https://arxiv.org/abs/2309.03241
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2211.09066
https://arxiv.org/abs/2211.09066
https://arxiv.org/abs/2211.09066
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2110.04260
https://arxiv.org/abs/2110.04260
https://arxiv.org/abs/2110.04260

A Additional Experiments

A.1 Results on MT-Bench.

Table 7 shows the results on MT-Bench. Overall,
ULTRAFUSER achieves highest performance
across different categories of tasks, demonstrating
the effectiveness of our proposed expert fusing
methods compared to direct further tuning on
domain specialized model. It can also be seen
that UltraLM and its further-tuned version still
have advantage on some tasks like information
extraction and STEM-related problem solving,
while the code and math counterparts face
significant performance drop after further tuning.
What is worth noting is that all model merging
methods seem unable to follow instructions well,
even after further training on ULTRACHAT 2. The
results indicate the better generalizability of a text
specialized model over code and math domains in
terms of direct further tuning, while ULTRAFUSER
can successfully fuse them and enhance its general
instruction-following ability.

A.2 Impact of Further Tuning for Specialists

Figure 7 illustrates the effects after a single special-
ist model undergoes further training on ultrachat
2. The first conclusion is very intuitive: no model
can achieve improvements or maintain the best per-
formance across all benchmarks like UltraFuser
can. Text and math specialized models improved
in their weaker areas, but declined in their stronger
areas. The performance of the code specialized
model was quite unexpected, as it declined across
all tasks, possibly due to an overexposure to pure
code corpora during pre-training. From Figure 7
and Table 1, we can observe that the CodelLlama
model almost collapse after further training. We hy-
pothesize that extensive training on the full dataset
would severely impact Codel.lama’s performance,
possibly because it was trained on 500B code to-
kens, and too large a distributional shift could lead
to a dramatic decline in model effectiveness. The
result aligns with our motivation and intuition, in-
dicating that the specialized abilities need to be
reserved in a more effective way. We supplement
results that code and math specialized models only
trained on corresponding subsets, which is shown
in Table 8. The subset performance shows that the
abilities of specialized models can be enhanced by
directly using more similar distributions of their
own capabilities. And ULTRAFUSERcould effec-
tively reserve or even enhance the specialized per-

13

formance.

A.3 Case Study

In Section 3.4, we analyze the model expertise at
the sequence level and set level. In this section,
we provide cases at the token level to illustrate the
weight distributions of the three specialist models.
Figure 8 and Figure 9 show two cases randomly ex-
tracted from ULTRACHAT 2 code data and GSM8K
dataset. For coding data, almost all weights are as-
signed to code specialist model. For math data,
there is considerable weight given to code model
as well, given the fact that mathematical equation
is much alike code snippets. The assumption can
be validated by the fact that when it comes to non-
mathematical notation, the token weight distribu-
tion clearly favors the math specialist more. The
observation is in line with our expectation, that the
fused model can implicitly learn to allocate tokens
to suitable specialist to achieve better performance.
Meanwhile, similarity between domains could be
captured and their performance can be enhanced
jointly by related specialists.

B Related Work

Large Language Models for Language. With the
proliferation of model parameters, enhancements
in training data augmentation both in terms of quan-
tity and quality, and continuous refinements in train-
ing algorithms, LLMs have exhibited an enhance-
ment in language understanding, generation, and
generalization capabilities. These LLMs exhibit
remarkable proficiency in accomplishing a wide ar-
ray of natural language processing tasks, and show-
case formidable capabilities in in-context learning
and few-shot learning (Brown et al., 2020; Ouyang
et al., 2022; OpenAl, 2023; Chowdhery et al., 2022;
Zhang et al., 2022; Touvron et al., 2023b; Taori
et al., 2023; Chiang et al., 2023; Xu et al., 2023;
Ding et al., 2023; Jiang et al., 2023a). Despite
originating from NLP tasks, as LLMs evolve, the
boundaries between NLP tasks are gradually be-
coming blurred.

