
Vision Language Model Distillation Using Partial Information Decomposition

Stephen D. Liang 1

Abstract
Vision-Language Models (VLMs) have achieved
remarkable success by integrating visual and tex-
tual modalities, enabling advancements in tasks
like image captioning and multimodal retrieval.
However, the substantial computational cost and
large model sizes hinder their deployment in
resource-constrained environments. This paper in-
troduces a novel approach to VLM distillation by
incorporating synergetic information—capturing
emergent properties from the interaction between
visual and textual modalities—into the distilla-
tion framework. By leveraging Partial Informa-
tion Decomposition (PID), we decompose mutual
information into unique, redundant, and syner-
gistic components, explicitly optimizing the stu-
dent model to retain critical multimodal interac-
tions. Our proposed framework integrates con-
trastive loss, KL divergence, L2 regularization,
and a synergy term into the total loss function.
Experimental results demonstrate that incorporat-
ing synergetic information significantly enhances
retrieval performance across image-to-text and
text-to-image tasks compared to traditional distil-
lation approaches. Although the student model
(ResNet-34 with a 2-layer transformer) lags be-
hind the teacher model (CLIP ViT-B/16) due to
differences in capacity and lack of pretraining, the
proposed method consistently narrows the perfor-
mance gap. This work highlights the importance
of synergetic information in VLM distillation and
sets a foundation for future exploration into scal-
ing student models, pretraining strategies, and op-
timizing synergy-driven objectives. Our findings
underscore the transformative potential of synergy
in developing lightweight, efficient VLMs with-
out compromising multimodal understanding and
performance.
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1. Introduction
Recent advances in vision-language models (VLMs) have
led to powerful systems capable of understanding and gen-
erating descriptions of visual content in natural language.
Models such as CLIP (Contrastive Language–Image Pre-
training) (Radford et al., 2021), ALIGN (A Large-scale Im-
aGe and Noisy-text embedding) (Jia et al., 2021), ALBEF
(Align Before Fuse) (Li et al., 2021), and BLIP (Bootstrap-
ping Language-Image Pre-training) (Li et al., 2022) have
demonstrated impressive performance on tasks including im-
age captioning, visual question answering, and image-text
retrieval. As these models become increasingly sophisti-
cated, they also become larger and more computationally
expensive, making them challenging to deploy in resource-
constrained settings such as mobile devices, embedded sys-
tems, or real-time applications. To address these limitations,
model compression techniques—particularly knowledge dis-
tillation (Hinton et al., 2015; Gou et al., 2021) have emerged
as promising avenues to preserve model performance while
reducing complexity and inference cost.

In knowledge distillation, a smaller student model learns
from a larger teacher model by matching its outputs, inter-
mediate representations, or latent distributions (Hinton et al.,
2015; Gou et al., 2021; Sanh et al., 2019). Distillation has
shown significant promise for language models (e.g., Dis-
tilBERT (Sanh et al., 2019)) and computer vision models,
and has increasingly been applied to multimodal domains
to create efficient vision-language students that inherit the
capabilities of large-scale teacher models (Shen et al., 2022;
Fang et al., 2021). However, the transfer of knowledge in
multimodal settings is not limited to the alignment of final
outputs or feature distributions; it also depends on how vi-
sual and textual information interact within the model. We
posit that capturing the synergy, a form of complementary
information that arises from the joint presence of multiple
modalities beyond what is available from each modality
alone, and is key to effective VLM distillation. More related
work on VLM distillation is in Appendix A.

The concept of synergy has roots in information theory,
where it is part of the partial information decomposition
(PID) framework (Williams & Beer, 2010; Bertschinger
et al., 2014). Synergy captures the emergent joint informa-
tion that does not reside fully in either modality alone. In the
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context of VLMs, high synergy implies that the joint visual-
textual representations encode richer semantics than the
separate vision-only or text-only streams. Preserving this
synergy during distillation ensures that the student model
can replicate the teacher’s ability to integrate and interpret
multi-modal cues effectively.

Our main contributions in this paper are as follows:

1. We conduct an in-depth analysis of the visual and tex-
tual modalities in VLM through PID and propose a
distillation framework based on synergetic informa-
tion.

2. We introduce an efficient method to compute syner-
getic information using cosine similarity, providing a
practical and scalable solution.

3. We design a comprehensive framework that integrates
contrastive loss, KL divergence, L2 regularization, and
a synergy term into the overall loss function, enhancing
the distillation process.

