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Abstract

CLaMP 3 is a unified framework developed to001
address challenges of cross-modal and cross-002
lingual generalization in music information re-003
trieval. Using contrastive learning, it aligns all004
major music modalities–including sheet mu-005
sic, performance signals, and audio recordings–006
with multilingual text in a shared representa-007
tion space, enabling retrieval across unaligned008
modalities with text as a bridge. It features a009
multilingual text encoder adaptable to unseen010
languages, exhibiting strong cross-lingual gen-011
eralization. Leveraging retrieval-augmented012
generation, we curated M4-RAG, a web-scale013
dataset consisting of 2.31 million music-text014
pairs. This dataset is enriched with detailed015
metadata that represents a wide array of global016
musical traditions. To advance future research,017
we release WikiMT-X, a benchmark compris-018
ing 1,000 triplets of sheet music, audio, and019
richly varied text descriptions. Experiments020
show that CLaMP 3 achieves state-of-the-art021
performance on multiple MIR tasks, signifi-022
cantly surpassing previous strong baselines and023
demonstrating excellent generalization in mul-024
timodal and multilingual music contexts.025

1 Introduction026

Music Information Retrieval (MIR) is a field that027

aims at developing computational tools for pro-028

cessing, organizing, and accessing music data. A029

core challenge in MIR is retrieving musical con-030

tent—whether sheet music, performance signals,031

or audio recordings—based on natural language032

queries (“a fast-paced classical piano piece”). This033

connection enables applications such as automatic034

music tagging, where models assign genres (“jazz,”035

“folk”) or descriptive attributes (“melancholic,”036

“upbeat”), facilitating music organization, search,037

and recommendation. By integrating NLP method-038

ologies, MIR enables more intuitive access to mu-039

sical content, making it more interpretable and040

searchable through text.041
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Figure 1: CLaMP 3 demonstrates robust cross-modal
and cross-lingual generalization. Supervised alignment
(solid arrows) links paired modalities, while emergent
alignment (dashed arrows) bridges unaligned ones. A
multilingual text encoder enables retrieval in languages
unseen (grayed-out bubbles) during alignment.

These capabilities position MIR as a critical 042

bridge between music and language, supporting 043

various applications beyond retrieval and annota- 044

tion. For instance, cross-modal representations en- 045

able text-to-music generation models (Agostinelli 046

et al., 2023; Chen et al., 2024) to create music 047

based on text descriptions. MIR also aids in the 048

automatic evaluation of these models by assessing 049

how closely the generated music aligns with text 050

descriptions or resembles the ground truth (Copet 051

et al., 2023; Retkowski et al., 2024). 052

Despite these advancements, MIR faces signifi- 053

cant challenges in addressing the complexities of 054

multimodality and multilinguality. Music exists 055

in many forms: sheet music offers human-readable 056

representations for theoretical analysis and edu- 057

cation; performance signals (e.g., MIDI) capture 058

timing and dynamics for precise digital editing; and 059

audio recordings serve as the primary medium for 060

listening. While these modalities complement each 061

other, their heterogeneous representational struc- 062

tures complicate unified computational processing. 063
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Adding to this complexity, as a universal064