Large Language Models beyond Language.
LLMs excel in processing various symbol systems
including code, math symbols, DNA, and protein
sequences. Models like StarCoder (Li et al., 2023a)
and CodeLlama (Roziere et al., 2023), trained on
vast code repositories and interactions, are adept at
code generation, bug fixing, and explanation (Black
et al., 2021; Wang and Komatsuzaki, 2021; Black

Model Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Overall
UltraLM-2 8.83 7.98 5.20 2.90 4.00 6.74 8.08 9.46 6.62
CodeLlama 5.80 7.10 3.80 3.05 3.43 5.36 5.65 7.05 5.16
WizardMath 7.75 7.03 4.80 3.85 3.50 4.65 7.65 9.13 6.04
UltraLM-2+Further Tune 7.85 7.60 4.30 4.48 5.20 5.78 8.32 9.40 6.62
CodeLlama+Further Tune 7.33 6.60 3.85 2.25 3.68 5.20 4.68 5.10 4.84
WizardMath+Further Tune 7.18 6.90 4.95 4.25 4.55 5.18 7.55 7.98 6.07
Llama 30B + Further Tune 5.45 4.70 4.75 3.55 3.05 2.95 4.00 5.40 4.24
Task Arithmetic 1.80 2.70 2.05 1.15 0.90 1.00 1.81 2.00 1.68
Average Merging 7.28 7.06 5.05 4.00 3.68 6.18 7.93 8.90 6.26
BTX 2.89 3.58 2.45 2.20 243 2.00 3.03 2.40 2.62
FuseChat 7.55 7.05 5.08 2.40 3.53 6.60 7.03 8.99 6.03
ULTRAFUSER ‘ 8.60 8.11 5.00 5.15 5.10 6.53 8.23 9.43 7.02

Table 7: Results on MT-Bench. The highest and second results are bold and underlined, respectively.

Model Avg of Text Tasks Avg of Code Tasks Avg of Math Tasks Avg of All Tasks
WizardMath 39.15 10.98 29.995 29.91
WizardMath + Math Subset 46.66 17.68 30.31 33.17
CodeLlama + Code Subset 63.05 48.78 14.52 36.78
UltraFuser 73.51 53.03 30.58 47.48

Table 8: Results of specialized models trained on the corresponding subset.

et al., 2022; Wang et al., 2021; Chen et al., 2021;
Li et al., 2022; Nijkamp et al., 2022, 2023; Fried
et al., 2022; Gunasekar et al., 2023; Allal et al.,
2023). Similarly, math-focused models, such
as Minerva (Lewkowycz et al., 2022) and Math-
GLM (Yang et al., 2023), have been developed
through specialized training and fine-tuning strate-
gies, including the use of external tools and Chain
of Thought techniques (Jelassi et al., 2023; Liu and
Low, 2023; Nye et al., 2022; Zhou et al., 2022a;
Chen et al., 2022; Yang et al., 2023; Gao et al.,
2023; Schick et al., 2023). These models, requiring
extensive training, highlight the intensive data
demands of LLMs in specialized domains. For ex-
ample, CodeLlama uses 500 billion tokens for code
training, 100 billion tokens for Python training,
and more than 20 billion tokens for fine-tuning.

The Fusion of Large Language Models.
Mixture-of-Experts (MoE) is the neural archi-
tecture that distributes tasks among multiple
specialized networks (experts) and determines their
responsibilities via a gating network (Jacobs et al.,
1991). MoE enhances the capabilities of LLMs and
has been extensively utilized (Clark et al., 2022;
Lou et al., 2021; Kudugunta et al., 2021; Lepikhin
etal., 2020; Mustafa et al., 2022; Zhou et al., 2022b;
Riquelme et al., 2021; Shen et al., 2023b; Jiang
et al., 2023b; Wan et al., 2024a; Jiang et al., 2024).
Many studies have endeavored to comprehend the
Mixture-of-Experts (MoE) from the perspective

