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Abstract

In pattern classification, efficient uncertainty reasoning plays a critical role, particu-
larly in real-time applications involving noisy data, ambiguous class boundaries, or
overlapping categories. Leveraging the advanced computational power of quantum
computing, an Adaptive Quantum Circuit for Dempster’s Rule of Combination
(AQC-DRC) is proposed to address efficient classification under uncertain environ-
ments. The AQC-DRC is developed within the framework of quantum evidence
theory (QET) and facilitates decision-making based on quantum basic probability
and plausibility levels, which is a generalized Bayesian inference method. The
AQC-DRC provides a deterministic computation of DRC, ensuring that quantum
fusion outcomes in uncertain pattern classification are exactly aligned with those of
the classical method, while simultaneously achieving exponential reductions in the
computational complexity of evidence combination and significantly improving fu-
sion efficiency. It is founded that the quantum basic probability amplitude function
in QET, as a generalized quantum probability amplitude, can be naturally utilized
to express the quantum amplitude encoding. In addition, the quantum basic prob-
ability in QET, as a generalized quantum probability, naturally forms a quantum
basic probability distribution and can be used to represent quantum measurement
outcomes for quantum basic probability level decision-making. Furthermore, the
quantum plausibility function in QET also can be naturally used to express the
quantum measurement outcomes for quantum plausibility level decision-making.
These findings enrich the physical understanding of quantum amplitude encoding
and quantum measurement outcomes, offering broad application prospects for
representing and processing uncertain knowledge in pattern classification.
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1 Introduction

Uncertainty and its dynamics is inherent in many real-world scenarios such as medical diagnosis,
intelligent transportation, financial risk assessment, fault detection, and multi-sensor data fusion [1H5]].
In the field of pattern classification, uncertainty reasoning is also essential, particularly when data are
noisy, class boundaries are ambiguous, or there is overlap between categories. Properly modeling
uncertainty in these situations contributes to enhanced robustness and reliability of classification
systems [6H9]. To address uncertainty reasoning in such complex environments, numerous theories
and methods have been proposed, including Dempster-Shafer evidence theory [10} [L1]], evidential
reasoning [12}[13]], D number theory [[14], belief rule base [15}[16], complex evidence theory [17],
random permutation sets [[18H22]], and quantum evidence theory [23 24], among others [25]]. These
approaches provide solid theoretical foundations and practical tools for modeling and managing
uncertainty in various areas, such as evolutionary games [26, [27]], network intrusion detection [28]],
classification [29], social dilemma experiments [30532], reliability evaluation [33].

As an effective approach for uncertainty reasoning, Dempster—Shafer evidence theory (DSET) [10, [11]]
offers a powerful framework for representing and managing uncertainty through the basic probability
assignment (BPA) function [34H36]. The Dempster’s rule of combination (DRC) [10], a core
component of DSET, possesses several desirable properties that make it particularly suitable for
multisource information fusion [37H40]], time series [41], decision making [42] |43]], engineering
management [44], and others [45]]. (1) Commutativity: ensures that the fusion result remains invariant
regardless of the order in which evidence is combined; (2) Associativity: provides the system with
flexible capabilities for structured and sequential fusion; and (3) Consistency: guarantees that, in
the absence of new valid information, the outcome of the evidence combination remains unchanged.
These advantages support flexible integration of multisource information, enable recursive and
incremental computation, and facilitate the scalability of reasoning systems [46]. However, the
computational complexity of DRC increases exponentially with the number of elements in the frame
of discernment [47, |48]].

The rapid development of quantum computing offers a new research perspective for addressing
the computational complexity challenges in Dempster’s rule of combination of Dempster—Shafer
evidence theory [49-54]]. Leveraging the principles of quantum parallelism and quantum entan-
glement, quantum computing provides the potential to significantly accelerate the processing of
large-scale uncertain information with extensive applications [55H59]. In particular, it opens up new
possibilities for overcoming the exponential computation complexity issues inherent in classical
evidence reasoning frameworks based on DRC, thus providing an innovative approach to efficient
information fusion and decision-making [60]].

Leveraging the advanced computational power of quantum computing, an Adaptive Quantum Circuit
for Dempster’s Rule of Combination (AQC-DRC) is proposed to address efficient classification under
uncertain environments. The AQC-DRC is developed within the framework of quantum evidence
theory (QET) and facilitates decision-making based on quantum basic probability and plausibility
levels, which is a generalized quantum Bayesian inference method. The AQC-DRC provides a
deterministic computation of DRC, ensuring that quantum fusion outcomes in uncertain pattern
classification are exactly aligned with those of the classical method, while simultaneously achieving
exponential reductions in the computational complexity of evidence combination and significantly
improving fusion efficiency.

In this study, it is founded that the quantum basic probability amplitude (QBPA) function in QET [23]
24], as a generalized quantum probability amplitude, can be naturally used to express the quantum
amplitude encoding. In addition, the quantum basic probability (QBP) in QET, as a generalized
quantum probability, naturally forms a quantum basic probability distribution (QBPD) and can
be used to represent quantum measurement outcomes for basic probability level decision-making.
Furthermore, the quantum plausibility (QP1) function in QET also can be naturally used to express
the quantum measurement outcomes for quantum plausibility level decision-making. These findings
open new perspectives and enrich the physical understanding of quantum amplitude encoding and
quantum measurement outcomes, offering broad application prospects for representing and processing
uncertain knowledge in areas such as pattern classification, recognition, and decision-making.



2 Preliminaries

2.1 DSET: Dempster—Shafer evidence theory [10, [11]

Definition 1 (Frame of discernment). Let 2 be a frame of discernment (FOD), consisting of a set of
mutually exclusive and collectively nonempty events:

Q={hi,ha,... hi,...,hn}. (1)

Let 2% be the power set of ), denoted as:

29 = {0, {h}, {h2}, ..., {hn}, {h1, B}, ..., {h1, hoy oo i}, Q) )
where () is an empty set [[61-63].
Definition 2 (Hypothesis or proposition). H; is defined as a hypothesis or proposition when H; C Q.

Definition 3 (Basic probability assignment). In FOD (2, a basic probability assignment (BPA) or
basic belief assignment (BBA) m, also called a mass function, is defined as a mapping:

m: 2% —10,1], 3)
satisfying
m(0) =0 and Z m(H;) = 1. 4
H;cQ

Definition 4 (Focal element). Let m be a BPA. YH; C Q, if m(H;) > 0, Hj is called a focal
element in DSET.

Definition 5 (Plausibility function). Let H; and H}, be two propositions such that H;, Hy, C Q. A
plausibility function Pl, mapping from 2 to [0, 1), is defined by
PI(H;)= Y m(Hg)=1-Bel(H;), H;=Q- H,, 6))
H,NH;#(
in which the belief function Bel(H;) = ZHtgHj m(Hy), measuring the strength of the evidence in
favor of a proposition H -
Definition 6 (Dempster’s rule of combination). Let my and ms be two independent BPAs in FOD ()

with propositions Hy,, H, C Q, respectively. Dempster’s rule of combination (DRC), represented in

the form my @ meo, is defined by
1
—— > mu(Home(Hy), H; #0,

my@ma(Hy) =4 17K H,nH,=H,; (6)

Oa Hj = @,

with the conflict coefficient K between m1 and mo:

K= Z my (Hy)mea(Hy). 7

HypNHp=0

2.2  QET: Quantum evidence theory [23, 24]

Definition 7 (Quantum frame of discernment). Let |®) be a quantum frame of discernment (QFOD),
consisting of a set of mutually exclusive and collectively nonempty events, each of which is expressed
as an orthonormal basis ¢4 in a Hilbert space:

D ={p1,...,bg,..,Pn} (©))
Let 2% be the power set of ®, denoted as:
2" = {0.{¢n}. {62}, {dn} {0102}, (D102 ), @), )
which can be simply represented as (() is an empty set):
2% = {0, 61, b2, .., ns P12, .., P12.gs -, P12, }- (10)



Definition 8 (Quantum hypothesis or proposition). ; is defined as a quantum hypothesis or proposi-
tion when 1; C ®.

