
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWE-REFACTOR: A REPOSITORY-AWARE BENCH-
MARK FOR EVALUATING LLMS ON REAL-WORLD
CODE REFACTORING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs) have garnered significant
attention for their applications in software engineering tasks. Among these tasks,
code refactoring has its own unique challenges. Unlike code generation, refac-
toring requires precise changes that preserve program behavior while improving
structure, making automated evaluation difficult. Existing refactoring benchmarks
suffer from three key limitations: (1) they often focus on atomic refactoring types
while missing more complex ones; (2) they contain noisy data with entangled,
unrelated code changes, making it difficult to study LLM’s true refactoring capa-
bility accurately; and (3) they lack code repository and structural information to
support realistic evaluations. To address these issues, we propose SWE-Refactor, a
new benchmark for LLM-based code refactoring. SWE-Refactor contains 1,099
real-world, pure refactorings collected from 18 real-world Java projects. Each
refactoring instance is verified through compilation, test execution, and automated
refactoring detection tools to ensure correctness. Unlike prior benchmarks, SWE-
Refactor covers both atomic and compound refactoring types (single and multiple
code changes). It includes rich repository-level data (e.g., method callers and
callees, class hierarchies), as well as configuration details like test coverage and
build settings. We evaluate nine widely used LLMs on SWE-Refactor, including
GPT-4o-mini, DeepSeek-V3, and CodeLLaMa. DeepSeek-V3 achieves the best
performance with 457 successful refactorings (41.58%), followed by GPT-4o-mini
with 438 (39.85%). DeepSeek-V3 performs particularly well on Extract Method,
completing 301 cases, while GPT-4o-mini demonstrates stronger performance on
more complex refactoring types, such as Move Method and Extract and Move
Method. Furthermore, we find that adding retrieval context via few-shot examples
and using a multi-agent workflow significantly improve performance, with the
multi-agent approach achieving the highest success rate. We release SWE-Refactor
and all evaluation results to support future research on LLM-based code refactoring.

1 INTRODUCTION

In software engineering, code refactoring is a process of improving the structure of existing code with-
out changing its behavior (Fowler, 1999). This practice is essential for maintaining software systems
by improving code quality, enhancing reusability, and ensuring adaptability to changing requirements
(Murphy-Hill et al., 2011). Unlike coding, code refactoring typically involves analyzing existing code
to identify code segments for improvement, understanding its structure and dependencies, and then
making precise changes without altering its behavior. For example, a common refactoring operation
is Extract Method (Fowler, 1999; Murphy-Hill et al., 2011; Tsantalis et al., 2020), where a developer
identifies a portion of a long method that can operate independently and extracts it into a separate
method, making the original method shorter, more readable, and reusable.

In recent years, Large Language Models (LLMs) have been widely applied across various software
engineering tasks due to strong abilities in code understanding and reasoning (Lin et al., 2024; Jin
et al., 2023; Alshahwan et al., 2024; Qin et al., 2024). Among these tasks, code generation has
attracted significant attention (Lin et al., 2024; Jiang et al., 2024; Ishibashi & Nishimura, 2024),
where LLMs generate code from natural language descriptions or specifications. In contrast, code

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: The comparison between existing benchmarks and SWE-Refactor. Compound refactoring
means there can be multiple code transformations. Pure refactoring indicates commits without
unrelated changes. Developer-written GT refers to the ground truth refactored code being written
by original project developers. Test availability shows whether test cases are provided to verify
correctness. Automated construction indicates whether the benchmark was built entirely via an
automated pipeline.

Benchmark
Code Distribution Compound Pure Developer- Test Automated

Repo # Sample Refactoring Refactoring Written GT Availability Construction

ref-Dataset (Liu et al., 2025) 20 180 ✗ ✓ ✓ ✗ ✗

community corpus (Pomian et al., 2024) 5 122 ✗ ✗ ✓ ✗ ✗

extended corpus (Pomian et al., 2024) 12 1,752 ✗ ✗ ✓ ✗ ✓

RefactorBench (Gautam et al., 2025) 9 100 ✗ ✗ ✗ ✓ ✗

SWE-Refactor 18 1,099 ✓ ✓ ✓ ✓ ✓

refactoring poses a different challenge, requiring a deep understanding of existing code semantics
and repository structures, and making precise changes that preserve the original behavior while
improving code structures. This creates unique challenges, as LLMs must precisely determine what
to change while preserving the functional behaviors. Moreover, evaluating refactoring capabilities
requires realistic settings and codebases, since real-world code introduces complex design patterns,
dependency chains, and language features that are rarely captured in synthetic examples.

To assist with these challenges, mainstream integrated development environments (IDEs) such as
IntelliJ IDEA (JetBrains, 2024a), PyCharm (JetBrains, 2024b), and Eclipse (Foundation, 2024) have
introduced semi-automated refactoring tools. These tools can help perform low-level code changes
but still rely heavily on developers to understand the code and make key decisions. To further reduce
manual effort and enhance automation, recent studies have investigated the use of LLMs for code
refactoring tasks (Pomian et al., 2024; Shirafuji et al., 2023; White et al., 2024; Xu et al., 2025), and
several benchmarks have been proposed to evaluate model performance. However, these benchmarks
often have one or more of these four key limitations, as summarized in Table 1.

1 Consider Only Atomic Refactoring Types. Existing refactoring benchmarks often focus on
a limited set of atomic refactoring types (i.e., a single code transformation). Figure 1 shows an
example where an Extract Method appears as part of a compound refactoring (i.e., multiple code
transformations). As shown in Table 1, the community corpus (Pomian et al., 2024) and extended
corpus (Pomian et al., 2024), used to evaluate EM-Assist (an IntelliJ plugin), focus exclusively on one
atomic (Extract Method) refactoring. Similarly, the ref-Dataset proposed by Liu et al. (2025) supports
9 atomic refactoring types, including Extract Method and Extract Variable, but lacks support for more
complex, compound refactorings such as Extract And Move Method. RefactorBench (Gautam et al.,
2025) also focuses on a limited set of 7 atomic refactoring types, including Move Class, Rename
Class, Move Method, and Rename Method. Definitions for each refactoring type are provided in
Appendix C. In short, none of the existing benchmarks support compound refactorings.

2 Noisy Benchmark Data. Existing refactoring benchmarks often contain code changes that are
not purely refactoring. This occurs because refactoring activities are mostly driven by changes in
requirements (such as new features and bug fixes), and less driven by solely code smell resolution
(Silva et al., 2016). However, impure changes make it hard to determine whether the LLM-generated
code aligns with the intended refactoring. If the reference solution contains both refactorings and
other functional changes, it becomes unclear which types of changes the model is expected to generate.
This ambiguity reduces the effectiveness of benchmarks for evaluating code refactoring. As shown in
Table 1, among all existing benchmarks, only ref-Dataset (Liu et al., 2025) contains pure refactorings,
where the authors manually removed the refactoring from the modified code to recreate the original
version. This method works for simple refactorings, such as Rename Method, but is hard to apply to
more complex cases that involve multiple files, like Move Method, due to manual overheads.

3 Insufficient Support for Repository-Level Analysis and Automated Verification. Existing
refactoring benchmarks are not designed to evaluate LLM’s capability in repository-level tasks. They
typically include only basic elements such as task descriptions, code before and after refactoring, and
lack the additional repository-level information (e.g., method callers and callees, class hierarchies,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and inheritance relationships) required for more advanced refactoring or repository-level analyses.
Moreover, most benchmarks do not provide tests for automated verification. Among all existing
benchmarks, only RefactorBench (Gautam et al., 2025) includes associated tests.

4 Lack of Automated Construction. Many existing benchmarks are not automatically constructed,
requiring manual effort in various stages such as preparing pre-refactoring code or writing ground truth
and test cases. Specifically, ref-Dataset (Liu et al., 2025) manually reverts code changes to reconstruct
pre-refactoring code, which is both time-consuming and error-prone. RefactorBench manually
constructs, with the help of LLM, both the ground truth refactored code and the corresponding test
cases. These manual steps make the benchmarks difficult to scale and maintain. Some changes
even go beyond refactoring, such as modifying repository logic, which shifts the focus away from
behavior-preserving code refactorings.