of computational cost, with a specific focus on its
sparse nature (Shazeer et al., 2016; Zoph et al.,
2022; Zuo et al., 2021; Du et al., 2022; Fedus et al.,
2022; Komatsuzaki et al., 2023; Shen et al., 2023a).
The prevailing belief is that the MoE approach
can scale up model parameters without incurring
an escalation in computational expense. Some
work suggests that experts do not necessarily have
distinct expertise (Jiang et al., 2024), while other
work verifies the effectiveness of expert specializa-
tion (Dai et al., 2024). We believe both ways could
achieve promising performance, unlike those that
train MoE models from scratch, this paper seeks to
fuse highly specialized models in the fine-tuning
phase. Compared to methods like knowledge dis-
tillation and knowledge fusion (Wan et al., 2024a),
our approach aims to achieve optimal performance
by retaining the specialized models and learning
to fuse the expertise directly, avoiding potential
performance loss brought by inaccurate fashion
weight estimation and further distillation training.

C Implementation Details

C.1 More Details of Implemented Methods

The gating module is implemented as a two-layer
linear model with ReLU (Agarap, 2018) activation
in between. The hidden size of the module is set
according to the hidden size of the specialized mod-
els. The gating layer is trained for N7 = 400 steps

14

20 90 90

832 W UltraLM-2-13B Codellama-13B WizardMath-13B
80 = UltraLM-2-13B + Further Tuning 80 mEE Codellama-13B + Further Tuning 80 mm \WizardMath-13B + Further Tuning
70 70 69.2 70
60 60 s6.9
50 50 488

41.0

40 40
30 250250 26| 30 231 27 256252
20 20

0 0
ruth Alpaca HEval GSM8K MATH SAT AQuA Truth Alpaca HEval GSM8K MATH SAT AQuA Truth Alpaca HEval GSM8K MATH SAT AQuA

(a) Text-specialized models. (b) Code-specialized models. (c) Math-specialized models.

Figure 7: Performance comparisons between specialist models and the further training versions of them.

%
2@
0.6
3
N e | e L e
0.4
£
B
=
-0.2
m‘in ‘(a‘rr ;: <0be> ‘ 7n%ax ‘ nl_}m 7‘= 7a‘rr ‘[6 i <0be> ‘7 r}\in ‘ nu‘m 7‘=
(a) Case study: tokens and weights of code data (a).
£
@
) 0.6
]
o
o
5 | &= e
8
=
-0.2
érr f 6 i <0be> <0be> ‘ f‘or ‘i ‘in érr ‘ <0be> ‘if ‘i ; n"|ax m,:m
(b) Case study: tokens and weights of code data (b).
%
@
0.6
3
S
< 0.4
H
=
-0.2
<0be> rr‘\ax ndm = ‘i <0be> élif ‘i ,‘< n‘win mjm ‘ <0be> m‘in
(c) Case study: tokens and weights of code data (c).
%
.ﬂ_}
9] 0.6
°
S
< 0.4
]
=
-0.2
nu‘m _= ‘i <Obe> <0be> ; ,re‘turn Jr;ax ‘ nu‘m B r;ﬁn nu‘m <Obe> <0be> tést _= ‘[
(d) Case study: tokens and weights of code data (d).
%
2@
0.6
Q
k]
o
o
>~ e e
£
3
=
-0.2

'] ' ' ' i l] ! ! ' ' ' ' ' '
1 <Ox0A> print (find max min (test)N <O0x0A> ' <Ox0A> <OxO0A> In this _program

(e) Case study: tokens and weights of code data (e).

Figure 8: Weight distributions of some pieces of tokens from a sample of code data.

at the first training stage with sample size n = 64 with Llama backbone, we use 1772 = 2e — 5, sam-
for all experiments and learning rate 771 = 2e —51is ple size n = 32 with cosine scheduler. Note that
used with a cosine scheduler. For the second stage our framework requires the consistent tokenization

15

Math Code Text
.