Definition 9 (Quantum basic probability amplitude function). A quantum basic probability amplitude
(OBPA) function Quy in QFOD ®, also referred to as a quantum mass function, is defined as a
mapping:

Qu : 2% — C, (11)
satisfying
Qu(®) =0 and Qu(¥;) = p(v;)e ™), 3; C @,
> lQuwy)ff =1, (12)
P; CP

in which i = \/—1; p(1;) € [0, 1] represents the modulus of Qi (v;); 6(1;) denotes a phase term
of Qui(v;); and |Qui(;)|? = ¢*(1b;) denotes the modulus squared of Qi (1;).

Note that, QBPA is a generalized quantum probability amplitude. When the QBPA are only assigned
to singleton states, the QBPA is referred to as quantum probability amplitude.

Definition 10 (Quantum focal element). Let Qn be a QBPA. Y1p; C @, if |Qui(¢;)| or ¢(;) > 0,
; is called a quantum focal element in QET.

Definition 11 (Quantum basic probability function). The quantum basic probability (OBP) function
of Qui, also referred as a quantum basic probability distribution (QBPD), is defined as:
M:2* = [0,1], (13)
and satisfies:
M(0) =0 and M(y;) = |Qu(¥y)*, ¢; C @,

> M@y =1, (14)

P; CP
where |Qu(1;)]* = Q]M(zljj)@]M(wj) = p2(¢;) = x? + yj2-, in which @]M(U)J) is the complex
conjugate of Qui(v;), e.g., Qum(¥;) = x; — y;4; and M(vp;) (¢; C ) is called quantum basic
probability (OBP), which represents the observed degree of belief or support to ;.

Note that, QBP is a generalized quantum probability. When the quantum basic probability are only
assigned to singleton states, the QBP is referred to as quantum probability.

Definition 12 (Quantum plausibility function). Let Qu be a QBPA with proposition 1p; C ®. A
quantum plausibility (QPl) function in QET, mapping from 2% to [0, 1], is defined by:

2

OPI(Y;) = Y |Qu(tp)|, ¢; €. (15)
"l}pmw]‘#@

According to Eq. (I4), Eq. (I3) can also be represented as:
QPUY;) = D P = Y M), ¥ CO (16)

wpmwj 7£® wpmwj7£®

Therefore, when M = m, Eq. (16) becomes:

QPI(;) = Y m(y), ¢ €9, (17)

wpmwj7£®

which is consistent with the classical Pl in DSET.

3 AQC-DRC: Adaptive Quantum Circuit for Dempster’s Rule of
Combination

The AQC-DRC consists of the following three components: 1) quantum amplitude encoding for
BPA, 2) construction of the adaptive quantum circuit for DRC, and 3) measurement in the adaptive
quantum circuit for decision-making. The flowchart is displayed in Fig.
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Figure 1: The flowchart of the adaptive quantum circuit for Dempster’s rule of combination.

3.1 Quantum amplitude encoding for BPA

In this section, the QBPA in QET is expressed for quantum amplitude encoding mechanism. In this
context, a BPA is encoded as a superposition over an n-qubit quantum state.

Definition 13 (QBPA-based quantum amplitude encoding mechanism). Let Qn be a QBPA on the
QFOD ® = {¢1,...,¢;,...,0n} with quantum proposition »; C ®. The QBPA-based quantum
amplitude encoding mechanism, also referred to as the quantum superposition state of the QBPA, is
defined as:

Q) = > Qu)ls) = Y @(w)e ) |yy),

y;co 2 wj2g<1> (18)
D Q)P =" (wy) =1,
P; CP
where .
;) = @ 1656) = [65m) -+ [053) -+ [352)1051) = [Gjm -+ Gji -+ j2051), (19)
=1
and
1, if¢i €y,
8 = : 20
When 0(1;) = 0, the QBPA expression for quantum amplitude encoding can be represented as:
Qu) = Y e@y)ley), and > @) = 1. @21)
w;Co $;Ce

Definition 14 (Quantum amplitude encoding of BPA). Let mj, be a BPA on the FOD ® =
{b1,...,bi,...,0n} with proposition 1»; C ®. Considering QBPA-based quantum amplitude
encoding mechanism, a BPA my, is encoded into the amplitudes of an n-qubit state as:

Q) = Us(ma)0)*" = >~ Qui, (¥5)[5) = D on(why)e ¥ apy), (22)

¥;Ce ¥;Ce



satisfying

on ()€ W) = /(7)€ = V/mn (),  and Z ‘\/mh(d)j) g 1,

P; CP

(23)

where |);) is defined in Definition and Uy, denotes a state preparation oracle or operator.

Each BPA m; is encoded as a superposition over an n-qubit quantum state with regards
to the QBPA-based quantum amplitude encoding mechanism. Therefore, a collection of
k BPAs {my,...,mp,...,mg} is encoded to a set of k distinct n-qubit quantum states

{‘Q]M1>a Ty |Q]Mh>7 EER |QMk>} with ‘Q]Mh> = UE(mh)|O>®n

3.2 Construction of an adaptive quantum circuit for DRC

The encoded quantum states {|Qpr,),-- -, |Qn,)s---,|®Qn, )} corresponding to the & BPAs
{mi,...,mp, ..., my} will be combined by a series of specific quantum operators, which is catego-
rized as one types of U¢ designed through Toffoli gates.

To be specific, two encoded quantum states |Qn, ) and |Qny, ) are considered corresponding to the
BPAs m; and meo, the inputs of Uc are |Qn, ), |Qmu, ), and |0)©™-qubit. After applying Uc based on
the Toffoli gate, the output is mapped to |0)®™ qubits, which serve as auxiliary qubits for storing the
processed information. Subsequently, a partial trace over the subsystem {Qni,, Qni, } is performed
using Tr(q,, qu,) to obtain the reduced density matrix pq,,,, , which characterizes the state of the
subsystem pq,,

Py, = Treau,am,) (UC|0>®"<0|®" ® | Qi ) (Qni | ® [Quy ) (Quy |Ué)

= Tr(sz Qniy) (UC|O>®n <0|®n ® pou, & PQw, Ué)

=3 X I |er@ae™ @[ wowd 24)
P CP Nepj=1p 1<h<2
=TI [Vmn] wow

P+ C® Npj=1hy 1<h<2

where |¢;) is defined in Definition It is concluded that for arbitrary two encoded quantum states
corresponding to the BPAs, a U operator of the Toffoli gate is implemented.

Hence, h (2 < h < k) encoded quantum states {|Qny, ), - - -, |Qn, ) } are considered corresponding
to the BPAs {my, ..., mp}, h — 1 U operations based on Toffoli gates are recursively implemented
in accordance with the DRC to fuse i BPAs. Following the recursive application of the (h — 1)-th Ug
Toffoli gate, we perform a partial trace over the subsystem {Qu,,, - - . , Qni, } using Tr(th...le)
to obtain the reduced density matrix pq,,, . which characterizes the state of the corresponding
subsystem: -

_ Qn Qn T
P, | = Tr(Q]Mthm(h 1.. 1) (UC|O> (0] ® P, ® pQ]M(h,—l)...l UC)

=> > I “Ph 'leh(wj)2|¢t><¢t\

PSP Npj=1p¢ 1<h<k (25)

=3 > II |[Vmal)| o,

PSP Npj=1p¢ 1<h<k

where |1);) is defined in Deﬁnition When i = k, it indicates all the encoded quantum states
corresponding to the BPAs are fused through the adaptive quantum circuit of DRC by k — 1 Ug
Toffoli gates. A total of |0)®(2*~1)" qubits are required to complete the DRC, where |0)®*" qubits
are used for encoding the quantum states of the BPAs, and |0)®(*~1)" qubits are allocated as auxiliary
qubits for storing the processed information.