Existing software engineering benchmarks also suffer from a significant imbalance in programming
languages. A recent study by Cao et al. (2024) shows that 95.6% of the latest benchmarks are built
exclusively on Python (e.g., SWE-bench (Jimenez et al., 2024), HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), and RefactorBench (Gautam et al., 2025)), limiting the diversity and
representativeness of evaluation. To bridge this gap and address the above-mentioned challenges,
we introduce SWE-Refactor, a benchmark for evaluating LLMs’ code refactoring capabilities on
Java projects. Java is one of the most widely used programming languages in the world, ranking
among the top in both the TIOBE index (TIOBE Software BV, 2025) and the Stack Overflow
developer survey (Stack Overflow, 2024). Java’s statically typed and syntactically structured grammar
also results in well-defined refactoring patterns, allowing for more precise and accurate refactoring
benchmarking. By focusing on Java, SWE-Refactor broadens evaluation beyond the current Python-
centric landscape and reflects the languages used in large-scale enterprise and open-source systems.

SWE-Refactor consists of 1,099 pure refactorings extracted from 18 widely used Java projects,
complementing existing benchmarks (e.g., RefactorBench) that predominantly focus on Python.
1 In addition to atomic, it also covers compound refactoring types, including three atomic

types—Extract Method, Move Method, and Inline Method—as well as three compound types—Extract
and Move Method, Move and Inline Method, and Move and Rename Method. 2 SWE-Refactor
eliminates noises and includes only pure refactoring. To ensure the purity of refactoring, we use
abstract syntax tree (AST)-based refactoring detection tools that are shown to have great precision
(98%) and recall (91%) (Tsantalis et al., 2018; 2020; Nouri, 2023) to extract and select only pure
refactoring from a large number of real-world refactoring code commits. 3 SWE-Refactor provides
comprehensive repository-level information. In addition to the basic information (code before
refactoring, developer-written refactored code, and refactoring type), SWE-Refactor provides rich
repository-level and structure information, including project structure, class body, caller and callee
of method, build configuration details, and test coverage information. 4 SWE-Refactor ensures
automated and reproducible data collection. SWE-Refactor fully automates the extraction of pure
refactoring data from real-world projects, avoiding the need for manual annotation or LLM-generated
code. All ground-truth refactored code is directly derived from project repositories. This ensures
scalability and future benchmark expansion. 5 High quality and executable refactoring. SWE-
Refactor extracts developer-written refactorings from real-world projects with diverse application
domains, allowing it to better reflect the capabilities of LLMs in realistic software engineering
scenarios. To ensure the reliability of the benchmark, we perform multi-stage verification: (i) AST-
based static analysis to confirm that each commit contains only the targeted refactoring type and no
unrelated code changes, (ii) compilation and execution of the full test suite to confirm behavioral
equivalence, and (iii) manual checks on a subset of instances to prevent false positives from automated
tools. We retain only those refactorings that pass all verification steps, ensuring that SWE-Refactor
contains high-quality, executable, and behavior-preserving examples. Details on the project selection
and the distribution of refactorings are provided in Appendix D.

We evaluate 9 widely used LLMs (GPT-4o-mini (OpenAI, 2023), GPT-3.5 (OpenAI, 2023), DeepSeek
V3 (DeepSeek-AI et al., 2024), Qwen2.5 Coder (Hui et al., 2024), DeepSeek Coder (Guo et al.,
2024), and CodeLLaMa (Rozière et al., 2023)) on our proposed SWE-Refactor benchmark. We
evaluate the refactored code along two dimensions: functional correctness and human-likeness. For
functional correctness, we assess the code using 1) compilation success and test pass rate, and 2)
AST-Based Refactoring Verification, which verifies that the expected refactoring has indeed occurred
in the modified code. For human-likeness, we employ the CodeBLEU metric (Ren et al., 2020) to
measure the difference. We find that the performance of large general-purpose LLMs is significantly

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

better than that of open-source LLMs. DeepSeek V3 achieves the best results across all metrics,
successfully refactored 457 out of 1,099 cases (41.58%). GPT-4o-mini ranks second, with 438
successful refactorings (39.85%). Furthermore, the performance of LLMs on different refactoring
types is significantly different. DeepSeek V3 leads in Extract Method, completing 301 cases, while
GPT-4o-mini shows the strongest performance on compound refactoring types, such as Extract And
Move Method.

Overall, our contributions in this work are threefold:

• We introduce SWE-Refactor, a benchmark constructed from developer-written commits that
contain only refactorings and no other functionality changes. It is designed to comprehen-
sively evaluate LLM’s capabilities on both atomic and compound refactoring tasks.

• We design a fully automated four-step pipeline to construct SWE-Refactor, which extracts
real refactorings, filters out impure ones, collects relevant structural information, and verifies
functional correctness through compilation and test execution.

• We conduct an extensive evaluation of 9 popular LLMs on SWE-Refactor and perform a
fine-grained analysis of their performance across different refactoring types, highlighting
their strengths and limitations.

2 RELATED WORK

Refactoring Benchmarks. RefactorBench (Gautam et al., 2025) is a Python-based benchmark
for evaluating the effectiveness of LLM agents on code refactoring. Unlike SWE-Refactor that
leverages developer-written refactorings mined from real commits, RefactorBench relies on LLMs
to identify refactoring opportunities, which can introduce model-specific biases into the benchmark.
Moreover, SWE-Refactor captures the complex real-world software design, including overridden
methods, generics, exception handling, and inheritance hierarchies that are often missing in synthetic
data. RefactorBench’s ground truth solutions are also manually written by the authors, who may
not have in-depth knowledge of the project. ref-Dataset (Liu et al., 2025) includes 100 pure atomic
refactorings from real Java projects. The community corpus provides 122 Extract Method refactorings
from five older Java projects. The extended corpus (Pomian et al., 2024) expands this to 1,752 Extract
Method instances. However, each of the benchmarks has its own limitation, as shown in Table 1.
Our benchmark, SWE-Refactor, is automatically built from 18 modern Java projects, covering both
atomic and compound refactorings. All ground truth refactored code and test cases are written by
the original project developers. The benchmark supports automated evaluation and ensures both
structural and behavioral correctness through compilation and full test verification.

LLMs-based Code Refactoring. Recent works have explored various techniques to enhance LLM
performance in refactoring tasks, including prompt clarity (AlOmar et al., 2024), structured prompt-
ing (White et al., 2024), and few-shot learning (Shirafuji et al., 2023). Hybrid approaches that
combine LLMs with rule-based systems have also shown improved results (Zhang et al., 2024). Sev-
eral works directly prompt models like GPT-4 to perform refactorings (DePalma et al., 2024; Poldrack
et al., 2023), confirming the feasibility of using LLMs for this task. In addition, practical tools such as
EM-Assist (Pomian et al., 2024) and the Context-Enhanced Framework (Gao et al., 2024) demonstrate
how LLMs can be integrated into automated refactoring workflows. Our benchmark can serve as a
basis for future work in this area by providing a standardized and real-world dataset to evaluate and
compare refactoring capabilities of LLMs across both atomic and compound transformations.

3 SWE-REFACTOR

3.1 OVERVIEW

Figure 1 shows a data sample of SWE-Refactor. Each sample in SWE-Refactor contains 6 components.

1 Target Method: The original method code before refactoring. 2 Refactoring Type: The specific
refactoring operation applied to the target method. For example, the data sample in Figure 1 illustrates
an Extract and Move Method refactoring, where a block of code is first extracted into a separate
method and then moved to a more appropriate class. 3 Repository and Code Structure: Structural
information of the target method at the repository, class, and method levels. Repository-level details

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Subclass:
…/commons/io/filefilter/OrFileFilter.java
public class OrFileFilter extends AbstractFileFilter {

@Override
public String toString() {

final StringBuilder buffer = new StringBuilder();
buffer.append(super.toString());
buffer.append("(");
append(fileFilters, buffer);
buffer.append(")");
return buffer.toString();

}
}
Superclass:
…/commons/io/filefilter/AbstractFileFilter.java
public abstract class AbstractFileFilter {

void append(final List<?> list,
final StringBuilder buffer) {

for (int i = 0; i < list.size(); i++) {
/* ... */

}
}

}

@Override
public String toString() {

final StringBuilder buffer = new StringBuilder();
buffer.append(super.toString());
buffer.append("(");
if (fileFilters != null) {

for (int i = 0; i < fileFilters.size(); i++) {
if (i > 0) {

buffer.append(",");
}
buffer.append(fileFilters.get(i));

}
}
buffer.append(")");
return buffer.toString();

}

SWE-Refactor

Code Structure

Target Method

Refactoring Type

Test Coverage

Developer-written Code

Build Configuration

Input for
Refactoring Prompt

Refactoring Output
for EvaluationLLMs

Target Method Developer-written Code

Extract
Move

Refactoring Type

Code Structure

Class Content

public class OrFileFilter {
...
private List fileFilters;
...
@Override
public boolean accept(...
...
@Override
public void addFileFilter
...
@Override
public String toString()
...

