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ABSTRACT

In real-world multimodal applications, modality missing frequently arises due to
device failures, network instability, or privacy concerns. Latest studies introduce
prompt-based fine-tuning process to adapt models in such incomplete multimodel
learning scenarios. However, most of these methods struggle from two aspects:
(1) static prompts are modality missing-aware but instance-invariant, thereby con-
straining the model performance. (2) the complexity of prompts are coupled
with the number of modalities, hindering their scalability. Different from exist-
ing prompt-based methods, we propose Mixture of LoRA Experts for Adaptive
Incomplete Multimodal Learning, named MAIL. Specifically, We design the
LoRa-based Mixture of Experts and insert them into the pre-trained model to
achieve adaptive incomplete multimodal learning. By training on datasets con-
taining randomly missing modalities, MAIL can adaptively select a fixed com-
bination of LoRA experts based on the current modality missingness and data
unique characteristics. Accordingly, the parameter complexity depends only on a
hyperparameter controlling the total number of experts, effectively decoupling it
from the number of modalities. Extensive experimental comparisons on three real-
world datasets demonstrate that MAIL can effectively handle incomplete modality
problems compared to 11 baselines.

1 INTRODUCTION

The rapid development of pre-trained multimodal models in recent years|Kim et al.|(2021)); Radford
et al.| (2021); [Fan et al.| (2023); |Shu et al.| (2025) has catalyzed remarkable progress in multimodal
learning, driving advancements in tasks such as cross-modal retrieval Wang et al.| (2024)), image
captioning |Liu et al.[(2025), and multimodal sentiment analysis Wang et al.| (2025). While recent
advances in multimodal learning have achieved remarkable success, most studies implicitly assume
the complete availability of all modalities during both model pre-training and downstream inference.
However, in real-world scenarios, factors like device failures, unstable networks, and privacy con-
cerns can result in missing modalities in model inputs. These factors can severely undermine the
model’s performance and robustness, causing a sharp decline in its performance and robustness |Ma.
et al.|(2022); [Hazarika et al. (2022).

Currently, research on alleviating modality missingness can be broadly categorized into three ap-
proaches: generation-based methods |[Ma et al.| (2021); |Yuan et al.[ (2021); /Woo et al.| (2023), joint
learning methods Zuo et al.|(2023)); Wang et al.|(2023)); Yao et al.| (2024)), and prompt-based methods
Lee et al.|(2023);|Jang et al.| (2024); [Pipoli et al.|(2025)); Lang et al.|(2025)). Generation-based meth-
ods aim to synthesize the missing modality using the available ones, creating pseudo-modal data that
allow multimodal tasks to proceed as if all modalities were present. Joint learning methods focus
on optimizing shared representations across modalities during training, enabling the model to make
reliable predictions even when some modalities are missing, by leveraging these common represen-
tations. Recently, fueled by the growing capabilities of pre-trained models and the advancement of
parameter-efficient fine-tuning (PEFT) techniques Wang et al| (2022b); Xu et al.| (2025)); [Hu et al.
(2022); [Cheng et al.| (2025), an increasing number of researchers have turned to prompt-tuning as a
strategy to address the challenge of modality missingness. These prompt-based approaches exploit
the powerful prior knowledge of pre-trained models to effectively handle missing modality scenarios
by optimizing the inserted prompts (shown in Figure 1). Compared to the previous two approaches,
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Figure 1: The comparison between existing prompt-based methods and our MAIL. Prompt-based
method address modality-incomplete inputs by reconstructing missing modalities at the data level,
inserting specific prompts into data embedding and intermediate hidden state for each modality-
missing scenarios. MAIL, on the other hand, introduces trainable experts at the model level, adap-
tively selects experts combination according to the modality-missing scenarios as well as specific
instance characteristics.

prompt-tuning can achieve competitive performance while significantly reducing computational and
data requirements.

