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Abstract

CLaMP 3 is a unified framework developed to
address challenges of cross-modal and cross-
lingual generalization in music information re-
trieval. Using contrastive learning, it aligns all
major music modalities—including sheet mu-
sic, performance signals, and audio recordings—
with multilingual text in a shared representa-
tion space, enabling retrieval across unaligned
modalities with text as a bridge. It features a
multilingual text encoder adaptable to unseen
languages, exhibiting strong cross-lingual gen-
eralization. Leveraging retrieval-augmented
generation, we curated M4-RAG, a web-scale
dataset consisting of 2.31 million music-text
pairs. This dataset is enriched with detailed
metadata that represents a wide array of global
musical traditions. To advance future research,
we release WikiMT-X, a benchmark compris-
ing 1,000 triplets of sheet music, audio, and
richly varied text descriptions. Experiments
show that CLaMP 3 achieves state-of-the-art
performance on multiple MIR tasks, signifi-
cantly surpassing previous strong baselines and
demonstrating excellent generalization in mul-
timodal and multilingual music contexts.

1 Introduction

Music Information Retrieval (MIR) is a field that
aims at developing computational tools for pro-
cessing, organizing, and accessing music data. A
core challenge in MIR is retrieving musical con-
tent—whether sheet music, performance signals,
or audio recordings—based on natural language
queries (“a fast-paced classical piano piece”). This
connection enables applications such as automatic
music tagging, where models assign genres (‘jazz,”
“folk™) or descriptive attributes (“melancholic,”
“upbeat”), facilitating music organization, search,
and recommendation. By integrating NLP method-
ologies, MIR enables more intuitive access to mu-
sical content, making it more interpretable and
searchable through text.
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Figure 1: CLaMP 3 demonstrates robust cross-modal
and cross-lingual generalization. Supervised alignment
(solid arrows) links paired modalities, while emergent
alignment (dashed arrows) bridges unaligned ones. A
multilingual text encoder enables retrieval in languages
unseen (grayed-out bubbles) during alignment.

These capabilities position MIR as a critical
bridge between music and language, supporting
various applications beyond retrieval and annota-
tion. For instance, cross-modal representations en-
able text-to-music generation models (Agostinelli
et al., 2023; Chen et al., 2024) to create music
based on text descriptions. MIR also aids in the
automatic evaluation of these models by assessing
how closely the generated music aligns with text
descriptions or resembles the ground truth (Copet
et al., 2023; Retkowski et al., 2024).

Despite these advancements, MIR faces signifi-
cant challenges in addressing the complexities of
multimodality and multilinguality. Music exists
in many forms: sheet music offers human-readable
representations for theoretical analysis and edu-
cation; performance signals (e.g., MIDI) capture
timing and dynamics for precise digital editing; and
audio recordings serve as the primary medium for
listening. While these modalities complement each
other, their heterogeneous representational struc-
tures complicate unified computational processing.



Adding to this complexity, as a universal
medium, music is described in numerous lan-
guages, crossing cultural and linguistic boundaries.
Musical terminology, descriptions, and cultural ref-
erences vary significantly between linguistic com-
munities, each bringing its own rich vocabulary
and cultural context. To build global and acces-
sible MIR systems, it is essential to process and
understand these diverse expressions effectively.

Unfortunately, the development of MIR is lim-
ited not only by the lack of music-text pairs but
also by the general scarcity of paired data across
different musical modalities. As a result, most re-
search focuses on retrieval between specific modal-
ity pairs, such as text and audio (Huang et al., 2022;
Doh et al., 2024; Zhu et al., 2025) or text and sheet
music (Wu et al., 2023a). This narrow focus re-
stricts the potential for cross-modal interactions,
preventing a more comprehensive understanding
of music. Additionally, existing text data is of-
ten short-form, like tags, with few long-form de-
scriptions (Wu et al., 2023b), leading to shallow
semantics. These datasets are also predominantly
in English (Doh et al., 2023b), with limited rep-
resentation of other languages, neglecting music’s
global and multilingual nature.

To tackle these challenges, a unified framework
is crucial for aligning musical modalities and bridg-
ing linguistic gaps, particularly in the absence
of paired training data. Large Language Models
(LLMs) present a promising solution by addressing
the limitations of text semantics and the scarcity of
linguistic diversity in music-text datasets. These
models excel at transforming basic metadata into
fluent and contextually rich descriptions (Doh et al.,
2023a; Bai et al., 2024). Furthermore, their multi-
lingual capabilities allow them to support a wide
array of languages (Wu et al., 2024), enhancing
semantic depth and enabling more inclusive access
across diverse linguistic and cultural contexts.

In this paper, we introduce CLaMP 3, a uni-
versal MIR framework that processes music and
text while aligning them into a shared represen-
tation space. It covers all major music modali-
ties: 1) sheet music, 2) performance signals, and
3) audio recordings, along with 4) multilingual
text. Each modality is encoded through its respec-
tive feature extractor. To unify these representa-
tions, we employ contrastive learning (Sohn, 2016),
aligning both musical and textual features. This
enables seamless cross-modal retrieval and integra-
tion across diverse musical formats and languages.

To address the shortage of paired music-text data,
we use Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) to create M4-RAG, a dataset of
2.31 million music-text pairs covering various mu-
sical modalities. Starting with basic metadata like
song titles and artist names, we retrieve relevant
web documents and use an LLM to generate de-
tailed annotations. These annotations include short
tags, long descriptions, and multilingual transla-
tions, providing rich and diverse information.

In addition, we present WikiMT-X, the first
benchmark to align text, audio, and sheet music.
It includes 1,000 triplets with diverse text annota-
tions, such as genre labels and detailed long-form
descriptions, including background context, mu-
sical analysis, general descriptions, and scene de-
pictions. WikiMT-X facilitates evaluation across
modalities and semantic perspectives, providing
a holistic framework to assess models’ ability to
align and interpret musical content.

Experiments demonstrate that CLaMP 3
achieves state-of-the-art performance on various
MIR tasks, including text-to-audio and text-to-
symbolic music retrieval, significantly surpassing
all baselines. It also excels in multilingual retrieval,
generalizing to languages not present during align-
ment. By leveraging text as a bridge, CLaMP 3
enables emergent cross-modal retrieval, connecting
musical modalities without paired training data.

Overall, this work contributes:

* CLaMP 3 unifies musical modalities and
languages in a shared representation space,
achieving strong performance on a wide range
of MIR tasks and generalizing to unseen lan-
guages with emergent cross-modal alignment.

* We curate M4-RAG, a dataset of 2.31 mil-
lion music-text pairs with diverse annotations,
spanning 27 languages and 194 countries, ad-
dressing a critical gap in high-quality training
data for music and language tasks.

e WikiMT-X links text, audio, and sheet music
with 1,000 triplets, offering a first-of-its-kind
resource to evaluate models holistically across
different modalities and semantic aspects.

To encourage future research, we will publicly
release the complete codebase, pre-trained weights
of CLaMP 3, 1.56 million audio-text training pairs’,
and the WikiMT-X benchmark.

'Due to the inclusion of internal data, the 0.75 million
symbolic-text training pairs will not be publicly available.
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Figure 2: CLaMP 3 uses contrastive learning to align features across modalities. Sheet music and performance
signals are segmented into units (bars or MIDI messages) and processed by the symbolic music encoder, while
audio is segmented into 5-second clips and processed through the audio feature extractor and audio music encoder.
Both symbolic and audio representations are aligned with text representations from the multilingual text encoder.

2 Model

2.1 Training Objective

CLaMP 3’s optimization objective is to minimize
the InfoNCE loss (Oord et al., 2018), aligning em-
beddings using contrastive learning:
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where z! and 2!" are text and music embeddings,
sim(-, -) is the similarity function (e.g., dot prod-
uct), and 7 is the temperature parameter. Positive
pairs are aligned text-music samples, while nega-
tives are unrelated samples from the same batch.

Inspired by ImageBind (Girdhar et al., 2023), we
adopt a multi-stage strategy using text as a bridge
to address the lack of paired music data:

Stage 1: The text encoder is first trained to align
with one music encoder (e.g., symbolic encoder).

Stage 2: It is then aligned with another music
encoder (e.g., audio encoder), freezing the text en-
coder to prevent representation drift.

Stage 3: The text encoder is unfrozen to refine
its alignment with the music encoder from Stage 2.

Stage 4: The text encoder is frozen again to
prevent shifts while re-aligning with the Stage 1
music encoder to fix alignment drift from Stage 3.

This strategy minimizes modality interference
while mapping all modalities into a shared repre-
sentation space for effective cross-modal transfer.

2.2 Core Components

CLaMP 3 consists of several transformer-based
encoders (Vaswani et al., 2017) for each modality:

Multilingual Text Encoder: The text encoder
in CLaMP 3 is based on XLM-R-base (Conneau
et al., 2020), a model pre-trained on 2.5 TB of
CommonCrawl data across 100 languages. It has
12 layers and a hidden size of 768, enabling strong
cross-lingual generalization to unseen languages.

Symbolic Music Encoder: CLaMP 3 uses M3
(Wu et al., 2024), a self-supervised model for
encoding symbolic music, including multi-track
voice-interleaved ABC notation and lossless MIDI
encoding via MIDI Text Format (MTF). M3 seg-
ments ABC into bars and MIDI into messages,
treating each segment as a patch. The model has 12
encoder layers, a hidden size of 768, and processes
up to 512 patches or 32,768 characters per input.

Audio Music Encoder: It is a 12-layer trans-
former with a 768-dimensional hidden size, trained
from scratch for audio processing. This encoder
leverages pre-trained features from MERT-v1-95M
(Li et al., 2024), where MERT serves as a frozen
audio feature extractor. Each 5-second clip is repre-
sented by a single embedding, obtained by averag-
ing across all MERT layers and time steps. CLaMP
3 processes up to 128 such embeddings, covering
640 seconds of audio, allowing it to capture high-
level audio patterns over extended durations.