medium, music is described in numerous lan-065

guages, crossing cultural and linguistic boundaries.066

Musical terminology, descriptions, and cultural ref-067

erences vary significantly between linguistic com-068

munities, each bringing its own rich vocabulary069

and cultural context. To build global and acces-070

sible MIR systems, it is essential to process and071

understand these diverse expressions effectively.072

Unfortunately, the development of MIR is lim-073

ited not only by the lack of music-text pairs but074

also by the general scarcity of paired data across075

different musical modalities. As a result, most re-076

search focuses on retrieval between specific modal-077

ity pairs, such as text and audio (Huang et al., 2022;078

Doh et al., 2024; Zhu et al., 2025) or text and sheet079

music (Wu et al., 2023a). This narrow focus re-080

stricts the potential for cross-modal interactions,081

preventing a more comprehensive understanding082

of music. Additionally, existing text data is of-083

ten short-form, like tags, with few long-form de-084

scriptions (Wu et al., 2023b), leading to shallow085

semantics. These datasets are also predominantly086

in English (Doh et al., 2023b), with limited rep-087

resentation of other languages, neglecting music’s088

global and multilingual nature.089

To tackle these challenges, a unified framework090

is crucial for aligning musical modalities and bridg-091

ing linguistic gaps, particularly in the absence092

of paired training data. Large Language Models093

(LLMs) present a promising solution by addressing094

the limitations of text semantics and the scarcity of095

linguistic diversity in music-text datasets. These096

models excel at transforming basic metadata into097

fluent and contextually rich descriptions (Doh et al.,098

2023a; Bai et al., 2024). Furthermore, their multi-099

lingual capabilities allow them to support a wide100

array of languages (Wu et al., 2024), enhancing101

semantic depth and enabling more inclusive access102

across diverse linguistic and cultural contexts.103

In this paper, we introduce CLaMP 3, a uni-104

versal MIR framework that processes music and105

text while aligning them into a shared represen-106

tation space. It covers all major music modali-107

ties: 1) sheet music, 2) performance signals, and108

3) audio recordings, along with 4) multilingual109

text. Each modality is encoded through its respec-110

tive feature extractor. To unify these representa-111

tions, we employ contrastive learning (Sohn, 2016),112

aligning both musical and textual features. This113

enables seamless cross-modal retrieval and integra-114

tion across diverse musical formats and languages.115

To address the shortage of paired music-text data, 116

we use Retrieval-Augmented Generation (RAG) 117

(Lewis et al., 2020) to create M4-RAG, a dataset of 118

2.31 million music-text pairs covering various mu- 119

sical modalities. Starting with basic metadata like 120

song titles and artist names, we retrieve relevant 121

web documents and use an LLM to generate de- 122

tailed annotations. These annotations include short 123

tags, long descriptions, and multilingual transla- 124

tions, providing rich and diverse information. 125

In addition, we present WikiMT-X, the first 126

benchmark to align text, audio, and sheet music. 127

It includes 1,000 triplets with diverse text annota- 128

tions, such as genre labels and detailed long-form 129

descriptions, including background context, mu- 130

sical analysis, general descriptions, and scene de- 131

pictions. WikiMT-X facilitates evaluation across 132

modalities and semantic perspectives, providing 133

a holistic framework to assess models’ ability to 134

align and interpret musical content. 135

Experiments demonstrate that CLaMP 3 136

achieves state-of-the-art performance on various 137

MIR tasks, including text-to-audio and text-to- 138

symbolic music retrieval, significantly surpassing 139

all baselines. It also excels in multilingual retrieval, 140

generalizing to languages not present during align- 141

ment. By leveraging text as a bridge, CLaMP 3 142

enables emergent cross-modal retrieval, connecting 143

musical modalities without paired training data. 144

Overall, this work contributes: 145

• CLaMP 3 unifies musical modalities and 146

languages in a shared representation space, 147

achieving strong performance on a wide range 148

of MIR tasks and generalizing to unseen lan- 149

guages with emergent cross-modal alignment. 150

• We curate M4-RAG, a dataset of 2.31 mil- 151

lion music-text pairs with diverse annotations, 152

spanning 27 languages and 194 countries, ad- 153

dressing a critical gap in high-quality training 154

data for music and language tasks. 155

• WikiMT-X links text, audio, and sheet music 156

with 1,000 triplets, offering a first-of-its-kind 157

resource to evaluate models holistically across 158

different modalities and semantic aspects. 159

To encourage future research, we will publicly 160

release the complete codebase, pre-trained weights 161

of CLaMP 3, 1.56 million audio-text training pairs1, 162

and the WikiMT-X benchmark. 163
1Due to the inclusion of internal data, the 0.75 million

symbolic-text training pairs will not be publicly available.
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Figure 2: CLaMP 3 uses contrastive learning to align features across modalities. Sheet music and performance
signals are segmented into units (bars or MIDI messages) and processed by the symbolic music encoder, while
audio is segmented into 5-second clips and processed through the audio feature extractor and audio music encoder.
Both symbolic and audio representations are aligned with text representations from the multilingual text encoder.

2 Model164

2.1 Training Objective165

CLaMP 3’s optimization objective is to minimize166

the InfoNCE loss (Oord et al., 2018), aligning em-167

beddings using contrastive learning:168

LCL = − 1

N

N∑
i=1

log
exp(sim(zti , z

m
i )/τ)∑N

j=1 exp(sim(zti , z
m
j )/τ)

, (1)169

where zti and zmi are text and music embeddings,170

sim(·, ·) is the similarity function (e.g., dot prod-171

uct), and τ is the temperature parameter. Positive172

pairs are aligned text-music samples, while nega-173

tives are unrelated samples from the same batch.174

Inspired by ImageBind (Girdhar et al., 2023), we175

adopt a multi-stage strategy using text as a bridge176

to address the lack of paired music data:177

Stage 1: The text encoder is first trained to align178

with one music encoder (e.g., symbolic encoder).179

Stage 2: It is then aligned with another music180

encoder (e.g., audio encoder), freezing the text en-181

coder to prevent representation drift.182

Stage 3: The text encoder is unfrozen to refine183

its alignment with the music encoder from Stage 2.184

Stage 4: The text encoder is frozen again to185

prevent shifts while re-aligning with the Stage 1186

music encoder to fix alignment drift from Stage 3.187

This strategy minimizes modality interference188

while mapping all modalities into a shared repre-189

sentation space for effective cross-modal transfer.190

2.2 Core Components 191

CLaMP 3 consists of several transformer-based 192

encoders (Vaswani et al., 2017) for each modality: 193

Multilingual Text Encoder: The text encoder 194

in CLaMP 3 is based on XLM-R-base (Conneau 195

et al., 2020), a model pre-trained on 2.5 TB of 196

CommonCrawl data across 100 languages. It has 197

12 layers and a hidden size of 768, enabling strong 198

cross-lingual generalization to unseen languages. 199

Symbolic Music Encoder: CLaMP 3 uses M3 200

(Wu et al., 2024), a self-supervised model for 201

encoding symbolic music, including multi-track 202

voice-interleaved ABC notation and lossless MIDI 203

encoding via MIDI Text Format (MTF). M3 seg- 204

ments ABC into bars and MIDI into messages, 205

treating each segment as a patch. The model has 12 206

encoder layers, a hidden size of 768, and processes 207

up to 512 patches or 32,768 characters per input. 208

Audio Music Encoder: It is a 12-layer trans- 209

former with a 768-dimensional hidden size, trained 210

from scratch for audio processing. This encoder 211

leverages pre-trained features from MERT-v1-95M 212

(Li et al., 2024), where MERT serves as a frozen 213

audio feature extractor. Each 5-second clip is repre- 214

sented by a single embedding, obtained by averag- 215

ing across all MERT layers and time steps. CLaMP 216

3 processes up to 128 such embeddings, covering 217

640 seconds of audio, allowing it to capture high- 218

level audio patterns over extended durations. 219

All encoders process their outputs through a lin- 220

ear layer, followed by average pooling, to generate 221

a single global semantic feature for each input. 222
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Table 1: Metadata overview for M4-RAG, grouped into
basic information, annotations, and translations. In An-
notations, Region and Language are written in English;
other fields follow the Language specification.