However, existing prompt-based methods typically face two problems: (1) Their prompts are stat-
ically shared across all input data under a fixed modality-missing scenario, ignoring the unique
characteristics of individual data samples, which limits model performance. In other words, those
prompts are pre-designed and changes only with the modality missing conditions, not with each
input instance. (2) The number of prompt modules is coupled with the number of modalities. Since
prompt-based methods operate directly at the data level, their complexity increases with the number
of modalities. For example, with M modalities, MAP [Lee et al.| (2023)) requires predefined prompt
parameters for all 2/ — 1 possible missing combinations, while MSPJang et al.| (2024) reduces this
to M, but still scales with modality count.

In view of the above, we introduce another PEFT method-Adapter and incorporate it with Mix-
ture of Experts (MoE) to alleviate the existing problems. As shown in Figuer 1, instead of data-
level prompt-based feature reconstruction, we insert Mixture of LoRA experts-a kind of low rank
adapters, into the pre-trained model to achieve adaptively incomplete multimodel learning. Specif-
ically, by fine-tuning on datasets with missing modalities, our method can adaptively select a fixed
combination of LoRA experts based on the current modality missingness and data unique charac-
teristics, thereby enhancing the model’s inference performance and robustness. Accordingly, the
parameter complexity depends only on a hyperparameter controlling the total number of experts,
effectively decoupling it from the number of modalities. Besides, we also investigate different Moe
designs, including linear-wise, attention-wise, and their combination, as well as different expert
shape allocation strategies, to investigate their impact on modal missing scenarios, in order to fur-
ther improve the performance of our proposed method. The main contributions of this paper could
be summarized as follows:

* We introduce MAIL, which effectively mitigates the performance degradation caused by
modality missing by adaptively selecting an optimal combination of experts, taking into
account both the missing modalities and the characteristics of each sample.

* We investigate different MoE designs, including linear-wise, attention-wise, and their com-
bination, as well as different routing strategies and expert allocation shapes, to investigate
their impact under different modality-missing scenarios.

* We conduct extensive experiments on three real-world datasets to evaluate MAIL in com-
parison with 11 competitive baselines and the results confirm MAIL’s effectiveness in ad-
dressing missing-modality issues.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

Multimodal Learning with Missing Modalities. Existing approaches for incomplete multimodal
learning can be categorized into three types: (1) Generation-based methods Ma et al.| (2021); |Yuan
et al.| (2021); Woo et al.|(2023) aim to reconstruct the missing modalities. These methods often rely
on generative models to infer the latent representation of the absent modality conditioned on the
observed modalities. (2) Joint learning methods Zuo et al.| (2023); |Wang et al.| (2023)); [Yao et al.
(2024) focus on learning unified representations across modalities during training, with the goal of
capturing intrinsic correlations of modalities. (3) Prompt-based methods Lee et al.|(2023)); Jang et al.
(2024); Pipoli et al.| (2025); |[Lang et al.| (2025) have recently emerged as a more resource-friendly
way to handle modality-missing problems. These approaches exploit the knowledge of pre-trained
multimodel models and introduce few learnable prompts to encode modality-specific cues, enabling
the model to adapt incomplete multimodel learning scenarios.

However, existing prompt-based methods often rely on static modality-missing-aware prompts that
ignoring specific unique characteristics. Besides, their complexity of added prompts are coupled
with the number of modalities. These two problems limit the performance and scalability of prompt-
based methods.

PEFT for pre-trained multimodel models Common PEFT methods used in multimodal learning
scenarios can be categorized into two types: prompts and adapters. CoOp Zhou et al.| (2022b) and
CoCoOp|Zhou et al.| (2022a)) are the first foundational works that introduce prompts into multimodal
models, which designs trainable prompts to encode the label of each image into a trainable context.
MaPLe Khattak et al.| (2023) extends trainable prompts that only exist on the text encoder to both
text and image encoders. Prompt-ladder |Cai et al.| (2025) significantly reduces the memory usage
of prompt-tuning through a lightweight ladder network to bypass large pre-trained models during
back-propagation. There are also many studies that introduce adapters into multimodal models and
achieve great success. CLIP-Adapter Gao et al.|(2024b)adds adapters to the end of both the visual
and textual branches of the CLIP model, enabling the model to learn new features for downstream
tasks. Tip-Adapter Zhang et al.| (2022) proposed a training-free approach that does not require
training the adapter through backpropagation enables more efficient multimodal model transfer.

