

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SWE-REFACTOR: A REPOSITORY-AWARE BENCH- MARK FOR EVALUATING LLMS ON REAL-WORLD CODE REFACTORING

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Recent advances in Large Language Models (LLMs) have garnered significant
014 attention for their applications in software engineering tasks. Among these tasks,
015 code refactoring has its own unique challenges. Unlike code generation, refac-
016 toring requires precise changes that preserve program behavior while improving
017 structure, making automated evaluation difficult. Existing refactoring benchmarks
018 suffer from three key limitations: (1) they often focus on atomic refactoring types
019 while missing more complex ones; (2) they contain noisy data with entangled,
020 unrelated code changes, making it difficult to study LLM’s true refactoring capa-
021 bility accurately; and (3) they lack code repository and structural information to
022 support realistic evaluations. To address these issues, we propose *SWE-Refactor*, a
023 new benchmark for LLM-based code refactoring. *SWE-Refactor* contains 1,099
024 real-world, pure refactorings collected from 18 real-world Java projects. Each
025 refactoring instance is verified through compilation, test execution, and automated
026 refactoring detection tools to ensure correctness. Unlike prior benchmarks, *SWE-
027 Refactor* covers both atomic and compound refactoring types (single and multiple
028 code changes). It includes rich repository-level data (e.g., method callers and
029 callees, class hierarchies), as well as configuration details like test coverage and
030 build settings. We evaluate nine widely used LLMs on *SWE-Refactor*, including
031 GPT-4o-mini, DeepSeek-V3, and CodeLLaMa. DeepSeek-V3 achieves the best
032 performance with 457 successful refactorings (41.58%), followed by GPT-4o-mini
033 with 438 (39.85%). DeepSeek-V3 performs particularly well on *Extract Method*,
034 completing 301 cases, while GPT-4o-mini demonstrates stronger performance on
035 more complex refactoring types, such as *Move Method* and *Extract and Move
036 Method*. Furthermore, we find that adding retrieval context via few-shot examples
037 and using a multi-agent workflow significantly improve performance, with the
038 multi-agent approach achieving the highest success rate. We release *SWE-Refactor*
039 and all evaluation results to support future research on LLM-based code refactoring.

040 1 INTRODUCTION

041 In software engineering, code refactoring is a process of improving the structure of existing code with-
042 out changing its behavior (Fowler, 1999). This practice is essential for maintaining software systems
043 by improving code quality, enhancing reusability, and ensuring adaptability to changing requirements
044 (Murphy-Hill et al., 2011). Unlike coding, code refactoring typically involves analyzing existing code
045 to identify code segments for improvement, understanding its structure and dependencies, and then
046 making precise changes without altering its behavior. For example, a common refactoring operation
047 is *Extract Method* (Fowler, 1999; Murphy-Hill et al., 2011; Tsantalis et al., 2020), where a developer
048 identifies a portion of a long method that can operate independently and extracts it into a separate
049 method, making the original method shorter, more readable, and reusable.

050 In recent years, Large Language Models (LLMs) have been widely applied across various software
051 engineering tasks due to strong abilities in code understanding and reasoning (Lin et al., 2024; Jin
052 et al., 2023; Alshahwan et al., 2024; Qin et al., 2024). Among these tasks, code generation has
053 attracted significant attention (Lin et al., 2024; Jiang et al., 2024; Ishibashi & Nishimura, 2024),
where LLMs generate code from natural language descriptions or specifications. In contrast, code

054
 055 Table 1: The comparison between existing benchmarks and *SWE-Refactor*. **Compound refactoring**
 056 means there can be multiple code transformations. **Pure refactoring** indicates commits without
 057 unrelated changes. **Developer-written GT** refers to the ground truth refactored code being written
 058 by *original project developers*. **Test availability** shows whether test cases are provided to verify
 059 correctness. **Automated construction** indicates whether the benchmark was built entirely via an
 060 automated pipeline.

Benchmark	Code Distribution		Compound	Pure	Developer-	Test	Automated
	# Repo	# Sample	Refactoring	Refactoring	Written GT	Availability	Construction
ref-Dataset (Liu et al., 2025)	20	180	✗	✓	✓	✗	✗
community corpus (Pomian et al., 2024)	5	122	✗	✗	✓	✗	✗
extended corpus (Pomian et al., 2024)	12	1,752	✗	✗	✓	✗	✓
RefactorBench (Gautam et al., 2025)	9	100	✗	✗	✗	✓	✗
<i>SWE-Refactor</i>	18	1,099	✓	✓	✓	✓	✓

061
 062 refactoring poses a different challenge, *requiring a deep understanding of existing code semantics*
 063 *and repository structures, and making precise changes that preserve the original behavior while*
 064 *improving code structures*. This creates unique challenges, as LLMs must precisely determine what
 065 to change while preserving the functional behaviors. Moreover, evaluating refactoring capabilities
 066 requires realistic settings and codebases, since real-world code introduces complex design patterns,
 067 dependency chains, and language features that are rarely captured in synthetic examples.

068
 069 To assist with these challenges, mainstream integrated development environments (IDEs) such as
 070 IntelliJ IDEA (JetBrains, 2024a), PyCharm (JetBrains, 2024b), and Eclipse (Foundation, 2024) have
 071 introduced semi-automated refactoring tools. These tools can help perform low-level code changes
 072 but still rely heavily on developers to understand the code and make key decisions. To further reduce
 073 manual effort and enhance automation, recent studies have investigated the use of LLMs for code
 074 refactoring tasks (Pomian et al., 2024; Shirafuji et al., 2023; White et al., 2024; Xu et al., 2025), and
 075 several benchmarks have been proposed to evaluate model performance. However, these benchmarks
 076 often have one or more of these four key limitations, as summarized in Table 1.

077
 078 **1 Consider Only Atomic Refactoring Types.** Existing refactoring benchmarks often focus on
 079 a limited set of *atomic refactoring types* (*i.e.*, *a single code transformation*). Figure 1 shows an
 080 example where an *Extract Method* appears *as part of a compound refactoring* (*i.e.*, *multiple code*
 081 *transformations*). As shown in Table 1, the *community corpus* (Pomian et al., 2024) and *extended*
 082 *corpus* (Pomian et al., 2024), used to evaluate EM-Assist (an IntelliJ plugin), focus exclusively on one
 083 atomic (*Extract Method*) refactoring. Similarly, the *ref-Dataset* proposed by Liu et al. (2025) supports
 084 9 atomic refactoring types, including *Extract Method* and *Extract Variable*, but lacks support for more
 085 complex, compound refactorings such as *Extract And Move Method*. *RefactorBench* (Gautam et al.,
 086 2025) also focuses on a limited set of 7 atomic refactoring types, including *Move Class*, *Rename*
 087 *Class*, *Move Method*, and *Rename Method*. Definitions for each refactoring type are provided in
 088 Appendix C. **In short, none of the existing benchmarks support compound refactorings.**

089
 090 **2 Noisy Benchmark Data.** Existing refactoring benchmarks often contain code changes that are
 091 not purely refactoring. This occurs because refactoring activities are mostly driven by changes in
 092 requirements (such as new features and bug fixes), and less driven by solely code smell resolution
 093 (Silva et al., 2016). However, impure changes make it hard to determine whether the LLM-generated
 094 code aligns with the intended refactoring. If the reference solution contains both refactorings and
 095 other functional changes, it becomes unclear which types of changes the model is expected to generate.
 096 This ambiguity reduces the effectiveness of benchmarks for evaluating code refactoring. As shown in
 097 Table 1, among all existing benchmarks, only *ref-Dataset* (Liu et al., 2025) contains pure refactorings,
 098 where the authors manually removed the refactoring from the modified code to recreate the original
 099 version. This method works for simple refactorings, such as *Rename Method*, but is hard to apply to
 100 more complex cases that involve multiple files, like *Move Method*, due to manual overheads.

101
 102 **3 Insufficient Support for Repository-Level Analysis and Automated Verification.** Existing
 103 refactoring benchmarks are not designed to evaluate LLM’s capability in repository-level tasks. They
 104 typically include only basic elements such as task descriptions, code before and after refactoring, and
 105 lack the additional repository-level information (e.g., method callers and callees, class hierarchies,

108 and inheritance relationships) required for more advanced refactoring or repository-level analyses.
 109 Moreover, most benchmarks do not provide tests for automated verification. Among all existing
 110 benchmarks, only *RefactorBench* (Gautam et al., 2025) includes associated tests.

111 **④ Lack of Automated Construction.** Many existing benchmarks are not automatically constructed,
 112 requiring manual effort in various stages such as preparing pre-refactoring code or writing ground truth
 113 and test cases. Specifically, *ref-Dataset* (Liu et al., 2025) manually reverts code changes to reconstruct
 114 pre-refactoring code, which is both time-consuming and error-prone. *RefactorBench* manually
 115 constructs, with the help of LLM, both the ground truth refactored code and the corresponding test
 116 cases. These manual steps make the benchmarks difficult to scale and maintain. Some changes
 117 even go beyond refactoring, such as modifying repository logic, which shifts the focus away from
 118 behavior-preserving code refactorings.