All encoders process their outputs through a lin-

ear layer, followed by average pooling, to generate
a single global semantic feature for each input.



Table 1: Metadata overview for M4-RAG, grouped into
basic information, annotations, and translations. In An-
notations, Region and Language are written in English;
other fields follow the Language specification.

Category Field Content Avg Bytes
. Title Music Title 20.04

Basic . .
Artists Artist names 21.97
Region Country of origin 20.69
Language Document language 7.02
Genres Genre list 21.83
. Tags Keywords/playlists 51.91
Annotations Background Background context 531.79
Analysis Musical analysis 770.29
Description  General description 591.86
Scene Scene depiction 750.92
Language Translation language 6.38
Background Translated background 819.76
Translations  Analysis Translated analysis 1130.47
Description  Translated description 888.86
Scene Translated scene 1077.07

3 Dataset

In this section, we introduce the M4-RAG dataset
for training CLaMP 3 and the WikiMT-X bench-
mark for evaluation. We start with data sources,
followed by the metadata curation process. Then,
we summarize dataset statistics like scale and di-
versity. Finally, we elaborate on the details of the
WikiMT-X benchmark.

3.1 Data Sources

The training data for CLaMP 3 is built from both
symbolic and audio music datasets, ensuring a rich
and diverse foundation for multimodal learning.

The symbolic music data is sourced from Web-
MusicText (WebMT) (Wu et al., 2023a) with 1.4
million ABC notation files and the Million MIDI
Dataset (MMD) (Zeng et al., 2021) with 1.5 mil-
lion MIDI files. Since symbolic music formats
use discrete symbols to represent music, they can
be converted into one another, albeit with some
information loss. To fully utilize the data, these
datasets were unified by converting MMD to ABC
and WebMT to MIDI. This process yields 3 million
symbolic music files, offering diverse and compre-
hensive training coverage.

The audio data comes from the MERT training
dataset (Li et al., 2024), comprising 160 thousand
hours of audio from 1.8 million tracks collected on-
line. As CLaMP 3 directly utilizes MERT-extracted
features, the training data exclusively consists of
these precomputed features, leading to substantial
savings in both computational resources and time.

3.2 Metadata Curation

Music titles often serve as unique identifiers, en-
abling the retrieval of rich and detailed descriptions
from diverse online sources. When paired with
artist names, they further refine searches, pinpoint-
ing specific versions or performances and reducing
ambiguities caused by covers or adaptations. This
distinctive property makes music titles a reliable ba-
sis for generating annotations, even in the absence
of paired music-text datasets.

To leverage this, we curated M4-RAG (Million-
scale Multilingual Music Metadata), a dataset com-
prising 2.31 million metadata entries. The curation
process involved several key steps:

Title Filtering: Entries without titles were ex-
cluded, as titles are essential for retrieving mean-
ingful information from the web.

Web Search: Google searches were conducted
using titles and, where available, artist names. For
each entry, the top 10 search results were collected
to ensure diverse and reliable sources.

RAG: Using Qwen2.5-72B (Yang et al., 2024),
we generated annotations from the retrieved docu-
ments and basic metadata (titles and artist names).
We refined the metadata when discrepancies were
found. The annotations covered the fields in Table 1
under Annotations, with an additional Boolean
field indicating if the source material had sufficient
information for generating meaningful annotations.

Quality Filtering: Entries were discarded if
flagged by the Boolean field for insufficient infor-
mation, if their format failed to meet the standards
outlined in Table 1, or if any fields were left empty.

Postprocessing: To address inconsistencies
in the generated annotations, Region fields were
mapped to recognized countries, while Description
fields were refined using Qwen to remove identi-
fiable details such as titles and lyrics. Language
consistency across long-form fields (Background,
Analysis, Description, Scene) was verified with fast-
Text (Joulin et al., 2017). Entries with inconsis-
tent languages or languages unsupported by either
XLM-R or Qwen were removed, and valid detected
languages were recorded in the Language field.

Multilingual Translation: To enhance linguis-
tic diversity, a random language supported by
both XLM-R and Qwen—different from the orig-
inal—was selected for each entry, and long-form
annotations were translated into it using Qwen.

Prompt and examples of generated annotations
are provided in Appendix A.
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Figure 3: Language distribution of original and trans-
lated entries in M4-RAG, covering 27 languages.
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Figure 4: Country-wise distribution of music tracks in
M4-RAG, spanning 194 countries.

3.3 Dataset Statistics

Through metadata curation, we obtained M4-RAG,
which consists of 2.31 million entries. It includes
0.58 million ABC-text pairs from WebMT, 0.17
million MIDI-text pairs from MMD, and 1.56 mil-
lion audio-text pairs from the MERT training data.

Each metadata entry includes both short-form
annotations, such as genres and tags, and detailed
long-form descriptions. As summarized in Table 1,
the long-form descriptions account for the majority
of the dataset, providing extensive semantic details
from multiple perspectives.

M4-RAG spans 27 languages, with the original
metadata predominantly in English, as shown in
Fig. 3. To address this imbalance, translations were
added to the long-form descriptions, greatly boost-
ing non-English data. This was particularly impact-
ful for low-resource languages, such as Malay and
Burmese, where most data depends on translations,
greatly enhancing their representation.

In terms of geographic coverage, M4-RAG incor-
porates music from 194 countries. Fig. 4 illustrates
contributions from both major music-producing
nations and less-represented regions. This global
reach ensures the dataset reflects a diverse range of
musical traditions and styles from across the world.
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Figure 5: Genre distribution of the WikiMT-X dataset.

3.4 Benchmark Dataset

WikiMT-X (WikiMusicText-eXtended) extends
WikiMT (Wu et al., 2023a), focusing on 20th-
century Western music with 1,000 entries, each
with sheet music, audio, and detailed metadata.

The original WikiMT dataset had the following
drawbacks: 1) the text was sourced from Wikipedia,
mainly focused on background information with
limited semantic diversity; 2) the absence of audio
data severely restricted the evaluation scope; and
3) the genre labels were obtained through keyword
matching, resulting in relatively low accuracy and
reducing the reliability of the dataset.

To address these deficiencies, WikiMT-X made
the following improvements:

» We used llama-3.1-sonar-large-128k-online?
(Dubey et al., 2024), feeding it sheet music
with titles, artist names, and lyrics. It retrieved
relevant web pages and summarized them into
background, analysis, description, and scene.

* We manually matched sheet music with au-
dio recordings retrieved from YouTube and
removed 10 identified duplicates.

* We reorganized genre categories based on data
distribution and re-annotated labels.

These enhancements make WikiMT-X useful for
multimodal MIR research tasks, assessing mod-
els’ capabilities in handling text annotations of di-
verse semantic types, and classifying music across
modalities using genre labels.

Appendix B provides #-SNE visualizations of
CLaMP 3 embeddings on WikiMT-X, showing
modality, language, and semantic distributions in
the shared representation space. In addition, Ta-
ble 11 presents the genre classification results of
CLaMP 3 and baseline models across different mu-
sical modalities and text annotations.

2https ://www.perplexity.ai
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Table 2: Results for English text-to-music retrieval on several benchmarks: WikiMT and MidiCaps have 1,010 pairs,
Song Describer Dataset (SDD) has 706 audio and 1,106 captions, and MusicCaps-Remake (MC-R) contains 2,777
pairs. MC-R prevents data leakage by using full-length audio and rewritten captions from AudioSet’s evaluation set.

Model Symbolic Benchmarks WikiMT-X (Sheet Music)
ode
WikiMT MidiCaps Background Analysis Description Scene
CLaMP 0.2561 0.1236 0.2122 0.1345 0.0306 0.0426
CLaMP 2 0.3438 0.2695 0.3024 0.2374 0.0418 0.0838
CLaMP 3 gi 0.4498 0.2826 0.4028 0.3382 0.0835 0.1512
CLaMP 34,45 0.3555 0.1798 0.3301 0.2758 0.1274 0.1500
Model Audio Benchmarks WikiMT-X (Audio)
ode
SDD MC-R Background Analysis Description Scene
CLAP 0.1310 0.0657 0.0598 0.0429 0.0318 0.0218
TTMR++ 0.1437 0.1248 0.1119 0.0833 0.0584 0.0301
CLaMP 3;3 0.1612 0.0959 0.1180 0.1206 0.0639 0.0619
CLaMP 34445 0.1985 0.1177 0.2017 0.1711 0.0988 0.0963

4 Experiments

This section evaluates CLaMP 3 on retrieval tasks,
comparing it to state-of-the-art baselines. We
present results for the two best-performing CLaMP
3 variants—one for symbolic music and one for au-
dio. A full retrieval comparison of all variants can
be found in Appendix C, and classification results
are available in Appendix D.

4.1 Settings

Both symbolic music and audio alignments were
trained for up to 100 epochs on 8 NVIDIA H800
GPUs. Symbolic music alignment required 4 days
with a learning rate of Se-5 and a batch size of 1024.
Audio alignment took 1 day with a learning rate of
le-5 and a batch size of 2048.

M4-RAG was divided into 99% for training and
1% for validation. During training, metadata in-
formation was randomly selected to form text in-
puts. Mixed-precision (Micikevicius et al., 2018),
AdamW optimizer (Loshchilov and Hutter, 2019),
and a 1,000-step warm-up (Goyal et al., 2017) were
used to enhance efficiency.

Following the training strategy in Sec. 2.1, we ex-
plored various modality alignment orders for sym-
bolic and audio modalities, and present the two
top-performing variants below:

CLaMP 3,,,s: Optimized for audio, this model
follows the full multi-stage alignment: symbolic
— audio — audio — symbolic.