Recently, researchers|Wang et al.| (2022a); [Zadouri et al.|(2023);|Yu et al.| (2025) combine MoE with
PEFT methods, offering new approaches for adapting pre-trained models to multi-task and other
complex scenarios, and achieving notable performance improvements. Inspired by these works,
we observe that modality-missing scenarios are naturally well-suited for fine-tuning via MoE based
PEFT, offering a resource-efficient way to enhance model performance and robustness.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Assuming the multimodal dataset D contains M = 2 modalities, denoted as m; and ms, represent-
ing text and image modalities, respectively. Since all modalities missing are meaningless, the model
needs to handle a total of 2 — 1 possible missing modality cases. Specifically, for dataset within two
modalities (text and image), three modality-missing scenarios will arise: D¢ = {(z]", ", y;) }T°,
D™ = {(x™,y;)}1t, D™ = {(z"*,y;)}12, where D¢, D™, and D™ are the subset of differ-
ent modality missing scenarios and D = {D¢, D™, D™ }. y; denotes the i-th instance label. ="
and ;" are the instance of two modalities. n., n1, and na represent the total number of instances
for different missing modality scenarios. In order to ensure input consistency, missing modalities
will be supplemented with dummy data (eg, empty string for text, zeros for image) in subset D"*!
and D™2, which results D™ = {(x]"*,;"?,y;)}1* and D2 = {(£,"™*, x;"?,y;)}72. The final
multimodal dataset with missing modalities can be denote as: D = {D¢, D™, D™}, which is a
mixture of subset with different modalities-missing scenarios.

Figure 2 provides an overview of our proposed MAIL. The primary objective of MAIL is to fine-
tune experts integrated into the pretrained model under multimodal datasets with different modality
missing scenarios. By jointly considering both the missing modality patterns and instance-specific
features, MAIL dynamically selects an appropriate combination of experts, thereby enhancing the
model’s inference performance and robustness.



Under review as a conference paper at ICLR 2026

'/ One ofX 5]::: Transformer Layer \‘ | # Frozen Learnable |
! hidden X1,

: Pooler - Linear =Prediction

: Nt

: XL
i Multimodel Transformer Layers

i

1

1

1

1

1

UGGDGUDDDUDG
[ [ 11 ]

_ : e [ Text Embeddmg ] [ Patch Embedding ]
"'Multimodel data with missing modality i B bacomes st 0 o EE BE E W
- t

When h becomes
Model Input | = in the

farmer and
A pilot,
my may Joseph Cooper, is
171 tasked to pilot a
spacecraft, along with
ate
‘o fnd a new planet

for humans.

my g
(727D

Figure 2: The overview of MAIL. By fine-tuning on datasets with missing modalities, MAIL can
adaptively select a fixed combination of LoRA experts based on the current modality missingness
and data unique characteristics, thereby enhancing the model’s inference performance and robust-
ness.

3.2 REVISITING VILT

Given its proven effectiveness across a wide range of multimodal learning tasks, we adopt the pre-
trained ViLT model Kim et al.|(2021)) as the backbone of our framework. Assume the current text and
image inputs are denoted as "' and z"?, respectively. ViLT directly encode the text input " into
text embedding ¢ € R”1*? containing the cls token and position embedding. Similarly, image input

™2 will first divided into patches, which are then flattened and passed through a linear projection
to obtain the image embedding v € R*2X9, Then, text and image embeddings will be summed
with their corresponding modality-type embedding vectors e;, e, € R?, and then concatenated into
a single sequence and fed into the L-depth transformer layers, the formulation are as follows:

R = [t + e, v + ey (1)
hi = TransformerLayer(l)(hﬁfl), [=1,2,...,.L 2)
Finally, the resulting vector h} will be passed through a pooler, which applies a linear transformation

Whpoot followed by a non-linear activation tanh. The output is then fed into a lightweight, task-
specific classification head comprising a fully connected layer to get the model predictions.

g = FO(tanh(htWoor)) (3)