Category Field Content Avg Bytes

Basic Title Music Title 20.04
Artists Artist names 21.97

Annotations

Region Country of origin 20.69
Language Document language 7.02
Genres Genre list 21.83
Tags Keywords/playlists 51.91
Background Background context 531.79
Analysis Musical analysis 770.29
Description General description 591.86
Scene Scene depiction 750.92

Translations

Language Translation language 6.38
Background Translated background 819.76
Analysis Translated analysis 1130.47
Description Translated description 888.86
Scene Translated scene 1077.07

3 Dataset223

In this section, we introduce the M4-RAG dataset224

for training CLaMP 3 and the WikiMT-X bench-225

mark for evaluation. We start with data sources,226

followed by the metadata curation process. Then,227

we summarize dataset statistics like scale and di-228

versity. Finally, we elaborate on the details of the229

WikiMT-X benchmark.230

3.1 Data Sources231

The training data for CLaMP 3 is built from both232

symbolic and audio music datasets, ensuring a rich233

and diverse foundation for multimodal learning.234

The symbolic music data is sourced from Web-235

MusicText (WebMT) (Wu et al., 2023a) with 1.4236

million ABC notation files and the Million MIDI237

Dataset (MMD) (Zeng et al., 2021) with 1.5 mil-238

lion MIDI files. Since symbolic music formats239

use discrete symbols to represent music, they can240

be converted into one another, albeit with some241

information loss. To fully utilize the data, these242

datasets were unified by converting MMD to ABC243

and WebMT to MIDI. This process yields 3 million244

symbolic music files, offering diverse and compre-245

hensive training coverage.246

The audio data comes from the MERT training247

dataset (Li et al., 2024), comprising 160 thousand248

hours of audio from 1.8 million tracks collected on-249

line. As CLaMP 3 directly utilizes MERT-extracted250

features, the training data exclusively consists of251

these precomputed features, leading to substantial252

savings in both computational resources and time.253

3.2 Metadata Curation 254

Music titles often serve as unique identifiers, en- 255

abling the retrieval of rich and detailed descriptions 256

from diverse online sources. When paired with 257

artist names, they further refine searches, pinpoint- 258

ing specific versions or performances and reducing 259

ambiguities caused by covers or adaptations. This 260

distinctive property makes music titles a reliable ba- 261

sis for generating annotations, even in the absence 262

of paired music-text datasets. 263

To leverage this, we curated M4-RAG (Million- 264

scale Multilingual Music Metadata), a dataset com- 265

prising 2.31 million metadata entries. The curation 266

process involved several key steps: 267

Title Filtering: Entries without titles were ex- 268

cluded, as titles are essential for retrieving mean- 269

ingful information from the web. 270

Web Search: Google searches were conducted 271

using titles and, where available, artist names. For 272

each entry, the top 10 search results were collected 273

to ensure diverse and reliable sources. 274

RAG: Using Qwen2.5-72B (Yang et al., 2024), 275

we generated annotations from the retrieved docu- 276

ments and basic metadata (titles and artist names). 277

We refined the metadata when discrepancies were 278

found. The annotations covered the fields in Table 1 279

under Annotations, with an additional Boolean 280

field indicating if the source material had sufficient 281

information for generating meaningful annotations. 282

Quality Filtering: Entries were discarded if 283

flagged by the Boolean field for insufficient infor- 284

mation, if their format failed to meet the standards 285

outlined in Table 1, or if any fields were left empty. 286

Postprocessing: To address inconsistencies 287

in the generated annotations, Region fields were 288

mapped to recognized countries, while Description 289

fields were refined using Qwen to remove identi- 290

fiable details such as titles and lyrics. Language 291

consistency across long-form fields (Background, 292

Analysis, Description, Scene) was verified with fast- 293

Text (Joulin et al., 2017). Entries with inconsis- 294

tent languages or languages unsupported by either 295

XLM-R or Qwen were removed, and valid detected 296

languages were recorded in the Language field. 297

Multilingual Translation: To enhance linguis- 298

tic diversity, a random language supported by 299

both XLM-R and Qwen—different from the orig- 300

inal—was selected for each entry, and long-form 301

annotations were translated into it using Qwen. 302

Prompt and examples of generated annotations 303

are provided in Appendix A. 304
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Figure 4: Country-wise distribution of music tracks in
M4-RAG, spanning 194 countries.

3.3 Dataset Statistics305

Through metadata curation, we obtained M4-RAG,306

which consists of 2.31 million entries. It includes307

0.58 million ABC-text pairs from WebMT, 0.17308

million MIDI-text pairs from MMD, and 1.56 mil-309

lion audio-text pairs from the MERT training data.310

Each metadata entry includes both short-form311

annotations, such as genres and tags, and detailed312

long-form descriptions. As summarized in Table 1,313

the long-form descriptions account for the majority314

of the dataset, providing extensive semantic details315

from multiple perspectives.316

M4-RAG spans 27 languages, with the original317

metadata predominantly in English, as shown in318

Fig. 3. To address this imbalance, translations were319

added to the long-form descriptions, greatly boost-320

ing non-English data. This was particularly impact-321

ful for low-resource languages, such as Malay and322

Burmese, where most data depends on translations,323

greatly enhancing their representation.324

In terms of geographic coverage, M4-RAG incor-325

porates music from 194 countries. Fig. 4 illustrates326

contributions from both major music-producing327

nations and less-represented regions. This global328

reach ensures the dataset reflects a diverse range of329

musical traditions and styles from across the world.330
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Figure 5: Genre distribution of the WikiMT-X dataset.

