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ABSTRACT

Leveraging large-scale pre-training, vision foundational models showcase notable
performance benefits. Recent segmentation algorithms for natural scenes have ad-
vanced significantly. However, existing models still struggle to automatically seg-
ment personalized instances in dense and crowded scenarios, where severe occlu-
sions, scale variations, and background clutter pose a challenge to accurately de-
lineate densely packed instances of the target object. To address this, we propose
PerSense, an end-to-end, training-free, and model-agnostic one-shot framework
for Personalized instance Segmentation in dense images. PerSense introduces a
novel Instance Detection Module (IDM) that leverages density maps to encapsu-
late the spatial distribution of objects and automatically generate instance-level
point prompts. To reduce false positives in these prompts, we design the Point
Prompt Selection Module (PPSM), which refines the output of IDM. Both IDM
and PPSM transforms density maps into precise point prompts, seamlessly inte-
grate into our model-agnostic framework. Furthermore, we introduce a feedback
mechanism which enables PerSense to improve the accuracy of density maps by
automating the exemplar selection process for density map generation. Finally,
To promote algorithmic advances and effective tools for this relatively underex-
plored task, we introduce PerSense-D, a diverse dataset exclusive to personal-
ized instance segmentation in dense images. Our extensive experiments estab-
lish PerSense superiority in dense scenarios by achieving an mIoU of 71.61%
on PerSense-D, outperforming recent SOTA models by significant margins of
+47.16%, +42.27%, +8.83%, and +5.69%. Additionally, our qualitative findings
demonstrate the adaptability of our framework to images captured in-the-wild.

Support Set Query Image Support Set Query Image Support Set Query Image

PerSense (Training Free)

(b)

Input Image SAM (Everything Mode)

Point Grid

GroundingDINO Grounded-SAM

Bbox to SAM

(a)

Figure 1: (a) Depicts the deteriorated segmentation performance of Grounded-SAM in dense sce-
nario due to limitations associated with bounding box-based detections. Additionally, it demon-
strates how SAM’s ”everything mode” indiscriminately segments both background and foreground,
lacking any personalization for specific objects. (b) Introducing PerSense, a training-free and model-
agnostic one-shot framework offering an end-to-end automated pipeline for personalized instance
segmentation in dense images.
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1 INTRODUCTION

Imagine working in a food processing sector where the goal is to automate the quality control pro-
cess for vegetables, such as potatoes, using vision sensors. The challenge is to segment all potato
instances in densely packed environments, where variations in scale, occlusions, and background
clutter add complexity to the task. We refer to this task as personalized instance segmentation in
dense images (Figure 1b), building on the concept of personalized segmentation, first introduced in
Zhang et al. (2024). The term personalized refers to the segmentation of specific visual category
within an image. Our task setting focuses on personalized instance segmentation, particularly in
dense scenarios. To tackle this problem, a natural approach would be to explore the state-of-the-
art (SOTA) segmentation models. One of the notable contributions in this domain is the Segment
Anything Model (SAM) trained on the SA-1B dataset that consists of more than 1B masks derived
from 11M images (Kirillov et al., 2023). SAM introduces a groundbreaking segmentation frame-
work capable of generating masks for various objects in images using custom prompts, allowing for
flexible segmentation across different visual elements. However, SAM lacks the inherent ability to
segment distinct visual concepts as highlighted in Zhang et al. (2024). It primarily generates masks
for individual objects using its ”everything mode”, which prompts the model with a point grid to
segment all objects in the image, including both background and foreground (Figure 1a). Alterna-
tively, users can manually draw a box or a point prompt to isolate specific instances. This process is
labor-intensive, time-consuming, and hence not scalable for large-scale or automated applications.

One approach to achieve automation is to utilize the box prompts generated by a pre-trained object
detector to isolate the object of interest. A recent work proposing an automated image segmentation
pipeline is Grounded-SAM (Ren et al., 2024), which is a combination of open-vocabulary object
detector GroundingDINO (Liu et al., 2023) and SAM (Kirillov et al., 2023). The underlying idea is
to forward annotated bounding boxes from GroundingDINO to SAM for generating segmentation
masks. However, bounding boxes are limited by box shape (fixed size anchors), occlusions (limited
feature resolution), and the orientation of objects (Zand et al., 2021). In simpler terms, a standard
bounding box (non-oriented and non-rotated) for a particular object may include portions of other
instances. Additionally, when using non-max suppression (NMS), bounding box-based detections
may group multiple instances of the same object together (Hosang et al., 2017), making it difficult
to achieve proper delineation of object instances (Figure 1a). Although techniques like bipartite
matching introduced in DETR (Carion et al., 2020) address the NMS issue but still bounding box-
based detections are challenged due to variations in object scale, occlusions, and background clutter.
These limitations become more pronounced when dealing with dense images (Wan & Chan, 2019).

Point-based prompting, mostly based on manual user input, is generally better than bounding box-
based prompting for tasks that require high accuracy, fine-grained control, and the ability to handle
occlusions, clutter, and dense instances (Maninis et al., 2018). However, the automated generation
of point prompts using one-shot data, for personalized segmentation in dense scenarios, has largely
remained unexplored. This motivates a novel segmentation framework specifically for dense images
that can provide an automated pipeline capable of achieving instance-level segmentation through
the generation of precise point prompts using one-shot data. Such capability will be pivotal for
industrial automation, which uses vision-based sensors for applications such as object counting,
quality control, and cargo monitoring. Beyond industrial automation, it could be transformative in
the medical realm, particularly in tasks demanding segmentation at cellular levels. In such scenarios,
relying solely on bounding box-based detections could prove limiting towards achieving desired
segmentation accuracy.

We therefore approach this problem by exploring density estimation methods, which emphasize the
spatial distribution of objects through the use of density maps (DM). While DMs are effective for
calculating global object counts, they often fall short in providing precise point prompts for local-
ization of individual objects at the instance level (Idrees et al., 2013). Although some studies have
attempted to leverage DMs for instance segmentation in natural scenes (Cholakkal et al., 2019; Ma
et al., 2015), there remains a potential gap for a streamlined approach that explicitly and effectively
utilizes DM to achieve automated personalized instance segmentation in dense images. To this end,
our work introduces an end-to-end, training-free, and model-agnostic one-shot framework titled
PerSense (Figure 2). First, we develop a new baseline capable of automatically generating instance-
level point prompts. This new baseline features a proposed Instance Detection Module (IDM) which
leverages DMs to provide candidate point prompts. We generate DMs using a density map genera-
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tor (DMG) which highlights spatial distribution of object of interest based on input exemplars. To
allow automatic selection of effective exemplars for DMG, we automate the mostly manual pro-
cess via a class-label extractor (CLE) and a grounding detector. Second, we design a Point Prompt
Selection Module (PPSM) to mitigate false positives within the candidate point prompts. The pro-
posed IDM and PPSM are essentially plug-and-play components and seamlessly integrate with our
model-agnostic PerSense framework. Lastly, we introduce a robust feedback mechanism, which
automatically refines the initial exemplar selection by identifying multiple rich exemplars for DMG
based on the initial segmentation output of PerSense.