119 Existing software engineering benchmarks also suffer from a significant imbalance in programming
 120 languages. A recent study by Cao et al. (2024) shows that 95.6% of the latest benchmarks are built
 121 exclusively on Python (e.g., SWE-bench (Jimenez et al., 2024), HumanEval (Chen et al., 2021),
 122 MBPP (Austin et al., 2021), and RefactorBench (Gautam et al., 2025)), limiting the diversity and
 123 representativeness of evaluation. To bridge this gap and address the above-mentioned challenges,
 124 we introduce *SWE-Refactor*, a benchmark for evaluating LLMs’ code refactoring capabilities on
 125 Java projects. Java is one of the most widely used programming languages in the world, ranking
 126 among the top in both the TIOBE index (TIOBE Software BV, 2025) and the Stack Overflow
 127 developer survey (Stack Overflow, 2024). Java’s statically typed and syntactically structured grammar
 128 also results in well-defined refactoring patterns, allowing for more precise and accurate refactoring
 129 benchmarking. By focusing on Java, *SWE-Refactor* broadens evaluation beyond the current Python-
 130 centric landscape and reflects the languages used in large-scale enterprise and open-source systems.

131 *SWE-Refactor* consists of 1,099 pure refactorings extracted from 18 widely used Java projects,
 132 complementing existing benchmarks (e.g., *RefactorBench*) that predominantly focus on Python.

133 **① In addition to atomic, it also covers compound refactoring types**, including three atomic
 134 types—*Extract Method*, *Move Method*, and *Inline Method*—as well as three compound types—*Extract*
 135 and *Move Method*, *Move and Inline Method*, and *Move and Rename Method*. **② SWE-Refactor**
 136 **eliminates noises and includes only pure refactoring.** To ensure the purity of refactoring, we use
 137 abstract syntax tree (AST)-based refactoring detection tools that are shown to have great precision
 138 (98%) and recall (91%) (Tsantalis et al., 2018; 2020; Nouri, 2023) to extract and select only pure
 139 refactoring from a large number of real-world refactoring code commits. **③ SWE-Refactor provides**
 140 **comprehensive repository-level information.** In addition to the basic information (code before
 141 refactoring, developer-written refactored code, and refactoring type), *SWE-Refactor* provides rich
 142 repository-level and structure information, including project structure, class body, caller and callee
 143 of method, build configuration details, and test coverage information. **④ SWE-Refactor ensures**
 144 **automated and reproducible data collection.** *SWE-Refactor* fully automates the extraction of pure
 145 refactoring data from real-world projects, avoiding the need for manual annotation or LLM-generated
 146 code. All ground-truth refactored code is directly derived from project repositories. This ensures
 147 scalability and future benchmark expansion. **⑤ High quality and executable refactoring.** *SWE-Refactor*
 148 extracts developer-written refactorings from real-world projects with diverse application
 149 domains, allowing it to better reflect the capabilities of LLMs in realistic software engineering
 150 scenarios. To ensure the reliability of the benchmark, we perform multi-stage verification: (i) AST-
 151 based static analysis to confirm that each commit contains only the targeted refactoring type and no
 152 unrelated code changes, (ii) compilation and execution of the full test suite to confirm behavioral
 153 equivalence, and (iii) manual checks on a subset of instances to prevent false positives from automated
 154 tools. We retain only those refactorings that pass all verification steps, ensuring that *SWE-Refactor*
 155 contains high-quality, executable, and behavior-preserving examples. Details on the project selection
 156 and the distribution of refactorings are provided in Appendix D.

157 We evaluate 9 widely used LLMs (GPT-4o-mini (OpenAI, 2023), GPT-3.5 (OpenAI, 2023), DeepSeek
 158 V3 (DeepSeek-AI et al., 2024), Qwen2.5 Coder (Hui et al., 2024), DeepSeek Coder (Guo et al.,
 159 2024), and CodeLLaMa (Rozière et al., 2023)) on our proposed *SWE-Refactor* benchmark. We
 160 evaluate the refactored code along two dimensions: functional correctness and human-likeness. For
 161 functional correctness, we assess the code using 1) compilation success and test pass rate, and 2)
 162 AST-Based Refactoring Verification, which verifies that the expected refactoring has indeed occurred
 163 in the modified code. For human-likeness, we employ the *CodeBLEU* metric (Ren et al., 2020) to
 164 measure the difference. We find that the performance of large general-purpose LLMs is significantly

162 better than that of open-source LLMs. DeepSeek V3 achieves the best results across all metrics,
 163 successfully refactored 457 out of 1,099 cases (41.58%). GPT-4o-mini ranks second, with 438
 164 successful refactorings (39.85%). Furthermore, the performance of LLMs on different refactoring
 165 types is significantly different. DeepSeek V3 leads in *Extract Method*, completing 301 cases, while
 166 GPT-4o-mini shows the strongest performance on compound refactoring types, such as *Extract And*
 167 *Move Method*.

168 Overall, our contributions in this work are threefold:

- 170 • We introduce *SWE-Refactor*, a benchmark constructed from developer-written commits that
 171 contain only refactorings and no other functionality changes. It is designed to comprehen-
 172 sively evaluate LLM’s capabilities on both atomic and compound refactoring tasks.
- 173 • We design a fully automated four-step pipeline to construct *SWE-Refactor*, which extracts
 174 real refactorings, filters out impure ones, collects relevant structural information, and verifies
 175 functional correctness through compilation and test execution.
- 176 • We conduct an extensive evaluation of 9 popular LLMs on *SWE-Refactor* and perform a
 177 fine-grained analysis of their performance across different refactoring types, highlighting
 178 their strengths and limitations.

179 2 RELATED WORK

182 **Refactoring Benchmarks.** *RefactorBench* (Gautam et al., 2025) is a Python-based benchmark
 183 for evaluating the effectiveness of LLM agents on code refactoring. Unlike *SWE-Refactor* that
 184 leverages developer-written refactorings mined from real commits, RefactorBench relies on LLMs
 185 to identify refactoring opportunities, which can introduce model-specific biases into the benchmark.
 186 Moreover, *SWE-Refactor* captures the complex real-world software design, including overridden
 187 methods, generics, exception handling, and inheritance hierarchies that are often missing in synthetic
 188 data. RefactorBench’s ground truth solutions are also manually written by the authors, who may
 189 not have in-depth knowledge of the project. *ref-Dataset* (Liu et al., 2025) includes 100 pure atomic
 190 refactorings from real Java projects. The *community corpus* provides 122 Extract Method refactorings
 191 from five older Java projects. The *extended corpus* (Pomian et al., 2024) expands this to 1,752 Extract
 192 Method instances. However, each of the benchmarks has its own limitation, as shown in Table 1.
 193 Our benchmark, *SWE-Refactor*, is automatically built from 18 modern Java projects, covering both
 194 atomic and compound refactorings. All ground truth refactored code and test cases are written by
 195 the original project developers. The benchmark supports automated evaluation and ensures both
 196 structural and behavioral correctness through compilation and full test verification.

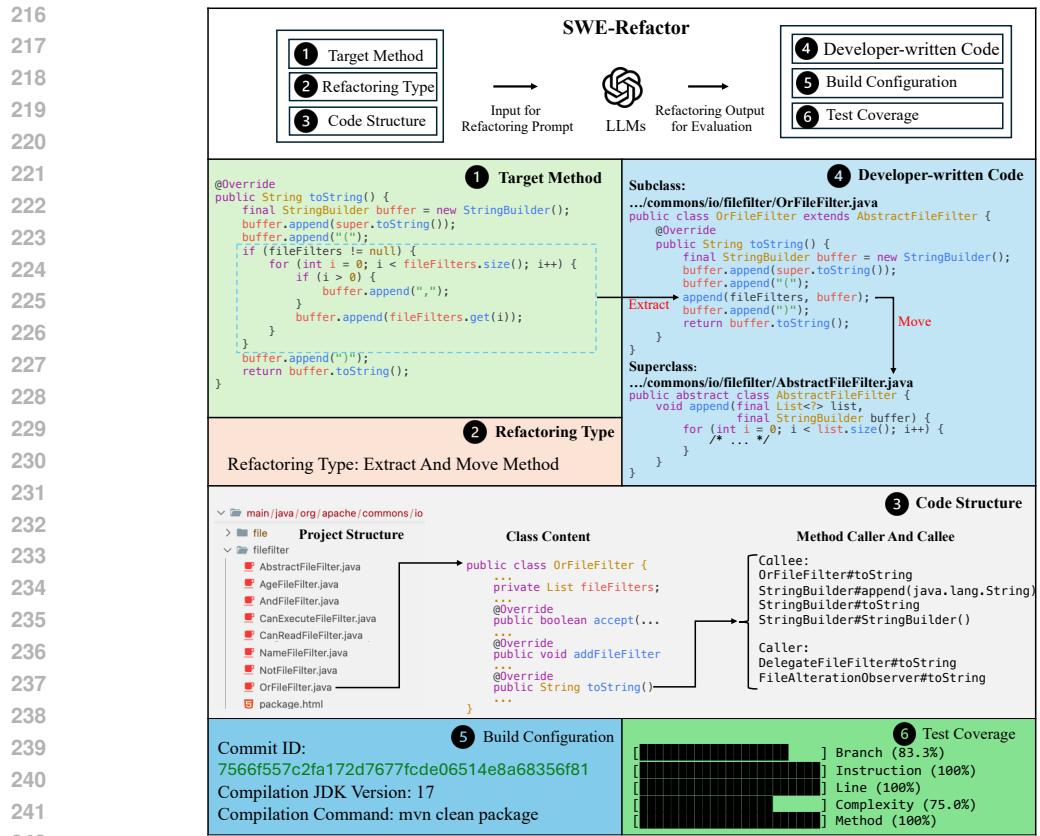
197 **LLMs-based Code Refactoring.** Recent works have explored various techniques to enhance LLM
 198 performance in refactoring tasks, including prompt clarity (AlOmar et al., 2024), structured prompt-
 199 ing (White et al., 2024), and few-shot learning (Shirafuji et al., 2023). Hybrid approaches that
 200 combine LLMs with rule-based systems have also shown improved results (Zhang et al., 2024). Sev-
 201 eral works directly prompt models like GPT-4 to perform refactorings (DePalma et al., 2024; Poldrack
 202 et al., 2023), confirming the feasibility of using LLMs for this task. In addition, practical tools such as
 203 *EM-Assist* (Pomian et al., 2024) and the Context-Enhanced Framework (Gao et al., 2024) demonstrate
 204 how LLMs can be integrated into automated refactoring workflows. Our benchmark can serve as a
 205 basis for future work in this area by providing a standardized and real-world dataset to evaluate and
 206 compare refactoring capabilities of LLMs across both atomic and compound transformations.