3.4 Benchmark Dataset 331

WikiMT-X (WikiMusicText-eXtended) extends 332

WikiMT (Wu et al., 2023a), focusing on 20th- 333

century Western music with 1,000 entries, each 334

with sheet music, audio, and detailed metadata. 335

The original WikiMT dataset had the following 336

drawbacks: 1) the text was sourced from Wikipedia, 337

mainly focused on background information with 338

limited semantic diversity; 2) the absence of audio 339

data severely restricted the evaluation scope; and 340

3) the genre labels were obtained through keyword 341

matching, resulting in relatively low accuracy and 342

reducing the reliability of the dataset. 343

To address these deficiencies, WikiMT-X made 344

the following improvements: 345

• We used llama-3.1-sonar-large-128k-online2 346

(Dubey et al., 2024), feeding it sheet music 347

with titles, artist names, and lyrics. It retrieved 348

relevant web pages and summarized them into 349

background, analysis, description, and scene. 350

• We manually matched sheet music with au- 351

dio recordings retrieved from YouTube and 352

removed 10 identified duplicates. 353

• We reorganized genre categories based on data 354

distribution and re-annotated labels. 355

These enhancements make WikiMT-X useful for 356

multimodal MIR research tasks, assessing mod- 357

els’ capabilities in handling text annotations of di- 358

verse semantic types, and classifying music across 359

modalities using genre labels. 360

Appendix B provides t-SNE visualizations of 361

CLaMP 3 embeddings on WikiMT-X, showing 362

modality, language, and semantic distributions in 363

the shared representation space. In addition, Ta- 364

ble 11 presents the genre classification results of 365

CLaMP 3 and baseline models across different mu- 366

sical modalities and text annotations. 367
2https://www.perplexity.ai
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Table 2: Results for English text-to-music retrieval on several benchmarks: WikiMT and MidiCaps have 1,010 pairs,
Song Describer Dataset (SDD) has 706 audio and 1,106 captions, and MusicCaps-Remake (MC-R) contains 2,777
pairs. MC-R prevents data leakage by using full-length audio and rewritten captions from AudioSet’s evaluation set.

Model
Symbolic Benchmarks WikiMT-X (Sheet Music)
WikiMT MidiCaps Background Analysis Description Scene

CLaMP 0.2561 0.1236 0.2122 0.1345 0.0306 0.0426
CLaMP 2 0.3438 0.2695 0.3024 0.2374 0.0418 0.0838
CLaMP 3c2sa 0.4498 0.2826 0.4028 0.3382 0.0835 0.1512
CLaMP 3saas 0.3555 0.1798 0.3301 0.2758 0.1274 0.1500

Model
Audio Benchmarks WikiMT-X (Audio)
SDD MC-R Background Analysis Description Scene

CLAP 0.1310 0.0657 0.0598 0.0429 0.0318 0.0218
TTMR++ 0.1437 0.1248 0.1119 0.0833 0.0584 0.0301
CLaMP 3c2sa 0.1612 0.0959 0.1180 0.1206 0.0639 0.0619
CLaMP 3saas 0.1985 0.1177 0.2017 0.1711 0.0988 0.0963