Finally, to our knowledge, there exists no dataset specifically targeting segmentation in dense im-
ages. While some images in mainstream segmentation datasets like COCO (Lin et al., 2014),
LVIS (Gupta et al., 2019), and FSS-1000 (Li et al., 2020), may contain multiple instances of the
same object category, the majority do not qualify as dense images due to the limited number of
object instances. For example, images in the LVIS dataset contain an average of 11.2 instances
across 3.4 object categories, resulting in about 3.3 instances per category. This low instance count is
insufficient to represent dense scenarios in images. Therefore we introduce PerSense-D, a person-
alized one-shot segmentation dataset exclusive to dense images. PerSense-D comprises 717 dense
images distributed across 28 diverse object categories with an average count of 39 object instances
per image. These images present significant occlusion and background clutter, making our dataset
a unique and challenging benchmark for enabling algorithmic advances and practical tools targeting
personalized segmentation in dense images.

We report results on this newly introduced PerSense-D dataset, comparing PerSense with several
SOTA segmentation models, including PerSAM (Zhang et al., 2024), Matcher (Liu et al., 2024),
and Grounded-SAM (Ren et al., 2024). Our extensive experiments demonstrate PerSense’s superior
performance and efficiency in dense scenarios.

2 RELATED WORK

One-shot personalized segmentation: As discussed in sec 1, SAM (Kirillov et al., 2023) seg-
mentations lack semantic meaning, which limits it in segmenting personalized visual concepts. To
overcome this challenge, PerSAM is introduced in Zhang et al. (2024), which offers a training-free
automated framework for one-shot personalized segmentation using SAM. PerSAM performs well
in segmenting few instances of similar category, efficiently distinguishing and segmenting objects
through its iterative masking approach. However, when applying PerSAM to dense images with
many instances of the same object, several challenges may arise. Firstly, its iterative masking strat-
egy, which segments objects one by one, can become computationally expensive and slow, as the
number of iterations is proportional to the number of object instances in the image. Moreover, the
confidence map’s accuracy may degrade as more objects are masked out, making it difficult to distin-
guish between closely packed or overlapping instances. Also, the confidence thresholding strategy
introduced in PerSAM, which halts the process when the confidence score drops below a set thresh-
old, may lead to premature termination of segmentation process, even when valid objects are still
present (see sec 5). Unlike PerSAM, our PerSense utilizes DM to generate precise instance-level
point prompts in a single iteration.

Matcher introduced in Liu et al. (2024) integrates a versatile feature extraction model with a class-
agnostic segmentation model and leverages bidirectional matching to align semantic information
across images for tasks like semantic segmentation and dense matching. However, its instance-
level matching capability inherited from the image encoder is relatively limited, which hampers
its performance for instance segmentation tasks. Matcher employs reverse matching to eliminate
outliers and uses K-means clustering for instance-level sampling, which can become a bottleneck in
dense and cluttered scenes due to challenges posed by varying object scales. Additionally, Matcher
forwards the bounding box of the matched region as a box prompt to SAM, which can have adverse
affect due to the limitations of box-based detections, especially in crowded environments. To address
these challenges, PerSense utlizes DMG to obtain a personalized DM which obviates the need for
clustering and sampling. With IDM and PPSM, PerSense accurately generates at least one point
prompt for each detected instance.

Another one-shot segmentation method, SLiMe (Khani et al., 2023), enables personalized segmen-
tation based on segmentation granularity in the support set, rather than object category. Despite
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Figure 2: Overall architecture: PerSense is a one-shot framework for personalized instance seg-
mentation in dense images. It begins by extracting class-label using CLE followed by exemplar
selection to generate density maps using DMG. IDM identifies candidate point prompts from these
density maps, which are subsequently refined using the PPSM. The feedback mechanism identifies
high-quality exemplars using the initial segmentation output from the decoder and leverages them to
refine initial density maps. The point prompts generated from these refined maps enables PerSense
to achieve precise personalized instance segmentation in dense and cluttered scenes.

its strong performance, SLiMe tends to produce noisy segmentations for small objects due to the
smaller attention maps extracted from Stable Diffusion (Rombach et al., 2022) compared to the in-
put image. Given our focus on instance segmentation in dense images with varying object scales,
SLiMe may not be the most suitable choice.

Interactive segmentation: Recently, the task of interactive segmentation has received a fine share of
attention. Works like InterFormer (Huang et al., 2023), MIS (Li et al., 2023) and SEEM (Zou et al.,
2024) provide a user-friendly interface to segment an image at any desired granularity, however,
these models are not scalable as they are driven by manual input from the user.

3 METHOD

We introduce PerSense, a training-free and model-agnostic one-shot framework designed for per-
sonalized instance segmentation in dense images (Figure 2). Here, we describe the core components
of our PerSense framework, including class-label extraction using CLE and exemplar selection for
DMG (sec. 3.1), IDM (sec. 3.2), PPSM (sec. 3.3), and the feedback mechanism (sec. 3.4). See
Appendix A.1 for the overall pseudo-code of PerSense.

3.1 CLASS-LABEL EXTRACTION AND EXEMPLAR SELECTION FOR DMG

PerSense operates as a one-shot framework, wherein a support set is utilized to guide the personal-
ized segmentation of an object in the query image that shares semantic similarity with the support
object. Initially, input masking is applied to the support image using the coarse support mask to
isolate the object of interest. The resulting input masked image is fed into the CLE with a cus-
tom prompt, ”Name the object in the image?”. The CLE generates a description of the object in
the image, from which the noun is extracted, representing the object category. Subsequently, the
grounding detector is prompted with this class-label to facilitate personalized object detection in the
query image. To enhance the prompt, we prefixed the term ”all” with the class-label.

Next, we compute the cosine similarity score Sscore between query Q and support Ssupp features
coming from the encoder as follows:

Sscore(Q,Ssupp) = cos sim(f(Q), f(Ssupport)), (1)

where f(·) represents the encoder. Utilizing this score along with detections from the grounding
object detector, we extract the positive location prior. Specifically, we identify the bounding box
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Figure 3: (a) Without identifying composite contours, multiple object instances may be incorrectly
grouped (red circle). Identification of composite contours (green circle) enables accurate localization
of child contours (missed detections). (b) The plot illustrates the presence of composite contours
beyond µ+ 2σ in the contour area distribution for 250 images in the PerSense-D dataset.

Bmax with the highest detection confidence and proceed to locate the pixel-precise point Pmax with
the maximum similarity score within this bounding box:

Pmax = arg max
P∈Bmax

Sscore(P, Ssupp), (2)

where P represents candidate points within the bounding box Bmax. This identified point serves as
the positive location prior, which is subsequently fed to the decoder for segmentation. Additionally,
we extract the bounding box surrounding the segmentation mask of the object. This process effec-
tively refines the original bounding box provided by the grounding detector. The refined bounding
box is then forwarded as an exemplar to the DMG for generation of density map.