3.3 Measurement in the adaptive quantum circuit for decision-making

We define two types of measurement operators in terms of the quantum basic probability level and
the plausibility level decision-making for different application requirements.



3.3.1 Quantum measurement for quantum basic probability level decision-making

We first define a measurement operator for quantum basic probability level decision-making. After
that, we define a QBP expression for quantum measurement outcomes. On this basis, we can measure
the results from the adaptive quantum circuit of DRC.

Definition 15 (Measurement operator for quantum basic probability level decision-making). The
measurement operator U ¥ QBP defined for the quantum basic probability level decision-making as:

URPY = { Mgy le @}, My, = [ (W, (26)

where |1)) is defined in Definition[I13]
Definition 16 (QBP expression for quantum measurement outcomes). Let PQu, , be a density

operator with regards to the trace of the output of Ug. Let U/C\Q/[BP = { My, = [Ue)(We|[the € P}
be a set of measurement operators. The quantum basic probability (QBP) expression for quantum
measurement outcomes is defined as:

2
19h(¢j)
Soh
Tr (MTWM\W .pQIMk.,,l) mwjzwt 1<h<k‘
Ml = > T (M, M, - ): PO entwpemon @D
® [wo)? Hw) * PQuy, wch)m% wv1<h<k

ﬁi%&m Yoy 20
which forms a quantum basic probability distribution (QBPD) M.

After implementing the measurement operator Uj%lBP, for ¢y C ®,7y # (), because

, 2
|on (1) en(0) ]2 = ‘« /mh(wj)‘ and m(3;) = M(1;), the combined BPA can be generated:

nw = 1<h<k‘ h wj
m(¥e) = M(¥y) = - (28)
)y Naenlx

)y CP mw] e 1<h<k
Py #0

For ); = (), we have

K ="Tr (M\TQUMW‘) 'meku_l) = Z H ’@h( Zeh(wj

= > 11 [vm@)|

- (29)

Ny, =0 1<h<k Ny =0 1<h<k

Then, for ¢; C ®,1); # 0, we also have
S IV

oo GV

Tr (MltwwMWH 'f"QIMk.,.l) Ny =t 1<h<k m
m(r) = n =— T— K . (30)

L="Tr (MW))M\@) .pQMk_..l)

When implementing AQC-DRC based on the quantum measurement for quantum basic probability
level decision-making, denoted as AQC-DRCqgp, for ||t¢/;)| = 1, a decision can be made as follow:

w= argmax{M(s)} = argmax{m(t)}, and D = . 31)

3.3.2 Quantum measurement for quantum plausibility level decision-making

Starting from the density matrix pq,, ., we perform a partial trace over the auxiliary (n—-1)
qubits {gn . .. Gui1Guw—1---q1} using Treg. g qu_1...q1)- This yields the reduced density matrix



p&M , which describes the state associated with the w-th qubit:
h...1

w 10y (Y
Poy, , = Tr(gn...quwirqw1-.a1) (pQN;L...1) = Z Z H ‘@h(¢j)e n(%5)

bw €Yt Npj=1pt 1<h<k

S+

(1_ S X I fentwe 2) 10)(0]
Pw €Yt NYj=1py 1<h<k
=> > 1II ‘vmh(%)

bw €Yt NP j=1pt 1<h<k

<1_ > Y I ]W) 001
Sw €Yt Npj=1pt 1<h<k

Definition 17 (Measurement operator for quantum plausibility level decision-making). The measure-
ment operator U/%Pl is defined for quantum plausibility level decision-making as:
URT = {Muylu € {0,1}}, My = |u)(ul. (33)
Definition 18 (QPI expression for quantum measurement outcomes). Let pﬁmk be the density
w1
operator of the w-th qubit in terms of the output of UC. Let UJ?APZ = {Myy = [u){ul|lu € {0,1}}

and U/%[BP = {Myy = [Ye)(We|lthe C @} be a set of measurement operators. The quantum
plausibility (QPl) expression for quantum measurement outcomes is defined as:

) (32)
111+

. 2
6 Y e0n(¥5)
QPI(g) = Tr (M\TDM\U -leMk__'l) B %26:% ”%Z::wt 1§1;[§k on(1;) »
1= T (Mg, Moy - pa, ) 1-K

. . . 2 2
After implementing the measurement operator U, ', because |¢p, (1;)e’ (V)| = ‘\/ mp(¢Y;)

and P1(1,,) = QP1(¢,,) for each element ¢, (1 < w < n) in FOD, the P1 for ¢,, can be generated:
2
[T |v/rmn()

buwEe M=ty 1<h<k
1-K

(35)

Pl(¢w) = QP1(¢w) =

When implementing AQC-DRC based on the quantum plausibility level decision-making, denoted as
AQC-DRCpj, a decision can be made as follow:

w = arg mgx{QPl(qZ)w)} = arg mgx{Pl(gi)w)}, and D = ¢y. (36)

Therefore, based on the definitions and rigorous mathematical derivations in Sections [3.T{3.3] we can
observe that the proposed AQC-DRCqgp yields results consistent with DRC at the quantum basic
probability level, while AQC-DRCqp; aligns with DRC+QPI at the quantum plausibility level. These
results demonstrate deterministic computation and guarantee that no information is lost.

4 Application in pattern classification

In the experimental setup, three distinct datasets — namely Iris (Ir), Abalone (Ab), and Knowledge
(Kn) — are chosen from the UCI repository (https://archive.ics.uci.edu/). For the Iris dataset,
all attributes and classes are selected. Whereas, due to the limitation of available qubits, for the
Abalone dataset, we randomly select five attributes (Length, Diameter, Height, Whole_weight,
and Viscera_weight) and two classes (Rings = 5 and Rings = 15); for the Knowledge dataset, all
classes are selected, but three attributes (STR, LPR, and PEG) are randomly select. The details
of each dataset, including the selected attributes and classes, are summarized in Table E} The
approach from [64] is adopted to generate the BPA for each attribute. The individual BPAs of
each dataset are subsequently aggregated to perform classification using different methods. To
evaluate the effectiveness of the proposed methods, we compare the classical DRC [[10], DRC+QPI,



QC-DRCqgp [60], QC-DRCqpp+QPI (the QC-DRCqpp is used firstly to obtain the QBP, and then
to combine the QBP into the QPI using the classical process), and the proposed AQC-DRCggp,
AQC-DRCqpp+QPI (the AQC-DRCqpp is used firstly to obtain the QBP, and then to combine the
QBP into the QPI using the classical process) and AQC-DRCqp; based on the average accuracy
(Acc) obtained from rk-fold cross-validation (x = 5). To analyze the robustness of different methods,
we further evaluate the average accuracy performance of each method under varying numbers of
measurement shots (s).

Table 1: Dataset information Table 2: Computational complexity analysis
Ir Ab Kn Method Complexity Qubits
# Class 3 2 4 DRC O(kN2°™) /
# Attribute 4 5 3 DRC + QP1 O(kN22™) /
#Instance 150 218 403 QC-DRCpp O(kn+ kN) 3n
QC-DRCqpp + QP1 O(kn + kN 4+ nN) 3n
AQC-DRCp O(kn+ N) (2k — 1)n
AQC-DRCqpp + QPI1 O(kn +nN) (26 —1)n
AQC-DRCp O(kn?) (2k — )n
DRC —— AQC-DRCqpp+QPI DRC —— AQC-DRCpp+QPI DRC —— AQC-DRCqpp+QPI
DRC+QPI —— AQC-DRCqp DRC+QPI —— AQC-DRCqp DRC+QPL —— AQC-DRCqp;
QC-DRCqpp Ace QC-DRCqup Acc QC-DRCqpp Acc
—— QC-DRCqpp+QPl  ---- Dif —— QC-DRCqpptQPl  ---- Dif —— QC-DRCqpp+QPl  ---- Dif
—— AQC-DRCgpp —— AQC-DRCggp —— AQC-DRCgpp
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Figure 2: Comparison of the classical and quantum methods in terms of Acc and Dif metrics.