207 3 SWE-REFACTOR

208 3.1 OVERVIEW

210 Figure 1 shows a data sample of *SWE-Refactor*. Each sample in *SWE-Refactor* contains 6 components.

212 **1 Target Method:** The original method code before refactoring. **2 Refactoring Type:** The specific
 213 refactoring operation applied to the target method. For example, the data sample in Figure 1 illustrates
 214 an *Extract and Move Method* refactoring, where a block of code is first extracted into a separate
 215 method and then moved to a more appropriate class. **3 Repository and Code Structure:** Structural
 216 information of the target method at the repository, class, and method levels. Repository-level details

Figure 1: An overview of the data in *SWE-Refactor*.

include the overall project structure and the full paths to all source Java files in the repository. Class-level details include the source code of the entire class and hierarchy (i.e., parent and child relationships). Method-level information includes method’s callers and callees. **4 Developer-Written Code**: The target method refactored by project developers, serving as a reference for evaluating the quality of LLM-generated refactored code. **5 Build Configuration**: Compilation-related information necessary for building the project after refactoring. This includes the commit ID, the compatible JDK version, and the specific build commands. **6 Test Coverage**: Coverage data showing how the target method is exercised by the test suite. Comparing coverage before and after refactoring helps verify whether the refactoring preserves the program’s functional behavior.

3.2 TASK AND VERIFICATION METRICS

As illustrated in Figure 1, *SWE-Refactor* is designed to evaluate the performance of Large Language Models (LLMs) in real-world code refactoring. Given a target method, a specific refactoring type, and relevant repository and source code information, *SWE-Refactor* helps assess how effectively LLMs can generate correct and human-like refactored code. To evaluate refactoring quality from multiple perspectives, we employ three evaluation metrics: compilation and test success, AST-Based Refactoring Verification, and *CodeBLEU*.

1 Compilation and Test success (Functional Verification). *SWE-Refactor* integrates the LLM-generated refactored code into the project, then compiles the project and runs its test suites. This step verifies the functional correctness, ensuring the generated refactored code does not break the build or introduce unexpected issues.

2 AST-Based Refactoring Verification (Refactoring Verification). While compilation and test success reflect functional correctness, they do not guarantee that the intended refactoring has been applied and may risk overfitting to the test suite. Due to potential hallucination issues in LLMs (Huang et al., 2023b), they may generate code that passes tests but deviates from the intended refactoring. To address this, we use *RefactoringMiner* (Tsantalis et al., 2020), an Abstract Syntax Tree (AST)

270 and rule-based static code analysis tool for detecting Java code refactorings, to verify whether the
 271 LLM-generated code contains the intended refactoring and to ensure the code contains no other
 272 functionality changes. *RefactoringMiner* has excellent performance at identifying refactorings within
 273 complex and mixed-purpose commits, achieving an average precision of 99% and recall of 94% in
 274 detecting refactoring (Tsantalis et al., 2020).

275 **③ CodeBLEU (Human-Likeness Verification).** Finally, even when the code is functional and the
 276 refactoring is correct, it may still differ in quality or readability from the refactored code written by a
 277 human developer. Therefore, we include *CodeBLEU* (Ren et al., 2020) to assess the human-likeness
 278 of the generated code. *CodeBLEU* is a code-specific evaluation metric that compares the textual,
 279 structural, and semantic similarities between two code snippets. By considering multiple dimensions,
 280 it provides a more accurate assessment of how closely the generated code matches what a human
 281 developer would write.

283 3.3 AUTOMATED BENCHMARK CONSTRUCTION PIPELINE

285 Figure 2 presents the automated pipeline of building *SWE-Refactor*. Unlike *RefactorBench* (Gautam
 286 et al., 2025), which synthesizes refactoring examples using LLMs, our dataset is built from real-world
 287 refactorings written by humans, identified through traditional static code and AST analysis. This
 288 design choice ensures the benchmark is free from LLM-induced hallucinations or bias. To construct
 289 *SWE-Refactor*, we design a four-step automated pipeline:

290 **Step 1: Mine Refactorings via Static Analysis.** We leverage AST-based refactoring detection
 291 tools to extract commits that contain refactorings from GitHub repositories. *RefactoringMiner* is an
 292 AST- and rule-based tool that demonstrates high accuracy in refactoring detection. In addition to
 293 identifying refactoring types, we apply static code analysis to analyze the Java files. For each detected
 294 refactoring instance, we analyze the code and extract the detailed location information, including the
 295 commit hash, the affected Java files, and the specific line numbers within the file. This information is
 296 also stored in *SWE-Refactor* as part of our released dataset. Based on this information, we further
 297 build the ASTs of the modified Java files. Then, we traverse the ASTs to extract Method Level and
 298 Class Level information for the refactoring instance, including the source code before and after the
 299 developer’s refactoring changes, and the method and class signatures.

300 **Step 2: Curate Pure and Targeted Refactoring Types.** After extracting all commits containing
 301 refactorings, we use AST-based pure refactoring detection tools to curate high-quality instances by
 302 filtering out impure changes (e.g., bug fixes) and retaining only the six refactoring types studied in
 303 this work. *PurityChecker* (Nouri, 2023) extends *RefactoringMiner* with specialized AST analysis
 304 to identify pure method-level refactorings, with an average precision of 95% and recall of 88%. It
 305 starts by identifying refactorings in a commit and comparing the code before and after the refactoring.
 306 During this process, *PurityChecker* analyzes how original statements are changed—specifically,
 307 which statements were moved, modified, or replaced as part of the refactoring. It then checks whether
 308 these changes follow predefined purity rules.

309 **Step 3: Enrich Refactoring Changes with Multi-Level Code Information.** *RefactoringMiner*
 310 analyzes refactorings within individual Java files and does not support cross-file analysis or method
 311 invocation. Hence, we further use the Eclipse Java Development Tools (Eclipse JDT) (Eclipse
 312 Foundation, 2024) to extract structural information at the repository, class, and method levels. Eclipse
 313 JDT is a static analysis tool that provides access to the ASTs and type bindings of Java projects. For
 314 each refactoring instance, we identify the modified Java files and collect additional source files within
 315 the same software package. We implement static analysis tools to analyze these files and construct
 316 ASTs with resolved types and method references. By traversing the ASTs, we extract the repository
 317 structure, the source code of the entire class and its hierarchy, and caller-callee relationships.

318 **Step 4: Verify Compilation and Test Coverage.** For each refactoring, we develop a script to
 319 compile the project and verify its correctness. To determine the appropriate JDK version, we attempt
 320 compilation using multiple JDKs. We then execute the test suite with JaCoCo (Jacoco, 2009) to
 321 collect code coverage information and exclude commits where the refactored code is not exercised
 322 by any test. Finally, we verify the existence of target classes involved in *Move Method*, *Extract and*
 323 *Move Method*, and *Move and Inline Method* refactorings. This step was necessary because the *Move*
 324 *Method* operation may move a method to newly created classes, and it is difficult for LLMs to predict
 325 the newly created classes.