_set , he retrieved _ 2 B balls . <Ox0A> In the first _set he retrieved _ 2 B

(a) Case study: tokens and weights of math data (a).

Math Code Text
\

-0.2

+ 4 balls . <Ox0A> In total . he retrieved B + 2 B + 2 B

(b) Case study: tokens and weights of math data (b).

Math Code Text

0.5

[0.4

HTEENETET ENE e .
-0.2

+ 4 = 5 B + 4 = 1 9 balls . <O0x0A> Th us

(c) Case study: tokens and weights of math data (c).

4

Math Code Text
.

 HEET "EEEES S . l

5 B = 1 9 - 4 _= _ 1 5 balls . <O0x0A> There fore

(d) Case study: tokens and weights of math data (d).

2

Math Code Text
.

-0.2

in the third _set , R ory retrieved _B _= 1 5 _ 5 = << 1 5

(e) Case study: tokens and weights of math data (e).

Figure 9: Weight distributions of some pieces of tokens from a sample of math data.

strategy across all specialist models. Therefore, we ~ CHAT 2 under the same hyper-parameter setting
use the original Llama-2-13B tokenizer for ULTRA- with ULTRAFUSER.

FUSER training. All experiments are conducted

on 16 x 80GB A100 GPUs and use AdamW opti- Table 9 and Table 10 show the conversation tem-
mizer (Loshchilov and Hutter, 2017). Apart from plates we use for each specific specialist model and
the curated ULTRACHAT 2, we also employ extra the prompt for converting datasets to instructions in
instruction tuning datasets from both math and code ~ evaluation. In training, each example is wrapped by
domains to enrich instructional format diversity. three different conversation templates and fed into
Specifically, we use the Evol-Instruct dataset (Luo the respective model. In inference, dataset-specific
et al., 2023b,a) for programming and the Math- prompt is used to wrap the example before conver-
Instruct training set (Yue et al., 2023) for math sation template (if applicable). Table 11 presents
problems. We conduct comprehensive search and ~ prompt for answer selection with GPT-4o. For each
filtering (13 grams) to avoid data contamination. — sample, answers from three specialist models are
As for baselines, we use scaling coefficient 1.0 for ~ randomly shuffled to avoid position bias.

Task Arithmetic method (Ilharco et al., 2023). All

further-tuned baselines are fine-tuned with ULTRA- The statistics of the curated dataset is shown in
Table 12.

16

Model Conversation Template

UltraLM-2 User: {instruction}\nAssistant:
CodelLlama <s>[INST] {instruction} [/INST]
Below is an instruction that describes a task.
WizardMath Write a response that appropriately completes the request.\n\n

Instruction:\n{instruction}\n\n### Response:

Table 9: Model-specific conversation templates for training and evaluation.

Dataset ‘ Evaluation Prompt

TrathfulQA Judge the correctness of a given answer. Question: {question}\n
Answer: {answer}\n Is the answer correct? Return Yes or No.
Please give helpful, very detailed, and polite answer

Alpaca to the user’s question below.

\n Question: {question}

Table 10: Dataset-specific prompts used for evaluation.

Answer Selection Prompt for GPT-40

You are a helpful assistant in selecting the best response set for the instruction below.
The best response is the most helpful, honest, and harmless one.
Note that there are two consecutive instructions and one response for each.

[Start of instruction]
{instruction}

[End of instruction]

Below are the three responses.
[Start of response set 1]
{responsel}

[End of response set 1]

[Start of response set 2]
{response2}

[End of response set 2]

[Start of response set 3]
{response3}

[End of response set 3]

Which response set is the best?

Output "response set 1", "response set 2" or "response set 3" directly.

Table 11: Answer selection prompt for GPT-40 on MT-Bench.