}

Method Caller And Callee

Callee:
OrFileFilter#toString
StringBuilder#append(java.lang.String)
StringBuilder#toString
StringBuilder#StringBuilder()

Caller:
DelegateFileFilter#toString
FileAlterationObserver#toString

Build Configuration

Refactoring Type: Extract And Move Method

Commit ID:
7566f557c2fa172d7677fcde06514e8a68356f81
Compilation JDK Version: 17
Compilation Command: mvn clean package

Test Coverage
[███████████████████] Branch (83.3%)
[███████████████████████] Instruction (100%)
[███████████████████████] Line (100%)
[█████████████████] Complexity (75.0%)
[███████████████████████] Method (100%)

Project Structure

Figure 1: An overview of the data in SWE-Refactor.

include the overall project structure and the full paths to all source Java files in the repository.
Class-level details include the source code of the entire class and hierarchy (i.e., parent and child
relationships). Method-level information includes method’s callers and callees. 4 Developer-
Written Code: The target method refactored by project developers, serving as a reference for
evaluating the quality of LLM-generated refactored code. 5 Build Configuration: Compilation-
related information necessary for building the project after refactoring. This includes the commit ID,
the compatible JDK version, and the specific build commands. 6 Test Coverage: Coverage data
showing how the target method is exercised by the test suite. Comparing coverage before and after
refactoring helps verify whether the refactoring preserves the program’s functional behavior.

3.2 TASK AND VERIFICATION METRICS

As illustrated in Figure 1, SWE-Refactor is designed to evaluate the performance of Large Language
Models (LLMs) in real-world code refactoring. Given a target method, a specific refactoring type,
and relevant repository and source code information, SWE-Refactor helps assess how effectively
LLMs can generate correct and human-like refactored code. To evaluate refactoring quality from
multiple perspectives, we employ three evaluation metrics: compilation and test success, AST-Based
Refactoring Verification, and CodeBLEU.

1 Compilation and Test success (Functional Verification). SWE-Refactor integrates the LLM-
generated refactored code into the project, then compiles the project and runs its test suites. This step
verifies the functional correctness, ensuring the generated refactored code does not break the build or
introduce unexpected issues.

2 AST-Based Refactoring Verification (Refactoring Verification). While compilation and test
success reflect functional correctness, they do not guarantee that the intended refactoring has been
applied and may risk overfitting to the test suite. Due to potential hallucination issues in LLMs (Huang
et al., 2023b), they may generate code that passes tests but deviates from the intended refactoring.
To address this, we use RefactoringMiner (Tsantalis et al., 2020), an Abstract Syntax Tree (AST)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and rule-based static code analysis tool for detecting Java code refactorings, to verify whether the
LLM-generated code contains the intended refactoring and to ensure the code contains no other
functionality changes. RefactoringMiner has excellent performance at identifying refactorings within
complex and mixed-purpose commits, achieving an average precision of 99% and recall of 94% in
detecting refactoring (Tsantalis et al., 2020).

3 CodeBLEU (Human-Likeness Verfication). Finally, even when the code is functional and the
refactoring is correct, it may still differ in quality or readability from the refactored code written by a
human developer. Therefore, we include CodeBLEU (Ren et al., 2020) to assess the human-likeness
of the generated code. CodeBLEU is a code-specific evaluation metric that compares the textual,
structural, and semantic similarities between two code snippets. By considering multiple dimensions,
it provides a more accurate assessment of how closely the generated code matches what a human
developer would write.

3.3 AUTOMATED BENCHMARK CONSTRUCTION PIPELINE

Figure 2 presents the automated pipeline of building SWE-Refactor. Unlike RefactorBench (Gautam
et al., 2025), which synthesizes refactoring examples using LLMs, our dataset is built from real-world
refactorings written by humans, identified through traditional static code and AST analysis. This
design choice ensures the benchmark is free from LLM-induced hallucinations or bias. To construct
SWE-Refactor, we design a four-step automated pipeline:

Step 1: Mine Refactorings via Static Analysis. We leverage AST-based refactoring detection
tools to extract commits that contain refactorings from GitHub repositories. RefactoringMiner is an
AST- and rule-based tool that demonstrates high accuracy in refactoring detection. In addition to
identifying refactoring types, we apply static code analysis to analyze the Java files. For each detected
refactoring instance, we analyze the code and extract the detailed location information, including the
commit hash, the affected Java files, and the specific line numbers within the file. This information is
also stored in SWE-Refactor as part of our released dataset. Based on this information, we further
build the ASTs of the modified Java files. Then, we traverse the ASTs to extract Method Level and
Class Level information for the refactoring instance, including the source code before and after the
developer’s refactoring changes, and the method and class signatures.

Step 2: Curate Pure and Targeted Refactoring Types. After extracting all commits containing
refactorings, we use AST-based pure refactoring detection tools to curate high-quality instances by
filtering out impure changes (e.g., bug fixes) and retaining only the six refactoring types studied in
this work. PurityChecker (Nouri, 2023) extends RefactoringMiner with specialized AST analysis
to identify pure method-level refactorings, with an average precision of 95% and recall of 88%. It
starts by identifying refactorings in a commit and comparing the code before and after the refactoring.
During this process, PurityChecker analyzes how original statements are changed—specifically,
which statements were moved, modified, or replaced as part of the refactoring. It then checks whether
these changes follow predefined purity rules.

Step 3: Enrich Refactoring Changes with Multi-Level Code Information. RefactoringMiner
analyzes refactorings within individual Java files and does not support cross-file analysis or method
invocation. Hence, we further use the Eclipse Java Development Tools (Eclipse JDT) (Eclipse
Foundation, 2024) to extract structural information at the repository, class, and method levels. Eclipse
JDT is a static analysis tool that provides access to the ASTs and type bindings of Java projects. For
each refactoring instance, we identify the modified Java files and collect additional source files within
the same software package. We implement static analysis tools to analyze these files and construct
ASTs with resolved types and method references. By traversing the ASTs, we extract the repository
structure, the source code of the entire class and its hierarchy, and caller-callee relationships.

Step 4: Verify Compilation and Test Coverage. For each refactoring, we develop a script to
compile the project and verify its correctness. To determine the appropriate JDK version, we attempt
compilation using multiple JDKs. We then execute the test suite with JaCoCo (Jacoco, 2009) to
collect code coverage information and exclude commits where the refactored code is not exercised
by any test. Finally, we verify the existence of target classes involved in Move Method, Extract and
Move Method, and Move and Inline Method refactorings. This step was necessary because the Move
Method operation may move a method to newly created classes, and it is difficult for LLMs to predict
the newly created classes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Refactoring
Location

Target
Method

1. Mine Refactorings
via Static Analysis

2. Curate Pure and
Targeted Refactoring

Types

Pure
Refactoring

Code
Repositories

3. Enrich Refactoring
Changes with Multi-

Level Code Information.

Refactoring

Refactoring
Type

Caller and
Callee

Project
Structure

Pure Refactoring

Class
Content

4. Verify
Compilation and
Test Coverage

Test
Coverage

Compilation
JDK

Compilation
Command

Pure Refactoring

Figure 2: Our Automated Pipeline to Construct SWE-Refactor.
Table 2: Evaluation of 9 LLMs on SWE-Refactor. The table presents the number of refactorings to
perform, compile-and-test success rates, refactoring correctness verified by AST-Based refactoring
detection tools (AST-Based RF Verification), and code similarity to human-written refactorings (Code
BLEU). Successful Refactoring refers to the number of refactorings that compile, pass tests, and are
verified by AST-Based refactoring detection tools. We report the average Code BLEU score and total
counts for the other metrics.