3.2 INSTANCE DETECTION MODULE (IDM)

The IDM begins by converting the DM from the DMG into a grayscale image Igray. Next, a binary
image Ibinary is created from Igray using a pixel-level threshold T (T ∈ [0, 255]):

Ibinary(x, y) =

{
1 if Igray(x, y) ≥ T

0 if Igray(x, y) < T
(3)

for all pixels (x, y) in the image, where Ibinary is the resulting binary image. A morphological
erosion operation is then applied to Ibinary using a 3× 3 kernel K:

Ieroded(x, y) = min
(i,j)∈K

Ibinary(x+ i, y + j), (4)

where Ieroded is the eroded image, and (i, j) iterates over the kernel K to refine the boundaries and
eliminate noise from the binary image. We deliberately used a small kernel to avoid damaging the
original densities of true positives. Next, contours are identified in the eroded binary image, and for
each contour C, its area AC and center pixel coordinates (xC , yC) are computed. We calculate the
mean µ and standard deviation σ of all contour areas to assess the distribution of contour sizes:

µ =
1

N

N∑
i=1

ACi , σ =

√√√√ 1

N

N∑
i=1

(ACi − µ)2, (5)

where N is the total number of contours. Subsequently, composite contours, which represent multi-
ple objects in one contour, are detected using a threshold based on the distribution of contour sizes.
This is necessary to identify the regions that are detected as one contour but encapsulate multiple
instances of the object of interest (Figure 3a). Such regions are scarce and can be detected as out-
liers, essentially falling beyond µ + 2σ, considering the contour size distribution (Figure 3b). For
each detected composite contour, a distance transform is applied to expose child contours for ease
of detection. Finally, the algorithm returns the center points obtained from all detected contours
(parent and child) as candidate point prompts. In summary, through systematic analysis of the DM,
IDM identifies regions of interest and generates candidate point prompts, which are subsequently
forwarded to PPSM for final selection. See Appendix A.1 for pseudo-code of IDM.
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3.3 POINT PROMPT SELECTION MODULE (PPSM)

The PPSM serves as a critical component in the PerSense pipeline, tasked with filtering candidate
point prompts for final selection. For each candidate point prompt received from IDM, we compare
the corresponding query-support similarity score using an adaptive threshold defined as:

sim threshold =
max score

object count/norm const
(6)

where max score is the maximum value of the query-support similarity score, the object count
corresponds to the number of instances of the desired object present in the query image, and the
norm const is a normalization factor, set as

√
2 to make the threshold adaptive with respect to the

object count (see sec 5.1). A fixed similarity threshold would struggle in this case, as the query-
support similarity score varies significantly even with small intra-class variations. Moreover, for
highly crowded images (object count > 50), the similarity score for positive location priors can
vary widely, necessitating an adaptive threshold that accounts for the density (count) of the query
image. In other words, as object instances increase, the query-support similarity score distribution
widens due to intra-class variations. To address this challenge, our adaptive threshold is based on
the maximum query-support similarity score as well as the object count within the query image. In
addition to this, PPSM leverages bounding box data from the grounding detector to ensure filtered
point prompts fall within the box boundaries. These filtered points are then passed to the decoder
for segmentation. See Appendix A.1 for pseudo-code of PPSM.

3.4 FEEDBACK MECHANISM

PerSense proposes a feedback mechanism to enhance the exemplar selection process for the DMG
by leveraging the initial segmentation output from the decoder. Let Mseg represent the initial seg-
mentation mask generated by the decoder, and let Smask denote the mask scores provided by SAM.

CTop = Top k(Mseg, Smask, k), (7)

where CTop represents the set of the top k candidates selected based on their mask scores. In our
case k = 4 (see sec 5.1). These selected candidates are then forwarded as exemplars to DMG in
a feedback manner. This leads to improved accuracy of the DM and consequently enhances the
segmentation performance. The quantitative analysis of this aspect is further discussed in sec 5,
which explicitly highlights the value added by the proposed feedback mechanism.

4 NEW DATASET (PERSENSE-D)

PerSense utilizes DMs generated by DMG for point prompt extraction via IDM and PPSM, specifi-
cally for dense images containing several instances of the same object. While existing segmentation
datasets like COCO (Lin et al., 2014), LVIS (Gupta et al., 2019), and FSS-1000 (Li et al., 2020)
may contain some images with multiple instances of the same object category, the majority of im-
ages do not represent dense scenarios due to limited or few object instances. For example, on
average each image in LVIS (Gupta et al., 2019) is annotated with 11.2 instances from 3.4 object
categories. This results in an average of 3.3 instances per single category, which is insufficient to
represent dense scenarios in images. To address this, we introduce PerSense-D, a diverse dataset
exclusive to segmentation in dense images. PerSense-D comprises 717 images distributed across 28
object categories, with an average count of 39 objects per image. The dataset is designed to serve
as a challenging benchmark for driving algorithmic innovations while facilitating the development
of practical tools across diverse domains such as medical, agriculture, environmental monitoring,
and autonomous systems. Given our focus on one-shot personalized dense image segmentation, we
explicitly supply 28 support images labeled as ”00”, each containing a single object instance in-
tended for personalized segmentation in the corresponding object category. This can facilitate fair
evaluation among various one-shot approaches as no random seeding is required.

Image Collection and Retrieval: Out of 717 images, we have 689 dense query images and 28
support images. To acquire the set of 689 dense images, we initiated the process with a collection of
candidate images obtained through keyword searches. To mitigate bias, we retrieved the candidate
images by querying object keywords across three distinct Internet search engines: Google, Bing,
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Figure 4: (a) Object categories in PerSense-D. (b) No of images vs range bins of object count.

and Yahoo. To diversify the search query keywords, we prefixed adjectives such as ’multiple’, ’lots
of ’, and ’many’ before the category names. In every search, we collected the first 100 images that
fall under CC BY-NC 4.0 licensing terms. With 28 categories, we gathered a total of 2800 images,
which were subsequently filtered in the next step.

Manual Inspection and Filtering: The candidate images were manually inspected following a
three-point criterion. (1) The image quality and resolution should be sufficiently high to enable
easy differentiation between objects. (2) Following the criterion in object counting dataset FSC-
147 (Ranjan et al., 2021), we set the minimum object count to 7 per image for our PerSense-D
benchmark. (3) The image shall contain a challenging dense environment with sufficient occlusions
among object instances along with background clutter. Based on this criterion, we filtered 689
images out of 2800 candidates.

Semi-automatic Image Annotation Pipeline: We crowdsourced the annotation task under ap-
propriate institutional approval. We devised a semi-automatic annotation pipeline. Following the
model-in-the-loop strategy outlined in Kirillov et al. (2023), we utilized our PerSense to provide an
initial segmentation mask. This initial mask was then manually refined and corrected by annotators
using pixel-precise tools such as the OpenCV image annotation tool and Photoshop’s “quick selec-
tion” and ”lasso” tool, which allows users to loosely select an object automatically. As the images
were dense, the average time to manually refine single image annotation was around 15 minutes.

Dataset Statistics: The dataset contains a total of 717 images (689 query and 28 support images).
Average count is 39 objects per image, with a total of 28,395 objects across the entire dataset. The
minimum and maximum number of objects in a single image are 7 and 218, respectively. The aver-
age resolution (h× w) of images is 839× 967 pixels. Figure 4 presents detail of object categories in
PerSense-D and a histogram depicting the number of images across various ranges of object count.