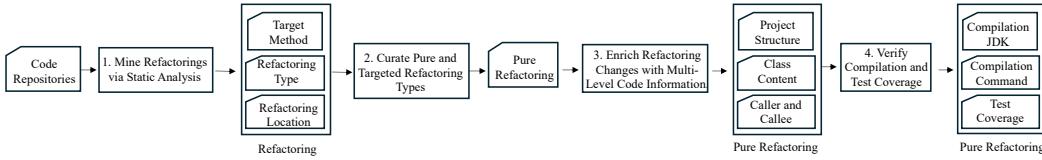
Figure 2: Our Automated Pipeline to Construct *SWE-Refactor*.

Table 2: Evaluation of 9 LLMs on *SWE-Refactor*. The table presents the number of refactorings to perform, compile-and-test success rates, refactoring correctness verified by AST-Based refactoring detection tools (AST-Based RF Verification), and code similarity to human-written refactorings (*Code BLEU*). **Successful Refactoring** refers to the number of refactorings that compile, pass tests, and are verified by AST-Based refactoring detection tools. We report the average *Code BLEU* score and total counts for the other metrics.

Model	Size	Compile&Test Success	AST-Based RF Verification	Code BLEU	Successful Refactoring
gpt-4o-mini	N/A	537 (48.86%)	636 (57.87%)	0.547	438 (39.85%)
gpt-3.5-turbo	N/A	199 (18.11%)	142 (12.92%)	0.536	82 (7.46%)
DeepSeek-V3	N/A	554 (50.41%)	674 (61.33%)	0.584	457 (41.58%)
Qwen2.5 Coder	14B	22 (2.00%)	101 (9.19%)	0.428	7 (0.64%)
Qwen2.5 Coder	7B	20 (1.82%)	142 (12.92%)	0.582	6 (0.55%)
DeepSeek Coder	16B	23 (2.09%)	101 (9.19%)	0.549	3 (0.27%)
DeepSeek Coder	6.7B	31 (2.82%)	70 (6.37%)	0.442	7 (0.64%)
CodeLLaMa	13B	14 (1.27%)	15 (1.36%)	0.558	1 (0.09%)
CodeLLaMa	7B	41 (3.73%)	48 (4.37%)	0.502	12 (1.10%)

4 EXPERIMENT

In this section, we evaluate 9 popular LLMs on *SWE-Refactor*, and analyze their effectiveness across different refactoring types, prompting strategies, and multi-agent workflows. They cover general LLMs (i.e., gpt-4o-mini-2024-07-18 (OpenAI, 2023), gpt-3.5-turbo-01-25 (OpenAI, 2023), and DeepSeek-V3 (DeepSeek-AI et al., 2024)) and Code LLMs (Qwen2.5 Coder-{7b, 14b} (Hui et al., 2024), DeepSeek Coder-{6.7B, 16B} (Guo et al., 2024), and CodeLLaMa-{7B,13B} (Rozière et al., 2023)). General LLMs are accessed via official APIs, while Code LLMs are deployed on a cluster with 4 NVIDIA A100 GPUs (40GB each).

4.1 LLMs’ PERFORMANCE ON *SWE-Refactor*

We evaluate 1,099 pure refactorings from the *SWE-Refactor* using the three metrics defined in Section 3.3: Compilation and Test Success, AST-Based Refactoring Verification, and *CodeBLEU*. A refactoring is considered successful if it passes both Compilation&Tests and AST-Based Refactoring Verification. For consistency, we design a standardized prompt template containing four components: (1) a task description of the refactoring, (2) the target method, (3) repository-level context such as class source and caller–callee relations, and (4) a natural language instruction specifying the expected transformation. The detailed prompt template is provided in Appendix E. As shown in Table 2, DeepSeek-V3 achieves the best overall performance with 457 successful refactorings (41.58%), followed by GPT-4o-mini with 438 (39.85%). General-purpose LLMs substantially outperform open-source code LLMs, reflecting their stronger capabilities in code understanding. Among the open-source models, CodeLLaMa-7B performs best with 12 successes (1.10%), while the 13B variant performs worse, likely due to its Python-focused pre-training (Chai et al., 2025), which highlights the importance of having a non-Python benchmark.

4.2 PERFORMANCE ACROSS REFACTORING TYPES

To better understand how LLMs perform on different kinds of refactorings, we analyze their effectiveness across the six refactoring types studied in *SWE-Refactor*: three atomic types (*Extract Method*, *Move Method*, *Inline Method*) and three compound types (*Extract and Move Method*, *Move and Inline Method*, and *Move and Rename Method*). For each refactoring type, we compute the

378 Table 3: Performance of LLMs across six refactoring types. **EM** = Extract Method, **IM** = Inline
 379 **MM** = Move Method, **RM** = Rename Method. Values in parentheses indicate the total
 380 number of instances per refactoring type collected in the *SWE-Refactor*.
 381

Model	Size	Successful Refactoring	EM (441)	IM (71)	MM (410)	EM + MM (142)	MM + RM (21)	MM + IM (14)
gpt-4o-mini	N/A	438	259	53	92	33	1	0
gpt-3.5-turbo	N/A	82	48	9	23	2	0	0
DeepSeek-V3	N/A	457	301	50	76	30	0	0
Qwen2.5 Coder	14B	7	2	5	0	0	0	0
Qwen2.5 Coder	7B	6	5	1	0	0	0	0
DeepSeek Coder	16B	3	1	1	0	1	0	0
DeepSeek Coder	6.7B	7	6	1	0	0	0	0
CodeLLaMa	13B	1	1	0	0	0	0	0
CodeLLaMa	7B	12	12	0	0	0	0	0

392
 393
 394 success rate based on Compilation and Test Success and AST-Based Refactoring Verification. This
 395 analysis helps reveal whether certain LLMs are more effective at atomic refactorings compared to
 396 compound ones, and whether some types pose more challenges for current models. Table 3 shows
 397 that DeepSeek-V3 achieves the strongest specialization on *Extract Method* with 301 successes, while
 398 GPT-4o-mini exhibits broader generalization, particularly in cross-file tasks such as *Move Method*
 399 and *Extract+Move* (33). Open-source models (Qwen2.5, DeepSeek Coder, and CodeLLaMa)
 400 succeed mainly only on a few *Extract Method* instances.
 401

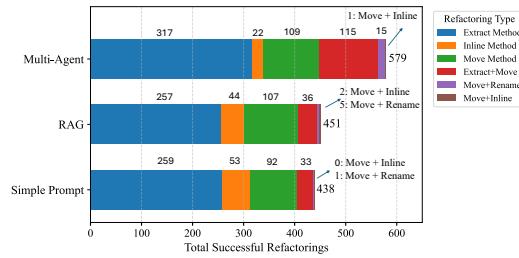
402 Overall, the table highlights a clear trend: current LLMs remain effective on local atomic edits but
 403 perform poorly on cross-file and compound transformations. These tasks thus represent critical
 404 benchmarks for advancing LLMs’ reasoning ability over structured software artifacts.
 405

4.3 IMPACT OF CONTEXT AUGMENTATION AND MULTI-AGENT WORKFLOWS

406 To examine the effect of context augmentation
 407 and multi-agent reasoning, we extend beyond
 408 simple prompting on *SWE-Refactor* using two
 409 techniques. We apply Retrieval-Augmented
 410 Generation (RAG) to provide additional con-
 411 text via retrieved refactoring examples, and a
 412 multi-agent workflow that iteratively refines the
 413 outputs. We evaluate both techniques using
 414 gpt-4o-mini, chosen for its strong perfor-
 415 mance on complex refactorings and tool sup-
 416 port.
 417

418 RAG provides more context to LLMs through
 419 relevant few-shot examples, aiming to improve
 420 the accuracy and relevance of the generated code
 421 (He et al., 2024; Shirafuji et al., 2023). Our RAG implementation uses a retrieval database of 905
 422 pure refactoring instances drawn from the *Refactoring Oracle Dataset* (Tsantalis et al., 2020), which
 423 has no overlap with the data in *SWE-Refactor* (construction details in Appendix F). The multi-agent
 424 workflow strengthens the reasoning and validation abilities of LLMs (Huang et al., 2023a). We define
 425 two roles: a *Developer Agent*, which generates refactored code given context, and a *Reviewer Agent*,
 426 which critiques the output and provides iterative feedback. This design enables multi-turn refinement
 427 while mitigating common reasoning failures (Appendix G).
 428

429 As shown in Figure 3, the Multi-Agent strategy achieves the highest overall success (579 refactorings),
 430 outperforming RAG (451) and Simple Prompting (438). While all three perform similarly on *Extract*
 431 *Method*, the Multi-Agent workflow shows clear advantages on more complex refactoring, completing
 432 109 *Move Method* and 115 *Extract+Move* cases, far exceeding RAG (107, 36) and Simple Prompt
 433 (92, 33). These improvements likely stem from iterative reasoning and feedback between agents.
 434