4 Experiments368

This section evaluates CLaMP 3 on retrieval tasks,369

comparing it to state-of-the-art baselines. We370

present results for the two best-performing CLaMP371

3 variants—one for symbolic music and one for au-372

dio. A full retrieval comparison of all variants can373

be found in Appendix C, and classification results374

are available in Appendix D.375

4.1 Settings376

Both symbolic music and audio alignments were377

trained for up to 100 epochs on 8 NVIDIA H800378

GPUs. Symbolic music alignment required 4 days379

with a learning rate of 5e-5 and a batch size of 1024.380

Audio alignment took 1 day with a learning rate of381

1e-5 and a batch size of 2048.382

M4-RAG was divided into 99% for training and383

1% for validation. During training, metadata in-384

formation was randomly selected to form text in-385

puts. Mixed-precision (Micikevicius et al., 2018),386

AdamW optimizer (Loshchilov and Hutter, 2019),387

and a 1,000-step warm-up (Goyal et al., 2017) were388

used to enhance efficiency.389

Following the training strategy in Sec. 2.1, we ex-390

plored various modality alignment orders for sym-391

bolic and audio modalities, and present the two392

top-performing variants below:393

CLaMP 3saas: Optimized for audio, this model394

follows the full multi-stage alignment: symbolic395

→ audio → audio → symbolic.396

CLaMP 3c2
sa : Optimized for symbolic, this397

model starts from CLaMP 2-initialized text and398

symbolic encoders, followed by two stages: the399

text encoder is jointly trained with the symbolic en-400

coder, then frozen to align with the audio encoder.401

4.2 English Text-to-Music Retrieval 402

We evaluated retrieval performance using Mean Re- 403

ciprocal Rank (MRR), which measures the inverse 404

of the rank of the paired item, across all tasks. 405

For symbolic music retrieval, we compared 406

CLaMP 3 with CLaMP 2 (Wu et al., 2024) and 407

CLaMP (Wu et al., 2023a) on WikiMT (using 408

ABC notation) and MidiCaps (Melechovsky et al., 409

2024) (using MIDI). For audio retrieval, we eval- 410

uated CLaMP 3 against state-of-the-art models 411

CLAP (Wu et al., 2023b) and TTMR++ (Doh 412

et al., 2024) on the Song Describer Dataset (SDD) 413

(Manco et al., 2023) and MusicCaps-Remake (MC- 414

R) (Agostinelli et al., 2023), which addresses data 415

leakage by using full-length audio and rewritten 416

captions (see Appendix E) from AudioSet’s evalu- 417

ation set (Gemmeke et al., 2017). In addition, we 418

tested all models on WikiMT-X to evaluate their 419

performance across varying semantic perspectives. 420

As shown in Table 2, CLaMP 3 achieved sig- 421

nificant improvements over its predecessors and 422

baseline models across both symbolic and audio re- 423

trieval tasks. For symbolic music retrieval, CLaMP 424

3c2
sa achieved MRR scores of 0.4498 on WikiMT 425

and 0.2826 on MidiCaps, clearly outperforming 426

both CLaMP 2 and CLaMP, despite using only 427

half the training data. This improvement can be 428

attributed to the high-quality, richly annotated M4- 429

RAG dataset. Similarly, CLaMP 3saas, though op- 430

timized for audio retrieval, exceeded CLaMP by 431

a notable margin on symbolic benchmarks and 432

performed comparably to CLaMP 2 on WikiMT. 433

These results demonstrate that our multi-stage train- 434

ing approach effectively preserves performance on 435

modalities that were not explicitly optimized. 436
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Table 3: Results for multilingual text-to-music retrieval on translated WikiMT-X background annotations. Languages
marked with asterisks were not included in the M4-RAG training data. The BLEU scores below each language are
calculated by back-translating the text with the SeamlessM4T model and comparing it to the original English text.

Model ru fr es ar zh fi* el* ta* kk* am*
49.69 55.50 62.82 53.38 39.58 39.19 55.55 40.07 36.57 56.08

ABC Notation
CLaMP 2 0.2668 0.2968 0.2934 0.2298 0.1646 0.2795 0.2410 0.0915 0.2543 0.1237
CLaMP 3c2sa 0.3614 0.3949 0.3921 0.3155 0.2373 0.3524 0.3226 0.1415 0.3397 0.1871
CLaMP 3saas 0.2918 0.3214 0.3239 0.2789 0.2358 0.2919 0.2681 0.1246 0.2703 0.1139

MIDI
CLaMP 2 0.1271 0.1414 0.1452 0.1113 0.0749 0.1438 0.1087 0.0466 0.1079 0.0616
CLaMP 3c2sa 0.1921 0.2101 0.2137 0.1681 0.1316 0.2019 0.1702 0.0804 0.1765 0.1039
CLaMP 3saas 0.1165 0.1319 0.1330 0.1141 0.0937 0.1245 0.1143 0.0601 0.1104 0.0544

Audio
CLaMP 3c2sa 0.1068 0.1150 0.1202 0.0981 0.0877 0.1112 0.1014 0.0720 0.1005 0.0681
CLaMP 3saas 0.1788 0.1980 0.1962 0.1665 0.1459 0.1770 0.1736 0.0945 0.1561 0.0675

Beyond symbolic music retrieval, CLaMP437

3 also achieved notable performances in au-438

dio retrieval. Both variants—CLaMP 3c2
sa and439

CLaMP 3saas—consistently outperformed CLAP,440

with CLaMP 3saas standing out. It achieved the441

highest MRR of 0.1985 on SDD, marking a sub-442

stantial improvement over TTMR++ (0.1437) and443

CLAP (0.1310). While TTMR++ performed well444

on MC-R (0.1248), its results on the original Music-445

Caps dataset are abnormally higher (see Table 12),446

likely because it was trained on half of MusicCaps’447

original music-text pairs. This training overlap448

suggests that indirect data leakage affects its per-449

formance, even when evaluated on MC-R.450

CLaMP 3’s strong performance extends to451

WikiMT-X, with both variants outperforming base-452

lines across all four semantic categories. In Back-453

ground and Analysis, where texts provide rich cul-454

tural or technical details, CLaMP 3c2
sa and CLaMP455

3saas excelled, achieving MRRs of 0.4028 and456

0.3382 (sheet music) and 0.2017 and 0.1711 (au-457

dio). Description and Scene, however, are much458

harder to retrieve because they are less specific459

and semantically sparse. Description excludes ex-460

plicit identifiers like titles or artist names, while461

Scene focuses on abstract, visualized scenario de-462

pictions (rather than the music itself), both of which463

make retrieval more difficult. Even so, CLaMP 3464

performed notably better, with CLaMP 3saas scor-465

ing 0.0988 (Description) and 0.0963 (Scene) in466

audio, compared to TTMR++ (0.0584, 0.0301).467

This improvement stems from M4-RAG’s diverse468

annotations, which better equip CLaMP 3 to re-469

trieve abstract, semantically sparse texts compared470

to baseline models trained on less diverse data.471

4.3 Multilingual Text-to-Music Retrieval 472

Currently, no non-English music-text benchmarks 473

exist, making multilingual evaluation challenging. 474

To address this, we used SeamlessM4T (Barrault 475

et al., 2023) to translate WikiMT-X background 476

annotations into multiple languages. To account 477

for translation noise, BLEU scores (Papineni et al., 478

2002) were calculated by comparing original texts 479

with back-translations. The translated annotations 480

were then used for retrieval of matching ABC nota- 481

tion, MIDI (from ABC), and audio files. 482

We carefully selected ten languages to ensure 483

diversity in linguistic families, scripts, regions, and 484

resource levels. Five UN official languages were 485

chosen from those included in M4-RAG as they 486

represent different cultures and regions with global 487

significance. The other five, marked with asterisks 488

in Table 3, come from different linguistic families 489

with distinct scripts and minimal vocabulary over- 490

lap, specifically to test CLaMP 3’s generalization 491

to languages unseen in music-text alignment. 492

To the best of our knowledge, apart from CLaMP 493

3, CLaMP 2 is the only multilingual MIR model, 494

but it is limited to symbolic music. No baselines 495

exist for multilingual audio retrieval, as models like 496

CLAP and TTMR++ are restricted to English. 497

CLaMP 3’s two variants differ in their language 498

exposure. CLaMP 3c2
sa initializes its text and sym- 499

bolic music encoders from CLaMP 2, which was 500

pre-trained on symbolic-text alignment across all 501

XLM-R-supported languages, giving it prior ex- 502

posure to all languages in Table 3. In contrast, 503

CLaMP 3saas has never aligned music data with the 504

languages marked with asterisks, demonstrating 505

true cross-modal generalization in its performance. 506
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Table 4: Results for emergent cross-modal retrieval on
WikiMT-X pairings across different musical modalities.
S: Sheet Music (ABC notation), P: Performance Signals
(MIDI, converted from ABC), A: Audio recordings.