The experimental results are displayed in Fig.[2|and Tables It is observed that as the number
of shots s increases from 2° to 26, 27, 28,27 210 211 912 "9T3 "and finally 2'4, for Iris dataset,
the average accuracies of QC-DRCqgp change as follows: 0.9, 0.9333, 0.9467, 0.9333, 0.9533,
0.9333, 0.9467, 0.9333, 0.9533, and 0.9467; the average accuracies of QC-DRCqgp+QPI change
as follows: 0.9333, 0.9067, 0.9467, 0.95, 0.9467, 0.94, 0.9467, 0.94, 0.9333, and 0.9533; the
average accuracies of AQC-DRCqgp change as follows: 0.9067, 0.9133, 0.9333, 0.9467, 0.94, 0.9467,
0.94, 0.9333, 0.9467, and 0.9533; the average accuracies of AQC-DRCqgp+QPI change as follows:
0.92, 0.94, 0.9533, 0.9467, 0.9467, 0.94, 0.94, 0.96, 0.9467, and 0.94; the average accuracies of
AQC-DRCp change as follows: 0.84, 0.8733, 0.9533, 0.9533, 0.92, 0.9333, 0.94, 0.94, 0.9467,
and 0.9467. While the classical DRC and DRC+QPI] maintain an average accuracy of 0.9467, the
accuracies of QC-DRCqpp, QC-DRCqgp+QPlI, the proposed AQC-DRCqpp, AQC-DRCqpp+QPI,
and AQC-DRCqp gradually approach those of the classical models. Similarly, on the Abalone
dataset, classical DRC and DRC+QPI achieve accuracies of 0.9823; on the Knowledge dataset, they
reach 0.8539 and 0.8591, respectively. The corresponding quantum methods, including QC-DRCqgp,
QC-DRCqgp+QPl, AQC-DRCqgp+QPI, and AQC-DRCqp, also demonstrate a consistent trend of
converging toward the classical models’ performance.

On the other hand, we define an evaluation metric, Dif, to quantify the difference between the
classification results of the classical DRC, and those produced by the QC-DRCqpp, QC-DRCqgp+QPI,
the proposed AQC-DRCqgp, AQC-DRCqpp+QPI, and AQC-DRCqp;. The metric Dif; under different
numbers of shots s for k-fold cross-validation is defined as:

Dif (Method) 1 25: IMc” (Method) U Mc"(DRC) — Mc” (Method) N Mc” (DRC)|

DRC 5 |Tc"| ’

k=1

(37)



where Mc? (Method) denotes the misclassified instances by other methods, including QC-DRCqgp,
QC-DRCqgp+QPI, the proposed AQC-DRCqgp, AQC-DRCqpp+QPI, and AQC-DRCqpi; Mc”(DRC)
represents the misclassified instances by the classical DRC; Tc” denotes the test instances in the
r~th fold of cross-validation; and | - | represents the number of instances. StD denotes the standard
deviation of Dif,; with respect to x-fold cross-validation. The experimental results are displayed in
Fig. and Tables It is observed that as the number of shots s increases from 2° to 214, the
Dif values of the QC-DRCQBP, QC-DRCQBP+QP1, the pI‘OpOSGd AQC—DRCQBP, AQC—DRCQBp-l-QPl,
and AQC-DRCp relative to the classical DRC gradually converge to zero in terms of three distinct
datasets.

S Computational complexity analysis

Assume that there are n elements in the frame of discernment (FOD) and k pieces of evidence, with
a total of NV focal elements. As shown in Table 2] the time complexities of the classical DRC and
DRC+QPI are O(kN22"). In contrast, with sufficient auxiliary qubits, the time complexities of
QC-DRCQBP, QC-DRCQBP+QPL AQC-DRCQBP, AQC-DRCQBP+QP1 and AQC-DRCQP], in terms
of both the circuit depth and the normalization process, are O(kn + kN), O(kn + kN + nN),
O(kn+ N), O(kn+nN) and O(kn?), respectively. Comparative analysis reveals that QC-DRCqgp,
QC-DRCqgp+QPI, AQC-DRCqpp, AQC-DRCqpp+QPI and AQC-DRCqp; all achieve exponential
reductions in time complexity relative to the classical DRC and DRC+QPI. Notably, AQC-DRCqgp
improves upon QC-DRCqgp by reducing the time complexity by (k — 1) N; AQC-DRCqpp+QPI
improves upon QC-DRCqgp+QPI by reducing the time complexity by kN. Furthermore, since 1 <
N < 2" when N = 2", AQC-DRCqp; achieves an exponential improvement over QC-DRCqgp, QC-
DRCqpp+QPl, AQC-DRCqgp and AQC-DRCqpp+QPI. Regarding space complexity, QC-DRCqgp,
QC-DRCqpp+QPI require 3n qubits. In comparison, AQC-DRCqgp, AQC-DRCqgp+QPI and AQC-
DRCqp require (2k — 1)n qubits, growing linearly with both the number of elements 7 in the FOD
and the number of evidence sources k. The results indicate that the proposed AQC-DRCqgp, AQC-
DRCqpp+QPI and AQC-DRCqp; exhibit superior time complexity compared to existing approaches.
Specifically, AQC-DRCqp; demonstrates optimal performance as N tends toward 2™. A detailed
analysis can be found in Appendix [AT]

6 Limitation and conclusion

In this paper, to address efficient classification under uncertain environments, we propose an adaptive
quantum circuit for Dempster’s rule of combination (AQC-DRC) to support quantum basic probability
and plausibility level decision-making within the framework of quantum evidence theory (QET). The
AQC-DRC, as a generalized quantum Bayesian inference method, enables deterministic computation
of DRC, ensuring that quantum fusion outcomes in uncertain pattern classification are fully consistent
with those of the classical method. Furthermore, it achieves an exponential reduction in computational
complexity, positioning it as a promising approach for real-time quantum multisource information
fusion. The architecture of the proposed AQC-DRC is conceptually straightforward and highly scal-
able, which facilitates its practical implementation. It is observed that the quantum basic probability
amplitude function in QET can naturally express the quantum amplitude encoding. The quantum
basic probability in QET, forming the quantum basic probability distribution, can directly express
quantum measurement outcomes for basic probability level decision-making, while the quantum
plausibility function in QET can also naturally represent the quantum measurement outcomes for
plausibility-level decision-making. These insights not only broaden the understanding of QET, but
also provide a more intuitive physical interpretation of quantum amplitude encoding and quantum
measurement outcomes. However, this study revealed that the current version of AQC-DRC is unable
to process complex-valued input data, thereby constraining its applicability. Future research will
focus on extending AQC-DRC’s capabilities through further developments in quantum computing
techniques.
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Appendix

Al Computational complexity analysis

All algorithms in Table 2] can be divided into two parts: the combination process, which involves
obtaining the complete combined evidence or QPI; and the decision-making process, which involves
using the obtained evidence or QPI to reach a decision. Assume that there are n elements in the frame
of discernment (FOD) and & pieces of evidence, with a total of [V focal elements.