3.3 LOW-RANK ADAPTATION

Low-Rank adaptation (LoRA) is a adapter-like PEFT approach that is widely used in fine-tuning. It
freezes the parameters of the pre-trained model and decomposes the parameter updates into low-rank
matrices, thereby significantly reducing the number of trainable parameters. For the given i-th layer
of pre-trained model with weight matrix W; € R%ut*din T oRA introduces two learnable low-rank
matrices: A € R"™*%» and B € R%w*" where 7 is a small rank satisfying r < min(d;p, dout)-
This design ensures that the modified transformation B Ax maintains the same output dimensionality
as the original W;x. The computation of LoRA can be formulated as follows:

h=W+ AWz = Wiz + %BAJ; (4)

where r represents LORA rank, « is the scalling factor that controls the change magnitute of W .
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In practice, A is initialized with values drawn from a Gaussian distribution, while B is initialized
to zeros. This initialization strategy guarantees that the model’s behavior at the start of fine-tuning
remains identical to that of the original pre-trained model. Compared to full fine-tuning of all model
weights, LoRA achieves a substantial reduction in trainable parameters, while still maintaining com-
petitive performance levels.

3.4 MIXTURE OF LORA EXPERTS

Traditional MoE architectures Shazeer et al.|(2017); [Fedus et al.| (2022)) enhance model capacity by
substituting model’s linear layers with specialized MoE layers. Each MoE layer comprises a set of
N independently parameterized linear layers, referred to as experts, denoted by { E;} ¥ ;. A routing
mechanism R(-) is employed to determine the contribution of each expert dynamically, based on the
input. Given an input x, the MoE layer produces an output y by aggregating the responses of all
experts, each weighted by the router’s output. The formulations are as follow:

N
y=> R(x); Ei(x) ©)
i=1
R(x); = Softmax(W,.x) (6)
Here, E;(z) represents the i-th linear expert’s
output, and R(z); indicates the weight of associ- g w @ (B (B
ated router. Wy, is the trainable weight matrix for . £ - |
. .- . =% 3 &~ = =3
router. R(-) typically computes a probability dis- &k x ) E—i &l § P &
tribution over experts conditioned on z, enabling  * = g ) J 0
soft selection or sparse routing depending on the —@y - e L=l —
design. After training with amount of data, tradi- .
tional MoE architecture can lfaveragfa the router to 57 B (8 (B
enable each expert for realizing unique capabili- | Ges B g - 2|
tes. FrEETE IR T
s Cesverts; E g ER

Unlike traditional MoE approaches that replace _, e )
the model’s linear layers with MoE layers con- (o o

taining multiple linear experts, we propose Mix-

ture of LoORA Experts (MoRA), which uses mul- Figure 3: The illustration of two Mixture of
tiple efficient LoRA experts to substitute the pa- LoRA Experts designs.

rameter changes during fine-tuning. This signifi-

cantly reduces the demand for computational resources and learning data. In this paper, We explore
the two designs of the mixture of LoRA experts architecture: Linear-wise MoRA and Attention-wise
MoRA.

3.4.1 LINEAR-WISE MORA.

A common designs that target at linear layers within the pre-trained model, as shown in top of the
Figure 3. Suppose that the linear layer of the i-th transformer layer is defined as:

Linear(z); = Wix + AW,z 7

By applying Linear-wise MoRA, the weight changes AW, during fine-tuning will be substitute with
low-rank format MoE layers, the new linear layer can be formulated as follows:
ol
Linear(z); = Wix + o Z R(x);B;Ax (8)

i=1

As previously mentioned, r represents LoRA rank, « is the scalling factor, R(z); indicates the
router, A; and B; are the low-rank matrices.

3.4.2 ATTENTION-WISE MORA.

We also introduce another designs of MoRA that focus on MSA layers [Vaswani et al.| (2017), as
shown in the bottom of Figure 3. We replace the weight changes of original query, key and value
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with low-rank experts. Same as Linear-wise MoRA, the formulations can be defined as follow:

N
O(x); = Wiz + % 3" R(@)!B!Alx 9)
i=1
a N
Kz = Whe + & k gk gk 1
(w)i sz+r;R<x>z TAT (10)
o N
Y ;= W? - YBYAY 11
V() Wz$+T;R(I)z VAL (1n

Where W, WE, WP € R4 is the projection weights of attention layer. Then, the attention layers
can be defined as:

Vd

Since Attention-wise MoRA targets more objectives, it introduces more additional expert parameters
compared to Linear-wise MoRA. In the experiments, the variant using linear-wise MoRA is named
MAIL-L, and the one using attention-wise MoRA is named MAIL-a. Additionally, we designed a
variant that incorporates both two MoRA, named MAIL-b.