5 EXPERIMENTS

Implementation Details and Evaluation Metrics: Our PerSense is model-agnostic and leverages
a CLE, grounding detector, and DMG for personalized instance segmentation in dense images. For
CLE, we leverage VLM as it is best suited for this task. We follow VIP-LLaVA (Cai et al., 2024),
which utilizes CLIP-336px (Radford et al., 2021) and Vicuna v1.5 (Chiang et al., 2023) as visual and
language encoders, respectively. We use GroundingDINO (Liu et al., 2023) as the grounding detec-
tor. To demonstrate model-agnostic capability of PerSense, we separately utilize DSALVANet (He
et al., 2024) and CounTR (Liu et al., 2022) pretrained on FSC-147 dataset (Ranjan et al., 2021) as
DMG. Finally, we utilize SAM (Kirillov et al., 2023) encoder and decoder for personalized segmen-
tation following the approach in (Zhang et al., 2024). We evaluate segmentation performance on
the PerSense-D dataset specifically created for dense scenarios. We use standard evaluation metric
of mIoU (mean Intersection over Union) for evaluating segmentation performance. No training is
involved in any of our experiments.
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Table 1: We compare overall mIoU between PerSense and SOTA methods on PerSense-D dataset.
‡ indicates training-free methods. ∗ denotes that PerSAM’s inference time is calculated as (number
of object instances × 1.02) sec. Given that the PerSense-D dataset contains an average of 39 object
instances per image, the average inference time for PerSAM is (39 × 1.02) = 39.78 sec. † indicates
that PerSAM-F requires an average of 8 seconds of training time per class, which is added to the
training-free inference time and incurred once per class.

Method Venue mIoU Avg inference time
(per image) (sec)

PerSAM‡ (Zhang et al., 2024) ICLR’24 24.45 39.78∗

PerSAM-F (Zhang et al., 2024) ICLR’24 29.34 (39.78 + 8)†

Matcher‡ (Liu et al., 2024) ICLR’24 62.78 10.2
Grounded-SAM‡ (Ren et al., 2024) arXiv’24 65.92 1.8
PerSense‡ (DMG: DSALVANet) this work 70.96 2.7PerSense‡ (DMG: CounTR) this work 71.61

Results: We compare our PerSense with a variety of generalist models like PerSAM (Zhang et al.,
2024), Matcher (Liu et al., 2024) and Grounded-SAM (Ren et al., 2024) utilizing PerSense-D as
evaluation benchmark. To be fair in comparison with Grounded-SAM, we ensured that all classes in
PerSense-D overlaps with at least one of the datasets on which GroundingDINO is pre-trained. Im-
portantly, all the classes in PerSense-D are common in Objects365 dataset (Shao et al., 2019). The
class-label extracted by CLE in PerSense (sec 3.1), using one-shot data, is also fed to Grounded-
SAM for personalized segmentation. We report the results in Table 1. Our PerSense achieves
71.61% mIoU, surpassing PerSAM, PerSAM-F, Matcher and Grounded-SAM by a significant mar-
gin of +47.16%, +42.27%, +8.83% and +5.69%, respectively. Figure 6 showcases our qualitative
results. For qualitative analysis of PerSense at each step, please see Appendix A.2.

Discussion: We observed that the decline in PerSAM’s segmentation performance on PerSense-D
is mainly due to the premature termination of the segmentation process (see Figure 6), influenced
by its naive confidence thresholding strategy. In dense environments with closely packed instances
of similar objects, the confidence scores can drop below the fixed set threshold, particularly as
the confidence map becomes noisy and less clear after multiple masking iterations. This leads the
algorithm to misidentify remaining instances as background, resulting in premature termination of
the segmentation process and ultimately compromising the accuracy of the segmentation outcomes.

For Matcher, we observed that in dense scenarios, the patch-level matching and correspondence
matrix struggles to identify distinct regions when there is significant overlap or occlusion among
objects. Additionally, Matcher uses a bidirectional matching strategy that, while effective in less
crowded scenes, can introduce false positives in densely packed environments, where minor differ-
ences in appearance between objects are hard to capture.

Figure 5: Left: Class-wise mIoU comparison between PerSense and Grounded-SAM on PerSense-
D. Right: Grounded-SAM mIoU on PerSense-D vs Box threshold in GroundingDINO
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We present a class-wise comparison of mIoU on PerSense-D considering PerSense and Grounded-
SAM (Figure 5, Left). PerSense excels in accurately segmenting object categories like ”Durian,”
”Mangoes,” and ”Walnuts,” where there is minimal demarcation between instances. In contrast,
Grounded-SAM often missegments undesired regions between instances due to its reliance on
bounding box-based detections. However, for categories with zero separation between instances or
tightly merged flat boundaries, such as ”Books,” Grounded-SAM performs better, as distinguishing
distinct instances without clear boundaries is challenging for PerSense. Additionally, for categories
with significant intra-class variation, like ”Eggplants,” ”Cookies,” ”Cucumbers,” and ”Dumbbells,”
PerSense shows a relative decline in performance compared to Grounded-SAM, as its one-shot con-
text provides access to limited object features.

We evaluated the runtime efficiency of all methods using the PerSense-D dataset on a single NVIDIA
GeForce RTX 4090 GPU with a batch size of 1. As reported in Table 1, PerSAM is computation-
ally inefficient due to its iterative masking strategy, which requires as many iterations as there are
object instances in the image. Matcher averages 10.2 seconds per image, which limits its suitability
for applications demanding fast inference. PerSense, by contrast, takes an average of 2.7 seconds
per image, while Grounded-SAM takes about 1.8 seconds under similar conditions. This relative
temporal overhead of 0.9 seconds for PerSense is mainly attributed to the generation of DMs for ex-
tracting instance-level point prompts in dense scenarios. In summary, PerSense introduces minimal
latency compared to Grounded-SAM at the cost of improved segmentation performance, while being
significantly more efficient and accurate than the recent SOTA methods, PerSAM and Matcher.

Figure 6: Qualitative comparison of PerSense with SOTA

5.1 ABLATION STUDY

Component-wise Ablation Study of PerSense: The proposed PerSense framework includes three
key components: IDM, PPSM, and a feedback mechanism. An ablation study was conducted to
highlight PerSense’s model-agnostic capability and assess each component’s contribution to perfor-
mance using two different DMGs, DSALVANet and CounTR (Table 2a). Even with the baseline net-
work, PerSense (CounTR) outperformed Grounded-SAM by +2.2%, while PerSense (DSALVANet)
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Table 2: (a) Component-wise ablation study of PerSense. (b) Choice of normalization factor for
adaptive threshold in PPSM. (c) Varying shots of exemplar data in DMG using feedback mechanism.