Model Size Compile&Test AST-Based RF Code Successful
Success Verification BLEU Refactoring

gpt-4o-mini N/A 537 (48.86%) 636 (57.87%) 0.547 438 (39.85%)
gpt-3.5-turbo N/A 199 (18.11%) 142 (12.92%) 0.536 82 (7.46%)
DeepSeek-V3 N/A 554 (50.41%) 674 (61.33%) 0.584 457 (41.58%)
Qwen2.5 Coder 14B 22 (2.00%) 101 (9.19%) 0.428 7 (0.64%)
Qwen2.5 Coder 7B 20 (1.82%) 142 (12.92%) 0.582 6 (0.55%)
DeepSeek Coder 16B 23 (2.09%) 101 (9.19%) 0.549 3 (0.27%)
DeepSeek Coder 6.7B 31 (2.82%) 70 (6.37%) 0.442 7 (0.64%)
CodeLLaMa 13B 14 (1.27%) 15 (1.36%) 0.558 1 (0.09%)
CodeLLaMa 7B 41 (3.73%) 48 (4.37%) 0.502 12 (1.10%)

4 EXPERIMENT

In this section, we evaluate 9 popular LLMs on SWE-Refactor, and analyze their effectiveness across
different refactoring types, prompting strategies, and multi-agent workflows. They cover general
LLMs (i.e., gpt-4o-mini-2024-07-18 (OpenAI, 2023), gpt-3.5-turbo-01-25 (OpenAI, 2023), and
DeepSeek-V3 (DeepSeek-AI et al., 2024)) and Code LLMs (Qwen2.5 Coder-{7b, 14b} (Hui et al.,
2024), DeepSeek Coder-{6.7B, 16B} (Guo et al., 2024), and CodeLLaMa-{7B,13B} (Rozière et al.,
2023)). General LLMs are accessed via official APIs, while Code LLMs are deployed on a cluster
with 4 NVIDIA A100 GPUs (40GB each).

4.1 LLMS’ PERFORMANCE ON SWE-Refactor

We evaluate 1,099 pure refactorings from the SWE-Refactor using the three metrics defined in
Section 3.3: Compilation and Test Success, AST-Based Refactoring Verification, and CodeBLEU. A
refactoring is considered successful if it passes both Compilation&Tests and AST-Based Refactoring
Verification. For consistency, we design a standardized prompt template containing four components:
(1) a task description of the refactoring, (2) the target method, (3) repository-level context such as
class source and caller–callee relations, and (4) a natural language instruction specifying the expected
transformation. The detailed prompt template is provided in Appendix E. As shown in Table 2,
DeepSeek-V3 achieves the best overall performance with 457 successful refactorings (41.58%),
followed by GPT-4o-mini with 438 (39.85%). General-purpose LLMs substantially outperform
open-source code LLMs, reflecting their stronger capabilities in code understanding. Among the
open-source models, CodeLLaMa-7B performs best with 12 successes (1.10%), while the 13B variant
performs worse, likely due to its Python-focused pre-training (Chai et al., 2025), which highlights the
importance of having a non-Python benchmark.

4.2 PERFORMANCE ACROSS REFACTORING TYPES

To better understand how LLMs perform on different kinds of refactorings, we analyze their ef-
fectiveness across the six refactoring types studied in SWE-Refactor: three atomic types (Extract
Method, Move Method, Inline Method) and three compound types (Extract and Move Method, Move
and Inline Method, and Move and Rename Method). For each refactoring type, we compute the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of LLMs across six refactoring types. EM = Extract Method, IM = Inline
Method, MM = Move Method, RM = Rename Method. Values in parentheses indicate the total
number of instances per refactoring type collected in the SWE-Refactor.

Model Size Successful EM IM MM EM + MM MM + RM MM + IM
Refactoring (441) (71) (410) (142) (21) (14)

gpt-4o-mini N/A 438 259 53 92 33 1 0
gpt-3.5-turbo N/A 82 48 9 23 2 0 0
DeepSeek-V3 N/A 457 301 50 76 30 0 0
Qwen2.5 Coder 14B 7 2 5 0 0 0 0
Qwen2.5 Coder 7B 6 5 1 0 0 0 0
DeepSeek Coder 16B 3 1 1 0 1 0 0
DeepSeek Coder 6.7B 7 6 1 0 0 0 0
CodeLLaMa 13B 1 1 0 0 0 0 0
CodeLLaMa 7B 12 12 0 0 0 0 0

success rate based on Compilation and Test Success and AST-Based Refactoring Verification. This
analysis helps reveal whether certain LLMs are more effective at atomic refactorings compared to
compound ones, and whether some types pose more challenges for current models. Table 3 shows
that DeepSeek-V3 achieves the strongest specialization on Extract Method with 301 successes, while
GPT-4o-mini exhibits broader generalization, particularly in cross-file tasks such as Move Method
(92) and Extract+Move (33). Open-source models (Qwen2.5, DeepSeek Coder, and CodeLLaMa)
succeed mainly only on a few Extract Method instances.

Overall, the table highlights a clear trend: current LLMs remain effective on local atomic edits but
perform poorly on cross-file and compound transformations. These tasks thus represent critical
benchmarks for advancing LLMs’ reasoning ability over structured software artifacts.

4.3 IMPACT OF CONTEXT AUGMENTATION AND MULTI-AGENT WORKFLOWS

259 92

22

33 0: Move + Inline
1: Move + Rename

257 44 107 36

115

2: Move + Inline
5: Move + Rename

317

53

109 15
1: Move + Inline

Figure 3: Comparison of successful refactorings.

To examine the effect of context augmentation
and multi-agent reasoning, we extend beyond
simple prompting on SWE-Refactor using two
techniques. We apply Retrieval-Augmented
Generation (RAG) to provide additional con-
text via retrieved refactoring examples, and a
multi-agent workflow that iteratively refines the
outputs. We evaluate both techniques using
gpt-4o-mini, chosen for its strong perfor-
mance on complex refactorings and tool sup-
port.

RAG provides more context to LLMs through
relevant few-shot examples, aiming to improve
the accuracy and relevance of the generated code
(He et al., 2024; Shirafuji et al., 2023). Our RAG implementation uses a retrieval database of 905
pure refactoring instances drawn from the Refactoring Oracle Dataset (Tsantalis et al., 2020), which
has no overlap with the data in SWE-Refactor (construction details in Appendix F). The multi-agent
workflow strengthens the reasoning and validation abilities of LLMs (Huang et al., 2023a). We define
two roles: a Developer Agent, which generates refactored code given context, and a Reviewer Agent,
which critiques the output and provides iterative feedback. This design enables multi-turn refinement
while mitigating common reasoning failures (Appendix G).

As shown in Figure 3, the Multi-Agent strategy achieves the highest overall success (579 refactorings),
outperforming RAG (451) and Simple Prompting (438). While all three perform similarly on Extract
Method, the Multi-Agent workflow shows clear advantages on more complex refactoring, completing
109 Move Method and 115 Extract+Move cases, far exceeding RAG (107, 36) and Simple Prompt
(92, 33). These improvements likely stem from iterative reasoning and feedback between agents.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 SCALABILITY TO SOTA MODELS AND AGENTIC SCAFFOLDING

To further assess the limits of SWE-Refactor, we extended our evaluation to stronger models: (1)
GPT-4o Hurst et al. (2024) as the base model in our multi-agent workflow, and (2) an agentic
scaffolding setup using OpenAI Codex (GPT-5.1-Codex) OpenAI (2025).

Performance of GPT-4o. We replaced the base model with GPT-4o in our agent approach. Table 4
summarizes the full benchmark results. GPT-4o achieves 675 out of 1,099 successful refactorings
(61.4%), a clear improvement over gpt-4o-mini (52.7%). The largest gains appear in navigation-
intensive refactoring types, such as Move Method and Move And Inline Method, suggesting that
GPT-4o’s stronger reasoning and repository-navigation capabilities help the agent locate the correct
files and apply the required edits more reliably.

Table 4: GPT-4o results on full SWE-Refactor (1,099 instances).