435 Figure 3: Comparison of successful refactorings.
 436

432 4.4 SCALABILITY TO SOTA MODELS AND AGENTIC SCAFFOLDING
433434 To further assess the limits of *SWE-Refactor*, we extended our evaluation to stronger models: (1)
435 GPT-4o Hurst et al. (2024) as the base model in our multi-agent workflow, and (2) an agentic
436 scaffolding setup using OpenAI Codex (GPT-5.1-Codex) OpenAI (2025).437 **Performance of GPT-4o.** We replaced the base model with GPT-4o in our agent approach. Table 4
438 summarizes the full benchmark results. GPT-4o achieves 675 out of 1,099 successful refactorings
439 (61.4%), a clear improvement over gpt-4o-mini (52.7%). The largest gains appear in navigation-
440 intensive refactoring types, such as *Move Method* and *Move And Inline Method*, suggesting that
441 GPT-4o’s stronger reasoning and repository-navigation capabilities help the agent locate the correct
442 files and apply the required edits more reliably.443
444 Table 4: GPT-4o results on full *SWE-Refactor* (1,099 instances).445
446

Model	Total(Success)	EM	IM	MM	EM+MM	MM+RM	MM+IM
GPT-4o	675	304	45	197	106	14	9
GPT-4o-mini	579	317	22	109	115	15	1

447
448449
450
451 **Evaluation of OpenAI Codex Agent.** We also evaluated OpenAI Codex, utilizing its agentic
452 scaffolding based on ChatGPT-5.1. We conducted a stratified sample of 200 instances, constructed
453 by considering the distribution of refactoring types and executable lines of code (ELOC). Specifically,
454 we selected 100 instances with $ELOC \leq 10$ and 100 with $ELOC > 10$. This resulted in 80 *Extract*,
455 13 *Inline*, 74 *Move*, 26 *Extract+Move*, 4 *Move+Rename*, and 3 *Move+Inline* instances. Codex was
456 provided with full repository access and the same prompts used in our prior evaluation.
457458 As shown in Table 5, Codex successfully completed 151 out of 200 instances (75.5%). It performed
459 well on the three atomic refactoring types, achieving 73 successes out of 80 for *Extract Method*, 12
460 out of 13 for *Inline Method*, and 53 out of 74 for *Move Method*. Its performance was weaker on
461 compound refactorings, solving only 11 out of 26 *Extract and Move* cases, 2 out of 4 *Move and*
462 *Rename* cases, and none of the 3 *Move and Inline* cases. Most failures occurred because the model
463 applied a different refactoring than the one requested, such as performing only extraction or only
464 movement, or creating a helper class instead of carrying out the compound refactoring operation.
465466 What’s more, **GPT-5.1-Codex** achieves a success rate of 75.5% on our 200-instance sample, which
467 is close to the 74.5% it reports on *SWE-bench-Verified* OpenAI (2025). The similarity between these
468 two results suggests that *SWE-Refactor* poses a comparable level of difficulty, and we believe it is
469 sufficiently challenging for evaluating LLM performance on refactoring tasks.
470

471 Table 5: Codex agentic scaffolding results on the 200 samples.

472
473

Model	Total(Success)	EM (80)	IM (13)	MM (74)	EM+MM (26)	MM+RM (4)	MM+IM (3)
Codex	151	73	12	53	11	2	0
GPT-4o	134	59	9	46	17	1	2

474475 5 DISCUSSION
476477 **Error Taxonomy.** To analyze failure modes, we sampled 50 refactorings for each of three representative
478 settings: a small code LLM, a general LLM, and a multi-agent workflow. The small code LLM
479 (i.e., CodeLLaMa-7B) failed on nearly all sampled cases, primarily because most outputs ignored
480 the format requirements specified in the prompt, resulting in parsing errors. In contrast, the general
481 LLM (i.e., GPT-4o-mini) was more reliable in following instructions but still showed weaknesses
482 in handling code dependencies and repository-level information. Its major failures included syntax-
483 level errors (e.g., undefined variables and parameter type mismatches) and semantic errors such as
484 moving methods into non-existent files. The multi-agent workflow (using GPT-4o-mini) succeeded
485 in most cases, though its remaining failures often reflected overfitting to the test cases. For example,

486 generating empty methods that passed compilation and testing but failed AST-Based Refactoring
 487 Verification. The observed error patterns highlight the distinct strengths and weaknesses of different
 488 LLMs, RAG, and the multi-agent workflow. The results also show that *SWE-Refactor* can assess
 489 LLM robustness at multiple levels, from following basic schema in small models to performing
 490 repository-level reasoning in multi-agent systems.

491 **Limitations.** *SWE-Refactor* has three main limitations. First, it focuses only on Java projects. While
 492 this limits language diversity, it enables reliable extraction using mature Java-based code analysis
 493 tools such as *RefactoringMiner* Tsantalis et al. (2020), *RefDiff* Silva et al. (2021), and *PMD* PMD
 494 (2025), and provides a valuable complement to existing Python-centric benchmarks. We plan to
 495 extend to other languages to support multi-language evaluation. Second, *SWE-Refactor* currently
 496 targets method-level refactorings due to their high prevalence in real-world projects Kim et al. (2014);
 497 Negara et al. (2013). Higher-level refactorings such as those at the class level are less frequent and
 498 often entangled with non-refactoring changes such as bug fixes Penta et al. (2020), which makes
 499 extraction more challenging. We aim to include a broader range of refactoring types in the future.
 500 Third, although *SWE-Refactor* includes 1,099 pure refactorings from 18 projects, making it one of the
 501 largest benchmarks of its kind, the scale is still limited for comprehensive evaluation or fine-tuning of
 502 LLMs. We plan to continue expanding the dataset to improve coverage and diversity.

503 6 CONCLUSION

504 In this work, we present *SWE-Refactor*, a new benchmark specifically designed to evaluate the
 505 capabilities of LLMs in code refactoring. *SWE-Refactor* features 1,099 pure, real-world refactorings
 506 extracted from 18 diverse Java projects, covering both atomic and compound refactoring types. It
 507 ensures high data quality through automated filtering, compilation, and test verification, and includes
 508 rich repository-level information to support realistic and comprehensive evaluation. We evaluate 9
 509 widely used LLMs across multiple dimensions, revealing substantial differences in their performance
 510 across refactoring types and highlighting the effectiveness of multi-agent prompting strategies. Our
 511 results show that large-scale general purpose models like DeepSeek V3 and GPT-4o-mini outperform
 512 open-source ones, with DeepSeek V3 achieving the highest success rate. We publicly release all data
 513 and results to support future research in LLM-based code refactoring.

516 7 DATA AVAILABILITY

517 The *SWE-Refactor* data and the code associated with this work can be found in Appendix A.

521 REFERENCES

523 Eman Abdullah AlOmar, Anushkrishna Venkatakrishnan, Mohamed Wiem Mkaouer, Christian
 524 Newman, and Ali Ouni. How to refactor this code? an exploratory study on developer-chatgpt
 525 refactoring conversations. In *Proceedings of the 21st International Conference on Mining Software
 526 Repositories*, pp. 202–206, 2024.

527 Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark Harman, Inna Harper,
 528 Alexandru Marginean, Shubho Sengupta, and Eddy Wang. Automated unit test improvement using
 529 large language models at meta. In Marcelo d’Amorim (ed.), *Companion Proceedings of the 32nd
 530 ACM International Conference on the Foundations of Software Engineering, FSE 2024, Porto de
 531 Galinhas, Brazil, July 15-19, 2024*, pp. 185–196. ACM, 2024. doi: 10.1145/3663529.3663839.
 532 URL <https://doi.org/10.1145/3663529.3663839>.

533 Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 534 Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
 535 with large language models. *CoRR*, abs/2108.07732, 2021. URL <https://arxiv.org/abs/2108.07732>.

538 Jialun Cao, Zhiyong Chen, Jiarong Wu, Shing-Chi Cheung, and Chang Xu. Javabench: A benchmark
 539 of object-oriented code generation for evaluating large language models. In Vladimir Filkov,
 Baishakhi Ray, and Minghui Zhou (eds.), *Proceedings of the 39th IEEE/ACM International*

540 *Conference on Automated Software Engineering, ASE 2024, Sacramento, CA, USA, October*
 541 *27 - November 1, 2024, pp. 870–882. ACM, 2024. doi: 10.1145/3691620.3695470. URL*
 542 <https://doi.org/10.1145/3691620.3695470>.

543 Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, JinKe, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
 544 Ren, Hongcheng Guo, Noah Wang, Boyang Wang, Xianjie Wu, Bing Wang, Tongliang Li, Liqun
 545 Yang, Sufeng Duan, Zhaoxiang Zhang, and Zhoujun Li. Mceval: Massively multilingual code
 546 evaluation. In *The Thirteenth International Conference on Learning Representations*, 2025.

547 Checkstyle Team. Checkstyle, 2024. URL <https://checkstyle.org/index.html>. Accessed: 2024-11-20.

548 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
 549 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
 550 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
 551 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
 552 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
 553 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
 554 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
 555 Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
 556 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
 557 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
 558 large language models trained on code. *CoRR*, abs/2107.03374, 2021. URL <https://arxiv.org/abs/2107.03374>.