1) DRC: When combining two pieces of evidence, the computational complexity of computing
any of the focal elements is O(2%"). Since there are N focal elements in total, the computational
complexity of getting the complete combination result is O(N22"). The total number of combinations
is k — 1, so the total complexity of combination process is O(kN22"). After the combination
process, a decision is made from n elements in the FOD. The computational complexity of the
decision-making process is O(n). Thus, the total computational complexity of DRC is O(kN22n).
(O(kN22" +n) = O(kN22"))

2) DRC+QPIl: The computational complexity required to compute the QPl of a focal element
from QBP in the classical process is O(NV). In the experimental process we made the decision
to use the QPI of elements in FOD, so the computational complexity to compute QPl is O(nN).
Since the computational complexity of the DRC is O(kN22"), the total computational complexity of
combination process is O(kN22"). (O(kN22"+nN) = O(kN22"),asnN < kN22" whenn > 2).
The computational complexity of decision-making process is O(n). Thus, the total computational
complexity of DRC+QPl is O(kN22™).

3) QC-DRCqgp: The computational complexity of the quantum line part we use the depth of the
quantum circuit to denote. The QC-DRCqpp can only combine two pieces of evidence at a time.
For the combination of two evidences the number of Toffoli gates used is n, so the computational
complexity of the quantum circuit part is O(n). There are N measurements obtained from quantum
circuit, each of which requires a normalization process of complexity O(1), so the computational
complexity of the normalization part is O(N). The computational complexity of two evidence
combinations is O(n + N). In total, k — 1 combinations have to be performed, so the computational
complexity of combination process is O(kn + kN). The computational complexity of decision-
making process is O(n). Thus, the total computational complexity of QC-DRCqgp is O(kn + kN).

4) QC-DRCqpp+QPlL: The computational complexity of QC-DRCqgp is O(kn + kN), and the
computational complexity of the classical process of generating QP1 from QBP is O(nN). Therefore,
the total computational complexity of combination process is O(kn + kN +nN). The computational
complexity of decision-making process is O(n). Thus, the total computational complexity of QC-
DRCQBP+QP1 is O(k’fl + kN + TLN)

5) AQC-DRCqgp: The AQC-DRCqpp can combine more than one piece of evidence at a time and
the number required CNOT gate is (k — 1)n. Thus, the complexity of the quantum circuit is O(kn).
The complexity of the normalization part is consistent with QC-DRCqgp and is O(N). Thus the
total computational complexity of combination process is O(kn -+ N). The computational complexity
of decision-making process is O(n). Thus, the total computational complexity of AQC-DRCqgp is
O(kn+N).

6) AQC-DRCqpp+QPI: The computational complexity of AQC-DRCqgp is O(kn + N), and the
computational complexity of the classical process of generating QPI from QBP is O(nN). Therefore,
the total computational complexity of combination process is O(kn +nN). (O(kn+ N +nN) =
O(kn+ (n+ 1)N) = O(kn + nN)). The computational complexity of decision-making process is
O(n). Thus, the total computational complexity of AQC-DRCqpp+QPlis O(kn + nN).

7) AQC-DRCqpi: The algorithm involves measuring n qubits individually, so a total of n quantum
circuits are needed to complete it. The computational complexity of each of these quantum circuits
is consistent with that of the quantum circuit of AQC-DRCqgp, which is O(kn), and thus its total
computational complexity of all quantum circuits is O(kn?). The computational complexity of
decision-making process is O(n). Thus, the total computational complexity of AQC-DRCqp; is
O(kn?).
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A2 Experimental environment

The classical DRC and DRC+QPI methods were executed using Python 3.8.20 on a Windows 10
system equipped with a 13th Gen Intel® Core™ i9-13900K CPU (3.00 GHz), 128 GB RAM,
and an NVIDIA GeForce RTX 4090 GPU. The quantum methods, including QC-DRCQBP, QC-
DRCQBP+QP], the proposed AQC-DRCQBP, AQC-DRCQBP+QPI, and AQC-DRCqp;, were mainly
executed on the TonQ quantum simulator (https://ionq.com/).

A3 Experimental results

Table Al: Comparison of classification accuracies under x-th fold of cross-validation for Iris dataset
in terms of classical/quantum basic probability level decision-making.

r-th fold of cross-validation

Method Shots Acc
1 2 3 4 5

DRC - 1.0000 0.9000 0.9000 0.9667 0.9667 0.9467

QC-DRCqgp 32 0.9000 0.9333 0.8667 0.9000 0.9000 0.9000

64 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333
128 1.0000 0.9333 0.9000 0.9333 0.9667 0.9467
256 1.0000 0.9000 0.9333 0.9000 0.9333 0.9333
512 1.0000 0.8667 0.9333 0.9667 1.0000 0.9533

1024 1.0000 0.9000 0.9000 0.9333 0.9333 0.9333
2048 1.0000 0.9333 0.8667 0.9667 0.9667 0.9467
4096 1.0000 0.8667 0.9000 0.9333 0.9667 0.9333
8192 1.0000 0.9000 0.9000 0.9667 1.0000 0.9533
16384 1.0000 0.9000 0.9000 0.9667 0.9667 0.9467

AQC-DRCqgp 32 0.9000 0.8667 0.9000 0.9000 0.9667 0.9067
64 0.9000 0.9333 0.8667 0.9000 0.9667 0.9133

128 0.9667 0.9000 0.9333 0.9333 0.9333 0.9333

256 1.0000 0.9000 0.9000 0.9667 0.9667 0.9467

512 1.0000 0.9000 0.9000 0.9333 0.9667 0.9400

1024 1.0000 0.9000 0.9333 0.9333 0.9667 0.9467

2048 1.0000 0.8667 0.9333 0.9667 0.9333 0.9400

4096 1.0000 0.8667 0.9000 0.9667 0.9333 0.9333

8192 1.0000 0.8667 0.9000 0.9667 1.0000 0.9467

16384 1.0000 0.8667 0.9333 0.9667 1.0000 0.9533
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Table A2: Comparison of classification accuracies under «-th fold of cross-validation for Iris dataset
in terms of classical/quantum plausibility level decision-making.

~-~th fold of cross-validation

Method Shots Acc
1 2 3 4 5

DRC+QP1 - 1.0000 0.9000 0.9000 0.9667 0.9667 0.9467

QC-DRCqgp+QP1 32 0.9000 0.7333 0.8667 0.8000 0.9000 0.8400

64 0.8667 0.8000 0.9000 0.8667 0.9333 0.8733
128 1.0000 0.9333 0.9333 0.9667 0.9333 0.9533
256 1.0000 0.9333 0.9000 0.9667 0.9667 0.9533
512 1.0000 0.8667 0.8667 0.9333 0.9333 0.9200

1024 1.0000 0.9000 0.9000 0.9333 0.9333 0.9333
2048 1.0000 0.8667 0.9000 0.9333 1.0000 0.9400
4096 1.0000 0.8667 0.9000 0.9667 0.9667 0.9400
8192 1.0000 0.9000 0.8667 0.9667 1.0000 0.9467
16384 1.0000 0.9000 0.9000 0.9667 0.9667 0.9467

AQC-DRCqgp+QPI1 32 0.9667 0.9667 0.9000 0.9000 0.9333 0.9333
64 0.9000 0.8333 0.9000 0.9333 0.9667 0.9067

128 1.0000 0.9667 0.8667 0.9000 1.0000 0.9467

256 1.0000 0.9000 0.9333 0.9600 0.9667 0.9500

512 1.0000 0.9000 0.9000 0.9667 0.9667 0.9467

1024 1.0000 0.8667 0.9000 0.9667 0.9667 0.9400

2048 1.0000 0.9000 0.9000 0.9667 0.9667 0.9467

4096 1.0000 0.8667 0.8667 0.9667 1.0000 0.9400

8192 1.0000 0.8667 0.8667 0.9667 0.9667 0.9333

16384 1.0000 0.9000 0.9333 0.9667 0.9667 0.9533

AQC-DRCqp; 32 0.9667 0.9333 0.8667 0.9000 0.9333 0.9200
64 1.0000 0.9000 0.9000 0.9667 0.9333 0.9400

128 1.0000 0.9333 0.9000 0.9667 0.9667 0.9533

256 1.0000 0.9333 0.9000 0.9333 0.9667 0.9467

512 1.0000 0.9333 0.9000 0.9333 0.9667 0.9467

1024 1.0000 0.8667 0.9000 0.9667 0.9667 0.9400

2048 1.0000 0.9000 0.8667 0.9667 0.9667 0.9400

4096 1.0000 0.9333 0.9000 0.9667 1.0000 0.9600

8192 1.0000 0.8667 0.9333 0.9667 0.9667 0.9467

16384 1.0000 0.8667 0.9000 0.9667 0.9667 0.9400
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Table A3: Comparison of classification accuracies under «-th fold of cross-validation for Abalone
dataset in terms of classical/quantum basic probability level decision-making.