4. Our experimental results demonstrate that incorporat-
ing synergetic information significantly improves re-
trieval performance for both image-to-text and text-to-
image tasks, surpassing the performance of traditional
distillation approaches.

2. PID for VLM Distillation
2.1. Introduction to PID

Mutual information (MI) quantifies the shared information
between two random variables. In the context of VLMs,
mutual information between vision (V ) and text (T ) modal-
ities with respect to a ground truth label Y can be expressed
as (Liang, 2021; Cover & Thomas, 2006):

I(V ;T ) =
∑
v∈V

∑
t∈T

p(v, t) log
p(v, t)

p(v)p(t)
(1)

By definition, I(V ;T ) is non-negative, ensuring I(V ;T ) ≥
0.

Partial Information Decomposition (PID) further dissects
mutual information into unique, redundant, and synergistic
contributions, which is particularly useful in VLM distilla-
tion (Williams & Beer, 2010). PID enables us to analyze
how visual and textual features interact to provide informa-
tion about the target ground truth label Y . The decomposi-
tion of mutual information for the pair (V, T ) with respect
to Y is defined as (Williams & Beer, 2010):

I(V, T ;Y ) = R(V, T ;Y ) + S(V, T ;Y )

+U(V ;Y |T ) + U(T ;Y |V ) (2)

Where:

• R(V, T ;Y ) measures redundant information about Y
that is captured by both V and T .

• S(V, T ;Y ) represents the synergetic information about
Y that emerges only when V and T are combined.

• U(V ;Y |T ) quantifies the unique contribution of V in
predicting Y that is not present in T .

• U(T ;Y |V ) describes the unique information T pro-
vides about Y that is absent from V .

Figure 1 illustrates the breakdown of mutual informa-
tion I(V, T ;Y ). The red region corresponds to redun-
dancy R(V, T ;Y ), while the blue area represents syn-
ergy S(V, T ;Y ). The orange and green areas highlight
the unique contributions of vision and text modalities,
U(V ;Y |T ) and U(T ;Y |V ), respectively (Williams & Beer,
2010).

The mathematical formulation for each component is given
by (Williams & Beer, 2010):

R(V, T ;Y ) =I(V ;T ) (3)
S(V, T ;Y ) =I(V, T ;Y )− I(V ;Y |T )

− I(T ;Y |V )− I(V ;T ) (4)
U(V ;Y |T ) =I(V ;Y |T ) (5)
U(T ;Y |V ) =I(T ;Y |V ) (6)
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Figure 1. Partial Information Decomposition (PID) for VLM dis-
tillation. The figure shows redundant information R(V, T ;Y ),
synergistic information S(V, T ;Y ), and unique components
U(V ;Y |T ) and U(T ;Y |V ) (Williams & Beer, 2010).

2.2. VLM Distillation Using PID

VLMs have achieved significant success by effectively com-
bining visual and textual modalities, enabling advanced
capabilities such as image captioning, visual question an-
swering, and multimodal retrieval. However, these models
are often computationally expensive, limiting their deploy-
ment in resource-constrained environments. Distillation
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offers a solution by transferring the knowledge of a large
teacher model to a smaller student model while preserving
performance. This section introduces a PID-driven distil-
lation framework using synergetic information, which inte-
grates multiple objectives to enhance the effectiveness of
VLMs while maintaining computational efficiency. Syn-
ergetic information plays a crucial role in vision-language
model distillation as it captures the emergent properties of
multimodal interactions, which are central to the success of
VLMs.

Computing synergetic information directly using mutual
information, which is theoretically appealing but presents
practical challenges, especially in high-dimensional settings
like multimodal embeddings. We propose to compute the
synergy as:

Rsynergy = cos(sjoint, tjoint)−
1

2
(cos(sI , tI) + cos(sT , tT )) ,

(7)
where cos(u, v) denotes the cosine similarity between em-
beddings u and v, computed as:

cos(u, v) =
u · v

∥u∥∥v∥
. (8)

Here, sjoint and tjoint represent the concatenated embeddings
of image and text for the student and teacher models, re-
spectively. Similarly, sI , tI are the individual image embed-
dings, and sT , tT are the text embeddings. This formulation
captures the additional information (synergy) gained by
jointly processing image and text modalities compared to
treating them separately.

Our proposed distillation framework integrates PID and
multiple loss functions to effectively transfer knowledge
from the teacher to the student model. More loss functions
are described in Appendix B.