559 Gordon V. Cormack, Charles L. A. Clarke, and Stefan Büttcher. Reciprocal rank fusion outperforms
 560 condorcet and individual rank learning methods. In James Allan, Javed A. Aslam, Mark Sanderson,
 561 ChengXiang Zhai, and Justin Zobel (eds.), *Proceedings of the 32nd Annual International ACM*
 562 *SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, Boston,*
 563 *MA, USA, July 19-23, 2009, pp. 758–759. ACM, 2009. doi: 10.1145/1571941.1572114. URL*
 564 <https://doi.org/10.1145/1571941.1572114>.

565 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
 566 Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
 567 Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
 568 Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
 569 Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
 570 Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao
 571 Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
 572 Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
 573 Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang,
 574 Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen,
 575 R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
 576 Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye,
 577 Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
 578 Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-
 579 v3 technical report. *CoRR*, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
 580 <https://doi.org/10.48550/arXiv.2412.19437>.

581 Kayla DePalma, Izabel Miminoshvili, Chiara Henselder, Kate Moss, and Eman Abdullah AlOmar.
 582 Exploring chatgpt’s code refactoring capabilities: An empirical study. *Expert Systems with*
 583 *Applications*, 249:123602, 2024.

584 Eclipse Foundation. Eclipse jdt (java development tools), 2024. URL <https://github.com/eclipse-jdt/>. Accessed: March 13, 2025.

585 Eclipse Foundation. Eclipse, 2024. URL <https://eclipseide.org/>. Accessed: Jun. 10,
 586 2024.

587 Martin Fowler. *Refactoring - Improving the Design of Existing Code*. Addison Wesley object technology series. Addison-Wesley, 1999. ISBN 978-0-201-48567-7. URL <http://martinfowler.com/books/refactoring.html>.

594 Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia. Context-enhanced llm-based framework for automatic
 595 test refactoring. *arXiv preprint arXiv:2409.16739*, 2024.

596

597 Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghadam.
 598 Refactorbench: Evaluating stateful reasoning in language agents through code. *CoRR*,
 599 abs/2503.07832, 2025. doi: 10.48550/ARXIV.2503.07832. URL <https://doi.org/10.48550/arXiv.2503.07832>.

600

601 Felix Grund, Shaiful Alam Chowdhury, Nick C. Bradley, Braxton Hall, and Reid Holmes. Codeshovel:
 602 Constructing method-level source code histories. In *43rd IEEE/ACM International Conference on
 603 Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021*, pp. 1510–1522. IEEE, 2021.
 604 doi: 10.1109/ICSE43902.2021.00135. URL [https://doi.org/10.1109/ICSE43902.
 605 2021.00135](https://doi.org/10.1109/ICSE43902.2021.00135).

606 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
 607 Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large
 608 language model meets programming - the rise of code intelligence. *CoRR*, abs/2401.14196, 2024.
 609 doi: 10.48550/ARXIV.2401.14196. URL [https://doi.org/10.48550/arXiv.2401.
 610 14196](https://doi.org/10.48550/arXiv.2401.14196).

611 Mohammed Tayeef Hasan, Nikolaos Tsantalis, and Pouria Alikhanifard. Refactoring-aware block
 612 tracking in commit history. *IEEE Transactions on Software Engineering*, 50(12):3330–3350, 2024.
 613 doi: 10.1109/TSE.2024.3484586.

614

615 Pengfei He, Shaowei Wang, Shaiful Chowdhury, and Tse-Hsun Chen. Exploring demonstration
 616 retrievers in RAG for coding tasks: Yeas and nays! *CoRR*, abs/2410.09662, 2024. doi: 10.48550/
 617 ARXIV.2410.09662. URL <https://doi.org/10.48550/arXiv.2410.09662>.

618 Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-
 619 agent-based code generation with iterative testing and optimisation. *CoRR*, abs/2312.13010, 2023a.
 620 doi: 10.48550/ARXIV.2312.13010. URL [https://doi.org/10.48550/arXiv.2312.
 621 13010](https://doi.org/10.48550/arXiv.2312.13010).

622

623 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 624 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 625 language models: Principles, taxonomy, challenges, and open questions. *CoRR*, abs/2311.05232,
 626 2023b. doi: 10.48550/ARXIV.2311.05232. URL [https://doi.org/10.48550/arXiv.
 627 2311.05232](https://doi.org/10.48550/arXiv.2311.05232).

628 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 629 Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
 630 Zhou, and Junyang Lin. Qwen2.5-coder technical report. *CoRR*, abs/2409.12186, 2024. doi: 10.
 631 48550/ARXIV.2409.12186. URL <https://doi.org/10.48550/arXiv.2409.12186>.

632 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 633 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex
 634 Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
 635 Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali,
 636 Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya Kumar,
 637 Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew
 638 Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Anto-
 639 ine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital
 640 Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben
 641 Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
 642 Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
 643 Kellogg, Brydon Eastman, Camillo Lugaressi, Carroll L. Wainwright, Cary Bassin, Cary Hudson,
 644 Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea
 645 Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian
 646 Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer,
 647 Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, and Dane
 648 Sherburn. Gpt-4o system card. *CoRR*, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
 649 URL <https://doi.org/10.48550/arXiv.2410.21276>.

648 Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A LLM multi-agent framework
 649 toward ultra large-scale code generation and optimization. *CoRR*, abs/2404.02183, 2024. doi: 10.
 650 48550/ARXIV.2404.02183. URL <https://doi.org/10.48550/arXiv.2404.02183>.
 651

652 Jacoco. Jacoco, 2009. URL <https://www.jacoco.org/jacoco/trunk/index.html>.
 653 Accessed: Jun. 1, 2009.

654 JetBrains. IntelliJ idea, 2024a. URL <https://www.jetbrains.com/idea/>. Accessed: Jun.
 655 10, 2024.

656 JetBrains. Pycharm, 2024b. URL <https://www.jetbrains.com/pycharm/>. Accessed:
 657 Jun. 10, 2024.

659 Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
 660 models for code generation. *CoRR*, abs/2406.00515, 2024. doi: 10.48550/ARXIV.2406.00515.
 661 URL <https://doi.org/10.48550/arXiv.2406.00515>.

662 Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
 663 Narasimhan. Swe-bench: Can language models resolve real-world github issues? In *The*
 664 *Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,*
 665 *May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=VTF8yNQM66>.
 666

668 Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
 669 Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Satish Chandra, Kelly Blincoe,
 670 and Paolo Tonella (eds.), *Proceedings of the 31st ACM Joint European Software Engineering*
 671 *Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San*
 672 *Francisco, CA, USA, December 3-9, 2023*, pp. 1646–1656. ACM, 2023. doi: 10.1145/3611643.
 673 3613892. URL <https://doi.org/10.1145/3611643.3613892>.

674 Mehran Jodavi and Nikolaos Tsantalis. Accurate method and variable tracking in commit history. In
 675 *Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium*
 676 *on the Foundations of Software Engineering, ESEC/FSE 2022*, pp. 183–195, New York, NY, USA,
 677 2022. Association for Computing Machinery. ISBN 9781450394130. doi: 10.1145/3540250.
 678 3549079. URL <https://doi.org/10.1145/3540250.3549079>.

679 Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. An empirical study of refac-
 680 toringchallenges and benefits at microsoft. *IEEE Transactions on Software Engineering*, 40(7):
 681 633–649, 2014.

683 Feng Lin, Dong Jae Kim, Tse-Husn, and Chen. Soen-101: Code generation by emulating software
 684 process models using large language model agents, 2024. URL <https://arxiv.org/abs/2403.15852>.

686 Bo Liu, Yanjie Jiang, Yuxia Zhang, Nan Niu, Guangjie Li, and Hui Liu. Exploring the potential of
 687 general purpose llms in automated software refactoring: an empirical study. *Autom. Softw. Eng.*,
 688 32(1):26, 2025. doi: 10.1007/S10515-025-00500-0. URL <https://doi.org/10.1007/s10515-025-00500-0>.

690 Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. How we refactor, and how we know it.
 691 *IEEE Transactions on Software Engineering*, 38(1):5–18, 2011.

693 Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig. A comparative
 694 study of manual and automated refactorings. In *27th European Conference on Object-Oriented*
 695 *Programming, ECOOP’13*, pp. 552–576, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-3-
 696 642-39037-1. doi: 10.1007/978-3-642-39038-8_23.

697 Pedram Nouri. *PurityChecker: A Tool for Detecting Purity of Method-level Refactoring Operations*.
 698 PhD thesis, Concordia University, 2023. URL <https://spectrum.library.concordia.ca/id/eprint/993129/>.

701 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
 URL <https://doi.org/10.48550/arXiv.2303.08774>.

702 OpenAI. gpt-3.5-turbo, 2023. URL <https://platform.openai.com/docs/models/gpt-3-5>.

703

704

705 OpenAI. Gpt-5.1-codex, 2025. URL <https://openai.com/index/introducing-upgrades-to-codex/>. Accessed: Sept. 15, 2025.

706

707 Massimiliano Di Penta, Gabriele Bavota, and Fiorella Zampetti. On the relationship between
708 refactoring actions and bugs: A differentiated replication, 2020. URL <https://arxiv.org/abs/2009.11685>.