-~th fold of cross-validation

Method Shots Acc
1 2 3 4 5

DRC - 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

QC-DRCqgp 32 0.9535 1.0000 0.9535 0.9767 0.8261 0.9420

64 0.9535 0.9767 0.9302 1.0000 0.8913 0.9504

128 1.0000 1.0000 0.9535 0.9767 0.8696 0.9600

256 1.0000 0.9767 0.9535 1.0000 0.9130 0.9687

512 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

1024 1.0000 1.0000 0.9767 1.0000 0.9565 0.9867

2048 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

4096 1.0000 1.0000 1.0000 1.0000 0.9348 0.9870

8192 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

16384 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

AQC-DRCqgp 32 1.0000 1.0000 0.9767 1.0000 0.9565 0.9867

64 1.0000 0.9767 0.9767 1.0000 0.9348 0.9777

128 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

256 1.0000 1.0000 0.9767 1.0000 0.9565 0.9867

512 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

1024 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

2048 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

4096 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

8192 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

16384 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823
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Table A4: Comparison of classification accuracies under «-th fold of cross-validation for Abalone
dataset in terms of classical/quantum plausibility level decision-making.

~-~th fold of cross-validation

Method Shots Acc
1 2 3 4 5

DRC+QP1 - 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

QC-DRCqgp+QPI1 32 1.0000 0.9767 1.0000 1.0000 0.9348 0.9823

64 1.0000 1.0000 1.0000 1.0000 0.9348 0.9870
128 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823
256 1.0000 1.0000 0.9767 1.0000 0.9565 0.9867
512 1.0000 1.0000 0.9767 1.0000 0.9565 0.9867

1024 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823
2048 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823
4096 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823
8192 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823
16384 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

AQC-DRCqgp+QPI1 32 0.9070 1.0000 0.9535 0.9070 0.7609 0.9057
64 0.9535 0.9767 0.9535 1.0000 0.8478 0.9463

128 1.0000 0.9767 0.9535 0.9767 0.8913 0.9597

256 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

512 1.0000 0.9767 0.9767 1.0000 0.9348 0.9777

1024 1.0000 1.0000 1.0000 1.0000 0.9565 0.9913

2048 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

4096 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

8192 1.0000 1.0000 0.9767 1.0000 0.9565 0.9867

16384 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

AQC-DRCqp; 32 0.9767 0.9767 0.9302 0.9070 0.8261 0.9234
64 1.0000 0.9767 0.9767 1.0000 0.8261 0.9559

128 1.0000 0.9767 0.9767 1.0000 0.9565 0.9820

256 1.0000 0.9767 0.9767 1.0000 0.9348 0.9777

512 1.0000 0.9767 0.9767 1.0000 0.9348 0.9777

1024 1.0000 0.9767 1.0000 1.0000 0.9348 0.9823

2048 1.0000 0.9767 0.9767 1.0000 0.9348 0.9777

4096 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

8192 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823

16384 1.0000 1.0000 0.9767 1.0000 0.9348 0.9823
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Table AS: Comparison of classification accuracies under x-th fold of cross-validation for Knowledge
dataset in terms of classical/quantum basic probability level decision-making.

-~th fold of cross-validation

Method Shots Acc
1 2 3 4 5

DRC - 0.8667 0.8312 0.8267 0.8592 0.8861 0.8539

QC-DRCqgp 32 0.6267 0.5455 0.6133 0.5775 0.6582 0.6042

64 0.8000 0.6883 0.6667 0.7324 0.6456 0.7066
128 0.7467 0.8052 0.6800 0.7887 0.7595 0.7560
256 0.8533 0.7792 0.7733 0.8028 0.8481 0.8114
512 0.8667 0.7922 0.8400 0.8169 0.8354 0.8302

1024 0.8667 0.7922 0.8667 0.8451 0.8734 0.8488
2048 0.8667 0.8052 0.8400 0.8451 0.8861 0.8486
4096 0.8667 0.8312 0.8000 0.8592 0.8987 0.8511
8192 0.8800 0.8182 0.8400 0.8873 0.8861 0.8623
16384 0.8667 0.8442 0.8267 0.8310 0.8861 0.8509

AQC-DRCqgp 32 0.6400 0.5844 0.6800 0.5634 0.6329 0.6201
64 0.6800 0.6883 0.6000 0.7183 0.6962 0.6766

128 0.6933 0.7532 0.7333 0.7183 0.7468 0.7290

256 0.7467 0.7532 0.7600 0.7606 0.8861 0.7813

512 0.8667 0.8052 0.8133 0.8169 0.8101 0.8224

1024 0.8667 0.7532 0.7733 0.8592 0.8987 0.8302

2048 0.8800 0.8182 0.8400 0.8169 0.8734 0.8457

4096 0.8800 0.8182 0.8267 0.8592 0.8734 0.8515

8192 0.8667 0.8052 0.8267 0.8592 0.8734 0.8462

16384 0.8800 0.8312 0.8267 0.8451 0.8861 0.8538
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Table A6: Comparison of classification accuracies under x-th fold of cross-validation for Knowledge
dataset in terms of classical/quantum plausibility level decision-making.

~-~th fold of cross-validation

Method Shots Acc
1 2 3 4 5

DRC+QP1 - 0.8667 0.8571 0.8267 0.8592 0.8861 0.8591

QC-DRCqgp+QP1 32 0.6267 0.5844 0.6267 0.6479 0.7089 0.6389

64 0.7333 0.7013 0.6133 0.6901 0.7342 0.6945
128 0.7600 0.7403 0.7067 0.7887 0.7215 0.7434
256 0.7467 0.7403 0.7867 0.8028 0.8481 0.7849
512 0.8267 0.8442 0.8133 0.8592 0.8354 0.8358

1024 0.8533 0.8442 0.8400 0.8451 0.8481 0.8461
2048 0.8667 0.8182 0.8400 0.8451 0.8734 0.8487
4096 0.8667 0.8442 0.8533 0.8732 0.8861 0.8647
8192 0.8533 0.8312 0.8533 0.8732 0.8861 0.8594
16384 0.8667 0.8571 0.8267 0.8592 0.8861 0.8591

AQC-DRCqgp+QPI1 32 0.6000 0.6494 0.5600 0.5915 0.6203 0.6042
64 0.7200 0.7403 0.6533 0.7183 0.7468 0.7157