3. Experiments
We use CLIP ViT-B/16 as the teacher model, comprising
a 12-layer Vision Transformer (86M params) and a text
encoder (63M params), totaling 149M parameters (Ope-
nAI, 2021; Dosovitskiy et al., 2020). The vision encoder
processes 16×16 image patches, while the text encoder pro-
duces 512-dimensional embeddings for tokenized inputs.

The student model is based on ResNet-34 (21.8M params)
and a 2-layer transformer text encoder (31M params), total-
ing 52.8M parameters. The text encoder uses a vocabulary
size of 49,408, context length of 77, and embedding dimen-
sion of 512. This makes the student a lightweight alternative
suitable for knowledge distillation.

We use the MS COCO dataset, consisting of 82,783 training
and 40,504 validation images (Lin et al., 2014). Each image
is annotated with object segmentations and five captions,

supporting multimodal learning and retrieval tasks.

In the process of VLM distillation, a widely adopted metric
for this purpose is Recall@K, which assesses the model’s
ability to retrieve relevant items in cross-modal retrieval
tasks (Patel et al., 2022). Recall@K quantifies the frequency
at which the correct match appears within the top K predic-
tions. Mathematically, Recall@K is defined as (Patel et al.,
2022):

Recall@K =
Number of relevant items in top-K

Total number of relevant items
. (9)

Recall@1, for instance, measures the percentage of queries
where the correct result is the top-ranked output, while
Recall@5 and Recall@10 expand this to the top 5 and top
10 results, respectively.

VLMs are often evaluated through two primary retrieval
tasks: image-to-text and text-to-image retrieval. The train-
ing of the student model was performed for 10 epochs based
on the loss function in (20). The objective was to minimize
contrastive loss, KL-divergence, and L2 loss while maxi-
mizing the synergy gain. We selected hyperparameters as
τ = 0.05 (in contrastive loss), α = 1.0, β = 100 (due to
the small magnitude of L2 distance), and γ = 1.2.

In Fig. 2, the plot illustrates the progression of losses and
synergy gain across epochs. It can be observed that the over-
all loss decreases consistently, indicating effective learning
and convergence. We set τ = 0.05 to sharpen the contrastive
softmax distribution, improving separation between positive
and negative pairs (Radford et al., 2021). β = 100 was used
to scale the small-magnitude L2 loss, and γ = 1.2 balanced
the synergy term. These values were selected based on loss
trends in Fig. 2, ensuring improved alignment and stable
convergence of the student model.

Figure 2. Loss and metric progression over 10 epochs during the
training of the student model. The figure shows average loss,
contrastive loss (CL), KL-divergence, L2 loss, and synergy gain.

Table 1 summarizes the recall performance at different levels
(Recall@1, Recall@5, Recall@10) for both image-to-text
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Table 1. Performance Comparison of Student and Teacher Models in VLM Distillation (Recall %)
Model (Loss Configuration) Image-to-Text Retrieval

Recall@1 Recall@5 Recall@10
Student (Contrastive Loss) 4.36 13.69 20.55
Student (Contrastive Loss + β× L2 Loss) 5.04 15.70 23.35
Student (Contrastive Loss + α× KL Loss) 5.73 16.95 25.24
Student (Contrastive Loss - γ× Synergy) 5.99 17.27 25.40
Student (Contrastive + α× KL Loss - γ× Synergy) 6.84 19.29 27.86
Student (Contrastive + α KL Loss + β L2 Loss - γ Synergy) 7.20 19.94 28.83
Teacher (ViT-B/16) 17.81 34.09 42.46

Model (Loss Configuration) Text-to-Image Retrieval
Recall@1 Recall@5 Recall@10

Student (Contrastive Loss) 3.55 11.60 17.97
Student (Contrastive Loss + β× L2 Loss) 4.11 13.11 19.93
Student (Contrastive Loss + α× KL Loss) 5.13 15.50 23.04
Student (Contrastive Loss - γ× Synergy) 4.68 14.55 21.87
Student (Contrastive + α× KL Loss - γ× Synergy) 5.66 16.76 24.64
Student (Contrastive + α KL Loss + β L2 Loss - γ Synergy) 5.79 17.08 25.14
Teacher (ViT-B/16) 14.69 29.87 38.28

and text-to-image retrieval tasks. The results demonstrate
the progressive improvement achieved by adding compo-
nents to the loss function. For comparison and references,
we also summarize the pretrained ViT-B/16 model perfor-
mance for MSCOCO dataset in Table 1.