Attention(z) = Softmazx <W> V(x); (12)

3.4.3 OTHER MORA SETTINGS.

In addition to the types of MoE designs, we also try different routing strategies and expert allocation
shapes in the experiment, to investigate their impact under different modality-missing scenarios.

For routing strategies, we adopt Top-K strategy that select the most appropriate K experts for each
layer in a discrete way. Besides, we also try a SoftMerge strategy |Zadouri et al.[(2023)) that compute
a weighted average of experts. The results show that simple Top-K is better than SoftMerge, as the
latter strategy may introduce more noise in scenarios with different missing modalities.

For expert shape allocation, prior research|Gao et al.|(2024a) investigates the impact of different ex-
pert shape and find that a 57 allocation shape yields better performance when applied to pretrained
models, which assigns more experts to higher layers (output side) of the model while allocating
fewer experts to the lower layers (input side). Follow their settings, we apply different expert alloca-
tion shapes and construct MAIL-57, MAIL-A, and MAIL-[]. MAIL-5/ allocate more experts in the
higher layers of pre-trained model. MAIL-A is opposite to MAIL-v/, which allocates fewer experts
in higher layers. MAIL-[J allocates the same number of experts across all layers of the pre-trained
model. We find under modality-missing scenarios MAIL-[] performs better than others. We will
discuss in more details in the evaluations section.

4 EVALUATIONS

4.1 EXPERIMENTAL SETTINGS

Datasets. Following prior research [Lee et al.[ (2023); Jang et al.| (2024), we evaluate our MAIL
across three multimodal downstream datasets: (1) MM-IMDb |Arevalo et al.| (2017), a benchmark
dataset designed for movie genre classification that leverages both textual and visual information;
(2) UPMC Foodl01|Wang et al.[(2015)), which emphasizes image classification with complementary
textual input; and (3) Hateful Memes Kiela et al.| (2020), which targets hate speech detection within
memes by integrating image and text modalities.

Missing data setting. In our experiment, the training and test set both contain modality-missing
data. We define % as the missing rate, which indicates the proportion of incomplete data pair
within the multimodel dataset. Since the dataset contains two modalities (text and image), the
modality missing types can be devided as: (1) text/image missing (denotes as Text/Image in all
tables) indicates that there are % image-only/text-only data pairs and (1 — 1)% complete data pairs
within the dataset. (2) both missing (denotes as Both in all tables) indicates that there are g% text-
only data, 7% image-only data, and (1 — 1)% complete data. We can extend the modalities to M/
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in total. In this case, each missing type will have (37— )% incomplete data samples and (1 — 1)%

complete data. In our experiments, the default value of missing rate 1 is set to 70%.

Evaluation Metrics. We adopt different metrics for each dataset follow the common settings. For
MM-IMDb |Arevalo et al.| (2017)), F1-Macro is used to indicate the performance of multi-label clas-
sification task. For UPMC Food-101, accuracy is adopted that suitable for normal classification task.
For Hateful Memes, we use Area Under the Receiver Operating Characteristic Curve (AUROC) to
evaluate model’s performance.

Implementation Details. Following prior worksLee et al.| (2023); [Lang et al.| (2025), we utilize
the pre-trained ViLTKim et al.| (2021) as the backbone and the parameters of ViLT remain frozen
during fine-tuning. Only inserted experts and downstream related pooler and linear layers need to
optimize. AdamW optimizer is adopted with a learning rate of 2e-4. We set each LoRA expert with
rank r = 4, a = 8, and LoRA dropout is 0.05. The top-2 routing strategy is used as default. For
default epxert allocation shape, we construct a square shape (L) MoE, which allocate 5 experts to
all layers of ViLT. All experiments are conducted with an NVIDIA RTX 4090 GPU.