128 0.7467 0.7792 0.7333 0.8310 0.8354 0.7851

256 0.8133 0.7532 0.7733 0.7746 0.8481 0.7925

512 0.8267 0.8182 0.8400 0.8169 0.8734 0.8350

1024 0.8667 0.8442 0.8400 0.8873 0.8861 0.8648

2048 0.8400 0.8571 0.8400 0.8592 0.8861 0.8565

4096 0.8533 0.8442 0.8267 0.8451 0.8861 0.8511

8192 0.8667 0.8442 0.8400 0.8732 0.8861 0.8620

16384 0.8667 0.8571 0.8267 0.8732 0.8861 0.8620

AQC-DRCqp; 32 0.6133 0.6753 0.6533 0.7042 0.6203 0.6533
64 0.7067 0.7403 0.6933 0.7324 0.7595 0.7264

128 0.8133 0.7403 0.8000 0.7324 0.7722 0.7716

256 0.8133 0.7662 0.8133 0.8169 0.8734 0.8166

512 0.8667 0.7662 0.8000 0.8310 0.8608 0.8249

1024 0.8533 0.8182 0.8267 0.8732 0.8861 0.8515

2048 0.8533 0.8312 0.8133 0.8732 0.8987 0.8540

4096 0.8533 0.8442 0.8267 0.8592 0.8734 0.8513

8192 0.8667 0.8312 0.8133 0.8592 0.8861 0.8513

16384 0.8667 0.8571 0.8133 0.8592 0.8861 0.8565
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Table A7: Comparison of Dif and StD metrics under x-fold cross-validation for Iris dataset in terms
of quantum basic probability level decision-making.

Method Shots r-th fold of cross-validation Dif )
1 2 3 4 5

QC-DRCqgp 32 0.1000 0.1000 0.1000 0.0667 0.1333 0.1000 0.0211
64 0.0667 0.1000 0.0333 0.0333 0.1000 0.0667 0.0298

128 0.0000 0.1000 0.0667 0.0333 0.0667 0.0533 0.0340

256 0.0000 0.0000 0.0333 0.0667 0.0333 0.0267 0.0249

512 0.0000 0.0333 0.0333 0.0000 0.0333 0.0200 0.0163

1024 0.0000 0.0667 0.0000 0.0333 0.0333 0.0267 0.0249

2048 0.0000 0.0333 0.0333 0.0000 0.0000 0.0133 0.0163

4096 0.0000 0.0333 0.0000 0.0333 0.0000 0.0133 0.0163

8192 0.0000 0.0000 0.0000 0.0000 0.0333 0.0067 0.0133

16384 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AQC-DRCqgp 32 0.1000 0.1667 0.0000 0.0667 0.0667 0.0800 0.0542
64 0.1000 0.1000 0.0333 0.0667 0.0667 0.0733 0.0249

128 0.0333 0.0667 0.0333 0.0333 0.1000 0.0533 0.0267

256 0.0000 0.0000 0.0667 0.0000 0.0000 0.0133 0.0267

512 0.0000 0.0000 0.0000 0.0333 0.0000 0.0067 0.0133

1024 0.0000 0.0667 0.0333 0.0333 0.0000 0.0267 0.0249

2048 0.0000 0.0333 0.0333 0.0000 0.0333 0.0200 0.0163

4096 0.0000 0.0333 0.0667 0.0000 0.0333 0.0267 0.0249

8192 0.0000 0.0333 0.0000 0.0000 0.0333 0.0133 0.0163

16384 0.0000 0.0333 0.0333 0.0000 0.0333 0.0200 0.0163
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Table A8: Comparison of Dif and StD metrics under x-fold cross-validation for Iris dataset in terms
of quantum plausibility level decision-making.

Method Shots k-th fold of cross-validation Dif )
1 2 3 4 5

QC-DRCqgp+QPI 32 0.1000  0.1667  0.1000 0.1667  0.1333  0.1333  0.0298
64  0.1333  0.1667 0.0667 0.1000  0.1000  0.1133  0.0340

128  0.0000  0.0333  0.0333  0.0000  0.1000  0.0333  0.0365

256 0.0000 0.0333  0.0667  0.0000  0.0667 0.0333  0.0298

512 0.0000 0.0333 0.0333  0.0333  0.0333 0.0267 0.0133

1024 0.0000  0.0000  0.0667  0.0333  0.0333  0.0267  0.0249

2048  0.0000  0.0333  0.0000 0.0333  0.0333 0.0200 0.0163

4096  0.0000  0.0333  0.0000  0.0000  0.0000 0.0067  0.0133

8192 0.0000  0.0000 0.0333  0.0000 0.0333 0.0133  0.0163

16384  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

AQC-DRCqpp+QPI1 32 0.0333  0.0667 0.0667 0.0667  0.1000  0.0667 0.0211
64  0.1000 0.0667 0.0667 0.0333  0.0000  0.0533  0.0340

128  0.0000  0.0667  0.0333  0.0667 0.0333  0.0400  0.0249

256 0.0000  0.0667 0.0333  0.0000  0.0000  0.0200  0.0267

512 0.0000  0.0667 0.0667  0.0000  0.0000  0.0267  0.0327

1024 0.0000  0.0333  0.0667  0.0000  0.0000  0.0200  0.0267

2048  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

4096  0.0000 0.0333  0.0333  0.0000 0.0333  0.0200  0.0163

8192  0.0000  0.0333  0.0333  0.0000  0.0000 0.0133  0.0163

16384  0.0000  0.0000  0.0333  0.0000 0.0000  0.0067  0.0133

AQC-DRCqp; 32 0.0333  0.1000 0.0333 0.0667 0.0333  0.0533  0.0267
64  0.0000 0.1333  0.0667 0.0000 0.1000  0.0600  0.0533

128 0.0000  0.1000  0.0667  0.0000  0.0000 0.0333  0.0422

256 0.0000  0.0333  0.0000 0.0333  0.0000 0.0133  0.0163

512 0.0000 0.0333  0.0000 0.0333  0.0000 0.0133  0.0163

1024 0.0000  0.0333  0.0000  0.0000  0.0000 0.0067  0.0133

2048  0.0000  0.0000  0.0333  0.0000 0.0000 0.0067  0.0133

4096  0.0000 0.0333  0.0000  0.0000 0.0333 0.0133  0.0163

8192  0.0000  0.0333  0.0333  0.0000  0.0000 0.0133  0.0163

16384  0.0000  0.0333  0.0000  0.0000  0.0000  0.0067  0.0133
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Table A9: Comparison of Dif and StD metrics under «-fold cross-validation for Abalone dataset in
terms of quantum basic probability level decision-making.

Method Shots r-th fold of cross-validation Dif )
1 2 3 4 5

QC-DRCqgp 32 0.0465 0.0000 0.0233 0.0233 0.1522 0.0490 0.0536
64 0.0465 0.0233 0.0465 0.0000 0.0870 0.0406 0.0289

128 0.0000 0.0000 0.0233 0.0233 0.0652 0.0223 0.0238

256 0.0000 0.0233 0.0233 0.0000 0.0217 0.0137 0.0112

512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1024 0.0000 0.0000 0.0000 0.0000 0.0217 0.0043 0.0087

2048 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4096 0.0000 0.0000 0.0233 0.0000 0.0000 0.0047 0.0093

8192 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16384 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AQC-DRCqgp 32 0.0000 0.0000 0.0000 0.0000 0.0217 0.0043 0.0087
64 0.0000 0.0233 0.0000 0.0000 0.0000 0.0047 0.0093

128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

256 0.0000 0.0000 0.0000 0.0000 0.0217 0.0043 0.0087

512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2048 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4096 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8192 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16384 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table A10: Comparison of Dif and StD metrics under x-fold cross-validation for Abalone dataset in
terms of quantum plausibility level decision-making.