(a)

Modules baseline baseline PerSense+ PPSM
IDM yes yes yes
PPSM no yes yes
Feedback no no yes
DMG: DSALVANet 65.58 66.95 70.96
mIoU(Gain) (-) (+1.37) (+4.01)
DMG: CounTR 68.12 70.58 71.61
mIoU(Gain) (-) (+2.46) (+1.03)

(b)

Norm mIoUFactor
1 70.41√
2 70.96√
3 69.59√
5 68.95

(c)

No. of mIoUShots
1-shot 65.78
2-shot 69.24
3-shot 70.53
4-shot 70.96
5-shot 70.90
6-shot 70.81

showed comparable performance. Adding PPSM improved mIoU by +1.37% for DSALVANet and
+2.46% for CounTR, with CounTR’s higher increase indicating the presence of relatively more false
positives in its DMs, despite better localization. This aligns with the findings in He et al. (2024),
which report lower performance of CounTR relative to DSALVANet for few-shot object counting
task. Finally, the feedback mechanism improved mIoU by +4.01% for DSALVANet and +1.03%
for CounTR, indicating DSALVANet’s sensitivity to exemplar selection for accurate DM generation.

Varying the Detection Threshold in Grounding Detector: We conducted an ablation study to as-
sess the impact of varying the detection threshold in GroundingDINO on segmentation performance
for Grounded-SAM (Figure 5, Right). The bounding box threshold was varied from 0.10 to 0.30 in
increments of 0.05. For comparison with PerSense, we selected 0.15 as the optimal threshold, as it
achieved the highest mIoU for Grounded-SAM on the PerSense-D benchmark. To ensure fairness,
we applied the same threshold for GroundingDINO within the PerSense framework.

Choice of Normalization Factor for Adaptive Threshold in PPSM: For the adaptive threshold
in PPSM, we tested different values of the normalization constant. Empirical results (Table 2b),
demonstrate that

√
2 is the optimal choice, as it led to the most significant performance improve-

ments in the overall mIoU evaluation.

Varying No of Shots for Exemplar Data in Feedback Mechanism: We automated the selection
of the best exemplars for DMG based on SAM scores using the proposed feedback mechanism. As
shown in Table 2c, segmentation performance on PerSense-D saturates after 4-shot, as additional
exemplars do not provide any new significant information about the object of interest.

6 CONCLUSION

We presented PerSense, a training-free and model-agnostic one-shot framework for personalized in-
stance segmentation in dense images. We proposed IDM and PPSM, which transforms density maps
from DMG into personalized instance-level point prompts for segmentation. We also proposed a ro-
bust feedback mechanism in PerSense which automates and improves the exemplar selection process
in DMG. Finally to promote algorithmic advancements considering the persense task, we presented
PerSense-D, a dataset exclusive to personalized segmentation in dense images and established supe-
riority of our method on this benchmark by comparing it with the SOTA.

Limitations and Broader Impact: PerSense is specifically designed for dense images, deriving
point prompts from density maps generated by DMG. Therefore, it would not be fair to gauge
PerSense performance on standard segmentation datasets with few object instances. In such cases,
traditional object detection methods are more effective due to fewer occlusions and easier object
boundary delineation, rendering density map generation inefficient. While PerSense employs IDM
and PPSM to refine density maps and reject false positives, respectively, it cannot recover any true
positives missed initially by DMG, during generation of DMs (see Appendix A.3). Being training-
free and built upon open-source models, PerSense significantly reduces carbon emissions. Presently,
no notable ethical or social implications are anticipated from our work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park,
and Yong Jae Lee. Making large multimodal models understand arbitrary visual prompts. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2024.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Hisham Cholakkal, Guolei Sun, Fahad Shahbaz Khan, and Ling Shao. Object counting and instance
segmentation with image-level supervision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12397–12405, 2019.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmen-
tation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 5356–5364, 2019.

Jinghui He, Bo Liu, Fan Cao, Jian Xu, and Yanshan Xiao. Few-shot object counting with dynamic
similarity-aware in latent space. IEEE Transactions on Geoscience and Remote Sensing, 2024.

Sunghwan Hong, Seokju Cho, Jisu Nam, Stephen Lin, and Seungryong Kim. Cost aggregation
with 4d convolutional swin transformer for few-shot segmentation. In European Conference on
Computer Vision, pp. 108–126. Springer, 2022.

Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum suppression. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 4507–4515,
2017.

You Huang, Hao Yang, Ke Sun, Shengchuan Zhang, Liujuan Cao, Guannan Jiang, and Rongrong
Ji. Interformer: Real-time interactive image segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 22301–22311, October 2023.

Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak Shah. Multi-source multi-scale counting
in extremely dense crowd images. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2547–2554, 2013.

Aliasghar Khani, Saeid Asgari, Aditya Sanghi, Ali Mahdavi Amiri, and Ghassan Hamarneh. Slime:
Segment like me. In The Twelfth International Conference on Learning Representations, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Chunggi Lee, Seonwook Park, Heon Song, Jeongun Ryu, Sanghoon Kim, Haejoon Kim, Sérgio
Pereira, and Donggeun Yoo. Interactive multi-class tiny-object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14136–14145, 2022.

Kehan Li, Yian Zhao, Zhennan Wang, Zesen Cheng, Peng Jin, Xiangyang Ji, Li Yuan, Chang Liu,
and Jie Chen. Multi-granularity interaction simulation for unsupervised interactive segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 666–
676, October 2023.

Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, and Chi-Keung Tang. Fss-1000: A 1000-class
dataset for few-shot segmentation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2869–2878, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Chang Liu, Yujie Zhong, Andrew Zisserman, Weidi Xie, and Coop Medianet Innovation Center.
Countr: Transformer-based generalised visual counting. 2022.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Yang Liu, Muzhi Zhu, Hengtao Li, Hao Chen, Xinlong Wang, and Chunhua Shen. Matcher: Seg-
ment anything with one shot using all-purpose feature matching. In The Twelfth International
Conference on Learning Representations, 2024.

Zheng Ma, Lei Yu, and Antoni B Chan. Small instance detection by integer programming on object
density maps. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3689–3697, 2015.

Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and Luc Van Gool. Deep extreme cut: From
extreme points to object segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 616–625, 2018.

Juhong Min, Dahyun Kang, and Minsu Cho. Hypercorrelation squeeze for few-shot segmentation.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 6941–6952,
2021.

Khoi Nguyen and Sinisa Todorovic. Feature weighting and boosting for few-shot segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 622–631, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3394–
3403, 2021.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159, 2024.

Robin Rombach, Anton Blattmann, Daniel Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
Sun. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 8430–8439, 2019.

Jia Wan and Antoni Chan. Adaptive density map generation for crowd counting. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 1130–1139, 2019.

Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in images:
A generalist painter for in-context visual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6830–6839, 2023a.

Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, and Tiejun Huang. Seggpt:
Segmenting everything in context. arXiv preprint arXiv:2304.03284, 2023b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yong Yang, Qiong Chen, Yuan Feng, and Tianlin Huang. Mianet: Aggregating unbiased instance
and general information for few-shot semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7131–7140, 2023.

Mohsen Zand, Ali Etemad, and Michael Greenspan. Oriented bounding boxes for small and freely
rotated objects. IEEE Transactions on Geoscience and Remote Sensing, 60:1–15, 2021.