Model S→P S→A P→S P→A A→S A→P

CLaMP 2 0.5138 - 0.4480 - - -
CLaMP 3c2

sa 0.4547 0.0543 0.5293 0.0313 0.0492 0.0383
CLaMP 3saas 0.3262 0.0578 0.3146 0.0397 0.0410 0.0303

Table 3 shows that CLaMP 3 demonstrates507

strong cross-lingual generalization in both sym-508

bolic music and audio retrieval tasks. For symbolic509

music retrieval, CLaMP 3c2
sa clearly outperforms510

CLaMP 2 on all languages, including those not511

in M4-RAG, showing that full language coverage512

during training is not necessary for improved mul-513

tilingual retrieval. Meanwhile, CLaMP 3saas, with-514

out any prior alignment between these languages515

and music or specific optimization for symbolic516

music tasks, matches CLaMP 2’s performance on517

MIDI and surpasses it on ABC notation. This indi-518

cates that CLaMP 3saas achieves true cross-lingual519

generalization on unseen languages.520

In audio retrieval, CLaMP 3saas performed well521

on languages it had never seen during alignment.522

For instance, it outperformed CLaMP 3c2
sa on523

Finnish (0.1770 vs. 0.1112), Greek (0.1736 vs.524

0.1014), and Kazakh (0.1561 vs. 0.1005), even525

though CLaMP 3c2
sa had indirect exposure to these526

languages during CLaMP 2 pre-training. Notably,527

even for its weakest unseen language, Amharic528

(0.0675), CLaMP 3saas outperformed CLAP’s per-529

formance on English text (0.0598). This suggests530

that prior exposure to a language is not necessary531

for achieving strong audio retrieval performance.532

The ability to retrieve languages beyond the533

training data stems from XLM-R’s cross-lingual534

semantics and the universal representations of535

CLaMP 3’s music encoders. This enables the536

model to handle low-resource languages and even537

generalize to unseen ones, enhancing its inclusivity538

and versatility for global MIR.539

4.4 Emergent Cross-Modal Retrieval540

Emergent cross-modal retrieval assesses a model’s541

ability to align and retrieve musical content across542

modalities without explicit alignment training,543

showcasing its capacity to generalize to unaligned544

modalities. Table 4 reports results for all possible545

retrieval directions between ABC notation, MIDI,546

and audio data.547

CLaMP 3 significantly advances cross-modal 548

retrieval by supporting both symbolic and audio 549

modalities, addressing a key limitation of CLaMP 550

2. While CLaMP 2 excels in symbolic tasks (S→P: 551

0.5138, P→S: 0.4480) without explicit alignment 552

between ABC and MIDI, it cannot retrieve between 553

symbolic and audio modalities. 554

In contrast, CLaMP 3c2
sa not only achieves state- 555

of-the-art performance on symbolic music tasks 556

like P→S (0.5293) but also enables emergent re- 557

trieval between symbolic music and audio. Simi- 558

larly, CLaMP 3saas, optimized for audio retrieval, 559

achieves meaningful results on new tasks such as 560

S→A (0.0578) and P→A (0.0397), demonstrating 561

its ability to unify symbolic and audio modalities 562

in a shared representation space. 563

While audio retrieval is inherently more chal- 564

lenging due to the continuous nature of audio sig- 565

nals, all directions achieve MRR scores well above 566

the random baseline of 0.0075. Nonetheless, fur- 567

ther optimization is required to reduce the perfor- 568

mance gap between symbolic and audio retrieval. 569

5 Conclusions 570

In this paper, we introduced CLaMP 3, a unified 571

MIR framework that aligns sheet music, perfor- 572

mance signals, audio, and multilingual text using 573

contrastive learning. CLaMP 3 demonstrates strong 574

cross-modal and cross-lingual generalization, ef- 575

fectively handling unaligned modalities and unseen 576

languages during training. 577

To address the lack of high-quality datasets, 578

we curated M4-RAG, a collection of 2.31 million 579

music-text pairs spanning 27 languages and 194 580

countries. We also released WikiMT-X, the first 581

benchmark combining text, sheet music, and audio 582

for comprehensive evaluation. 583

Our experiments show that CLaMP 3 achieves 584

state-of-the-art performance in both symbolic and 585

audio retrieval, excels in multilingual tasks, and 586

enables retrieval across unaligned musical modal- 587

ities. These results demonstrate its flexibility and 588

the effectiveness of its shared representation space. 589

To conclude, CLaMP 3 sets a new standard in 590

multimodal and multilingual MIR, demonstrating 591

robust cross-modal and cross-lingual generaliza- 592

tion. By releasing the CLaMP 3 model, M4-RAG 593

dataset, and WikiMT-X benchmark, we provide 594

resources to support future research in MIR and 595

music generation across languages and modalities. 596
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6 Limitations597