D Efficient Inference

We implement the inference of our fused model on
the existing inference framework, vLLM (Kwon
et al., 2023). Unlike other MoE models supported
by vLLM, such as Mixtral (Jiang et al., 2024),
our fused model requires different input prompts
and the maintenance of multiple key-value caches
within multiple models. Modifying the model im-
plementation within vLLM directly to accommo-
date these requirements can be complex and may
conflict with the PageAttention mechanism (Kwon

17

et al., 2023) due to the use of multiple key-value
caches. Therefore, we instead partition the GPU
memory into several parts, each running a single
model using a vLLM instance, and then fusing the
output to form a fused model.

vLLM inherently supports streaming output,
which returns tokens to the user-end token-by-
token, and each token is produced by a sampler
function applied on the hidden states of the LLM.
We change the implementation: in each iteration,
we return the hidden states instead of the token:

o

5

Text Part Code Part Math Part
Data 100,000 100,000 110,000
Topics 30/1100 21/407 21/80
Technology 1' Web Development u Algebra

Artificial Intelligence HTML Basics Polynomials
Smartphone Javascript Essentials Factoring
Quantum Computing Web Security Quadratic Equations

Examples % Education B Mobiel App Development «/ Discrete Mathematics
Inclusive education User Interface Design Graph Theory
Classroom management Responsive Design Combinatorics
Critical thinking Database Management Number Theory

Table 12: Statistics of ULTRACHAT 2 dataset. # Topics are the number of meta-topics and sub-topics.

return {
"sampler”:
"data": {
"hidden_states”: hidden_states,
"sampling_metadata":
sampling_metadata,

self.model.sample,

This allows us to pause the model generation,
giving us control over when to predict the next to-
ken and when to continue generating future tokens.
We then make the model instances communicate
and fuse the logits:

logits = [
1lIlm.1llm_engine.step()
for 1lm in 1lms

]

fused_logits = fuse_function(*x[logit["”
data”] for logit in logits])

|

The next token is predicted and sampled us-
ing the fused output, and we control the model
instances to resume generation. While our sys-
tem comprises a combination of three models, it
is worth noting that the core computations of each
model during the inference process are indepen-
dent of one another. This allows for the backbone
computations to be performed in parallel across
four separate GPUs, with the results subsequently
being merged.

E Discussion

Discussion on ULTRAFUSER Framework. Com-
paring to the line of works on model merging
that manipulates the inner parameters of existing

18

models in either supervised or unsupervised man-
ner (Daheim et al., 2023; Stoica et al., 2024; Wan
et al., 2024a; Bansal et al., 2024), our framework
tackles the problem in a more straightforward way
by directly merging the output and training with
mixed high-quality instructional dataset to further
adapt the model. The proposed framework follows
the spirit of instruction tuning, and the training is
conducted with direct supervised fine-tuning. Em-
ploying a diverse set of instruction data, we show
that the resulting model is equipped with desirable
expertise and generalizes well to different domains
of data. Moreover, our framework does not strictly
require a similar model structure across specialists,
and the structure design of the gating module on
top of specialists can also be flexibly adjusted to
match the desired learning capacity.

Why Not Sample-Level? One direct and simple
approach to fusing specialized models is to train
them in a sample-level manner. That is, freezing the
specialist models and directly train a selector, let-
ting one specialist respond to a whole query. This
approach seems to safeguard the lower-bound per-
formance for the model effectively, so why does
this paper opt for token-level training rather than
sample-level? The main reason is that, although
this paper categorizes the data into three distinct
symbolic systems, they may blend together in real-
world queries (for instance, code data may contain
extensive text intended for documentation). Simi-
larly, while these three capabilities might weaken
each other in some respects, they could also en-
hance one another in different contexts, which is
demonstrated in Section 3.2. We choose to design
the fused model to seek a higher performance ceil-
ing.