CLaMP 322: Optimized for symbolic, this
model starts from CLaMP 2-initialized text and
symbolic encoders, followed by two stages: the
text encoder is jointly trained with the symbolic en-
coder, then frozen to align with the audio encoder.

4.2 English Text-to-Music Retrieval

We evaluated retrieval performance using Mean Re-
ciprocal Rank (MRR), which measures the inverse
of the rank of the paired item, across all tasks.

For symbolic music retrieval, we compared
CLaMP 3 with CLaMP 2 (Wu et al., 2024) and
CLaMP (Wu et al., 2023a) on WikiMT (using
ABC notation) and MidiCaps (Melechovsky et al.,
2024) (using MIDI). For audio retrieval, we eval-
uated CLaMP 3 against state-of-the-art models
CLAP (Wu et al., 2023b) and TTMR++ (Doh
et al., 2024) on the Song Describer Dataset (SDD)
(Manco et al., 2023) and MusicCaps-Remake (MC-
R) (Agostinelli et al., 2023), which addresses data
leakage by using full-length audio and rewritten
captions (see Appendix E) from AudioSet’s evalu-
ation set (Gemmeke et al., 2017). In addition, we
tested all models on WikiMT-X to evaluate their
performance across varying semantic perspectives.

As shown in Table 2, CLaMP 3 achieved sig-
nificant improvements over its predecessors and
baseline models across both symbolic and audio re-
trieval tasks. For symbolic music retrieval, CLaMP
32 achieved MRR scores of 0.4498 on WikiMT
and 0.2826 on MidiCaps, clearly outperforming
both CLaMP 2 and CLaMP, despite using only
half the training data. This improvement can be
attributed to the high-quality, richly annotated M4-
RAG dataset. Similarly, CLaMP 3,,5, though op-
timized for audio retrieval, exceeded CLaMP by
a notable margin on symbolic benchmarks and
performed comparably to CLaMP 2 on WikiMT.
These results demonstrate that our multi-stage train-
ing approach effectively preserves performance on
modalities that were not explicitly optimized.



Table 3: Results for multilingual text-to-music retrieval on translated WikiMT-X background annotations. Languages
marked with asterisks were not included in the M4-RAG training data. The BLEU scores below each language are
calculated by back-translating the text with the SeamlessM4T model and comparing it to the original English text.

Model ru fr es ar zh fi* el* ta* kk* am¥*
49.69 55.50 62.82 53.38 39.58 39.19 55.55 40.07  36.57 56.08

ABC Notation

CLaMP 2 0.2668 0.2968 0.2934 0.2298 0.1646 0.2795 0.2410 0.0915 0.2543 0.1237

CLaMP 3;3 0.3614 0.3949 0.3921 0.3155 0.2373 0.3524 0.3226 0.1415 0.3397 0.1871

CLaMP 34,4 0.2918 0.3214 0.3239 0.2789 0.2358 0.2919 0.2681 0.1246 0.2703 0.1139

MIDI

CLaMP 2 0.1271 0.1414 0.1452 0.1113 0.0749 0.1438 0.1087 0.0466 0.1079 0.0616

CLaMP 3;3 0.1921 0.2101 0.2137 0.1681 0.1316 0.2019 0.1702 0.0804 0.1765 0.1039

CLaMP 3,45 0.1165 0.1319 0.1330 0.1141 0.0937 0.1245 0.1143 0.0601 0.1104 0.0544

Audio

CLaMP 3;3 0.1068 0.1150 0.1202 0.0981 0.0877 0.1112 0.1014 0.0720 0.1005 0.0681

CLaMP 3,45 0.1788 0.1980 0.1962 0.1665 0.1459 0.1770 0.1736 0.0945 0.1561 0.0675

Beyond symbolic music retrieval, CLaMP
3 also achieved notable performances in au-
dio retrieval. Both variants—CLaMP 32 and
CLaMP 3g,,s——consistently outperformed CLAP,
with CLaMP 3,5 standing out. It achieved the
highest MRR of 0.1985 on SDD, marking a sub-
stantial improvement over TTMR++ (0.1437) and
CLAP (0.1310). While TTMR++ performed well
on MC-R (0.1248), its results on the original Music-
Caps dataset are abnormally higher (see Table 12),
likely because it was trained on half of MusicCaps’
original music-text pairs. This training overlap
suggests that indirect data leakage affects its per-
formance, even when evaluated on MC-R.

CLaMP 3’s strong performance extends to
WikiMT-X, with both variants outperforming base-
lines across all four semantic categories. In Back-
ground and Analysis, where texts provide rich cul-
tural or technical details, CLaMP 32 and CLaMP
3saas €xcelled, achieving MRRs of 0.4028 and
0.3382 (sheet music) and 0.2017 and 0.1711 (au-
dio). Description and Scene, however, are much
harder to retrieve because they are less specific
and semantically sparse. Description excludes ex-
plicit identifiers like titles or artist names, while
Scene focuses on abstract, visualized scenario de-
pictions (rather than the music itself), both of which
make retrieval more difficult. Even so, CLaMP 3
performed notably better, with CLaMP 3,5 scor-
ing 0.0988 (Description) and 0.0963 (Scene) in
audio, compared to TTMR++ (0.0584, 0.0301).
This improvement stems from M4-RAG’s diverse
annotations, which better equip CLaMP 3 to re-
trieve abstract, semantically sparse texts compared
to baseline models trained on less diverse data.

4.3 Multilingual Text-to-Music Retrieval

Currently, no non-English music-text benchmarks
exist, making multilingual evaluation challenging.
To address this, we used SeamlessM4T (Barrault
et al., 2023) to translate WikiMT-X background
annotations into multiple languages. To account
for translation noise, BLEU scores (Papineni et al.,
2002) were calculated by comparing original texts
with back-translations. The translated annotations
were then used for retrieval of matching ABC nota-
tion, MIDI (from ABC), and audio files.

We carefully selected ten languages to ensure
diversity in linguistic families, scripts, regions, and
resource levels. Five UN official languages were
chosen from those included in M4-RAG as they
represent different cultures and regions with global
significance. The other five, marked with asterisks
in Table 3, come from different linguistic families
with distinct scripts and minimal vocabulary over-
lap, specifically to test CLaMP 3’s generalization
to languages unseen in music-text alignment.

To the best of our knowledge, apart from CLaMP
3, CLaMP 2 is the only multilingual MIR model,
but it is limited to symbolic music. No baselines
exist for multilingual audio retrieval, as models like
CLAP and TTMR++ are restricted to English.

CLaMP 3’s two variants differ in their language
exposure. CLaMP 3 initializes its text and sym-
bolic music encoders from CLaMP 2, which was
pre-trained on symbolic-text alignment across all
XLM-R-supported languages, giving it prior ex-
posure to all languages in Table 3. In contrast,
CLaMP 3,,s has never aligned music data with the
languages marked with asterisks, demonstrating
true cross-modal generalization in its performance.



Table 4: Results for emergent cross-modal retrieval on
WikiMT-X pairings across different musical modalities.
S: Sheet Music (ABC notation), P: Performance Signals
(MIDI, converted from ABC), A: Audio recordings.

Model S—P S—A P—=S P—A A-=S AP
CLaMP 2 0.5138 - 0.4480 - - -
CLaMP 352 0.4547 0.0543 0.5293 0.0313 0.0492 0.0383

CLaMP 35445 0.3262 0.0578 0.3146 0.0397 0.0410 0.0303

Table 3 shows that CLaMP 3 demonstrates
strong cross-lingual generalization in both sym-
bolic music and audio retrieval tasks. For symbolic
music retrieval, CLaMP 3¢2 clearly outperforms
CLaMP 2 on all languages, including those not
in M4-RAG, showing that full language coverage
during training is not necessary for improved mul-
tilingual retrieval. Meanwhile, CLaMP 3,5, with-
out any prior alignment between these languages
and music or specific optimization for symbolic
music tasks, matches CLaMP 2’s performance on
MIDI and surpasses it on ABC notation. This indi-
cates that CLaMP 3, achieves true cross-lingual
generalization on unseen languages.

In audio retrieval, CLaMP 3,5 performed well
on languages it had never seen during alignment.
For instance, it outperformed CLaMP 32 on
Finnish (0.1770 vs. 0.1112), Greek (0.1736 vs.
0.1014), and Kazakh (0.1561 vs. 0.1005), even
though CLaMP 32 had indirect exposure to these
languages during CLaMP 2 pre-training. Notably,
even for its weakest unseen language, Amharic
(0.0675), CLaMP 3,,5 outperformed CLAP’s per-
formance on English text (0.0598). This suggests
that prior exposure to a language is not necessary
for achieving strong audio retrieval performance.

The ability to retrieve languages beyond the
training data stems from XLM-R’s cross-lingual
semantics and the universal representations of
CLaMP 3’s music encoders. This enables the
model to handle low-resource languages and even
generalize to unseen ones, enhancing its inclusivity
and versatility for global MIR.

4.4 Emergent Cross-Modal Retrieval

Emergent cross-modal retrieval assesses a model’s
ability to align and retrieve musical content across
modalities without explicit alignment training,
showcasing its capacity to generalize to unaligned
modalities. Table 4 reports results for all possible
retrieval directions between ABC notation, MIDI,
and audio data.

CLaMP 3 significantly advances cross-modal
retrieval by supporting both symbolic and audio
modalities, addressing a key limitation of CLaMP
2. While CLaMP 2 excels in symbolic tasks (S—P:
0.5138, P—S: 0.4480) without explicit alignment
between ABC and MIDIL, it cannot retrieve between
symbolic and audio modalities.

In contrast, CLaMP 3¢ not only achieves state-
of-the-art performance on symbolic music tasks
like P—S (0.5293) but also enables emergent re-
trieval between symbolic music and audio. Simi-
larly, CLaMP 3q,,5, optimized for audio retrieval,
achieves meaningful results on new tasks such as
S—A (0.0578) and P—A (0.0397), demonstrating
its ability to unify symbolic and audio modalities
in a shared representation space.