Method Shots k-th fold of cross-validation Dif )
1 2 3 4 5

QC-DRCqgp+QPI 32 0.0000 0.0233  0.0233  0.0000 0.0000  0.0093 0.0114
64  0.0000  0.0000 0.0233  0.0000 0.0000  0.0047  0.0093

128  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

256 0.0000  0.0000  0.0000  0.0000 0.0217 0.0043  0.0087

512 0.0000  0.0000 0.0000  0.0000 0.0217 0.0043  0.0087

1024 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

2048  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000

4096  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000

8192 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

16384  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

AQC-DRCqpp+QPI1 32 0.0930 0.0000 0.0233 0.0930 0.1739  0.0766  0.0612
64 0.0465 0.0233  0.0233  0.0000 0.1304  0.0447  0.0453

128  0.0000  0.0233  0.0233  0.0233  0.0435 0.0226  0.0138

256 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000

512 0.0000  0.0233  0.0000  0.0000  0.0000 0.0047  0.0093

1024 0.0000  0.0000  0.0233  0.0000  0.0217  0.0090  0.0110

2048  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

4096  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000

8192 0.0000  0.0000  0.0000  0.0000  0.0217 0.0043  0.0087

16384  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

AQC-DRCqp; 32 0.0233  0.0233 0.0465 0.0930 0.1522  0.0676  0.0493
64  0.0000 0.0233  0.0465 0.0000  0.1087  0.0357  0.0404

128 0.0000  0.0233  0.0000  0.0000  0.0217  0.0090  0.0110

256 0.0000  0.0233  0.0465  0.0000  0.0000 0.0140  0.0186

512 0.0000  0.0233  0.0000  0.0000  0.0000  0.0047  0.0093

1024 0.0000 0.0233  0.0233  0.0000  0.0000  0.0093  0.0114

2048  0.0000  0.0233  0.0000  0.0000  0.0000  0.0047  0.0093

4096  0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000

8192 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

16384  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
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Table A11: Comparison of Dif and StD metrics under s-fold cross-validation for Knowledge dataset
in terms of quantum basic probability level decision-making.

Method Shots r-th fold of cross-validation Dif )
1 2 3 4 5

QC-DRCqgp 32 0.3200 0.3117 0.2933 0.3380 0.2785 0.3083 0.0207
64 0.1200 0.2727 0.2133 0.1831 0.2911 0.2161 0.0619

128 0.1467 0.1039 0.2267 0.1549 0.1772 0.1619 0.0402

256 0.0400 0.0779 0.1067 0.1408 0.0633 0.0857 0.0350

512 0.0000 0.0649 0.0400 0.0704 0.0506 0.0452 0.0250

1024 0.0000 0.0649 0.0667 0.0423 0.0380 0.0424 0.0241

2048 0.0000 0.0779 0.0667 0.0141 0.0000 0.0317 0.0337

4096 0.0000 0.0519 0.0267 0.0563 0.0127 0.0295 0.0218

8192 0.0133 0.0130 0.0400 0.0563 0.0000 0.0245 0.0205

16384 0.0000 0.0130 0.0000 0.0563 0.0000 0.0139 0.0218

AQC-DRCqgp 32 0.3333 0.3766 0.2800 0.3803 0.3038 0.3348 0.0395
64 0.2667 0.2208 0.3067 0.1690 0.2658 0.2458 0.0470

128 0.1733 0.1818 0.1467 0.1690 0.1646 0.1671 0.0117

256 0.1200 0.2078 0.1200 0.1268 0.0253 0.1200 0.0578

512 0.0267 0.0779 0.0400 0.1268 0.0759 0.0695 0.0349

1024 0.0267 0.0779 0.1067 0.0563 0.0380 0.0611 0.0286

2048 0.0133 0.0130 0.0133 0.0423 0.0127 0.0189 0.0117

4096 0.0133 0.0390 0.0267 0.0282 0.0127 0.0240 0.0099

8192 0.0000 0.0779 0.0267 0.0000 0.0127 0.0234 0.0290

16384 0.0133 0.0260 0.0000 0.0141 0.0000 0.0107 0.0098
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Table A12: Comparison of Dif and StD metrics under x-fold cross-validation for Knowledge dataset
in terms of quantum plausibility level decision-making.

Method Shots k-th fold of cross-validation Dif )
1 2 3 4 5

QC-DRCqgp+QPI 32 02933 0.3247 03600 0.2958 03038  0.3155  0.0248
64 02133  0.2078 0.2933  0.2254  0.2025 0.2285  0.0333

128  0.1333  0.1429  0.1733  0.1268  0.1899  0.1532  0.0243

256  0.1200 0.1688  0.1200  0.1408  0.0886  0.1277  0.0265

512 0.0400 0.0649 0.0933  0.0845 0.0759 0.0717  0.0184

1024 0.0133  0.0390  0.0933  0.0423  0.0380 0.0452  0.0262

2048  0.0267 0.0390  0.0400  0.0423  0.0127 0.0321  0.0111

4096  0.0000 0.0130  0.0267 0.0141  0.0000 0.0107  0.0100

8192  0.0133  0.0260  0.0533  0.0141  0.0000 0.0213  0.0180

16384  0.0000  0.0000 0.0533  0.0282  0.0000  0.0163  0.0215

AQC-DRCqpp+QPI1 32 02667  0.2857  0.3467 0.2958 03165  0.3023  0.0274
64 0.1733  0.1688  0.2800 0.1972  0.1899  0.2018  0.0404

128 0.1200  0.1299  0.1467  0.0563  0.1266  0.1159  0.0310

256 0.0533  0.1558 0.1067  0.0845  0.0886  0.0978  0.0337

512 0.0400 0.1169 0.0400  0.0986  0.0127  0.0616  0.0394

1024 0.0000  0.0130  0.0400  0.0282  0.0253  0.0213  0.0137

2048  0.0267  0.0000  0.0400 0.0563  0.0253  0.0297  0.0186

4096  0.0133  0.0130  0.0800  0.0423  0.0000  0.0297  0.0287

8192 0.0000  0.0390 0.0400 0.0141  0.0000 0.0186  0.0178

16384  0.0000  0.0000  0.0533  0.0141  0.0000  0.0135  0.0207

AQC-DRCqp; 32 03067 03117 03867 0.2113 03418 03116  0.0577
64  0.1600 0.1948 0.1867 0.2113  0.2278  0.1961  0.0229

128 0.0800 0.1429  0.0800  0.1831  0.1139  0.1200  0.0393

256 0.0533  0.0909 0.0400 0.0704  0.0380 0.0585  0.0199

512 0.0533  0.1169  0.0533  0.0563  0.0506  0.0661  0.0255

1024 0.0400 0.0390  0.0800  0.0141  0.0000 0.0346  0.0273

2048  0.0133  0.0260  0.0667  0.0141  0.0127  0.0265  0.0207

4096 0.0133  0.0130  0.0000  0.0282 0.0380 0.0185  0.0132

8192 0.0000  0.0260  0.0133  0.0000  0.0000  0.0079  0.0104

16384  0.0000  0.0000  0.0400 0.0282  0.0000  0.0136  0.0171
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work were discussed in Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All of the assumptions and proofs of proposed AQC-DRC can be found in
Section[3

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the main experimental results of the
paper is shown in Section 4]

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Sufficient instructions to faithfully reproduce the main experimental results
were provided in Sections[3]and 4] with the datasets described in Section[d] To protect the
intellectual property during the review process, we do not release the code publicly at this
stage. The code will be available upon request after publication.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed data-splitting process was shown in Section[d] The hyperparameter
in our algorithm ‘shots” was also analyzed in Section[d] There was no optimizer needed in
our algorithm.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results Dif in Figure [2] reported error bars suitably and
correctly defined in Section 4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experiments environment is provided in Appendix [A2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and do not find our work in violation
of any aspects.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is a quantum algorithm for uncertain pattern classification that does
not involve ethics and therefore has no impact on society.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not create any dataset or pretrained model.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets used in the experiments of our work were properly credited.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our work does not release any new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our work does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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