F Gradient Flow Analysis

In this section, we provide a theoretical analysis
of the ULTRAFUSER framework, focusing on the
gradient flow during training. This analysis offers
insights into the model’s learning dynamics and
the interactions between specialist models and the
gating mechanism.

F.1 Model Formalization

Let Mo = {Eiext, Fcode, Pman} be the set of
specialist models. For an input sequence x =
(™M), ..., 2(D), each specialist E; produces hidden
gating network ¢ : R? — R? maps the hidden state
to a 3-dimensional weight vector. The output of

the fused model for token z(?) is defined as:

states i’ and logits ng) for each token z(¥). The

¥ = ga (Mo (@) = ()T lolets ot O]
3)

where ' w'(i) ' _
Softmax (g(hih)lg(A) [l g (b

math)) ’ and | ’
denotes concatenation.

F.2 Training Objective

The training objective is to minimize the cross-
entropy loss:

L(60,®) = Egy)~p |~ 24" log(ge(Mo(2")))
Z @

where D is the training distribution, and y is the
ground truth.

F.3 Gradient Flow Analysis

We analyze the gradient flow to understand how
the model learns and how information propagates
through the network during training. Consider the
loss L for a single token z(:

76 _y(i) log(g@(M@(ﬂU(i)))) 5)

The gradient with respect to the parameters of
expert j (6;) can be decomposed as:

(4)

oL® LW 9ge(Me(x)) Do)
90; dgo(Me(z)) do” 96
©6)

19

We will give more details for each term.
oL@ . . .
B9a (Mo (@) 18 the gradient of the loss with re-
spect to the final output. It’s the same for all ex-
perts and doesn’t depend on the gating mechanism.
@ ; .
W = wj(.z) represents how changes in
o}
J
the expert’s output affect the final fused output. It
. . . 90l
equals the gating weight for expert j. —;— repre-
ovj
sents how the expert’s output changes with respect
to its parameters. It’s specific to each expert’s ar-
chitecture.
The full gradient for expert j can thus be written

as:

i i (1)
oL@ N0 oL@ | ' 8oj o
Bej J 89@(M@($(2))) 80]

The gradient flow analysis of the model reveals
several key insights into its learning dynamics and
specialization mechanisms. The gating weight
functions as an adaptive learning rate for each ex-
pert. This adaptive mechanism allows experts to
receive stronger gradient signals for tokens they
are more adept at handling, thereby encouraging
the fusing over time. The modulation of gradi-
ent magnitudes by gating weights plays a crucial
role in maintaining a balanced learning process.
This modulation prevents any single expert from
dominating, ensuring that each expert receives gra-
dients proportional to its relevance. Consequently,
the learning process exhibits stability, potentially
leading to smoother convergence compared to train-
ing each expert independently. Moreover, the gat-
ing mechanism can be seen as an information bot-
tleneck, compelling the model to make decisions
about which expert’s knowledge is most relevant
for each token. This forced decision-making pro-
cess potentially results in more robust and inter-
pretable representations within the model. The
gating-weighted gradient flow also provides a form
of implicit regularization, as it prevents experts
from updating on tokens they’re not responsible
for, potentially reducing the risk of overfitting.

Furthermore, we can approxiamate a generaliza-
tion bound using the Rademacher complexity of
the fused model:

R(Furrraruser) < Lg Y w;R(F;), (8)
J

where R denotes Rademacher complexity (Bartlett
and Mendelson, 2002), F; is the function class of

expert 7, Lg is the Lipschitz constant of the gating
network, and w; is the average weight assigned
to expert j. This bound suggests that the general-
ization capability of ULTRAFUSER is related to
the weighted sum of the complexities of individual
experts and the complexity of the gating network.
This provides a justification for the model’s ability
to combine specialized knowledge while maintain-
ing good generalization performance.

G Prompts of ULTRACHAT 2
Construction

We provide the prompt templates for constructing

ULTRACHAT 2 below (code part as an example).