Jian-Wei Zhang, Yifan Sun, Yi Yang, and Wei Chen. Feature-proxy transformer for few-shot seg-
mentation. Advances in neural information processing systems, 35:6575–6588, 2022.

Renrui Zhang, Zhengkai Jiang, Ziyu Guo, Shilin Yan, Junting Pan, Hao Dong, Peng Gao, and
Hongsheng Li. Personalize segment anything model with one shot. The Twelfth International
Conference on Learning Representations, 2024.

Lanyun Zhu, Tianrun Chen, Deyi Ji, Jieping Ye, and Jun Liu. Llafs: When large language models
meet few-shot segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3065–3075, 2024.

Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jian-
feng Gao, and Yong Jae Lee. Segment everything everywhere all at once. Advances in Neural
Information Processing Systems, 36, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ALGORITHMS

Algorithm 1: PerSense
Input: Query Image (IQ), Support Image (IS), Support Mask (MS)
Output: Segmentation Mask

1 Perform input masking: Imasked = IS ⊙MS ;
2 Extract class-label using CLE from Imasked (text prompt: ”Name the object in the image?”);
3 Prompt grounding detector with class-label;
4 Obtain grounded detections;
5 Bounding box with max confidence→ decoder;
6 Obtain segmentation mask of the object;
7 Refine bounding box coordinates using the segmentation mask;
8 Exemplar Selection: Refined bounding box→ DMG;
9 Obtain DM from DMG;

10 Process DM using IDM to generate candidate point prompts (PPcand);
11 PPcand → PPSM→ final point prompts (PPfinal);
12 PPfinal → decoder;
13 Obtain an initial segmentation output;
14 Select Top 4 candidates as DMG exemplars based on SAM score;
15 Feedback: Repeat Steps 8 to 13;
16 Obtain final segmentation output;

Algorithm 2: Instance Detection Module (IDM)
Input: Density Map (DM) from DMG
Output: Candidate Point Prompts (PP)

1 Convert DM to grayscale image (Igray);
2 Threshold to binary (threshold = 30) to obtain binary image (Ibinary);
3 Erode Ibinary using 3 × 3 kernel;
4 Find BLOB contours (CBLOB) in the eroded image (Ieroded);
5 for contour in CBLOB do
6 Compute contour area (Acontour);
7 Find center pixel coordinates for each contour;
8 end
9 Compute mean (µ) and standard deviation (σ) using Acontour;

10 Detect composite contours (Ccomposite) by thresholding Acontour;
11 area threshold = µ+ 2σ;
12 for contour in CBLOB do
13 Compute Acontour;
14 if Acontour > area threshold then
15 save contour as Ccomposite;
16 end
17 end
18 for contour in Ccomposite do
19 Apply distance transform [threshold = 0.5 * dist transform.max()];
20 Find child contours;
21 Find center pixel coordinates for each child contour;
22 end
23 return center points from Steps 7 and 21 as candidate PP;
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Algorithm 3: Point Prompt Selection Module (PPSM)
Input: candidate PP, similarity matrix, object count, grounded detections
Output: selected PP

1 max score← Get the maximum similarity score from similarity matrix;
2 selected PP← [ ] ; // Empty list to store selected PP

3 sim threshold← max score / (object count /
√
2);

4 for each PP in candidate PP do
5 PP similarity← similarity matrix(PP);
6 for each box in grounded detections do
7 if (PP similarity > sim threshold) and (PP lies within box) then
8 selected PP.append(PP);
9 end

10 end
11 end
12 return selected PP;

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 STEP-WISE QUALITATIVE ANALYSIS OF PERSENSE

(a) Input Image (b) Similarity Map (c)  Initial Exemplar Selection (d) Initial Density Map

(f) PPSM Output (e) IDM Output

(i) Refined Density Map (j) IDM Output (k) PPSM Output (l) PerSense

(h) Feedback Mechanism

(Exemplar Selection)

One-shot 

Support Set

(g) Initial Segmentation Output

(m) PerSAM (n) SegGPT (o) Matcher (p) Grounded-SAM

Figure 7: Step-by-step qualitative analysis of the PerSense framework. Starting with an input image
(a), a cosine similarity map (b) is generated using the support set. Leveraging this similarity map
and the output from the grounding detector, exemplar selection (c) is carried out to obtain an initial
density map (d) utilizing the DMG. For the given example, the object class is ”egg” and the ground
truth object count is 22. As can be seen in (d), the initial density map estimates the object count as
45 with an error count of 23 (45− 22 = 23). This initial density map is then processed by IDM to
generate candidate point prompts (e), which are refined by PPSM to filter false positives, resulting
in final point prompts (f). These point prompts are then forwarded to decoder to obtain an initial
segmentation output (g). It can be observed in (g) that PPSM effectively eliminated the majority
of false positives; however, a few still remain alongside false negatives (highlighted in red circle).
This initial segmentation output is utilized by the feedback mechanism to refine exemplar selection
based on SAM scores (h), resulting in a more accurate density map (i). As can be observed that the
refined density map predicts object count as 37, reducing the error count from 23 to 15. Next, the
IDM and PPSM modules subsequently leverage the refined density map to generate precise point
prompts represented by (j) and (k), respectively. This enables PerSense to perform personalized
instance segmentation in dense images given as (l). For comparison, outputs of PerSAM, SegGPT,
Matcher, and Grounded-SAM are shown in (m), (n), (o), and (p), respectively.
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A.3 FAILURE CASES

Support Query GT DM PerSense (Output)

Figure 8: The figure illustrates scenarios where PerSense’s performance deteriorates, primarily due
to its reliance on the generated density map. In the first row, where the goal is to segment all
instances of the ”book” class, the density map excludes many true positives (highlighted in red),
which PerSense cannot recover once they are lost during DM generation. A similar issue is seen in
the second row, where a poor-quality density map for the ”carrot” class leads to missed instances,
negatively impacting PerSense segmentation performance.

B MATHEMATICAL INSIGHTS INTO IDM AND PPSM

To enhance understanding of the design of our proposed modules, we provide additional mathe-
matical insights into IDM and PPSM. Starting with IDM, we discuss the mathematical framework
for composite contour detection using statistical thresholding, progressing to the computation
of centroids for candidate point prompts. For PPSM, we offer a theoretical rationale behind the
formulation of the adaptive threshold.

B.1 INSTANCE DETECTION MODULE (IDM)

Contour Detection and Area Calculation: Contours are identified from the binary image, and
the area Acontour of each contour is calculated. Assuming that the contour areas follow a Gaussian
(Normal) distribution, we define:

Acontour ∼ N (µ, σ2)

where:

• µ is the mean area of contours, representing typical object size.
• σ is the standard deviation, representing variation in contour areas due to size differences

among single instances.

The mean µ and standard deviation σ are computed as:

µ =
1

N

N∑
i=1

Acontouri , σ =

√√√√ 1

N

N∑
i=1

(Acontouri − µ)2

where N is the number of detected contours.