While audio retrieval is inherently more chal-
lenging due to the continuous nature of audio sig-
nals, all directions achieve MRR scores well above
the random baseline of 0.0075. Nonetheless, fur-
ther optimization is required to reduce the perfor-
mance gap between symbolic and audio retrieval.

5 Conclusions

In this paper, we introduced CLaMP 3, a unified
MIR framework that aligns sheet music, perfor-
mance signals, audio, and multilingual text using
contrastive learning. CLaMP 3 demonstrates strong
cross-modal and cross-lingual generalization, ef-
fectively handling unaligned modalities and unseen
languages during training.

To address the lack of high-quality datasets,
we curated M4-RAG, a collection of 2.31 million
music-text pairs spanning 27 languages and 194
countries. We also released WikiMT-X, the first
benchmark combining text, sheet music, and audio
for comprehensive evaluation.

Our experiments show that CLaMP 3 achieves
state-of-the-art performance in both symbolic and
audio retrieval, excels in multilingual tasks, and
enables retrieval across unaligned musical modal-
ities. These results demonstrate its flexibility and
the effectiveness of its shared representation space.

To conclude, CLaMP 3 sets a new standard in
multimodal and multilingual MIR, demonstrating
robust cross-modal and cross-lingual generaliza-
tion. By releasing the CLaMP 3 model, M4-RAG
dataset, and WikiMT-X benchmark, we provide
resources to support future research in MIR and
music generation across languages and modalities.



6 Limitations

Although CLaMP 3 attains state-of-the-art perfor-
mance across modalities and languages, showing
cross-modal and cross-lingual generalization, this
work has several limitations that need to be ad-
dressed for further advancements in MIR.

First, while contrastive learning has advanced
multimodal information retrieval, it struggles to
capture the temporal dynamics of music. This is
because such models typically use a single global
representation to store the entire semantic content
of a piece of music, making them insensitive to
temporal dynamics. For example, in Beethoven’s
Symphony No. 5, the iconic four-note motif de-
velops throughout the piece, yet current systems
often miss this context. Addressing this requires
moving beyond contrastive learning to incorporate
temporal modeling, enabling systems to better cap-
ture nuances and deliver more context-aware and
accurate retrieval.

Second, although Table 3 indicates that while
CLaMP 3 can generalize to languages beyond
music-text alignment, the multilingual text-to-
music retrieval evaluation in it heavily relies on
translation models due to the lack of native multi-
lingual benchmarks. The translation quality varies
significantly across languages, which introduces
noise and reduces the reliability of evaluations. De-
veloping native multilingual benchmarks is the pri-
mary and almost indispensable solution to achieve
more accurate and fair assessments of model per-
formance.

Finally, as shown in Table 4, the alignment be-
tween audio and symbolic modalities, though show-
ing emergent capabilities with performance far
above random, remains relatively weak. Address-
ing this limitation requires collecting paired data
for supervised alignment and leveraging text as a
bridging modality to further enhance connections
between different musical modalities.
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A Prompt and Examples

Your task is to provide a detailed set of metadata for a music piece in JSON format based on the input provided. The input includes the following
fields:

“json
{
"title": "Music title [in any language] (string)",
"artists": ["List of singer/performer/composer/lyricist names [in any language] (array of strings) (optional)"],
"search_results": [
{
"title": "Search result title [in any language] (string)",
"text": "Search result content [in any language] (string)"
fy
{
"title": "Search result title [in any language] (string)",
"text": "Search result content [in any language] (string)"
}
|
}

You MUST USE THE SEARCH RESULTS THOROUGHLY to GATHER AS MUCH RELEVANT INFORMATION AS POSSIBLE. Ensure every field in your output
is comprehensive, accurate, and formatted according to JSON standards. Adhere strictly to the following JSON format in your response, without
adding explanations or comments:

“json
{

"sufficient_information": "Boolean value indicating whether the search results provide enough information to summarize metadata for the
music (true/false)",

"title": "Music title [in the original language] (string)",

"artists": ["List of singer/performer/composer/lyricist names [in the original language] (array of strings)"],

"region": "The country or geographical region associated with the music [in English] (string)",

"language": "Language in which the search results are primarily written [in English] (string)",

"genres": ["List of genres [in the specified language] (array of strings)"],

"tags": ["List of tags/keywords/playlists/moods [in the specified language] (array of strings)"],

"background": "Background information and fun facts about the music [in the specified language] (string)",

"analysis": "In-depth, thorough, and academic-level musical analysis [in the specified language] (string)",

"description": "A detailed de-identified description without identifying specifics [in the specified language] (string)",

"scene": "A vivid textual description of the visual scene where this music is used as a soundtrack or ideally played [in the specified language]
(string)"
}

Important Notes:

1. If you find that the title or artist information is inaccurate, fill in the correct information based on the search results.
2. Leave fields empty ("" or []) if specific information (e.g., region) is not provided in the search results.

3. Language Requirements:

- The 'title' and 'artists' fields must be written in their original language, as applicable.

- The 'region' and 'language' fields must be written in English.

- All other fields must be written in the language specified in the 'language’ field.

4. Background Field:

- The 'background' field should focus on the creation, cultural, and social context of the piece. This may include the origin of the work, the
cultural or social impact, the artist's role in shaping the piece, and any notable reception or influence the work has had.
5. Analysis Field:

- The 'analysis' field should provide a detailed breakdown of the musical elements. This may include the structure and form, melody and
harmony, rhythm and meter, instrumentation, emotional tone, style and genre, and any influences the piece draws from or has had on later works.
6. Description Field:

- Create a detailed yet de-identified summary of the music's key features and style. AVOID MENTIONING IDENTIFIABLE DETAILS (e.g., the title,
artist names, or lyrics).

7. Scene Field:

- If it’s a soundtrack, you MUST DESCRIBE THE EXACT MOST REPRESENTATIVE SCENE IT ACCOMPANIES, providing rich visual and sensory details.
Include the setting (such as location, time of day, and lighting), characters (their appearance, emotions, and actions), objects in the scene, and any
significant events or emotional tones that align with the music.

- If it's not a soundtrack, describe detailed visual elements that match the music, creating an evocative image where the music naturally
enhances the visual and emotional atmosphere.

Figure 6: The metadata generation prompt was used for constructing the M4-RAG dataset. This prompt outlines the
required JSON structure for describing music metadata comprehensively, including fields for title, artists, region,
language, genres, tags, background context, musical analysis, general description, and visual scene. Detailed
instructions and formatting requirements are provided to ensure high-quality and consistent metadata extraction
from search results. Based on our experience, we recommend adding the requirement to the prompt that Region and
Language be output in accordance with ISO standards, which can reduce the need for post-processing.

12



"id": "---aL9Tdel4",
"title": "Mairi's Wedding",
"artists": [

"Noel McLoughlin"

": "United Kingdom of Great Britain and Northern Ireland",

"Traditional"

1

"tags": [

"Scottish",

"Wedding",

"Traditional",

"Folk",

"Celtic"

1

"background": "Mairi's Wedding (also known as Marie's Wedding, the Lewis Bridal Song, or Mairi Bhan) is a Scottish folk song originally written in Gaelic by Johnny Bannerman for Mary
McNiven. Written using a traditional Scottish tune, it was first played for McNiven in 1935 at the Old Highlanders Institute in Glasgow's Elmbank Street. Hugh S. Roberton translated the Gaelic
version into English in 1936. The song has since become a popular traditional Scottish folk song, often performed by various artists including The High Kings, The Clancy Brothers & Tommy
Makem, and Noel McLoughlin.",

"analysis": "Mairi's Wedding is a lively and upbeat Scottish folk song with a traditional reel structure. The song is in a major key, which contributes to its celebratory and joyful mood. The
lyrics describe the journey of guests to Mairi's wedding, the bride's beauty, and a toast to her future happiness. The chorus is particularly rhythmic and danceable, with the repeated phrase
'Step we gaily on we go' encouraging participation and movement. The instrumentation typically includes acoustic instruments such as the guitar, banjo, and fiddle, which add to the song's
traditional and authentic feel. The song's structure, with its alternating verses and choruses, is typical of many folk songs and helps to maintain engagement and energy throughout the
performance.",

"description": "This is a lively and upbeat traditional folk piece that captures the spirit of a joyful celebration. It features a repetitive and danceable chorus, accompanied by cheerful and
rhythmic instrumentation. The lyrics paint a vivid picture of a wedding day, with guests traveling over hills and through towns to join in the festivities. The music emphasizes the beauty and
charm of the occasion, as well as the hope for a prosperous and happy future. The melody is catchy and the overall mood is one of happiness and community. The piece is rooted in Scottish and
Celtic traditions, reflecting the rich cultural heritage of the region.",

: "The scene is set in a picturesque Scottish village on a sunny morning. The air is crisp and the sky is a clear blue. Villagers are seen walking through the winding streets, their steps
quick and lively. They carry flowers and baskets, their faces beaming with excitement. The path they follow leads to a small, rustic church adorned with fresh greenery and wildflowers. As they
approach, the sound of a fiddle and a bodhrén can be heard, signaling the start of the wedding festivities. Inside the church, the bride, Mairi, stands nervously but beautifully, her cheeks
flushed with happiness. The guests, arm in arm, step gaily to the music, their feet moving in time to the rhythmic beat. The atmosphere is one of joy and celebration, with everyone eager to
partake in the wedding of Mairi and her beloved.",

"translation:
"language":
"background": "Bai hat \"Dam Cudi Mairi\" (con duoc biét dén véi tén goi \"Dam Cudi Marie\", \"Bai Ca C6 Dau Lewis\" hodc \"Mairi Bhan\") Ia mot bai hat dan gian Scotland do Johnny