Model Total(Success) EM IM MM EM+MM MM+RM MM+IM
GPT-4o 675 304 45 197 106 14 9
GPT-4o-mini 579 317 22 109 115 15 1

Evaluation of OpenAI Codex Agent. We also evaluated OpenAI Codex, utilizing its agentic
scaffolding based on ChatGPT-5.1. We conducted a stratified sample of 200 instances, constructed
by considering the distribution of refactoring types and executable lines of code (ELOC). Specifically,
we selected 100 instances with ELOC ≤ 10 and 100 with ELOC > 10. This resulted in 80 Extract,
13 Inline, 74 Move, 26 Extract+Move, 4 Move+Rename, and 3 Move+Inline instances. Codex was
provided with full repository access and the same prompts used in our prior evaluation.

As shown in Table 5, Codex successfully completed 151 out of 200 instances (75.5%). It performed
well on the three atomic refactoring types, achieving 73 successes out of 80 for Extract Method, 12
out of 13 for Inline Method, and 53 out of 74 for Move Method. Its performance was weaker on
compound refactorings, solving only 11 out of 26 Extract and Move cases, 2 out of 4 Move and
Rename cases, and none of the 3 Move and Inline cases. Most failures occurred because the model
applied a different refactoring than the one requested, such as performing only extraction or only
movement, or creating a helper class instead of carrying out the compound refactoring operation.

What’s more, GPT-5.1-Codex achieves a success rate of 75.5% on our 200-instance sample, which
is close to the 74.5% it reports on SWE-bench-Verified OpenAI (2025). The similarity between these
two results suggests that SWE-Refactor poses a comparable level of difficulty, and we believe it is
sufficiently challenging for evaluating LLM performance on refactoring tasks.

Table 5: Codex agentic scaffolding results on the 200 samples.

Model Total(Success) EM (80) IM (13) MM (74) EM+MM (26) MM+RM (4) MM+IM (3)
Codex 151 73 12 53 11 2 0
GPT-4o 134 59 9 46 17 1 2

5 DISCUSSION

Error Taxonomy. To analyze failure modes, we sampled 50 refactorings for each of three representa-
tive settings: a small code LLM, a general LLM, and a multi-agent workflow. The small code LLM
(i.e., CodeLLaMa-7B) failed on nearly all sampled cases, primarily because most outputs ignored
the format requirements specified in the prompt, resulting in parsing errors. In contrast, the general
LLM (i.e., GPT-4o-mini) was more reliable in following instructions but still showed weaknesses
in handling code dependencies and repository-level information. Its major failures included syntax-
level errors (e.g., undefined variables and parameter type mismatches) and semantic errors such as
moving methods into non-existent files. The multi-agent workflow (using GPT-4o-mini) succeeded
in most cases, though its remaining failures often reflected overfitting to the test cases. For example,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

generating empty methods that passed compilation and testing but failed AST-Based Refactoring
Verification. The observed error patterns highlight the distinct strengths and weaknesses of different
LLMs, RAG, and the multi-agent workflow. The results also show that SWE-Refactor can assess
LLM robustness at multiple levels, from following basic schema in small models to performing
repository-level reasoning in multi-agent systems.

Limitations. SWE-Refactor has three main limitations. First, it focuses only on Java projects. While
this limits language diversity, it enables reliable extraction using mature Java-based code analysis
tools such as RefactoringMiner Tsantalis et al. (2020), RefDiff Silva et al. (2021), and PMD PMD
(2025), and provides a valuable complement to existing Python-centric benchmarks. We plan to
extend to other languages to support multi-language evaluation. Second, SWE-Refactor currently
targets method-level refactorings due to their high prevalence in real-world projects Kim et al. (2014);
Negara et al. (2013). Higher-level refactorings such as those at the class level are less frequent and
often entangled with non-refactoring changes such as bug fixes Penta et al. (2020), which makes
extraction more challenging. We aim to include a broader range of refactoring types in the future.
Third, although SWE-Refactor includes 1,099 pure refactorings from 18 projects, making it one of the
largest benchmarks of its kind, the scale is still limited for comprehensive evaluation or fine-tuning of
LLMs. We plan to continue expanding the dataset to improve coverage and diversity.

6 CONCLUSION

In this work, we present SWE-Refactor, a new benchmark specifically designed to evaluate the
capabilities of LLMs in code refactoring. SWE-Refactor features 1,099 pure, real-world refactorings
extracted from 18 diverse Java projects, covering both atomic and compound refactoring types. It
ensures high data quality through automated filtering, compilation, and test verification, and includes
rich repository-level information to support realistic and comprehensive evaluation. We evaluate 9
widely used LLMs across multiple dimensions, revealing substantial differences in their performance
across refactoring types and highlighting the effectiveness of multi-agent prompting strategies. Our
results show that large-scale general purpose models like DeepSeek V3 and GPT-4o-mini outperform
open-source ones, with DeepSeek V3 achieving the highest success rate. We publicly release all data
and results to support future research in LLM-based code refactoring.

7 DATA AVAILABILITY

The SWE-Refactor data and the code associated with this work can be found in Appendix A.

REFERENCES

Eman Abdullah AlOmar, Anushkrishna Venkatakrishnan, Mohamed Wiem Mkaouer, Christian
Newman, and Ali Ouni. How to refactor this code? an exploratory study on developer-chatgpt
refactoring conversations. In Proceedings of the 21st International Conference on Mining Software
Repositories, pp. 202–206, 2024.

Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark Harman, Inna Harper,
Alexandru Marginean, Shubho Sengupta, and Eddy Wang. Automated unit test improvement using
large language models at meta. In Marcelo d’Amorim (ed.), Companion Proceedings of the 32nd
ACM International Conference on the Foundations of Software Engineering, FSE 2024, Porto de
Galinhas, Brazil, July 15-19, 2024, pp. 185–196. ACM, 2024. doi: 10.1145/3663529.3663839.
URL https://doi.org/10.1145/3663529.3663839.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Jialun Cao, Zhiyong Chen, Jiarong Wu, Shing-Chi Cheung, and Chang Xu. Javabench: A benchmark
of object-oriented code generation for evaluating large language models. In Vladimir Filkov,
Baishakhi Ray, and Minghui Zhou (eds.), Proceedings of the 39th IEEE/ACM International

10

https://doi.org/10.1145/3663529.3663839
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Conference on Automated Software Engineering, ASE 2024, Sacramento, CA, USA, October
27 - November 1, 2024, pp. 870–882. ACM, 2024. doi: 10.1145/3691620.3695470. URL
https://doi.org/10.1145/3691620.3695470.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, JinKe, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
Ren, Hongcheng Guo, Noah Wang, Boyang Wang, Xianjie Wu, Bing Wang, Tongliang Li, Liqun
Yang, Sufeng Duan, Zhaoxiang Zhang, and Zhoujun Li. Mceval: Massively multilingual code
evaluation. In The Thirteenth International Conference on Learning Representations, 2025.

Checkstyle Team. Checkstyle, 2024. URL https://checkstyle.org/index.html. Ac-
cessed: 2024-11-20.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Gordon V. Cormack, Charles L. A. Clarke, and Stefan Büttcher. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In James Allan, Javed A. Aslam, Mark Sanderson,
ChengXiang Zhai, and Justin Zobel (eds.), Proceedings of the 32nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, Boston,
MA, USA, July 19-23, 2009, pp. 758–759. ACM, 2009. doi: 10.1145/1571941.1572114. URL
https://doi.org/10.1145/1571941.1572114.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao
Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang,
Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen,
R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye,
Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-
v3 technical report. CoRR, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
https://doi.org/10.48550/arXiv.2412.19437.

Kayla DePalma, Izabel Miminoshvili, Chiara Henselder, Kate Moss, and Eman Abdullah AlOmar.
Exploring chatgpt’s code refactoring capabilities: An empirical study. Expert Systems with
Applications, 249:123602, 2024.

Eclipse Foundation. Eclipse jdt (java development tools), 2024. URL https://github.com/
eclipse-jdt/. Accessed: March 13, 2025.

Eclipse Foundation. Eclipse, 2024. URL https://eclipseide.org/. Accessed: Jun. 10,
2024.