Table 1: Comparison of different methods across MM-IMDb, HateMemes, and UPMC Food-101
datasets. Text, Image, Both indicate different Missing Type with default 70% missing rate, as de-
tailed in the Missing data setting section.

Methods MM-IMDb Hateful Memes UPMC Food-101
Missing Type Text Image  Both Text Image  Both Text Image  Both

Generation-based methods

SMIL 38.32 27.57 35.12 50.32 58.50 54.63 51.83 49.86 46.77
TFR-Net 37.70 39.45 3724  51.18 55.57 52.12 6591 67.58 63.41
AcMAE 47.47 43.82 44.05 55.74 59.66 57.25 69.28 73.75 71.15
Joint learning methods

IF-MMIN 39.63 31.95 31.98 57.62 53.44 55.19  66.76 64.36 68.53
ShaSpec 44.04 44.23 44.06  58.75 60.30 60.96  60.99 74.87 70.02
DrFuse 47.05 44.09 48.83 57.60 60.66 55.84  66.30 75.09 68.23
CorrKD 44.82 39.48 41.20 58.74 55.59 57.91 61.37 66.83 62.87
Prompt-based methods

MAPs 46.12 44.86 45.48 58.62 60.16 58.89  67.02 75.62 72.52
MSPs 49.16 44.62 48.28 59.60 60.05 59.08 71.74 79.09 74.46
SCP 48.16 44.78 4629 57.34 59.47 58.14  73.68 78.96 76.97
RAGPT 55.16 46.44 50.89  64.10 62.57 63.47 75.53 81.98 76.94
MAIL-1 54.97 46.07 51.27 62.26 61.71 61.95 74.26 80.36 76.58
MAIL-a 54.34 45.61 51.81 62.81 61.96 6244 7545 80.36 76.82
MAIL-b 55.42 46.39 52.06 63.47 62.73 63.11 75.77 81.26 77.28

4.2 MAIN RESULTS

We compare MAIL with 11 competitive baselines, which are classified into three categories: (1)
Generation-based methods: SMIL Ma et al.| (2021)), TFRNet |Yuan et al.| (2021)), and AcMAE Woo
et al. (2023). (2) Joint learning methods: IF-MMIN |Zuo et al.| (2023)), ShaSpec Wang et al.| (2023)),
DrFuse |Yao et al.[(2024), and CorrKD [Li et al.| (2024)). (3) Prompt-based methods: MAP |Lee et al.
(2023), MSP Jang et al.|(2024), SCP Pipoli et al.| (2025)), and RAGPT [Lang et al.| (2025)).

Table 1 shows an overall comparison between MAIL and 11 baseline methods across three datasets.
We can observed that: (1) MAIL achieves the best or second-best performance in the majority of
experimental settings compared to baselines, which demonstrating that select specific expert combi-
nations informed by both modality-missing scenarios and instance-specific characteristics can sig-
nificantly alleviate the impact of missing modalities. (2) Although MAIL-a that adopt attention-wise
MoRA has more parameters, its overall performance across different experimental settings is com-
parable to that of the MAIL-1 which adopt linear-wise MoRA. This is possibly because the linear
operates on each token independently, making it naturally well-suited for the sparse expert selec-
tion mechanism of MoE, and thus it tends to perform better. (3) MAIL-b, which applies MoE at
both the linear and attention-wise MoRA, undoubtedly achieves the best performance due to the
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inclusion of more trainable parameters. (4) generation-based and joint learning methods exhibit
worse performance, primarily attributable to the uncertainty induced by stochastic placeholders and
the intrinsic challenges posed by cross-modal heterogeneity during the reconstruction process, both
of which constitute substantial impediments to model efficacy. In addition, prompt-based methods
also demonstrate limited performance, as most of their static prompting ignored important instance-

specific features.