Bannerman sang tac bing tiéng Gaelic danh cho Mary McNiven. S&r dung giai diéu truyén théng Scotland, bai hat duoc trinh dién [an d4u cho McNiven vao ndm 1935 tai Old Highlanders
Institute trén dudng Elmbank, Glasgow. Ndm 1936, Hugh S. Roberton d dich phién ban tiéng Gaelic sang tiéng Anh. Tir d6, bai hat da tré thanh mot bai hat dan gian Scotland truyén théng phé
bién, thudng dugc biéu dién bdi nhidu nghé st bao gom The High Kings, The Clancy Brothers & Tommy Makem, va Noel McLoughlin.",

"analysis": "\"Bai hat Cudi Héi clia Mairi\" [a mot bai hat dan gian Scotland s6i dong va vui turoi, cé cau tric theo kiéu diéu reel truyén théng. Bai hat duoc sang tac theo cung trudng, dieu
nay gép phan tao nén khong khi 1& hoi va hanh phic. Loi bai hat mo ta chuyén di cta khach dy tiéc dén dam cudi clia Mairi, vé dep cta co dau, va 16i chiic mirng hanh phic twong lai cda co.
Piép khuic dic biét nhip nhang va dé nhay mda, véi cau I3p lai \"Budc chan vui tuoi, ching ta tién budc\" khich 1& sy tham gia va van dong. Phan dém dan thuong bao gdm cac nhac cy acoustic
nhu guitar, banjo, va fiddle, lam tdng thém vé truyén théng va chan thuc cla bai hat. Cau tric bai hat, véi céc doan tho va diép khic xen k&, 1a déc trung clia nhiéu bai hat dan gian, gitip duy tri
sy hap dan va sirc séng sudt budi trinh dién.",

"description”: "Dy Ia mot tic pham dan gian truyén théng s6i dong va vui turoi, ndm bt tinh than clia mot budi I& 3n mirng dy han hoan. Bai hét c6 phan diép khic 13p lai va d& nhdy mua,
dugc acompanh bdi nhitng 4m thanh nhac cu vui vé va cé tiét tdu. Loi bai hat vé nén birc tranh sinh dong vé ngay cudi, véi khach moi vurot qua nhitng ngon doi va di xuyén qua cac thij tran dé
tham gia vao budi tiéc. Nhac phdm nhan manh vé dep va sy quyén rii cta dip I&, cing nhu niém hy vong vé mét tuong lai thinh vurgng va hanh phic. Diéu nhac dé nhé va tam trang chung la
niém vui va s doan két. Bai hat c6 ngudn gdc tir truyén théng Scotland va Celtic, phan anh di san vén héa phong phu clia khu vure.”,

"scene": "B&i canh dién ra trong mét ngdi lang xinh dep clia Scotland vao mét budi sang nang dep. Khong khi trong lanh va bau troi trong xanh. Ngudi dan trong lang duoc thay dang di qua
nhitng con duwdng udn lugn, budc chan nhanh nhen va vui tuoi. Ho mang theo hoa va gié d6, khuén mat rang r& véi niém han hoan. Budng ho di dan dén mot ngdi nha thd nhd, c6 kinh, dugc
trang tri béng cay cd twoi mdi va hoa dai. Khi ho tién gan, am thanh cla cdy dan fiddle va tréng bodhran vang 1én, bao hiéu 1& cudi sép bat dau. Bén trong nha the, c6 dau Mairi dirng & d6, vira
lo lang vira xinh dep, mé &rng hdng hanh phuc. Khach mdi, tay trong tay, budc nhay nhét theo nhac, chan di chuyén nhip nhang theo tiéng tréng. Khdng khi tran ¢y niém vui va sy chic tung,
moi ngudi déu mong mudn tham gia vao 1& cudi cia Mairi va ngudi yéu dau clia ca."

}

}

"id": "Vjagbky1lQCU",

"title": "'Deed | Do",

"artists": [

"Fred Rose",
"Walter Hirsch"

1

"genre": "Jazz",

"background": "Originally composed in the early 20th century, 'Deed | Do' has been performed by numerous artists and remains a staple in jazz and pop standards. The song's lyrics express
themes of love and devotion, often interpreted through various musical styles.",

"analysi 'Deed | Do' features a simple yet effective harmonic structure that allows for expressive vocal interpretations. The song typically follows a AABA form, common in jazz standards,
where the A sections present the main theme and the B section offers a contrasting idea. The melody is characterized by its lyrical phrasing, which provides opportunities for improvisation and
personal expression by performers. The use of syncopation and swing rhythm enhances its playful yet romantic feel, making it a favorite among jazz musicians. The lyrics convey a deep
emotional connection, often evoking feelings of nostalgia and longing.",

"description": "The music is characterized by a smooth, flowing melody that captures the essence of romantic yearning. It features lush harmonies and a moderate tempo that invites
listeners to engage with its sentimental lyrics. Instrumentation typically includes piano, bass, and light percussion, creating an intimate atmosphere that complements the vocal line. The overall
sound is warm and inviting, making it suitable for both casual listening and more formal performances.",

The music plays softly in a dimly lit jazz club, where patrons are seated at small tables adorned with flickering candles. The air is filled with the rich aroma of coffee and dessert as
couples lean in closer to hear the tender notes. A singer stands center stage under a spotlight, their voice smooth and emotive, capturing the attention of an audience lost in the moment.
Outside, rain gently taps against the window, adding to the cozy ambiance as the singer expresses heartfelt sentiments about love and devotion.",

"leadsheet": "X:1\nT:\"Deed | Do\nT:'Deed | Do\nC:Fred Rose\nL:1/8\nM:2/2\nl:linebreak $\nK:C\nV:1 treble nm=\"Voice\"\n%%MIDI program 52\nV:1\n\"Cmaj7\" A c3- c4 [\"Gm7\" A G3-
\"C7\" G4 |\"Fmaj7\" E D3- D4 |\"Fm\" E D3- D4 |\"Em7\" E G3-\"A7\" G4 | %5\nw: Do | *|want you? *|Oh my, *|do I? *|Hon- ey *|\n\"D7\" C4\"G7\" D4 |\"Cmaj7\" C8- |\"Dm7\" C4\"G7\"
z4 |\"Cmaj7\" A c3- c4 |\"Gm7\" A G3-\"C7\" G4 | %10\nw: 'deed I|do.||Do | *|need you? *|\n\"Fmaj7\" E D3- D4 |\"Fm\" E D3- D4 |\"Em7\" E G3-\"A7\" G4 |\"D7\" C4\"G7\" D4
[\"Cmaj7\" C8- |\"Gm7\" C4\"C7\" z4 | %16\nw: Oh my, *|do I? *|Hon- ey *|'deed I|do.| |\n\"Fmaj7\" 22 A2 B2 c2 | d2 c2 A2 F2 |\"Bdim7\" E8 |\"E7\" B8 |\"Em7\" z2 E2 G2 A2 |\"A7\" B2
A2 G2 E2 | %22\nw: I'm glad that]|I'm the one who|found |you, |that's why I'm|al- ways han- gin'|\n\"D7\" D8 |\"Dm7\"\"G7\" G8 |\"Cmaj7\" A c3- c4 |\"Gm7\" A G3-\"C7\" G4 |\"Fmaj7\" E
D3- D4 |\"Fm\" E D3- D4 | %28\nw: 'round |you.|Do | *|love you? *|Oh my, *|do I? *|\n\"Em7\" E G3-\"A7\" G4 [\"Dm7\" C4\"G7\" D4 |\"C\" C8 |] %31\nw: Hon- ey *|'deed I|do.|\n\n"

}

Figure 7: Metadata examples from the M4-RAG and WikiMT-X datasets. The top section shows an entry for
“Mairi’s Wedding” from the M4-RAG dataset, including detailed multilingual metadata in English and Vietnamese,
and an associated audio recording identified by a YouTube ID. The bottom section presents an entry for “Deed I Do”
from the WikiMT-X dataset, which includes a YouTube ID linking to an audio recording, a genre label (Jazz, one of
eight predefined categories), four types of long-form text annotations, and a lead sheet in ABC notation.
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B #-SNE Visualizations on WikiMT-X

We apply #-SNE (t-distributed Stochastic Neighbor
Embedding) to the WikiMT-X dataset to visualize
how CLaMP 3 organizes data into a shared rep-
resentation space. The projections illustrate the
model’s ability to align data across modalities, lan-
guages, and semantic categories.

Fig. 8a includes features from Text (back-
ground annotations), ABC notation, MIDI, and
Audio. Each modality forms a distinct cluster, re-
flecting the inherent differences in how information
is encoded. Notably, modalities closer to Text tend
to perform better, aligning with the trend in Table 3,
suggesting a correlation between embedding prox-
imity and cross-modal effectiveness. Additionally,
all musical modalities display a mirrored symmetry
around the Text cluster, indicating that Text may
serve as a semantic anchor. This symmetry sug-
gests CLaMP 3 aligns modalities relative to Text,
balancing modality-specific features while preserv-
ing semantic consistency.

Fig. 8b focuses on background annotations in
four languages—English, Spanish, Chinese, and
Ambharic—selected to represent varying retrieval
performance levels. Despite their linguistic dif-
ferences, these languages largely overlap, indicat-
ing strong cross-lingual alignment. English and
Spanish cluster closely, reflecting both their shared
linguistic roots. Chinese shows moderate over-
lap with English, suggesting that CLaMP 3 ef-
fectively bridges typologically distant languages.
However, Amharic, a low-resource and unseen lan-
guage, forms more isolated clusters, indicating the
challenges of aligning low-resource languages.