Martin Fowler. Refactoring - Improving the Design of Existing Code. Addison Wesley object technol-
ogy series. Addison-Wesley, 1999. ISBN 978-0-201-48567-7. URL http://martinfowler.
com/books/refactoring.html.

11

https://doi.org/10.1145/3691620.3695470
https://checkstyle.org/index.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.48550/arXiv.2412.19437
https://github.com/eclipse-jdt/
https://github.com/eclipse-jdt/
https://eclipseide.org/
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia. Context-enhanced llm-based framework for automatic
test refactoring. arXiv preprint arXiv:2409.16739, 2024.

Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghad-
dam. Refactorbench: Evaluating stateful reasoning in language agents through code. CoRR,
abs/2503.07832, 2025. doi: 10.48550/ARXIV.2503.07832. URL https://doi.org/10.
48550/arXiv.2503.07832.

Felix Grund, Shaiful Alam Chowdhury, Nick C. Bradley, Braxton Hall, and Reid Holmes. Codeshovel:
Constructing method-level source code histories. In 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021, pp. 1510–1522. IEEE, 2021.
doi: 10.1109/ICSE43902.2021.00135. URL https://doi.org/10.1109/ICSE43902.
2021.00135.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large
language model meets programming - the rise of code intelligence. CoRR, abs/2401.14196, 2024.
doi: 10.48550/ARXIV.2401.14196. URL https://doi.org/10.48550/arXiv.2401.
14196.

Mohammed Tayeeb Hasan, Nikolaos Tsantalis, and Pouria Alikhanifard. Refactoring-aware block
tracking in commit history. IEEE Transactions on Software Engineering, 50(12):3330–3350, 2024.
doi: 10.1109/TSE.2024.3484586.

Pengfei He, Shaowei Wang, Shaiful Chowdhury, and Tse-Hsun Chen. Exploring demonstration
retrievers in RAG for coding tasks: Yeas and nays! CoRR, abs/2410.09662, 2024. doi: 10.48550/
ARXIV.2410.09662. URL https://doi.org/10.48550/arXiv.2410.09662.

Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-
agent-based code generation with iterative testing and optimisation. CoRR, abs/2312.13010, 2023a.
doi: 10.48550/ARXIV.2312.13010. URL https://doi.org/10.48550/arXiv.2312.
13010.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions. CoRR, abs/2311.05232,
2023b. doi: 10.48550/ARXIV.2311.05232. URL https://doi.org/10.48550/arXiv.
2311.05232.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. Qwen2.5-coder technical report. CoRR, abs/2409.12186, 2024. doi: 10.
48550/ARXIV.2409.12186. URL https://doi.org/10.48550/arXiv.2409.12186.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex
Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali,
Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya Kumar,
Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew
Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital
Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben
Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright, Cary Bassin, Cary Hudson,
Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea
Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian
Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer,
Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, and Dane
Sherburn. Gpt-4o system card. CoRR, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
URL https://doi.org/10.48550/arXiv.2410.21276.

12

https://doi.org/10.48550/arXiv.2503.07832
https://doi.org/10.48550/arXiv.2503.07832
https://doi.org/10.1109/ICSE43902.2021.00135
https://doi.org/10.1109/ICSE43902.2021.00135
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2410.09662
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.48550/arXiv.2311.05232
https://doi.org/10.48550/arXiv.2311.05232
https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.2410.21276

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A LLM multi-agent framework
toward ultra large-scale code generation and optimization. CoRR, abs/2404.02183, 2024. doi: 10.
48550/ARXIV.2404.02183. URL https://doi.org/10.48550/arXiv.2404.02183.

Jacoco. Jacoco, 2009. URL https://www.jacoco.org/jacoco/trunk/index.html.
Accessed: Jun. 1, 2009.

JetBrains. Intellij idea, 2024a. URL https://www.jetbrains.com/idea/. Accessed: Jun.
10, 2024.

JetBrains. Pycharm, 2024b. URL https://www.jetbrains.com/pycharm/. Accessed:
Jun. 10, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. CoRR, abs/2406.00515, 2024. doi: 10.48550/ARXIV.2406.00515.
URL https://doi.org/10.48550/arXiv.2406.00515.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Satish Chandra, Kelly Blincoe,
and Paolo Tonella (eds.), Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San
Francisco, CA, USA, December 3-9, 2023, pp. 1646–1656. ACM, 2023. doi: 10.1145/3611643.
3613892. URL https://doi.org/10.1145/3611643.3613892.

Mehran Jodavi and Nikolaos Tsantalis. Accurate method and variable tracking in commit history. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2022, pp. 183–195, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450394130. doi: 10.1145/3540250.
3549079. URL https://doi.org/10.1145/3540250.3549079.

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. An empirical study of refac-
toringchallenges and benefits at microsoft. IEEE Transactions on Software Engineering, 40(7):
633–649, 2014.

Feng Lin, Dong Jae Kim, Tse-Husn, and Chen. Soen-101: Code generation by emulating software
process models using large language model agents, 2024. URL https://arxiv.org/abs/
2403.15852.

Bo Liu, Yanjie Jiang, Yuxia Zhang, Nan Niu, Guangjie Li, and Hui Liu. Exploring the potential of
general purpose llms in automated software refactoring: an empirical study. Autom. Softw. Eng.,
32(1):26, 2025. doi: 10.1007/S10515-025-00500-0. URL https://doi.org/10.1007/
s10515-025-00500-0.

Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. How we refactor, and how we know it.
IEEE Transactions on Software Engineering, 38(1):5–18, 2011.

Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig. A comparative
study of manual and automated refactorings. In 27th European Conference on Object-Oriented
Programming, ECOOP’13, pp. 552–576, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-3-
642-39037-1. doi: 10.1007/978-3-642-39038-8 23.

Pedram Nouri. PurityChecker: A Tool for Detecting Purity of Method-level Refactoring Operations.
PhD thesis, Concordia University, 2023. URL https://spectrum.library.concordia.
ca/id/eprint/993129/.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

13

https://doi.org/10.48550/arXiv.2404.02183
https://www.jacoco.org/jacoco/trunk/index.html
https://www.jetbrains.com/idea/
https://www.jetbrains.com/pycharm/
https://doi.org/10.48550/arXiv.2406.00515
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3540250.3549079
https://arxiv.org/abs/2403.15852
https://arxiv.org/abs/2403.15852
https://doi.org/10.1007/s10515-025-00500-0
https://doi.org/10.1007/s10515-025-00500-0
https://spectrum.library.concordia.ca/id/eprint/993129/
https://spectrum.library.concordia.ca/id/eprint/993129/
https://doi.org/10.48550/arXiv.2303.08774

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

OpenAI. gpt-3.5-turbo, 2023. URL https://platform.openai.com/docs/models/
gpt-3-5.

OpenAI. Gpt-5.1-codex, 2025. URL https://openai.com/index/
introducing-upgrades-to-codex/. Accessed: Sept. 15, 2025.

Massimiliano Di Penta, Gabriele Bavota, and Fiorella Zampetti. On the relationship between
refactoring actions and bugs: A differentiated replication, 2020. URL https://arxiv.org/
abs/2009.11685.

PMD. Pmd - source code analyze, 2025. URL https://pmd.github.io/.

Russell A Poldrack, Thomas Lu, and Gašper Beguš. Ai-assisted coding: Experiments with gpt-4.
arXiv preprint arXiv:2304.13187, 2023.

Dorin Pomian, Abhiram Bellur, Malinda Dilhara, Zarina Kurbatova, Egor Bogomolov, Timo-
fey Bryksin, and Danny Dig. Next-generation refactoring: Combining LLM insights and
IDE capabilities for extract method. In IEEE International Conference on Software Main-
tenance and Evolution, ICSME 2024, Flagstaff, AZ, USA, October 6-11, 2024, pp. 275–287.
IEEE, 2024. doi: 10.1109/ICSME58944.2024.00034. URL https://doi.org/10.1109/
ICSME58944.2024.00034.

Yihao Qin, Shangwen Wang, Yiling Lou, Jinhao Dong, Kaixin Wang, Xiaoling Li, and Xiaoguang
Mao. Agentfl: Scaling llm-based fault localization to project-level context. CoRR, abs/2403.16362,
2024. doi: 10.48550/ARXIV.2403.16362. URL https://doi.org/10.48550/arXiv.
2403.16362.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023. doi: 10.
48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.2308.12950.