4.3 ABLATION STUDY

Robustness to different missing rates.We conduct fur-
ther experiments to analyze the robustness of our pro-
posed method against different missing-modality rates
between training and testing phases. First, we use radar
charts to clearly illustrate the performance of different
methods under varying missing rates, shown in Figure.
[ VILT experiences a significant decline in performance
when any modality is absent during inference. In con-
trast, the figures indicate that MAIL maintains consis-
tently strong performance across varying rates of miss-
ing data, highlighting the enhanced robustness of our ap-
proach.

Figure[3] presents the performance of different methods
under more continuously varying missing rates. We can
also observed that:(1) All methods naturally experience
a gradual decline in performance as the missing rate
increases. (2) Missing-both will cause greater fluctua-
tions in model performance as the missing rate increases.
(3) Benefiting from well-designed retrieval framework,
RAGPT surpasses MAIL under several missing rate set-
tings, but MAIL still demonstrates superior overall per-
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Figure 4: The radar plot shows FI1-
macro scores on the MM-IMDb dataset,
with each axis representing the % avail-
ability of image and text modalities.
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Figure 5: The comparison results of MAIL with several prompt-based methods on the MM-IMDb
dataset with different missing rates (both training and test dataset with the same missing rate).

Finally, we further compare MAIL variants under different missing scenes follow prior work’s set-
ting |Lee et al.| (2023) to analyze the robustness of the model when the training set and test set
belong to different modality-missing scenarios, results are shown in Figure[f] In Figure 5(a), all
variants of MAIL are trained on data with the Both missing type and tested on the Text missing
type. We can find that although MAIL-a has more updatable parameters, the gap between MAIL-
a and MAIL-1 gradually narrows as the missing rate increases, indicating that linear-wise MoRA
may be more suitable for modal missing scenarios. In Figure 5(b), training is conducted on Both
missing type data with 10%, 70%, and 90% missing rates, and the models are transferred to testing
on data with various other missing rates. We observe that at lower modality missing rates, training
with more modality-complete data yields improved model robustness and performance. However,
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Figure 6: Ablation study on robustness to the testing missing rate in different scenarios on MM-
IMDb.

as the missing rate increases, the influence of data completeness on model performance progres-
sively diminishes. In Figure 5(c), training is performed entirely on modality-complete data, and the
models are transferred to testing on data with different missing rates of Both missing type. Since the
model has not encountered modality-missing scenarios during training, its performance degrades
more significantly as the modality missing rate increases.

The impact of different expert allocation shapes and routing strategies.To further investigate
the impact of different MoE configurations on modality-missing scenarios, we conducted ablation
studies on both the routing strategies and expert allocation shapes.

Table 2 presents the results of different routing
strategies. We find that the default top-2 strat-

4 Table 2: Analysis of routing strategies.
egy achieves the best performance. Although

. . Routing strategy Text Image Both
previous studies have shown that soft merge can

. : : Top-2 (Default) 55.42 46.39 52.06

perform well by integrating more experts, in Top-1 2.84 Yy 50.14

scenarios with modality missing, experts may SoftMerge 54.63 46.52 51.38
specialize in different modalities, and merging
their outputs could introduce additional noise,
ultimately leading to degraded performance.

Table 3: Analysis of expert allocation shapes.

. Expert allocation Shape Text Image Both

Table 3 presents the results of different expert
. X . MAIL-0J (Default) 55.42 46.39 52.06
allocation shapes. Previous studies have found MAIL-A 5507 46.29 5191
that an <7 expert shape tends to yield better per- MAIL-v7/ 55.34 46.03 52.22

formance. However, our results show that a [J

expert shape performs better in scenarios with

modality missing. We think that this is because missing modalities require the model to involve
more experts on the input side during training to compensate for the missing information of original
data.

5 CONCLUSION

In this work, we propose MAIL, a Mixture of LoRA Experts for Adaptive Incomplete Multimodal
Learning. Unlike existing prompt-based approaches that suffer from static prompts and scalability
issues, MAIL dynamically selects expert combinations based on both modality-missing scenarios
and instance-specific features, achieving greater adaptability and robustness. Through extensive
experiments on three real-world datasets, MAIL outperforms 11 strong baselines in many cases,
demonstrating its effectiveness and scalability in handling incomplete multimodal scenarios.
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