Composite Contour Detection using Statistical Thresholding: To distinguish single-instance
contours from composite contours, we set an adaptive threshold based on the Gaussian distribution
properties:

Tcomposite = µ+ 2σ

This threshold was adopted based on statistical analysis presented in Figure 3(b) of the paper which
illustrates the presence of composite contours beyond µ+2σ in the contour area distribution for 250
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images in the PerSense-D dataset. The composite threshold Tcomposite captures unusually large con-
tours, likely representing composite regions where multiple objects are clustered together. Contours
with areas exceeding Tcomposite are flagged as composite:

Acomposite = {Acontour | Acontour > Tcomposite}

The probability of a contour being composite can be calculated as:

P (Acontour > Tcomposite) = 1− Φ

(
Tcomposite − µ

σ

)
where Φ is the cumulative distribution function of the standard normal distribution.

Distance Transform for Child Contour Detection: For each composite contour, we apply a dis-
tance transform Dtransform to reveal internal sub-regions representing individual object instances:

Dtransform(x, y) = min
(i,j)∈K

∥(x, y)− (i, j)∥

where K represents contour boundary pixels. Applying a binary threshold to Dtransform segments
sub-regions within each composite contour, enabling separate identification of overlapping objects
which is a challenging problem considering dense scenarios.

Centroid Calculation for Candidate Prompts: For each detected contour (both parent and child
contours within composite regions), we calculate the centroid using spatial moments:

cX =
M10

M00 + ϵ
, cY =

M01

M00 + ϵ

where Mij are the moments of the contour, and ϵ is a small constant to prevent division by zero. In
contour and moment analysis, M00 is a spatial moment that represents the zeroth-order moment or
area of a shape. M10 and M01 represent the first-order moments along the x and y axes, respectively.

For a given binary image or a region defined by a contour, M00, M10 and M01 are computed as:

M00 =
∑
x

∑
y

I(x, y)

M10 =
∑
x

∑
y

x · I(x, y)

M01 =
∑
x

∑
y

y · I(x, y)

where:

• x and y are the coordinates of each pixel within the region of interest.
• I(x, y) is the pixel intensity at position (x, y).

These centroids serve as candidate point prompts, accurately marking the locations of individual
object instances in dense scenarios for downstream segmentation.

B.2 POINT PROMPT SELECTION MODULE (PPSM)

The purpose of PPSM’s adaptive threshold is to filter candidate points based on similarity scores,
adjusting for object density. This threshold dynamically changes to balance inclusion of true
positives while filtering out false positives in dense scenes. For better understanding, we statistically
model the adaptive threshold in PPSM, where the threshold dynamically adjusts according to object
count using a fixed scaling factor.

Defining the Adaptive Threshold: Let the cosine similarity scores S(x, y) (support vs query)
at each pixel position (x, y) form a distribution with the maximum similarity denoted by Smax.
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For simplicity, we assume that similarity scores across points can be approximated by a Gaussian
distribution, with mean µ and variance σ2. The maximum similarity Smax is then considered the
peak or upper bound of this distribution, representing the point with the highest alignment to the
target feature. The adaptive threshold T for point selection is defined as:

T =
Smax

√
2

C

where C represents the object count in the scene. As C increases, the threshold T decreases, which
allows for a more inclusive selection of points when there is a higher density of objects. We chose√
2 as scaling factor based on empirical results as discussed in section 5.1.

Probability of Selecting a Point with Similarity Above Threshold: Assuming similarity scores S
follow a Gaussian distribution S ∼ N (µ, σ2), the probability P of a randomly selected point having
a similarity score above T is:

P (S ≥ T ) = 1− Φ

(
T − µ

σ

)
where Φ is the cumulative distribution function (CDF) of the standard normal distribution. Substi-
tuting for T , we get:

P (S ≥ T ) = 1− Φ

(
Smax

√
2

C − µ

σ

)
This probability increases as C grows, implying that a higher object count allows for more points
to meet the threshold.

Statistical Balance of True Positives and False Positives: For high values of C , the threshold
T approaches a smaller value, close to zero. This scaling ensures that PPSM remains inclusive in
dense scenes, effectively increasing recall by accepting more points with lower similarity scores.
Conversely, for smaller values of C, T is higher, allowing only points with high similarity scores to
pass the threshold. This behavior enhances precision, as fewer points are selected, with a stronger
emphasis on high similarity. By dynamically adjusting T with Smax

√
2

C , the adaptive threshold
statistically balances true positives and false positives.

C ADDITIONAL EXPERIMENTS AND ANALYSIS

In addition to PerSense-D, we evaluate our method on COCO-20i (Nguyen & Todorovic, 2019) and
LVIS-92i (Gupta et al., 2019), following Matcher (Liu et al., 2024) data preprocessing and evaluation
protocols (Table 3).

Comparison with Methods Involving In-Domain Training: To provide a broader perspective,
we compare PerSense with both in-domain training methods and training-free approaches. Despite
being a training-free framework, PerSense achieves performance comparable to several well-known
in-domain training methods, as shown in Table 3 .

Comparison with C3Det: C3Det (Lee et al., 2022) is an interactive framework designed to pro-
vide bounding boxes for tens or hundreds of tiny objects of a specific class within a given image,
based on a single user-provided click on the object of interest. To ensure a fair comparison with
our training-free setup, we evaluated the performance of C3Det on the PerSense-D dataset by con-
ducting a cross-dataset generalization test. Specifically, we utilized the C3Det model trained on
Tiny-DOTA and assessed its performance on the PerSense-D dataset. The positive location prior in
PerSense was used as the initial user input for C3Det to detect similar instances, and the detections
were subsequently passed to SAM for segmentation. The performance comparison is summarized in
Table 3, where PerSense outperformed C3Det by +23.01% mIoU. This result aligns with the perfor-
mance trends reported by C3Det on the Tiny-DOTA and LCell datasets. As shown in Figure 6 of Lee
et al. (2022) , with a single click, the mAP is approximately 63% for Tiny-DOTA and 55% for LCell
dataset, calculated at an IoU threshold of 0.5. When transitioning to mIoU, these values naturally
decline due to the stricter overlap requirements for segmentation tasks compared to detection tasks.
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Comparison with PerSAM (Point-Based Prompt Method) PerSense consistently outperforms
the recent training-free, point-based PerSAM (Zhang et al., 2024) in segmentation tasks across both
sparse datasets (COCO-20i and LVIS-92i) and the dense dataset (PerSense-D). PerSense demon-
strates significant improvements over PerSAM-F, achieving mIoU gains of +25.5% on COCO-20i,
+13.4% on LVIS-92i, and +42.2% on PerSense-D dataset.

Comparison with Matcher (Patch-Level and Box-Based Prompt Method): Matcher (Liu et al.,
2024) achieves superior performance compared to PerSense on sparse datasets like COCO-20i

and LVIS-92i. This increase is due to its reliance on bidirectional patch-level feature matching
and bounding box-based prompts which effectively identify distinct object regions in scenarios
where objects are sparse and well-separated. In contrast, Matcher struggles with dense images
in the PerSense-D dataset due to its reliance on bounding box-based prompts and its relatively lim-
ited instance-level matching capabilities, which hinders its performance when segmenting densely
packed objects. PerSense outperforms Matcher by +8.8% in dense scenarios. This highlights a
trade-off between point prompts and bounding box prompts in segmentation performance across
sparse and dense images.