Atsushi Shirafuji, Yusuke Oda, Jun Suzuki, Makoto Morishita, and Yutaka Watanobe. Refactoring
programs using large language models with few-shot examples. In 2023 30th Asia-Pacific Software
Engineering Conference (APSEC), pp. 151–160. IEEE, 2023.

Danilo Silva, Nikolaos Tsantalis, and Marco Túlio Valente. Why we refactor? confessions of
github contributors. In Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (eds.),
Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, pp. 858–870. ACM, 2016. doi:
10.1145/2950290.2950305. URL https://doi.org/10.1145/2950290.2950305.

Danilo Silva, João Paulo da Silva, Gustavo Santos, Ricardo Terra, and Marco Tulio Valente. Refdiff
2.0: A multi-language refactoring detection tool. IEEE Transactions on Software Engineering, 47
(12):2786–2802, 2021. doi: 10.1109/TSE.2020.2968072.

Stack Overflow. Stack Overflow Developer Survey 2024. https://survey.stackoverflow.
co/2024/, 2024. [Online; accessed 21-September-2025].

14

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/index/introducing-upgrades-to-codex/
https://openai.com/index/introducing-upgrades-to-codex/
https://arxiv.org/abs/2009.11685
https://arxiv.org/abs/2009.11685
https://pmd.github.io/
https://doi.org/10.1109/ICSME58944.2024.00034
https://doi.org/10.1109/ICSME58944.2024.00034
https://doi.org/10.48550/arXiv.2403.16362
https://doi.org/10.48550/arXiv.2403.16362
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.1145/2950290.2950305
https://survey.stackoverflow.co/2024/
https://survey.stackoverflow.co/2024/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

TIOBE Software BV. TIOBE Programming Community Index for July 2025. https://www.
tiobe.com/tiobe-index/, 2025. [Online; accessed 21-September-2025].

Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazinanian, and Danny Dig. Accu-
rate and efficient refactoring detection in commit history. In Proceedings of the 40th international
conference on software engineering, pp. 483–494, 2018.

Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. Refactoringminer 2.0. IEEE Transactions on
Software Engineering, 48(3):930–950, 2020.

Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt. Chatgpt prompt
patterns for improving code quality, refactoring, requirements elicitation, and software design. In
Generative AI for Effective Software Development, pp. 71–108. Springer, 2024.

Yisen Xu, Feng Lin, Jinqiu Yang, Tse-Hsun Chen, and Nikolaos Tsantalis. MANTRA: enhancing
automated method-level refactoring with contextual RAG and multi-agent LLM collaboration.
CoRR, abs/2503.14340, 2025. doi: 10.48550/ARXIV.2503.14340. URL https://doi.org/
10.48550/arXiv.2503.14340.

Zejun Zhang, Zhenchang Xing, Xiaoxue Ren, Qinghua Lu, and Xiwei Xu. Refactoring to pythonic
idioms: A hybrid knowledge-driven approach leveraging large language models. Proceedings of
the ACM on Software Engineering, 1(FSE):1107–1128, 2024.

15

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.48550/arXiv.2503.14340
https://doi.org/10.48550/arXiv.2503.14340

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

TABLE OF CONTENTS

• Appendix A: Dataset Hosting

• Appendix B: Use of Large Language Models (LLMs)

• Appendix C: Refactoring Type Definitions

• Appendix D: Project Selection and Refactoring Distribution

• Appendix E: Prompt Templates for Different Refactoring Types

• Appendix F: RAG Construction for Refactoring Retrieval

• Appendix G: Workflow For Multi-Agent

A DATASET HOSTING

Our SWE-Refactor benchmark and experimental results (e.g., code, prompts, and LLM predictions)
are available on the following platform:

• Zenodo: https://doi.org/10.5281/zenodo.17196850

B USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used only to polish the writing. They were not involved in the
research design, analysis, or conclusions.

C REFACTORING TYPE DEFINITIONS

We define the refactoring types evaluated in this study based on widely accepted descriptions
from Fowler’s Refactoring Catalog (Fowler, 1999) and RefactoringMiner (Tsantalis et al., 2020).
These definitions serve as the foundation for identifying and categorizing both basic and compound
refactorings in our benchmark.

• Extract Method. A code fragment is extracted from an existing method and placed into a
newly created method. The original fragment is replaced with a method call. This improves
readability, modularity, and reuse, especially when the original method becomes long or
performs multiple responsibilities.

• Move Method. A method is relocated from one class to another, usually when it relies
more on the data of the target class. This improves cohesion and reduces coupling between
classes.

• Inline Method. A method is removed by replacing its invocations with its body. This is
typically done when the method is too simple, no longer adds meaningful abstraction, or is
used only once.

• Extract and Move Method. A compound refactoring where a code fragment is first
extracted into a new method, and the resulting method is then moved to another class (often
a superclass). This is useful when the extracted logic is generalizable or better fits in a
shared parent class.

• Move and Rename Method. A method is moved to a different class and renamed during
the process. The renaming helps to align the method name with its new context or to resolve
naming conflicts.

• Move and Inline Method. A method is first moved to a new class and then inlined at all
its call sites. This effectively eliminates the method definition while relocating its logic,
typically used when the method becomes redundant after reorganization.

16

https://doi.org/10.5281/zenodo.17196850

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Overview of Java projects used in the construction of SWE-Refactor.

Project # Stars # Commits # Pure Refactorings

checkstyle 8,462 14,606 91
pmd 4,988 29,117 125
commons-lang 2,776 8,404 59
hibernate-search 512 15,716 89
junit4 8,529 2,513 18
commons-io 1,020 5,455 93
javaparser 5,682 9,607 56
junit5 6,523 8,990 105
hibernate-orm 6,091 20,638 63
mockito 15,032 6,236 4
gson 24080 2135 21
guava 51140 7068 300
jadx 45589 2512 18
zxing 33605 3832 21
shiro 4402 4222 2
shenyu 8663 3680 22
shardingsphere-elasticjob 8211 2473 3
hertzbeat 6665 2632 9

Total 241,970 149,836 1099

• Extract Variable. Extracts part of an expression or a literal value into a new local variable.
This improves readability and allows reuse of the extracted value. It is often applied to
clarify complex expressions or remove duplication.

• Rename Method. Changes the name of a method to better reflect its purpose or conform to
naming conventions. This improves code readability and maintainability. All call sites must
be updated accordingly.

• Move Class. Relocates a class from one package or module to another. This helps improve
package organization and reduce module dependencies. All references and imports must be
updated.

• Rename Class. Changes the name of a class to better reflect its role or to align with naming
standards. This refactoring improves clarity and consistency. The renaming may also require
updating file names and documentation.

D PROJECT SELECTION AND REFACTORING DISTRIBUTION

We selected 18 Java projects previously used in change history tracking studies (Grund et al., 2021;
Jodavi & Tsantalis, 2022; Hasan et al., 2024) based on three key criteria. First, the projects span
diverse application domains, offering broad coverage of real-world software development practices.
Second, each project has a rich development history, with over 2,000 commits, increasing the
likelihood of discovering meaningful refactoring activities. Third, we ensured that the selected
projects could be compiled and tested successfully after manual resolution of build issues, making it
feasible to verify the correctness of the generated refactorings.

Table 6 presents the selected Java projects along with the number of extracted pure refactorings for
each project.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E PROMPT TEMPLATES FOR DIFFERENT REFACTORING TYPES

• Prompt Template for Extract Method, Inline Method Refactoring.

Task:
You are an expert software engineer. You are given a code to be
refactored. The objective is to refactor this code by performing
given refactoring operation. This refactoring will improve code
readability, maintainability, and modularity.
Code to be Refactored:
{code_to_refactor}
Class content:
{class_content}
Refactoring Operation:
{refactoring_operation}
Call Relationship:
{call_relationship}
Instructions:
1. Analyze the provided code and class content, apply relevant

refactoring operation to the code to be refactored.
2. If refactoring is performed, output the refactored_method_code

in the following format:
##########################
refactored_method_code
##########################

• Prompt Template for Move Method, Move And Rename Method Refactoring.