709

710

711 PMD. Pmd - source code analyze, 2025. URL <https://pmd.github.io/>.

712

713 Russell A Poldrack, Thomas Lu, and Gašper Beguš. Ai-assisted coding: Experiments with gpt-4.
714 *arXiv preprint arXiv:2304.13187*, 2023.

715 Dorin Pomian, Abhiram Bellur, Malinda Dilhara, Zarina Kurbatova, Egor Bogomolov, Timo-
716 fey Bryksin, and Danny Dig. Next-generation refactoring: Combining LLM insights and
717 IDE capabilities for extract method. In *IEEE International Conference on Software Main-
718 tenance and Evolution, ICSME 2024, Flagstaff, AZ, USA, October 6-11, 2024*, pp. 275–287.
719 IEEE, 2024. doi: 10.1109/ICSME58944.2024.00034. URL <https://doi.org/10.1109/ICSME58944.2024.00034>.

720

721 Yihao Qin, Shangwen Wang, Yiling Lou, Jinhao Dong, Kaixin Wang, Xiaoling Li, and Xiaoguang
722 Mao. Agentfl: Scaling llm-based fault localization to project-level context. *CoRR*, abs/2403.16362,
723 2024. doi: 10.48550/ARXIV.2403.16362. URL <https://doi.org/10.48550/arXiv.2403.16362>.

724

725

726 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
727 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*.
728 Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.

729

730 Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
731 Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
732 *arXiv preprint arXiv:2009.10297*, 2020.

733

734 Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
735 *Foundations and Trends® in Information Retrieval*, 3(4):333–389, 2009.

736

737 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
738 Adi, Jingyu Liu, Tal Remez, Jérémie Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
739 Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
740 Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
741 Synnaeve. Code llama: Open foundation models for code. *CoRR*, abs/2308.12950, 2023. doi: 10.
742 48550/ARXIV.2308.12950. URL <https://doi.org/10.48550/arXiv.2308.12950>.

743

744 Atsushi Shirafuji, Yusuke Oda, Jun Suzuki, Makoto Morishita, and Yutaka Watanobe. Refactoring
745 programs using large language models with few-shot examples. In *2023 30th Asia-Pacific Software
Engineering Conference (APSEC)*, pp. 151–160. IEEE, 2023.

746

747 Danilo Silva, Nikolaos Tsantalis, and Marco Túlio Valente. Why we refactor? confessions of
748 github contributors. In Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (eds.),
749 *Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016*, pp. 858–870. ACM, 2016. doi:
750 10.1145/2950290.2950305. URL <https://doi.org/10.1145/2950290.2950305>.

751

752 Danilo Silva, João Paulo da Silva, Gustavo Santos, Ricardo Terra, and Marco Túlio Valente. Refdiff
753 2.0: A multi-language refactoring detection tool. *IEEE Transactions on Software Engineering*, 47
754 (12):2786–2802, 2021. doi: 10.1109/TSE.2020.2968072.

755

Stack Overflow. Stack Overflow Developer Survey 2024. <https://survey.stackoverflow.co/2024/>, 2024. [Online; accessed 21-September-2025].

756 TIOBE Software BV. TIOBE Programming Community Index for July 2025. <https://www.tiobe.com/tiobe-index/>, 2025. [Online; accessed 21-September-2025].

757

758

759 Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazinanian, and Danny Dig. Accu-

760 rate and efficient refactoring detection in commit history. In *Proceedings of the 40th international*

761 *conference on software engineering*, pp. 483–494, 2018.

762 Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. Refactoringminer 2.0. *IEEE Transactions on*

763 *Software Engineering*, 48(3):930–950, 2020.

764

765 Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt. Chatgpt prompt

766 patterns for improving code quality, refactoring, requirements elicitation, and software design. In

767 *Generative AI for Effective Software Development*, pp. 71–108. Springer, 2024.

768 Yisen Xu, Feng Lin, Jinqiu Yang, Tse-Hsun Chen, and Nikolaos Tsantalis. MANTRA: enhancing

769 automated method-level refactoring with contextual RAG and multi-agent LLM collaboration.

770 *CoRR*, abs/2503.14340, 2025. doi: 10.48550/ARXIV.2503.14340. URL <https://doi.org/10.48550/arXiv.2503.14340>.

771

772 Zejun Zhang, Zhenchang Xing, Xiaoxue Ren, Qinghua Lu, and Xiwei Xu. Refactoring to pythonic

773 idioms: A hybrid knowledge-driven approach leveraging large language models. *Proceedings of*

774 *the ACM on Software Engineering*, 1(FSE):1107–1128, 2024.

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811

APPENDIX

812
813

TABLE OF CONTENTS

814

- **Appendix A:** Dataset Hosting
- **Appendix B:** Use of Large Language Models (LLMs)
- **Appendix C:** Refactoring Type Definitions
- **Appendix D:** Project Selection and Refactoring Distribution
- **Appendix E:** Prompt Templates for Different Refactoring Types
- **Appendix F:** RAG Construction for Refactoring Retrieval
- **Appendix G:** Workflow For Multi-Agent

815

816

817

818

819

820

821

822

823

824

825

A DATASET HOSTING

826

827

Our *SWE-Refactor* benchmark and experimental results (e.g., code, prompts, and LLM predictions) are available on the following platform:

828

829

830

831

832

B USE OF LARGE LANGUAGE MODELS (LLMs)

833

834

Large Language Models (LLMs) were used only to polish the writing. They were not involved in the research design, analysis, or conclusions.

835

836

837

838

C REFACTORING TYPE DEFINITIONS

839

840

841

842

We define the refactoring types evaluated in this study based on widely accepted descriptions from Fowler’s Refactoring Catalog (Fowler, 1999) and *RefactoringMiner* (Tsantalis et al., 2020). These definitions serve as the foundation for identifying and categorizing both basic and compound refactorings in our benchmark.

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

- **Extract Method.** A code fragment is extracted from an existing method and placed into a newly created method. The original fragment is replaced with a method call. This improves readability, modularity, and reuse, especially when the original method becomes long or performs multiple responsibilities.
- **Move Method.** A method is relocated from one class to another, usually when it relies more on the data of the target class. This improves cohesion and reduces coupling between classes.
- **Inline Method.** A method is removed by replacing its invocations with its body. This is typically done when the method is too simple, no longer adds meaningful abstraction, or is used only once.
- **Extract and Move Method.** A compound refactoring where a code fragment is first extracted into a new method, and the resulting method is then moved to another class (often a superclass). This is useful when the extracted logic is generalizable or better fits in a shared parent class.
- **Move and Rename Method.** A method is moved to a different class and renamed during the process. The renaming helps to align the method name with its new context or to resolve naming conflicts.
- **Move and Inline Method.** A method is first moved to a new class and then inlined at all its call sites. This effectively eliminates the method definition while relocating its logic, typically used when the method becomes redundant after reorganization.

Table 6: Overview of Java projects used in the construction of *SWE-Refactor*.

Project	# Stars	# Commits	# Pure Refactorings
checkstyle	8,462	14,606	91
pmd	4,988	29,117	125
commons-lang	2,776	8,404	59
hibernate-search	512	15,716	89
junit4	8,529	2,513	18
commons-io	1,020	5,455	93
javaparser	5,682	9,607	56
junit5	6,523	8,990	105
hibernate-orm	6,091	20,638	63
mockito	15,032	6,236	4
gson	24080	2135	21
guava	51140	7068	300
jadx	45589	2512	18
zxing	33605	3832	21
shiro	4402	4222	2
shenyu	8663	3680	22
shardingsphere-elasticsearch	8211	2473	3
hertzbeat	6665	2632	9
Total	241,970	149,836	1099

- **Extract Variable.** Extracts part of an expression or a literal value into a new local variable. This improves readability and allows reuse of the extracted value. It is often applied to clarify complex expressions or remove duplication.
- **Rename Method.** Changes the name of a method to better reflect its purpose or conform to naming conventions. This improves code readability and maintainability. All call sites must be updated accordingly.
- **Move Class.** Relocates a class from one package or module to another. This helps improve package organization and reduce module dependencies. All references and imports must be updated.
- **Rename Class.** Changes the name of a class to better reflect its role or to align with naming standards. This refactoring improves clarity and consistency. The renaming may also require updating file names and documentation.

D PROJECT SELECTION AND REFACTORING DISTRIBUTION

We selected 18 Java projects previously used in change history tracking studies (Grund et al., 2021; Jodavi & Tsantalis, 2022; Hasan et al., 2024) based on three key criteria. First, the projects span diverse application domains, offering broad coverage of real-world software development practices. Second, each project has a rich development history, with over 2,000 commits, increasing the likelihood of discovering meaningful refactoring activities. Third, we ensured that the selected projects could be compiled and tested successfully after manual resolution of build issues, making it feasible to verify the correctness of the generated refactorings.

Table 6 presents the selected Java projects along with the number of extracted pure refactorings for each project.

918
919

E PROMPT TEMPLATES FOR DIFFERENT REFACTORING TYPES

920
921

• Prompt Template for Extract Method, Inline Method Refactoring.