Fig. 8c shows four semantic cate-
gories—Background, Analysis, Description,
and Scene—showing how CLaMP 3 handles
different content types. Background, Analysis, and
Description often converge, reflecting the overlap
in explanatory texts as they cover related musical
concepts. In contrast, Scene forms distinct clusters,
likely because it focuses on visual depictions,
leading to more consistent semantic patterns tied
to specific imagery rather than music.

Across all three visualizations, genre bound-
aries remain clear despite differences in modal-
ity, language, or semantic category. This shows
that CLaMP 3 effectively aligns multimodal and
multilingual data while preserving genre-specific
distinctions, demonstrating the model’s strong rep-
resentational capabilities.
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Figure 8: -SNE visualization of the WikiMT-X dataset,
illustrating the distribution of samples based on three
distinct factors: (a) Modality, (b) Language, and (c)
Semantics. The representations are extracted using
CLaMP 3,,s. Each point represents a data sample, col-
ored according to its genre.



Table 5: Results for English text-to-music retrieval on several benchmarks: WikiMT and MidiCaps have 1,010 pairs,
Song Describer Dataset (SDD) has 706 audio and 1,106 captions, and MusicCaps-Remake (MC-R) contains 2,777
pairs. MC-R prevents data leakage by using full-length audio and rewritten captions from AudioSet’s evaluation set.

Model Symbolic Benchmarks WikiMT-X (Sheet Music)
ode
WikiMT MidiCaps Background Analysis Description Scene

CLaMP 3, 0.1973 0.0788 0.2108 0.1660 0.1049 0.1056
CLaMP 3, 0.3789 0.1322 0.3591 0.3088 0.1316 0.1643
CLaMP 32 0.4498 0.2826 0.4028 0.3382 0.0835 0.1512
CLaMP 3,554 0.2993 0.0884 0.2919 0.2507 0.1459 0.1464
CLaMP 34445 0.3555 0.1798 0.3301 0.2758 0.1274 0.1512
CLaMP 3¢% 0.3631 0.2688 0.3295 0.2957 0.0951 0.1395

Audio Benchmarks WikiMT-X (Audio)
Model

SDD MC-R Background Analysis Description Scene
CLaMP 3, 0.1977 0.1117 0.1602 0.1375 0.0854 0.0819
CLaMP 3, 0.1607 0.0937 0.1718 0.1586 0.0997 0.0871
CLaMP 32 0.1612 0.0959 0.1180 0.1206 0.0639 0.0619
CLaMP 3,54 0.2003 0.1045 0.1597 0.1522 0.1020 0.0873
CLaMP 3444 0.1985 0.1177 0.2017 0.1711 0.0988 0.0963
CLaMP 32 0.2115 0.1180 0.1583 0.1530 0.0768 0.0885

saas

Table 6: Results for multilingual text-to-music retrieval on translated WikiMT-X background annotations. Languages
marked with asterisks were not included in the M4-RAG training data. The BLEU scores below each language are
calculated by back-translating the text with the SeamlessM4T model and comparing it to the original English text.

ru fr es ar zh fi* el* ta* kk* am*

Model 49.69 5550  62.82 5338 3958 3919 5555 40.07  36.57  56.08

ABC Notation

CLaMP 3, 0.1750 0.1931 0.1964 0.1594 0.1559 0.1828 0.1641 0.0997 0.1575 0.0876
CLaMP 3, 0.3262 0.3544 03536 03072 0.2459 0.3163 0.2879 0.1336 0.2894 0.1317
CLaMP 32 0.3614 0.3949 0.3921 0.3155 0.2373 0.3524 0.3226 0.1415 0.3397 0.1871
CLaMP 3,55,  0.2648 0.2810 0.2817 0.2450 0.2271 0.2644 0.2415 0.1432 0.2561 0.1300
CLaMP 3,,,s 0.2918 0.3214 0.3239 0.2789 0.2358 0.2919 0.2681 0.1246 0.2703 0.1139
CLaMP 3¢? 0.2954 0.3171 0.3225 02773 0.2144 0.2990 0.2721 0.1348 0.2750 0.1690

saas

MIDI

CLaMP 3, 0.0418 0.0416 0.0432 0.0404 0.0332 0.0456 0.0449 0.0297 0.0398 0.0267
CLaMP 3, 0.1174 0.1284 0.1316 0.1132 0.0890 0.1217 0.1112 0.0623 0.1117 0.0540
CLaMP 32 0.1921 0.2101 0.2137 0.1681 0.1316 0.2019 0.1702 0.0804 0.1765 0.1039
CLaMP 3,55,  0.0565 0.0582 0.0620 0.0582 0.0517 0.0620 0.0585 0.0394 0.0595 0.0354
CLaMP 34,,s  0.1165 0.1319 0.1330 0.1141 0.0937 0.1245 0.1143 0.0601 0.1104 0.0544
CLaMP 3¢2 0.1499 0.1645 0.1664 0.1408 0.1049 0.1560 0.1399 0.0653 0.1335 0.0793

saas

Audio

CLaMP 3, 0.1267 0.1515 0.1525 0.1210 0.1089 0.1430 0.1428 0.0610 0.1043 0.0559
CLaMP 3, 0.1619 0.1717 0.1714 0.1529 0.1414 0.1585 0.1544 0.0991 0.1456 0.0774
CLaMP 3;3 0.1068 0.1150 0.1202 0.0981 0.0877 0.1112 0.1014 0.0720 0.1005 0.0681
CLaMP 3,554 0.1426  0.1580 0.1588 0.1370 0.1202 0.1468 0.1431 0.0795 0.1276 0.0617
CLaMP 3445 0.1788 0.1980 0.1962 0.1665 0.1459 0.1770 0.1736 0.0945 0.1561 0.0675
CLaMP 3% 0.1331 0.1566 0.1554 0.1304 0.1208 0.1550 0.1460 0.0901 0.1340 0.0874

saas
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Table 7: Results for emergent cross-modal retrieval on
WikiMT-X pairings across different musical modalities.
S: Sheet Music (ABC notation), P: Performance Signals
(MIDI, converted from ABC), A: Audio recordings.

Model S—P S—A P—=S P—=A A—=S AP
CLaMP 3,5 0.1637 0.0557 0.1477 0.0248 0.0456 0.0237
CLaMP 3;, 0.3205 0.0739 0.3054 0.0397 0.0479 0.0237
CLaMP 352 0.4547 0.0543 0.5293 0.0313 0.0492 0.0383

CLaMP 3455q 0.1911 0.0619 0.1646 0.0299 0.0513 0.0264
CLaMP 34445 0.3262 0.0578 0.3146 0.0397 0.0410 0.0303
CLaMP 32, 0.3909 0.0688 0.4375 0.0467 0.0558 0.0431

C Performance of CLaMP 3 Variants

A straightforward way to train CLaMP 3 would be
to align symbolic music, audio, and text all at once.
However, early experiments showed that this led
to unstable training. The text encoder struggled
because symbolic and audio data had very differ-
ent distributions (Fig.8a) and pulled it in opposite
directions, making alignment ineffective. To solve
this, we adopted a multi-stage alignment strategy
(Sec. 2.1) that gradually integrates each modality,
ensuring stable and effective alignment.

To explore the best way to align modalities,
we tested different training orders, leading to sev-
eral model variants. The main difference among
them is how and when the text encoder is aligned
with symbolic music and audio encoders:

CLaMP 3,:: A two-stage alignment where
text is first aligned with audio, then the text encoder
is frozen while aligning with symbolic music.

CLaMP 3,,: The reverse of CLaMP 3, first
aligning text with symbolic music, then freezing
the text encoder while aligning with audio.

CLaMP 353: Same as CLaMP 3,, but start-
ing with pre-trained text and symbolic encoders
from CLaMP 2.

CLaMP 3,,: A four-stage alignment: audio
— symbolic — symbolic — audio, with the text
encoder frozen in the second and fourth stages to
maintain stability.

CLaMP 3,,: A four-stage alignment: sym-
bolic — audio — audio — symbolic, also freezing
the text encoder in the second and fourth stages.

CLaMP 322, : Same as CLaMP 3, but
initialized with pre-trained text and symbolic en-
coders from CLaMP 2.

We evaluate these six variants across all ex-
periments in Sec. 4 to assess their effectiveness in
different retrieval tasks.
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Table 5 shows that aligning text with sym-
bolic music before audio improves generalization
in English text-to-music retrieval. CLaMP 3, out-
performs CLaMP 3,4 in symbolic retrieval without
compromising audio performance. Four-stage mod-
els outperform two-stage models in audio retrieval,
emphasizing the importance of iterative alignment.
Among them, CLaMP 3,,s achieves the best bal-
ance between symbolic and audio retrieval. Lever-
aging CLaMP 2’s weight initialization enhances
symbolic retrieval, as seen in CLaMP 3¢2 leading
symbolic tasks. However, it does not consistently
improve audio retrieval, likely because CLaMP 2
was trained only on symbolic music, limiting its
text encoder’s adaptability to audio alignment.

Table 6 demonstrates the impact of pre-
training and training order on multilingual text-
to-music retrieval. In symbolic retrieval, using
CLaMP 2’s pre-trained text-symbolic encoders pro-
vides a clear advantage, with CLaMP 32 achieving
the highest scores across most languages. This sug-
gests that pre-training helps build a strong shared
representation space, especially for MIDI, where
M4-RAG’s limited native data weakens overall per-
formance. However, pre-training is not always
decisive, as some non-pretrained models surpass
pre-trained variants in certain languages for ABC
retrieval. In contrast, audio retrieval is consistently
strongest with CLaMP 3,,5, even in unseen lan-
guages, suggesting that training order plays a more
crucial role in cross-lingual generalization.