From Table 1, we observe that the baseline student model
using only contrastive loss achieves the lowest recall scores
across all retrieval tasks. By introducing L2 loss (β = 100),
there is a noticeable improvement, with Recall@1 increas-
ing by approximately 0.68% for image-to-text and 0.56% for
text-to-image retrieval. However, this gain remains modest
compared to the introduction of synergy penalties.

The model trained with α× KL loss improves performance
further, particularly in Recall@1 metrics. Nevertheless, the
most significant performance boost is seen when synergetic
information is integrated into the loss function. The combi-
nation of contrastive loss and synergy (γ = 1.0) increases
Recall@1 by 1.63% for image-to-text and 1.13% for text-
to-image retrieval over the baseline.

A more refined model, incorporating KL divergence, L2 loss,
and synergy penalties, achieves the highest recall scores.
This configuration results in Recall@1 of 7.20% for image-
to-text retrieval and 5.79% for text-to-image retrieval—both
representing substantial gains over simpler loss formula-
tions.

4. Conclusions and Future Work
In this paper, we have introduced a novel approach to VLM
distillation by incorporating synergetic information, a key

element often overlooked in conventional distillation meth-
ods. By decomposing mutual information using PID, we
successfully isolated and leveraged the synergetic interac-
tions between visual and textual modalities, resulting in
significant performance improvements for student models.

Our primary contribution lies in highlighting the role of
synergy in multimodal learning, demonstrating that while
contrastive loss and KL divergence are essential, they fail
to capture the emergent properties that arise from the joint
processing of visual and textual inputs. The addition of
synergetic penalties in the distillation framework ensures
that the student model not only mimics the teacher’s outputs
but also learns the intricate cross-modal dependencies that
drive state-of-the-art VLM performance.

The experimental results validate the effectiveness of this
approach, showing consistent gains across image-to-text and
text-to-image retrieval tasks. Although the teacher model
(ViT-B/16) maintains a considerable advantage, our synergy-
driven framework significantly narrows the gap, providing a
promising direction for future research.

Future work will focus on the following directions:

1. Pretraining ResNet-34 before distillation may bridge
the performance gap and provide a stronger initializa-
tion for downstream VLM tasks.

2. Investigating the resilience of synergistic distillation
under noisy or incomplete data scenarios could en-
hance the applicability of this approach in real-world
environments.
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A. Related Work
A.1. Vision-Language Models

The past few years have witnessed a surge of interest in models that jointly process visual and textual information. An
overview of VLM development was presented in (Zhang et al., 2024). Early approaches focused on image captioning
(Vinyals et al., 2015; Xu et al., 2015) and visual question answering (Antol et al., 2015; Anderson et al., 2018), while
more recent methods leverage large-scale pretraining to learn general-purpose VLMs. Models like CLIP (Radford et al.,
2021), ALIGN (Jia et al., 2021), and ALBEF (Li et al., 2021) align image and text embeddings through contrastive learning,
achieving state-of-the-art results in zero-shot image recognition, retrieval, and multimodal reasoning tasks. Subsequent
efforts have extended these methods to integrate vision and language in more flexible ways, incorporating transformers
(Kim et al., 2021b), improved objectives (Li et al., 2022), and richer multimodal datasets. Learning to promopt for VLM
was discussed in (Zhou et al., 2022b), and conitional prompt learning for presented in (Zhou et al., 2022a). In the domain of
video-based vision-language learning, the work by Zhao and colleagues emphasizes the importance of large-scale video
datasets for distillation, showcasing how millions of videos can contribute to effective model compression (Zhao et al.,
2024). Meanwhile, Chen et al. introduce a hybrid approach to domain generalization through perturbation distillation,
targeting the limitations of vision-language models in multi-domain settings (Chen et al., 2024).

A.2. Knowledge Distillation in Multimodal Settings

Knowledge distillation has emerged as a powerful technique to compress large neural networks into more compact and
efficient student models (Hinton et al., 2015; Gou et al., 2021). While distillation has been widely studied in single-modal
tasks such as language modeling (Sanh et al., 2019; Jiao et al., 2020) and image classification (Romero et al., 2015), its
application to VLMs remains relatively underexplored. Recent works have begun to address this gap by introducing methods
to distill multimodal representations (Shen et al., 2022; Wang et al., 2022). For example, TinyBERT (Jiao et al., 2020) and
MiniLM (Wang et al., 2020) distill language models for computational efficiency, while approaches like MDETR (Kamath
et al., 2021) show how joint vision-language models can benefit from distillation techniques. One notable approach, CLIP-
KD, investigates various techniques to distill knowledge from CLIP models, achieving promising results in compressing
large-scale models without compromising performance (Yang et al., 2024). A different perspective is presented by Li et
al., who focus on enhancing the out-of-distribution robustness of distilled models, ensuring generalizability across diverse
datasets (Li et al., 2023b). These methods often focus on aligning final logits or intermediate features, but few explicitly
consider the intrinsic multimodal interactions that arise from jointly modeling vision and language.