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

Task:
 You are an expert software engineer. You are given a code to be refactored. The objective is to refactor this code by performing given refactoring operation. This refactoring will improve code readability, maintainability, and modularity.
 Code to be Refactored:
 {code_to_refactor}
 Class content:
 {class_content}
 Refactoring Operation:
 {refactoring_operation}
 Call Relationship:
 {call_relationship}
 Instructions:
 1. Analyze the provided code and class content, apply relevant refactoring operation to the code to be refactored.
 2. If refactoring is performed, output the refactored_method_code in the following format:
 #####
 refactored_method_code
 #####

942

• Prompt Template for Move Method, Move And Rename Method Refactoring.

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Task:
 You are an expert software engineer. You are given a code to be refactored. The objective is to refactor this code by performing given refactoring operation. This refactoring will improve code readability, maintainability, and modularity.
 Code to be Refactored:
 {code_to_refactor}
 Class content:
 {class_content}
 Refactoring Operation:
 {refactoring_operation}
 Call Relationship:
 {call_relationship}
 Project Structure:
 {project_structure}
 Instructions:
 1. Analyze the provided code, class content, and project structure, apply move method refactoring to the code to be refactored, output the target file path, moved class code, and refactored method code. Need to move to an existing java file
 The moved method code should be updated to the public static method. The refactored method code should use the moved class to call the moved method.
 The target file path should be the path of the existing class where the method is moved to.
 2. If refactoring is performed, output the target file path, moved class code, and refactored method code in the following format:
 #####
 target_file_path
 #####
 moved_class_code
 #####
 refactored_method_code
 #####

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

- **Prompt Template for Move And Inline Method Refactoring.**

Task:
You are an expert software engineer. You are given a code to be refactored. The objective is to refactor this code by performing given refactoring operation. This refactoring will improve code readability, maintainability, and modularity.
Code to be Refactored: {code_to_refactor}
Class content: {class_content}
Refactoring Operation: {refactoring_operation}
Call Relationship: {call_relationship}
Project Structure: {project_structure}
Instructions:
1. Analyze the provided code, class content, and project structure, apply relevant refactoring operation to the code to be refactored, output the target file path.
2. If refactoring is performed, output the refactored class code in the following format:

target_file_path

refactored_class_code
#####

- **Prompt Template for Extract And Move Method Refactoring.**

Task:
You are an expert software engineer. You are given a code to be refactored. The objective is to refactor this code by performing given refactoring operation. This refactoring will improve code readability, maintainability, and modularity.
Code to be Refactored: {code_to_refactor}
Class content: {class_content}
Refactoring Operation: {refactoring_operation}
Call Relationship: {call_relationship}
Project Structure: {project_structure}
File Path Before Refactoring:
{file_path_before_refactoring}
Instructions:
1. Analyze the provided code, class content, and project structure, apply relevant refactoring operation to the code to be refactored, and you need move the extracted method to another existing java file, output the target file path, extracted method code, refactored method code after refactoring.
The extracted method code should be the public static method.
The refactored method code should use the moved class to call the extracted method.
The target file path should be the path of the existing class where the method is moved to.
2. If refactoring is performed, output the refactored class code in the following format:

target_file_path

extracted_method_code

refactored_method_code
#####

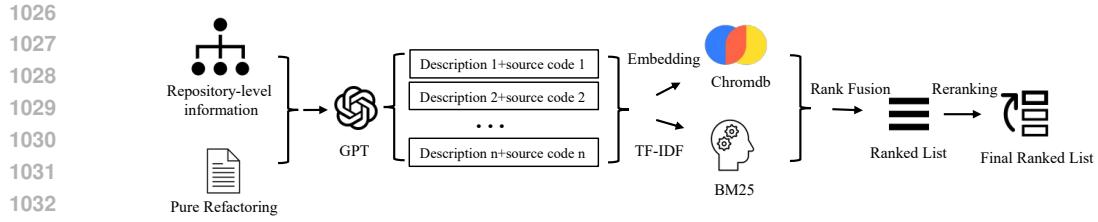


Figure 4: RAG Construction and Retrieval Pipeline.

F RAG CONSTRUCTION FOR REFACTORING RETRIEVAL

To support more accurate LLM-based code refactoring, we design a retrieval-augmented generation (RAG) pipeline. As shown in Figure 4, it consists of four main steps: preparing the inputs, generating descriptions, retrieving relevant examples using both text and embedding similarity, and merging the results to find the most suitable matches.

STEP 1: PREPARING INPUTS FROM REFACTORING COMMITS

We apply our pipeline (Section 3.3) to the *Refactoring Oracle Dataset* (Tsantalis et al., 2020), which contains over 12,000 refactorings collected from 547 commits across 188 open-source Java projects. This dataset has been widely used to evaluate refactoring detection tools and covers diverse projects and refactoring types. Using our pipeline, we extract a set of 905 pure method-level refactorings from this dataset. To save time, we do not perform compilation or test verification on these examples, as they are intended to illustrate refactoring strategies for retrieval rather than for correctness evaluation.

For each refactoring, we also collect repository-level information such as the file path, class definition, method signature, and the method’s direct callers and callees. These elements form the foundation of our retrieval database.

STEP 2: GENERATING DESCRIPTIONS OF REFACTORING EXAMPLES

For each example, we use `gpt-4o-mini-0125` to generate a short natural language description that summarizes the method’s functionality and surrounding structural information. The model takes as input the method before refactoring, its enclosing class, and the bodies of its direct callers and callees. These descriptions help guide retrieval by expressing the purpose and behavior of the method in a form that complements its code.

We use the following prompt template:

```

{Method Code}
{Caller/Callee Code}
{Class Code}
Please give a short, succinct description to situate this
code within the class.

```

Here, `{Method Code}` is the code to be refactored, `{Caller/Callee Code}` includes the full bodies of its direct callers and callees, and `{Class Code}` provides the signature and body of the class containing the method.

STEP 3: CONSTRUCTING A SEARCHABLE DATABASE OF REFACTORING EXAMPLES

To support downstream retrieval, we construct a database of refactoring examples, where each entry includes both the code and its generated description. We index the database using two complementary methods to support both lexical and semantic similarity.

For text-based indexing, we apply BM25 (Robertson et al., 2009), which ranks examples based on token overlap and structural similarity in the combined code and description.

1080 For semantic indexing, we use `all-MiniLM-L6-v2` (Reimers & Gurevych, 2019) to generate
 1081 vector embeddings for each example. This enables similarity computation based on meaning, not just
 1082 syntax.
 1083

1084 **STEP 4: MERGING AND RERANKING THE RESULTS**
 1085

1086 When a new refactoring task is issued, both text-based and embedding-based retrieval models produce
 1087 independent similarity-ranked lists based on the input query. To combine these results, we apply
 1088 the Reciprocal Rank Fusion (RRF) algorithm (Cormack et al., 2009), which merges the rankings by
 1089 assigning higher scores to examples that appear near the top of either list.

1090 To further improve ranking quality, we apply a reranking step that refines the similarity assessment
 1091 between the query and the retrieved examples. This step helps prioritize examples that are both
 1092 lexically and semantically aligned with the input.

1093 Finally, we select the top 3 ranked examples to serve as few-shot prompts, guiding the LLM to
 1094 generate accurate and structurally relevant refactored code.
 1095

1096 **G WORKFLOW FOR MULTI-AGENT**
 1097

1098 To examine how multi-agent LLM workflows perform in automated code refactoring, we design a
 1099 flexible agent-based system and evaluate it using our benchmark, *SWE-Refactor*. The workflow is
 1100 composed of two core agents: a *Developer Agent* and a *Reviewer Agent*. These agents communicate
 1101 and collaborate through iterative reasoning and feedback.
 1102

1103 **DEVELOPER AGENT: GENERATION AND REFINEMENT**
 1104

1105 The *Developer Agent* is tasked with analyzing source code and generating refactored code. It has three
 1106 main capabilities: *Analyzing*, *Programming*, and *Enhancing*. To support these tasks, the agent can
 1107 invoke a variety of utility methods, such as retrieving project structure, reading source files, obtaining
 1108 class body, or getting callers and callees. These methods are implemented through command-line
 1109 tools or APIs from static analysis frameworks. After collecting the necessary information, the agent
 1110 composes a prompt combining structural analysis and submits it to the LLMs to produce a refactored
 1111 version of the target method. The agent can also iteratively improve its output by incorporating
 1112 feedback received from the *Reviewer Agent*.
 1113

1114 **REVIEWER AGENT: EVALUATION AND FEEDBACK**
 1115

1116 The *Reviewer Agent* is responsible for assessing the quality of the generated refactoring. It performs
 1117 this assessment by applying static analysis tools, including a refactoring detector (e.g., *Refactoring-*
 1118 *Miner* (Tsantalis et al., 2020)) and a style checker (e.g., Checkstyle (Checkstyle Team, 2024)) to
 1119 detect code smells or violations of coding conventions. Based on this analysis, the *Reviewer Agent*
 1120 generates feedback indicating whether the refactoring is valid, and if not, what aspects should be
 1121 improved. This feedback is then sent back to the *Developer Agent* for further refinement.
 1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133