Task:
You are an expert software engineer. You are given a code to be
refactored. The objective is to refactor this code by performing
given refactoring operation. This refactoring will improve code
readability, maintainability, and modularity.
Code to be Refactored:
{code_to_refactor}
Class content:
{class_content}
Refactoring Operation:
{refactoring_operation}
Call Relationship:
{call_relationship}
Project Structure:
{project_structure}
Instructions:
1. Analyze the provided code, class content, and project
structure, apply move method refactoring to the code to be
refactored, output the target file path, moved class code,
and refactored method code. Need to move to an existing
java file
The moved method code should be updated to the public
static method. The refactored method code should use the
moved class to call the moved method.
The target file path should be the path of the existing class
where the method is moved to.
2. If refactoring is performed, output the target file path,
moved class code, and refactored method code in the following
format:
##########################
target_file_path
##########################
moved_class_code
##########################
refactored_method_code
##########################

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Prompt Template for Move And Inline Method Refactoring.

Task:
You are an expert software engineer. You are given a code to be
refactored. The objective is to refactor this code by performing
given refactoring operation. This refactoring will improve code
readability, maintainability, and modularity.
Code to be Refactored: {code_to_refactor}
Class content: {class_content}
Refactoring Operation: {refactoring_operation}
Call Relationship: {call_relationship}
Project Structure: {project_structure}
Instructions:
1. Analyze the provided code, class content, and project
structure, apply relevant refactoring operation to the
code to be refactored, output the target file path.
2. If refactoring is performed, output the refactored class code
in the following format:
##########################
target_file_path
##########################
refactored_class_code
##########################

• Prompt Template for Extract And Move Method Refactoring.

Task:
You are an expert software engineer. You are given a code to
be refactored. The objective is to refactor this code by
performing given refactoring operation. This refactoring will
improve code readability, maintainability, and modularity.
Code to be Refactored: {code_to_refactor}
Class content: {class_content}
Refactoring Operation: {refactoring_operation}
Call Relationship: {call_relationship}
Project Structure: {project_structure}
File Path Before Refactoring:
{file_path_before_refactoring}
Instructions:
1. Analyze the provided code, class content, and project
structure, apply relevant refactoring operation to the code
to be refactored, and you need move the
extracted method to another existing java file, output the
target file path, extracted method code, refactored method code
after refactoring.
The extracted method code should be the public static method.
The refactored method code should use the moved class to call the
extracted method.
The target file path should be the path of the existing class
where the method is moved to.
2. If refactoring is performed, output the refactored class code
in the following format:
##########################
target_file_path
##########################
extracted_method_code
##########################
refactored_method_code
##########################

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

ChromdbRepository-level
information

Pure Refactoring

Description 1+source code 1

Description 2+source code 2

Description n+source code n

. . .
GPT

BM25

Embedding

TF-IDF

Rank Fusion

Ranked List

Reranking

Final Ranked List

Figure 4: RAG Construction and Retrieval Pipeline.

F RAG CONSTRUCTION FOR REFACTORING RETRIEVAL

To support more accurate LLM-based code refactoring, we design a retrieval-augmented generation
(RAG) pipeline. As shown in Figure 4, it consists of four main steps: preparing the inputs, generating
descriptions, retrieving relevant examples using both text and embedding similarity, and merging the
results to find the most suitable matches.

STEP 1: PREPARING INPUTS FROM REFACTORING COMMITS

We apply our pipeline (Section 3.3) to the Refactoring Oracle Dataset (Tsantalis et al., 2020), which
contains over 12,000 refactorings collected from 547 commits across 188 open-source Java projects.
This dataset has been widely used to evaluate refactoring detection tools and covers diverse projects
and refactoring types. Using our pipeline, we extract a set of 905 pure method-level refactorings from
this dataset. To save time, we do not perform compilation or test verification on these examples, as
they are intended to illustrate refactoring strategies for retrieval rather than for correctness evaluation.

For each refactoring, we also collect repository-level information such as the file path, class definition,
method signature, and the method’s direct callers and callees. These elements form the foundation of
our retrieval database.

STEP 2: GENERATING DESCRIPTIONS OF REFACTORING EXAMPLES

For each example, we use gpt-4o-mini-0125 to generate a short natural language description
that summarizes the method’s functionality and surrounding structural information. The model takes
as input the method before refactoring, its enclosing class, and the bodies of its direct callers and
callees. These descriptions help guide retrieval by expressing the purpose and behavior of the method
in a form that complements its code.

We use the following prompt template:

{Method Code}
{Caller/Callee Code}
{Class Code}
Please give a short, succinct description to situate this
code within the class.

Here, {Method Code} is the code to be refactored, {Caller/Callee Code} includes the full
bodies of its direct callers and callees, and {Class Code} provides the signature and body of the
class containing the method.

STEP 3: CONSTRUCTING A SEARCHABLE DATABASE OF REFACTORING EXAMPLES

To support downstream retrieval, we construct a database of refactoring examples, where each entry
includes both the code and its generated description. We index the database using two complementary
methods to support both lexical and semantic similarity.

For text-based indexing, we apply BM25 (Robertson et al., 2009), which ranks examples based on
token overlap and structural similarity in the combined code and description.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For semantic indexing, we use all-MiniLM-L6-v2 (Reimers & Gurevych, 2019) to generate
vector embeddings for each example. This enables similarity computation based on meaning, not just
syntax.

STEP 4: MERGING AND RERANKING THE RESULTS

When a new refactoring task is issued, both text-based and embedding-based retrieval models produce
independent similarity-ranked lists based on the input query. To combine these results, we apply
the Reciprocal Rank Fusion (RRF) algorithm (Cormack et al., 2009), which merges the rankings by
assigning higher scores to examples that appear near the top of either list.

To further improve ranking quality, we apply a reranking step that refines the similarity assessment
between the query and the retrieved examples. This step helps prioritize examples that are both
lexically and semantically aligned with the input.

Finally, we select the top 3 ranked examples to serve as few-shot prompts, guiding the LLM to
generate accurate and structurally relevant refactored code.

G WORKFLOW FOR MULTI-AGENT

To examine how multi-agent LLM workflows perform in automated code refactoring, we design a
flexible agent-based system and evaluate it using our benchmark, SWE-Refactor. The workflow is
composed of two core agents: a Developer Agent and a Reviewer Agent. These agents communicate
and collaborate through iterative reasoning and feedback.

DEVELOPER AGENT: GENERATION AND REFINEMENT

The Developer Agent is tasked with analyzing source code and generating refactored code. It has three
main capabilities: Analyzing, Programming, and Enhancing. To support these tasks, the agent can
invoke a variety of utility methods, such as retrieving project structure, reading source files, obtaining
class body, or getting callers and callees. These methods are implemented through command-line
tools or APIs from static analysis frameworks. After collecting the necessary information, the agent
composes a prompt combining structural analysis and submits it to the LLMs to produce a refactored
version of the target method. The agent can also iteratively improve its output by incorporating
feedback received from the Reviewer Agent.

REVIEWER AGENT: EVALUATION AND FEEDBACK

The Reviewer Agent is responsible for assessing the quality of the generated refactoring. It performs
this assessment by applying static analysis tools, including a refactoring detector (e.g., Refactoring-
Miner (Tsantalis et al., 2020)) and a style checker (e.g., Checkstyle (Checkstyle Team, 2024)) to
detect code smells or violations of coding conventions. Based on this analysis, the Reviewer Agent
generates feedback indicating whether the refactoring is valid, and if not, what aspects should be
improved. This feedback is then sent back to the Developer Agent for further refinement.

21

	Introduction
	Related Work
	SWE-Refactor
	Overview
	Task and Verification Metrics
	Automated Benchmark Construction Pipeline

	Experiment
	LLMs' Performance on SWE-Refactor
	Performance across Refactoring Types
	Impact of Context Augmentation and Multi-Agent Workflows
	Scalability to SOTA Models and Agentic Scaffolding

	Discussion
	Conclusion
	Data Availability
	Dataset Hosting
	Use of Large Language Models (LLMs)
	Refactoring Type Definitions
	Project Selection and Refactoring Distribution
	Prompt Templates for Different Refactoring Types
	RAG Construction for Refactoring Retrieval
	Workflow for Multi-Agent