Meng et al. explore diffusion-based models by investigating the distillation of guided diffusion models, offering insights
into improving the efficiency of these computationally intensive frameworks (Meng et al., 2023). Unsupervised prompt
distillation for vision-language models (VLMs) was proposed in (Li et al., 2024c), while masked distillation-based VLM
distillation was studied in (Sameni et al., 2024). Self-distillation was applied to vision-language pretraining in (Naeem
et al., 2024), and 2D VLM distillation was leveraged for unsupervised 3D perception in autonomous driving in (Najibi et al.,
2023). Vision-language dataset distillation was examined in (Wu et al., 2023), whereas preference distillation for large-scale
VLMs, aimed at enhancing their ability to generate helpful and faithful responses based on visual context, was introduced in
(Li et al., 2023a). Additionally, object knowledge distillation was explored to improve end-to-end VLM pretraining in (Liu
et al., 2021), and out-of-distribution robustness distillation from VLMs was investigated in (Zhou et al., 2023). Collectively,
these studies highlight the diverse strategies employed to advance VLM distillation, underscoring the dynamic evolution of
this research area.

A.3. Information-Theoretic Perspectives and Synergy

Information-theoretic tools have been employed to understand and quantify the contributions of different modalities and
their interactions. Partial Information Decomposition (PID) (Williams & Beer, 2010; Bertschinger et al., 2014) provides a
framework to decompose the mutual information among multiple variables into unique, shared (redundant), and synergistic
components. Synergy captures emergent information contributed by the combination of modalities that is not present in
each modality alone. In the context of multimodal representation learning (Tsai et al., 2019), synergy has been linked to
improved generalization and robustness. However, incorporating synergy directly into training or distillation objectives
remains an open problem.
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A.4. Synergy-Based Distillation Approaches

While synergy is conceptually acknowledged in multimodal learning, few works have explicitly incorporated synergy
into model optimization. Preliminary attempts to incorporate information-theoretic measures into representation learning
(Fischer & Rätsch, 2012; Achille & Soatto, 2018) have demonstrated that optimizing for information decomposition can
enhance representation quality and interpretability. Yet, to the best of our knowledge, no existing distillation frameworks
explicitly target the synergy component of teacher and student models’ representations. Our work addresses this gap by
integrating a synergy-based objective into VLM distillation, guiding the student model to replicate not only the teacher’s
output or hidden state distributions but also the emergent information that arises from the combined presence of both vision
and language modalities.

B. Loss Functions for VLM Distillation
B.1. Contrastive Loss

Contrastive loss plays a pivotal role in aligning the embeddings of visual and textual modalities, ensuring that corresponding
image-text pairs are brought closer in the latent space while non-matching pairs are pushed apart. This alignment facilitates
the student model’s ability to learn robust cross-modal representations by mimicking the teacher model’s output.

The contrastive loss is formulated as (Yang et al., 2024):

Lcontrastive =
1

2
(Limage-to-text + Ltext-to-image) , (10)

where the loss is computed symmetrically for both image-to-text and text-to-image directions, ensuring bi-directional
consistency.

The image-to-text loss component is expressed as (Yang et al., 2024):

Limage-to-text = −
N∑
i=1

log
exp(s⊤i ti/τ)∑N
j=1 exp(s

⊤
i tj/τ)

, (11)

where N denotes the batch size, si is the normalized embedding of the i-th image, and ti is the corresponding text embedding.
The temperature parameter τ controls the sharpness of the softmax distribution, which modulates the separation between
positive and negative pairs.

Similarly, the text-to-image loss is defined as (Yang et al., 2024):

Ltext-to-image = −
N∑
i=1

log
exp(t⊤i si/τ)∑N
j=1 exp(t

⊤
i sj/τ)

. (12)

In this formulation:

• si and ti represent the image and text embeddings for the i-th sample, extracted from the student model.

• The numerator exp(s⊤i ti/τ) measures the similarity between the matching image-text pair.

• The denominator aggregates similarities across all N text embeddings, effectively normalizing the score and penalizing
non-matching pairs.

• The softmax operation ensures that positive pairs receive higher probabilities, driving the model to learn discriminative
embeddings.