Table 7 evaluates emergent cross-modal re-
trieval, where no direct supervised alignment exists
among musical modalities. CLaMP 32 achieves
the best symbolic retrieval (S<+P), showing that
CLaMP 2 pre-training strengthens symbolic-text
alignment, which indirectly benefits symbolic re-
trieval. For symbolic-audio retrieval, CLaMP 3¢2
performs best, leading in P—A (0.0467), A—S
(0.0558), and A—P (0.0431). It consistently out-
performs CLaMP 3,,,, suggesting that pre-training
provides a stronger shared representation space,
leading to better cross-modal generalization be-
tween unpaired modalities.

These results show the importance of both
training order and pre-training in MIR. Multi-stage
alignment stabilizes training, while training order
plays a key role, particularly in audio retrieval
and cross-lingual generalization. Pre-training with
CLaMP 2 strengthens symbolic retrieval and im-
proves cross-modal generalization, but its benefits
are limited for audio retrieval.



Table 8: Symbolic classification performance for ABC notation and MIDI was assessed across three datasets:
WikiMT (1,010 pieces, 8 genres), VGMIDI (204 pieces, 4 emotions), and Pianist8 (411 pieces, 8 composers).

WikiMT VGMIDI Pianist8
Model Modality
Fl-macro  Accuracy Fl-macro  Accuracy Fl-macro  Accuracy

M3 ABC 0.2349 0.4010 0.6016 0.6341 0.7395 0.7590
CLaMP ABC 0.3452 0.4267 0.6453 0.6866 0.7067 0.7152
CLaMP 2 ABC 0.3990 0.4653 0.7449 0.8049 0.8025 0.8072
CLaMP 3,5 ABC 0.3135 0.4307 0.6638 0.7073 0.6872 0.6867
CLaMP 3, ABC 0.3225 0.4455 0.7725 0.8049 0.7403 0.7590
CLaMP 32 ABC 0.3316 0.4356 0.6845 0.7317 0.7722 0.7711
CLaMP 3,554 ABC 0.3102 0.4455 0.4990 0.6341 0.6796 0.6988
CLaMP 35445 ABC 0.3177 0.4356 0.7969 0.8049 0.7716 0.7952
CLaMP 3¢% ABC 0.3568 0.4257 0.6694 0.7561 0.7891 0.7952
M3 MIDI 0.2621 0.4257 0.5399 0.6098 0.9199 0.9157
CLaMP 2 MIDI 0.2898 0.4455 0.5246 0.6585 0.8927 0.8916
CLaMP 3,5 MIDI 0.3361 0.4653 0.5600 0.5854 0.8186 0.8313
CLaMP 3, MIDI 0.2614 0.4010 0.6864 0.7073 0.8461 0.8554
CLaMP 32 MIDI 0.3073 0.4455 0.6223 0.7073 0.8696 0.8675
CLaMP 3,554 MIDI 0.2882 0.4406 0.5001 0.6098 0.8076 0.8193
CLaMP 34445 MIDI 0.2721 0.4158 0.5723 0.6341 0.7834 0.7952
CLaMP 3°2 MIDI 0.2943 0.4208 0.5474 0.6829 0.8565 0.8554

saas

Table 9: Audio classification performance is evaluated on multiple benchmarks included in MARBLE: MTT (25,860
clips, 50 tags), GS (7,035 clips, 24 keys), GTZAN (1,000 clips, 10 genres), EMO (744 clips, valence/arousal
regression), Nsynth (305,979 clips, 11 instrument categories, 88 pitches), and VocalSet (7,506 clips, 17 singing
techniques, 20 singers).

MTT GS GTZAN EMO Nsynth  Nsynth VocalSet VocalSet
Model Tagging Key Genre Emotion Instrument  Pitch Tech Singer
ROC AP Acc Acc R2V R24 Acc Acc Acc Acc
MERT peqn  0.9068 0.3915 0.6475 0.6689 0.5185 0.7501  0.6963 09152 0.7219  0.8961
CLAP 0.9066 0.3897 0.1596 0.8207 0.5408 0.7025 0.7817 0.5146 0.6868  0.6327

TTMR++ 0.9082 0.3922 0.1672 0.8551 0.5599 0.7116  0.6735  0.5012 0.6342  0.5352
CLaMP 3,5 09097 0.3888 0.4935 0.8379 0.5944 0.7413 0.6445  0.8601 0.6780  0.8491
CLaMP 35, 09084 0.3863 0.2533 0.8448 0.6031 0.6949  0.6338  0.8647 0.7061 0.8419
CLaMP 32 0.9092 0.3924 02545 0.8551 0.5477 0.6876 0.6147  0.8574 0.6710  0.8007
CLaMP 3,55, 09098 0.3935 0.1498 0.8793 0.5921 0.7327  0.6411 0.8742  0.6842  0.8555
CLaMP 34,45 09109 0.3941 0.5377 0.8655 0.5907 0.7004 0.6377  0.8689 0.7053  0.8441
CLaMP 3¢%,. 0.9095 0.3938 0.3907 0.8138 0.5368 0.6589  0.6562  0.8732 0.6798  0.8470

saas

Table 10: Audio classification performance on the MTG-Jamendo dataset (55,000+ tracks) was evaluated across
four tasks: instrument classification (41 tags), mood/theme classification (59 tags), genre classification (95 tags),
and top-50 multi-label classification.

Model Instrument Mood/Theme Genre Top50
ode
ROC AP ROC AP ROC AP ROC AP

MERT,,can 0.7421 0.1764 0.7598 0.1383 0.8672 0.1818 0.8280 0.2837
CLAP 0.7480 0.1812 0.7601 0.1323 0.8544 0.1716 0.8197 0.2773
TTMR++ 0.7806 0.2111 0.7705 0.1477 0.8742 0.2030 0.8340 0.3049
CLaMP 3, 0.7895 0.2254 0.7814 0.1476 0.8750 0.2114 0.8321 0.3068
CLaMP 3, 0.7780 0.2112 0.7823 0.1533 0.8713 0.2008 0.8276 0.3011
CLaMP 3;‘3 0.7832 0.2168 0.7796 0.1475 0.8679 0.2046 0.8220 0.2964

CLaMP 3,5, 0.7911 0.2269 0.7828 0.1486 0.8763 0.2109 0.8290 0.3041
CLaMP 3445 0.7872 0.2208 0.7835 0.1547 0.8703 0.2076 0.8242 0.3021
CLaMP 3¢ 0.7803 0.2145 0.7825 0.1522 0.8734 0.2092 0.8296 0.3074
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D Music Classification

This section evaluates CLaMP 3 variants and base-
lines via linear probing, assessing their ability to
classify musical attributes in symbolic and audio
music, as well as musical modalities and text anno-
tations in WikiMT-X.

D.1 Symbolic Music Classification

Table 8 presents symbolic music classification re-
sults for ABC notation and MIDI across three
benchmarks:

WikiMT (Wu et al., 2023a) consists of 1,010
lead sheets in ABC notation sourced from Wiki-
fonia®, labeled into 8 genre categories based on
corresponding Wikipedia entries.

VGMIDI (Ferreira and Whitehead, 2019) con-
tains 204 MIDI transcriptions of video game sound-
tracks, annotated with 4 emotion labels derived
from valence and arousal levels.

Pianist8 (Chou et al., 2021) includes 411 pi-
ano performances, transcribed from audio to per-
formance MIDI, and labeled with their respective
composers across eight categories.

To enable evaluation in both formats, all
datasets were converted between ABC and MIDI.

Despite improved text alignment, CLaMP 3
does not surpass CLaMP 2 in sheet music clas-
sification. This is likely because CLaMP 3 was
trained on only half as much symbolic data. While
stronger textual supervision benefits retrieval, it
does not fully offset the reduced symbolic training
for classification. However, CLaMP 3 still out-
performs M3—the symbolic music encoder it was
initialized from—on most benchmarks, suggest-
ing that contrastive text supervision enhances the
semantic salience of extracted features.

These results indicate that retrieval and clas-
sification improvements are relatively indepen-
dent. In text-to-music retrieval (Table 2, Table 3),
CLaMP 3—especially CLaMP 3%2—significantly
outperforms CLaMP 2, yet this advantage does not
extend to classification. A possible explanation is
that retrieval requires rich representations and effec-
tive interaction between text and music encoders,
while classification depends solely on an encoder’s
ability to extract features relevant to predefined la-
bels. Thus, while higher-quality text annotations
enhance retrieval, they do not necessarily improve
symbolic music classification.

3http://www.synthzone.com/files/Wikifonia/
Wikifonia.zip
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D.2 Audio Music Classification

To evaluate the audio classification performance
of CLaMP 3 variants and baselines, we conduct
linear probing on MARBLE (Yuan et al., 2023)
and MTG-Jamendo (Bogdanov et al., 2019).

MARBLE is a comprehensive benchmark col-
lection for music representation evaluation. We
assess models on 8 tasks covering different aspects
of audio understanding. MTG-Jamendo is a large-
scale benchmark with over 55,000 music tracks
annotated for multiple classification tasks. It fo-
cuses on high-level musical attributes, making it
well-suited for evaluating a model’s ability to cap-
ture semantic meaning in music.

We also assess the self-supervised model
MERT, CLaMP 3’s audio feature extractor, aver-
aging embeddings to one per 5-second clip across
layers and time steps.

Table 9 shows the strengths of contrastive
and self-supervised models in audio classification.
CLaMP 3 variants excel in high-level tasks, like
genre classification (GTZAN) and tagging (MTT),
where capturing abstract musical meaning is cru-
cial. MERT, however, performs better in low-level
tasks such as key detection (GS) and pitch classifi-
cation (Nsynth), where fine spectral detail is more
important. Contrastive models generally struggle
with short-duration audio (e.g., 4-second clips in
Nsynth) because their focus on aligning longer seg-
ments with text limits their ability to capture fine
acoustic details. These results suggest contrastive
learning is better for semantic tasks, while self-
supervised models are more effective for detailed
acoustic analysis, particularly for short clips.