Although CLaMP 3 attains state-of-the-art perfor-598

mance across modalities and languages, showing599

cross-modal and cross-lingual generalization, this600

work has several limitations that need to be ad-601

dressed for further advancements in MIR.602

First, while contrastive learning has advanced603

multimodal information retrieval, it struggles to604

capture the temporal dynamics of music. This is605

because such models typically use a single global606

representation to store the entire semantic content607

of a piece of music, making them insensitive to608

temporal dynamics. For example, in Beethoven’s609

Symphony No. 5, the iconic four-note motif de-610

velops throughout the piece, yet current systems611

often miss this context. Addressing this requires612

moving beyond contrastive learning to incorporate613

temporal modeling, enabling systems to better cap-614

ture nuances and deliver more context-aware and615

accurate retrieval.616

Second, although Table 3 indicates that while617

CLaMP 3 can generalize to languages beyond618

music-text alignment, the multilingual text-to-619

music retrieval evaluation in it heavily relies on620

translation models due to the lack of native multi-621

lingual benchmarks. The translation quality varies622

significantly across languages, which introduces623

noise and reduces the reliability of evaluations. De-624

veloping native multilingual benchmarks is the pri-625

mary and almost indispensable solution to achieve626

more accurate and fair assessments of model per-627

formance.628

Finally, as shown in Table 4, the alignment be-629

tween audio and symbolic modalities, though show-630

ing emergent capabilities with performance far631

above random, remains relatively weak. Address-632

ing this limitation requires collecting paired data633

for supervised alignment and leveraging text as a634

bridging modality to further enhance connections635

between different musical modalities.636
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A Prompt and Examples866

Your task is to provide a detailed set of metadata for a music piece in JSON format based on the input provided. The input includes the following 
fields:

```json
{
  "title": "Music title [in any language] (string)",
  "artists": ["List of singer/performer/composer/lyricist names [in any language] (array of strings) (optional)"],
  "search_results": [
    {
      "title": "Search result title [in any language] (string)",
      "text": "Search result content [in any language] (string)"
    },
    {
      "title": "Search result title [in any language] (string)",
      "text": "Search result content [in any language] (string)"
    }
  ]
}
```

You MUST USE THE SEARCH RESULTS THOROUGHLY to GATHER AS MUCH RELEVANT INFORMATION AS POSSIBLE. Ensure every field in your output 
is comprehensive, accurate, and formatted according to JSON standards. Adhere strictly to the following JSON format in your response, without 
adding explanations or comments:

```json
{
  "sufficient_information": "Boolean value indicating whether the search results provide enough information to summarize metadata for the 
music (true/false)",
  "title": "Music title [in the original language] (string)",
  "artists": ["List of singer/performer/composer/lyricist names [in the original language] (array of strings)"],
  "region": "The country or geographical region associated with the music [in English] (string)",
  "language": "Language in which the search results are primarily written [in English] (string)",
  "genres": ["List of genres [in the specified language] (array of strings)"],
  "tags": ["List of tags/keywords/playlists/moods [in the specified language] (array of strings)"],
  "background": "Background information and fun facts about the music [in the specified language] (string)",
  "analysis": "In-depth, thorough, and academic-level musical analysis [in the specified language] (string)",
  "description": "A detailed de-identified description without identifying specifics [in the specified language] (string)",
  "scene": "A vivid textual description of the visual scene where this music is used as a soundtrack or ideally played [in the specified language] 
(string)"
}
```

Important Notes:
1. If you find that the title or artist information is inaccurate, fill in the correct information based on the search results.
2. Leave fields empty ("" or []) if specific information (e.g., region) is not provided in the search results.
3. Language Requirements:
   - The 'title' and 'artists' fields must be written in their original language, as applicable.
   - The 'region' and 'language' fields must be written in English.
   - All other fields must be written in the language specified in the 'language' field.
4. Background Field:
   - The 'background' field should focus on the creation, cultural, and social context of the piece. This may include the origin of the work, the 
cultural or social impact, the artist's role in shaping the piece, and any notable reception or influence the work has had.
5. Analysis Field:
   - The 'analysis' field should provide a detailed breakdown of the musical elements. This may include the structure and form, melody and 
harmony, rhythm and meter, instrumentation, emotional tone, style and genre, and any influences the piece draws from or has had on later works.
6. Description Field:
   - Create a detailed yet de-identified summary of the music's key features and style. AVOID MENTIONING IDENTIFIABLE DETAILS (e.g., the title, 
artist names, or lyrics).
7. Scene Field:
   - If it’s a soundtrack, you MUST DESCRIBE THE EXACT MOST REPRESENTATIVE SCENE IT ACCOMPANIES, providing rich visual and sensory details. 
Include the setting (such as location, time of day, and lighting), characters (their appearance, emotions, and actions), objects in the scene, and any 
significant events or emotional tones that align with the music.
   - If it’s not a soundtrack, describe detailed visual elements that match the music, creating an evocative image where the music naturally 
enhances the visual and emotional atmosphere.