For sparse images, bounding box prompts are more effective as they encapsulate the entire object,
providing more comprehensive information compared to a localized point prompt. However, as dis-
cussed in sec 1 of the paper, bounding boxes face inherent limitations in dense images due to their
fixed shape, inability to effectively address occlusions, and challenges in accommodating object
orientation. In such scenarios, point prompts provide superior accuracy, finer control, and greater
adaptability, making them more effective in handling occlusions, clutter, and densely packed in-
stances. For this reason, PerSense proposes the automatic generation of precise instance-level point
prompts leveraging density maps, rather than relying on bounding box-based prompts.

Comparison with SegGPT and Painter: PerSense outperforms SegGPT (Wang et al., 2023b) on
both LVIS-92i and PerSense-D, achieving a higher mIoU by +7.1% and +16.11%, respectively.
However, SegGPT demonstrates superior performance on COCO-20i, likely due to the inclusion of
the COCO dataset in its training set. Additionally, PerSense surpasses Painter (Wang et al., 2023a)
on COCO-20i and LVIS-92i by +15.9% and +15.2% mIoU, respectively, despite Painter having the
COCO dataset as part of its training data.

Additional Comments on PerSense (Sparse vs Dense Images): PerSense generates point prompts
using density maps, which are designed to emphasize the spatial distribution of densely packed
objects. On sparse datasets with low object counts, the generated density map often spreads across
the entire object. For instance, in the case of a single object, the density map becomes a localized
spread concentrated on that object. While this allows PerSense to generate multiple point prompts
for the object, it undermines the primary purpose of density maps, which is to capture variations in
object density across an image.

In such scenarios, density maps provide limited utility, and simpler bounding box-based approaches
prove to be more effective. In summary, while PerSense performs reasonably well on sparse datasets
like COCO-20i and LVIS-92i, generating density maps for sparse scenarios (small object count) is
less efficient. These cases can be effectively handled by bounding box-based methods, whereas
PerSense is specifically designed to excel in dense scenarios by generating precise point prompts
where bounding box-based approaches often struggle.

D ADDITIONAL ABLATIONS

Multiple Iterations in Feedback Mechanism: The feedback mechanism in PerSense utilizes the
initial segmentation output from the decoder to select multiple exemplars for refining the density
map via DMG. This process occurs in a single pass, with exemplars selected based on their SAM
scores, and does not involve multiple iterations, effectively fixing the iteration count at one. An abla-
tion study, presented in Table 4, examines the effect of multiple iterations in feedback mechanism on
segmentation accuracy as well as computational efficiency. The results indicate that additional itera-
tions are unnecessary, as they do not improve segmentation accuracy beyond the results achieved in
the single pass but instead increase computational overhead, reducing the efficiency of the PerSense
pipeline. Intuitively, this is because the first-pass exemplars (four in our case) correspond to the most
confident instances of the target object category. These exemplars are easily detected by DMG, with
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Table 3: Comparison of PerSense with other methods on COCO-20i, LVIS-92i, and PerSense-D
datasets.

Methods Venue
COCO-20i LVIS-92i PerSense-D

F0 F1 F2 F3
Mean
mIoU

Mean
mIoU mIoU

In-domain training
HSNet (Min et al., 2021) CVPR 21 37.2 44.1 42.4 41.3 41.2 17.4 -
VAT (Hong et al., 2022) ECCV 22 39.0 43.8 42.6 39.7 41.3 18.5 -
FPTrans (Zhang et al., 2022) NIPS 22 44.4 48.9 50.6 44.0 47.0 - -
MIANet (Yang et al., 2023) CVPR 23 42.4 52.9 47.7 47.4 47.6 - -
LLaFS (Zhu et al., 2024) CVPR 24 47.5 58.8 56.2 53.0 53.9 - -

COCO as training data
Painter (Wang et al., 2023a) CVPR 23 31.2 35.3 33.5 32.4 33.1 10.5 -
SegGPT (Wang et al., 2023b) ICCV 23 56.3 57.4 58.9 51.7 56.1 18.6 55.5

Tiny-DOTA as training data
C3Det (Lee et al., 2022) CVPR 22 - - - - - - 48.6

Training-free
PerSAM (Zhang et al., 2024) 23.1 23.6 22.0 23.4 23.0 11.5 24.4
PerSAM-F (Zhang et al., 2024) ICLR 24 22.3 24.0 23.4 24.1 23.5 12.3 29.3
Matcher (Liu et al., 2024) 52.7 53.5 52.6 52.1 52.7 33.0 62.8
PerSense (this work) 47.8 49.3 48.9 50.1 49.0 25.7 71.6

Table 4: Impact of multiple feedback mechanism iterations on PerSense performance.

No. of iterations
(Feedback Mechanism)

PerSense
mIoU

Average inference
time per image (sec)

1 71.61 2.7
2 71.65 3.1
3 71.63 3.5
4 71.60 3.9

their boundaries well delineated by SAM, even when using a single initially selected exemplar as
input. In subsequent iterations, the same exemplars are repeatedly selected due to their distinct
visual features and consistently high SAM scores, attributed to the clearly defined boundaries in
their segmentation masks. Consequently, multiple feedback iterations provide no additional benefit,
rendering further iterations redundant.

Component-wise Ablation Study of PerSense on COCO dataset: As suggested, in addition to
the PerSense-D dataset, we provide a component-wise ablation study of PerSense on the COCO
dataset in Table 5. The results demonstrate that integrating PPSM into the proposed baseline leads
to a +2.48% mIoU improvement, as it effectively filters out false positives from the candidate point
prompts generated by IDM. On the other hand, the feedback mechanism yields a modest +0.19%
mIoU improvement, which is expected for images with a low object count. For example, if an
image contains only a single object instance, the feedback mechanism cannot select four exemplars,
limiting its ability to further refine the initial density map.

Running Efficiency Comparison: Alongside the inference time comparison presented in Table 1,
we also provide details on memory consumption for PerSense, evaluated on a single NVIDIA
GeForce RTX 4090 GPU with a batch size of 1 (Table 6). PerSense is highly computationally effi-
cient than Matcher and PerSAM-F and incurs marginal latency and GPU memory usage compared
to Grounded-SAM.
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Table 5: Component-wise ablation study of PerSense on COCO dataset.

Method IDM PPSM Feedback DMG: DSALVANet
mIoU(Gain)

proposed baseline yes no no 46.33 (-)
proposed baseline + PPSM yes yes no 48.81 (+2.48)
PerSense yes yes yes 49.00 (+0.19)

Table 6: Running efficiency comparison of PerSense with SOTA.

Method Memory
(MB)

Avg inference time
(per image) (sec)

Grounded-SAM (Ren et al., 2024) 2943 1.8
PerSAM-F (Zhang et al., 2024) 2950 47.78

Matcher (Liu et al., 2024) 3209 10.2
PerSense (this work) 2988 2.7
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