Table 10 shows that contrastive models, partic-
ularly CLaMP 3 variants, consistently outperform
MERT across all MTG-Jamendo tasks. Notably,
CLaMP 3 models achieve the highest scores in
most tasks, demonstrating how diverse and high-
quality text annotations help contrastive models
learn and capture complex musical semantics.

In summary, contrastive models perform well
in high-level classification tasks but struggle with
short clips and fine-grained acoustic details. Their
effectiveness heavily depends on the text annota-
tions used during training. For instance, CLAP
achieves strong results in instrument classification
(Nsynth) because its training data is dominated by
instrument and genre descriptions. However, it per-
forms poorly in key detection (GS), where such
annotations offer little relevant information.


http://www.synthzone.com/files/Wikifonia/Wikifonia.zip
http://www.synthzone.com/files/Wikifonia/Wikifonia.zip

Table 11: Classification performance on WikiMT-X (1,000 entries, 8 genres) across different musical modalities and

text annotations.

Model ABC MIDI Audio Background Analysis Description Scene
Accuracy

CLaMP 0.7000 - - 0.8050 0.7900 0.6900 0.6250
CLaMP 2 0.6800 0.6350 - 0.7900 0.8150 0.7250 0.6150
CLAP - - 0.6450 0.6950 0.6800 0.6500 0.5550
TTMR++ - - 0.7150 0.7400 0.7600 0.6700 0.5950
CLaMP 3, 0.6850 0.6100 0.7050 0.8200 0.8350 0.7800 0.6550
CLaMP 3, 0.7000 0.6650 0.6850 0.8000 0.8600 0.7700 0.6500
CLaMP 3§Z 0.6850 0.6350 0.6850 0.7850 0.8550 0.7750 0.6500
CLaMP 3 s, 0.7000 0.6300 0.7200 0.8650 0.8650 0.7700 0.6850
CLaMP 3,445 0.7150 0.6800 0.7050 0.8400 0.8550 0.7800 0.6650
CLaMP 323% 0.6750 0.6300 0.6850 0.8300 0.8500 0.7700 0.6850
F1-macro

CLaMP 0.5252 - - 0.6835 0.6486 0.6079 0.4447
CLaMP 2 0.5287 0.3784 - 0.6617 0.6832 0.6333 0.3710
CLAP - - 0.3943 0.5913 0.5491 0.4921 0.3100
TTMR++ - - 0.4714 0.6914 0.6694 0.6254 0.4246
CLaMP 3, 0.5431 0.4005 0.4755 0.7424 0.7933 0.7639 0.4780
CLaMP 3, 0.5345 0.5108 0.4881 0.7917 0.8199 0.7372 0.4527
CLaMP 3§§ 0.5428 0.4171 0.4589 0.6626 0.7439 0.7318 0.4260
CLaMP 3,454 0.5499 0.3976 0.5130 0.8486 0.8277 0.6878 0.5207
CLaMP 3,445 0.5720 0.4967 0.4995 0.8123 0.8225 0.7484 0.4742
CLaMP 3¢2 0.5182 0.4313 0.4432 0.7811 0.8054 0.7082 0.4999
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D.3 Classification on WikiMT-X

Table 11 presents classification results across dif-
ferent musical modalities (ABC, MIDI, Audio) and
text annotations (Background, Analysis, Descrip-
tion, Scene) on WikiMT-X.

Compared to the WikiMT results in Table 8,
all models show substantial gains in genre classifi-
cation accuracy and F1-macro for ABC and MIDL.
This confirms that reannotating genre labels signifi-
cantly reduced label noise, leading to more reliable
classification. The improvements suggest that ear-
lier inconsistencies in genre annotations were a
major limiting factor in classification performance.
The reorganized label taxonomy and refined an-
notations in WikiMT-X provide a more structured
and consistent genre framework, making it a more
reliable benchmark for music classification.

Across different musical modalities, the best-
performing models for ABC, MIDI, and Audio
achieve comparable classification results. This sug-
gests that genre-related features are well-preserved
regardless of musical representation. Fig. 8a
further supports this observation, showing clear
genre boundaries across all modalities, indicating
CLaMP 3 models can effectively extract genre in-
formation from both representations, reinforcing
the idea that genre characteristics are consistently
encoded in musical data.
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A clear distinction emerges between text and
music classification: models perform significantly
better on text annotations (Background, Analysis,
Description) than on music data. This is likely
because text often contains explicit genre-related
cues, making classification more direct. For ex-
ample, descriptions like “syncopated piano chords
and walking bass” strongly suggest jazz. In con-
trast, classifying music requires models to infer
genre from intricate relationships between har-
mony, rhythm, and timbre. However, Scene classifi-
cation behaves differently from other text-based cat-
egories—it describes environmental settings rather
than musical attributes, making its classification
challenge more similar to music than text.

Models trained solely on audio-text alignment
(i.e., CLAP, TTMR++) perform worse in text clas-
sification, likely due to the limited diversity of an-
notations in large-scale audio-text datasets, which
often list only instruments and genres. In contrast,
symbolic-text datasets provide richer semantics,
including background context and musicological
analysis. CLaMP 3, is an exception—though its
text encoder was fully updated during audio align-
ment, it achieves much stronger text classification
than models like CLAP and TTMR++. This is
likely due to M4-RAG’s well-curated and diverse
annotations, which offer a broader and more expres-
sive linguistic representation of musical content.



Table 12: Results for English text-to-music retrieval on MusicCaps, reflecting data leakage in baseline models.
Evaluations are conducted on both the full set and the AudioSet evaluation set. R/O denotes the use of rewritten or
original captions, while F/C indicates retrieval using full tracks or clips.

Model Full Set (5,521 pairs) Eval Set (2,858 pairs)
RF RC OF oC RF RC OF ocC

CLAP 0.0536 0.0743 0.0640 0.0894 0.0657 0.0886 0.0774 0.1113
TTMR++ 0.1410 0.2315 0.1757 0.3155 0.1248 0.1341 0.1219 0.1382
CLaMP 3, 0.0874 0.0642 0.0696 0.0536 0.1119 0.0830 0.0917 0.0699
CLaMP 3,, 0.0741 0.0591 0.0530 0.0431 0.0934 0.0735 0.0661 0.0572
CLaMP 33(21 0.0729 0.0609 0.0619 0.0504 0.0961 0.0832 0.0822 0.0651
CLaMP 3,5, 0.0830 0.0592 0.0743 0.0530 0.1045 0.0784 0.0897 0.0723
CLaMP 3,45 0.0890 0.0705 0.0652 0.0523 0.1177 0.0889 0.0890 0.0682
CLaMP 3¢ 0.0973 0.0737 0.0762 0.0550 0.1180 0.0933 0.0961 0.0710
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E Data Leakage of MusicCaps

MusicCaps, a widely used text-to-music retrieval
benchmark, includes 5,521 music-text pairs with
10-second audio clips. As a subset of AudioSet,
many models are trained on overlapping data, rais-
ing concerns about reliability, as they may mem-
orize seen examples rather than learning true re-
trieval patterns.

Table 12 shows text-to-music retrieval results
on MusicCaps, examining data leakage in base-
line models. We evaluate performance on the full
dataset (Full Set) and the AudioSet evaluation sub-
set (Eval Set), while also assessing the effects of
caption rewording (Original vs. Rewritten) and
audio length (Clip vs. Full Track).

Leakage varies across models: TTMR++ is
the most affected, having been trained on Music-
Caps pairs from the training set of AudioSet, ex-
posing it to half the benchmark; CLAP, trained on
the full AudioSet, has seen all MusicCaps audio;
in contrast, CLaMP 3 has minimal exposure, with
only 150 audio recordings appearing in M4-RAG.

To mitigate leakage effects, we introduce
rewritten captions generated using Qwen, ensur-
ing semantic consistency while incorporating struc-
tured aspect lists—detailed annotations of key mu-
sical attributes such as instrumentation, mood, and
rhythm. Additionally, we conduct retrieval on both
10-second clips and full-length tracks, forming four
evaluation settings:

* RF: Rewritten captions with full tracks.
* RC: Rewritten captions with clips.
* OF: Original captions with full tracks.

* OC: Original captions with clips.
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Table 12 reveals clear data leakage. TTMR++
is the only model that performs worse on the eval-
uation set than on the full benchmark, despite the
evaluation set containing fewer retrieval candidates,
which should naturally lead to higher MRR scores.
This suggests severe overfitting to seen MusicCaps
training data. Additionally, both TTMR++ and
CLAP show performance drops with rewritten cap-
tions and full-length tracks. For TTMR++, this
suggests that these modifications help reduce leak-
age effects, though not entirely. For CLAP, the
decline is likely due to rewritten captions incor-
porating more detailed semantic information from
aspect lists, which may shift retrieval behavior.

In contrast, all CLaMP 3 variants show im-
proved performance with rewritten captions, likely
due to M4-RAG’s use of Qwen, making them more
attuned to its text patterns. They also gain an advan-
tage in full-track retrieval. While baseline models
rely on 10-second clips and average embeddings
across segments, CLaMP 3 processes up to 640 sec-
onds of audio, enabling it to capture relationships
across an entire track. In contrast, baselines extract
semantics from isolated clips, restricting their abil-
ity to utilize long-form audio context effectively.

These results raise broader concerns about
benchmark reliability in text-to-music retrieval.
Other benchmarks also face leakage risks—SDD,
for instance, comes from MTG-Jamendo, which
was included in CLAP’s training data. In contrast,
WikiMT-X, manually curated for this study, mit-
igates leakage by sourcing audio from the web
rather than existing datasets. However, since this
audio remains publicly accessible, large-scale mod-
els may still have exposure. To further reduce leak-
age, future benchmarks should prioritize private or
newly recorded datasets for unbiased evaluation.
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