The contrastive loss encourages the model to map corresponding images and text to nearby points in the embedding
space, thereby reducing the modality gap. By optimizing this loss, the student model gradually learns to capture the
semantic relationships between vision and language, which is crucial for tasks like image-caption retrieval and cross-modal
understanding.
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The temperature τ plays a crucial role in controlling the distribution’s smoothness. A lower τ sharpens the distribution,
increasing the contrast between positive and negative pairs, while a higher τ results in a softer distribution, promoting
smoother alignment. Empirical studies suggest that fine-tuning τ can significantly affect the convergence and performance
of contrastive learning frameworks (Radford et al., 2021; Jia et al., 2021). When CLIP model was trained, τ was selected as
0.07.

Larger batch sizes provide more negative samples, enhancing the quality of contrastive learning by increasing the difficulty
of the task. However, computational constraints often necessitate a trade-off between batch size and model complexity. In
this paper, we choose batch size as 64.

B.2. KL-Divergence Loss

KL-divergence (Kullback-Leibler divergence) is a key measure in probability theory and statistics that quantifies the
divergence between two probability distributions. In the context of vision-language model (VLM) distillation, KL-divergence
is employed to minimize the difference between the output distributions of the student and teacher models (Wu et al.,
2024)(Li et al., 2024b). This ensures that the student model approximates the teacher’s predictions accurately.

Mathematically, KL-divergence is expressed as (Cover & Thomas, 2006):

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
(13)

where P (i) represents the teacher model’s probability distribution, and Q(i) represents the student model’s probability
distribution over the same outcomes.

In the implementation, KL-divergence is computed separately for both image and text modalities. For the image modality,
the student model’s logits zsI are passed through a softmax to compute log probabilities:

qs
I = log Softmax(zsI) (14)

Similarly, the teacher model’s logits ztI are passed through softmax:

pt
I = Softmax(ztI) (15)

The KL-divergence for the image modality is then calculated as (Kim et al., 2021a)(Li et al., 2024a):

DKL(p
t
I ∥ qs

I) =
∑
i

pt
I(i) log

pt
I(i)

qs
I(i)

(16)

For the text modality, the process mirrors the image calculation (Kim et al., 2021a):

DKL(p
t
T ∥ qs

T ) =
∑
i

pt
T (i) log

pt
T (i)

qs
T (i)

(17)

where pt
T and qs

T denote the teacher and student distributions for text inputs, respectively.

The overall KL-divergence loss is computed as the average of the image and text modality losses (Kim et al., 2021a)(Li
et al., 2024a):

LKL =
1

2

(
DKL(p

t
I ∥ qs

I) +DKL(p
t
T ∥ qs

T )
)

(18)

Minimizing LKL aligns the output distributions of the student model with those of the teacher, promoting effective distillation.
This method allows the student model to learn the intricate vision-language relationships encoded by the teacher, enhancing
the performance and generalizability of the distilled model.

B.3. L2 Distance Loss (Mean Squared Error)

L2 distance loss, also referred to as Mean Squared Error (MSE) loss, minimizes the feature-level discrepancy between the
embeddings produced by the teacher and student models. This promotes tighter alignment between the two, ensuring that
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the distilled student model learns representations close to those of the teacher. The L2 loss can also be expressed as (Yang
et al., 2024)(Kim et al., 2021a):

LMSE =
1

N

N∑
i=1

(
(s

(i)
T − s

(i)
S )2 + (t

(i)
T − t

(i)
S )2

)
, (19)

which represents the mean squared error between the teacher and student embeddings over a batch of size N .

This loss penalizes large deviations quadratically, encouraging the student model to closely approximate the teacher’s
embeddings. A smaller L2 (MSE) loss indicates higher alignment between teacher and student representations, reducing
feature-level errors.

B.4. Loss Functions in VLM Distillation

The overall objective is to minimize the discrepancy between the teacher and student outputs while encouraging synergistic
learning across modalities. The total loss is formulated as:

Ltotal = Lcontrastive + αLKL + βLL2 − γRsynergy, (20)

where each component serves a unique role in optimizing the student’s performance. The hyperparameters α, β, and γ
balance the contributions of different losses and synergy rewards.

The hyperparameters α, β, and γ are empirically tuned to balance the contribution of each loss component. While contrastive
loss drives primary alignment between modalities, KL divergence promotes distribution matching, L2 loss ensures feature-
level imitation, and synergy enhances joint learning. This comprehensive loss formulation improves the robustness and
generalizability of the distilled student VLM.
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