Throughout the process, we also manually check
all the generated topics and sampled instructions to
ensure plausibility.

Step 1: Prompt for Meta-topic Genera-
tion

Generate {number} different and represen-
tative topics about programming. Each
topic should be a phrase describing a sub-
field that relies highly on coding and pro-
gramming. Each topic should be a concise
phrase or term describing a specific subfield,
paradigm, or application area in program-
ming. Ensure the selection covers a diverse
range of specializations, from foundational
concepts to emerging technologies.

20

Step 2: Prompt for Sub-topic Generation

Generate {number} different sub-topics un-
der "{meta-topic}". Each should be a repre-
sentative component or technique required
for {meta-topic}. Each sub-topic should be
a specific, representative component, tech-
nique, or concept that is integral to {meta-
topic}. Aim for a comprehensive overview
that would be valuable for both newcomers
and experienced practitioners in the field of
{meta-topic}.

Ensure the selection:

- Covers a range of fundamental to advanced
elements.

- Reflects current industry practices and aca-
demic research.

- Includes both widely used and emerging
approaches.

- Represents various aspects (e.g., theo-
retical foundations, practical applications,
tools, methodologies).

For each sub-topic:

- Provide a concise name (2-5 words).

- Include a brief (1-2 sentence) explanation
of its relevance to {meta-topic}.

- If applicable, mention a common use case
or implementation example.

Step 3: Prompt for Instruction Genera- - Step 4: Prompt for Instruction Compli-
tion cation

Generate {number} distinct, comprehensive Modify the instruction below to make it
instructions related to "{sub-topic}" within more complex. Think about when and why
the broader domain of {meta-topic}. Fo- people would give such instruction and how
cus on addressing prevalent challenges, best to make it more natural. You can add more
practices, and advanced techniques in this detailed requirements or add more relevant
field. Each instruction should be designed usage contexts to enrich the instruction.
to elicit a programming-focused response, Consider the following aspects:
whether it involves writing new code, mod- - Potential scenarios or use cases where this
ifying existing code, or debugging given instruction might be given.
code snippets. - The underlying motivations or goals of the
Ensure that each instruction is: person providing such an instruction.
- Self-contained, providing all necessary - Specific requirements or constraints that
context and information required to formu- could be added to increase complexity.
late a complete response. - Relevant industry standards, best practices,
- Specific and actionable, clearly defining or methodologies that could be incorpo-
the expected output or solution. rated.
- Technically accurate and up-to-date with - Possible variations or alternative ap-
current industry standards. proaches to the task.
- Scalable in complexity, suitable for vari- {instruction }
ous skill levels from beginners to advanced Output the new instruction directly. Your
practitioners. output should be a single, cohesive instruc-
- Relevant to real-world applications or sce- tion that incorporates these elements with-
narios in the {meta-topic} domain. out explicitly listing them.
Present the instructions directly, without in-
troductory text or numbering. Each instruc- Step 5 (Optional): User Simulation
tion should stand alone as a comprehensive Prompt for Multi-turn Conversation
programming task or challenge.

\ Above is a conversation between a user and

an intelligent assistant. Now suppose you
are the user, say something to continue the
conversation based on the given context.
Your message should be concise, informal,
and consistent with the established tone and
topic of the conversation. Aim to advance
the discussion naturally, as if you were gen-
uinely engaged in this exchange.

21

	Introduction
	Our Approach
	Model
	Data Synthesis

	Experiments
	Experimental Settings
	Results
	Ablation Study
	Analysis

	Conclusion
	Additional Experiments
	Results on MT-Bench.
	Impact of Further Tuning for Specialists
	Case Study

	Related Work
	Implementation Details
	More Details of Implemented Methods

	Efficient Inference
	Discussion
	Gradient Flow Analysis
	Model Formalization
	Training Objective
	Gradient Flow Analysis

	Prompts of UltraChat 2 Construction