867

Figure 6: The metadata generation prompt was used for constructing the M4-RAG dataset. This prompt outlines the
required JSON structure for describing music metadata comprehensively, including fields for title, artists, region,
language, genres, tags, background context, musical analysis, general description, and visual scene. Detailed
instructions and formatting requirements are provided to ensure high-quality and consistent metadata extraction
from search results. Based on our experience, we recommend adding the requirement to the prompt that Region and
Language be output in accordance with ISO standards, which can reduce the need for post-processing.
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{                                                                                                                            
    "id": "---aL9TdeI4",                                                                                                        
    "title": "Mairi's Wedding",                                                                                                 
    "artists": [                                                                                                                
        "Noel McLoughlin"                                                                                                       
    ],                                                                                                                          
    "region": "United Kingdom of Great Britain and Northern Ireland",                                                           
    "language": "English",                                                                                                      
    "genres": [                                                                                                                 
        "Folk",                                                                                                                 
        "Traditional"                                                                                                           
    ],                                                                                                                          
    "tags": [                                                                                                                   
        "Scottish",                                                                                                             
        "Wedding",                                                                                                              
        "Traditional",                                                                                                          
        "Folk",                                                                                                                 
        "Celtic"                                                                                                                
    ],                                                                                                                          
    "background": "Mairi's Wedding (also known as Marie's Wedding, the Lewis Bridal Song, or Mairi Bhan) is a Scottish folk song originally written in Gaelic by Johnny Bannerman for Mary 
McNiven. Written using a traditional Scottish tune, it was first played for McNiven in 1935 at the Old Highlanders Institute in Glasgow's Elmbank Street. Hugh S. Roberton translated the Gaelic 
version into English in 1936. The song has since become a popular traditional Scottish folk song, often performed by various artists including The High Kings, The Clancy Brothers & Tommy 
Makem, and Noel McLoughlin.",                                                                                                
    "analysis": "Mairi's Wedding is a lively and upbeat Scottish folk song with a traditional reel structure. The song is in a major key, which contributes to its celebratory and joyful mood. The 
lyrics describe the journey of guests to Mairi's wedding, the bride's beauty, and a toast to her future happiness. The chorus is particularly rhythmic and danceable, with the repeated phrase 
'Step we gaily on we go' encouraging participation and movement. The instrumentation typically includes acoustic instruments such as the guitar, banjo, and fiddle, which add to the song's 
traditional and authentic feel. The song's structure, with its alternating verses and choruses, is typical of many folk songs and helps to maintain engagement and energy throughout the 
performance.",                                                                                                               
    "description": "This is a lively and upbeat traditional folk piece that captures the spirit of a joyful celebration. It features a repetitive and danceable chorus, accompanied by cheerful and 
rhythmic instrumentation. The lyrics paint a vivid picture of a wedding day, with guests traveling over hills and through towns to join in the festivities. The music emphasizes the beauty and 
charm of the occasion, as well as the hope for a prosperous and happy future. The melody is catchy and the overall mood is one of happiness and community. The piece is rooted in Scottish and 
Celtic traditions, reflecting the rich cultural heritage of the region.",
    "scene": "The scene is set in a picturesque Scottish village on a sunny morning. The air is crisp and the sky is a clear blue. Villagers are seen walking through the winding streets, their steps 
quick and lively. They carry flowers and baskets, their faces beaming with excitement. The path they follow leads to a small, rustic church adorned with fresh greenery and wildflowers. As they 
approach, the sound of a fiddle and a bodhrán can be heard, signaling the start of the wedding festivities. Inside the church, the bride, Mairi, stands nervously but beautifully, her cheeks 
flushed with happiness. The guests, arm in arm, step gaily to the music, their feet moving in time to the rhythmic beat. The atmosphere is one of joy and celebration, with everyone eager to 
partake in the wedding of Mairi and her beloved.",
    "translations": {
        "language": "Vietnamese",
        "background": "Bài hát \"Đám Cưới Mairi\" (còn được biết đến với tên gọi \"Đám Cưới Marie\", \"Bài Ca Cô Dâu Lewis\" hoặc \"Mairi Bhan\") là một bài hát dân gian Scotland do Johnny 
Bannerman sáng tác bằng tiếng Gaelic dành cho Mary McNiven. Sử dụng giai điệu truyền thống Scotland, bài hát được trình diễn lần đầu cho McNiven vào năm 1935 tại Old Highlanders 
Institute trên đường Elmbank, Glasgow. Năm 1936, Hugh S. Roberton đã dịch phiên bản tiếng Gaelic sang tiếng Anh. Từ đó, bài hát đã trở thành một bài hát dân gian Scotland truyền thống phổ 
biến, thường được biểu diễn bởi nhiều nghệ sĩ bao gồm The High Kings, The Clancy Brothers & Tommy Makem, và Noel McLoughlin.",
        "analysis": "\"Bài hát Cưới Hỏi của Mairi\" là một bài hát dân gian Scotland sôi động và vui tươi, có cấu trúc theo kiểu điệu reel truyền thống. Bài hát được sáng tác theo cung trưởng, điều 
này góp phần tạo nên không khí lễ hội và hạnh phúc. Lời bài hát mô tả chuyến đi của khách dự tiệc đến đám cưới của Mairi, vẻ đẹp của cô dâu, và lời chúc mừng hạnh phúc tương lai của cô. 
Điệp khúc đặc biệt nhịp nhàng và dễ nhảy múa, với câu lặp lại \"Bước chân vui tươi, chúng ta tiến bước\" khích lệ sự tham gia và vận động. Phần đệm đàn thường bao gồm các nhạc cụ acoustic 
như guitar, banjo, và fiddle, làm tăng thêm vẻ truyền thống và chân thực của bài hát. Cấu trúc bài hát, với các đoạn thơ và điệp khúc xen kẽ, là đặc trưng của nhiều bài hát dân gian, giúp duy trì 
sự hấp dẫn và sức sống suốt buổi trình diễn.",
        "description": "Đây là một tác phẩm dân gian truyền thống sôi động và vui tươi, nắm bắt tinh thần của một buổi lễ ăn mừng đầy hân hoan. Bài hát có phần điệp khúc lặp lại và dễ nhảy múa, 
được acompanh bởi những âm thanh nhạc cụ vui vẻ và có tiết tấu. Lời bài hát vẽ nên bức tranh sinh động về ngày cưới, với khách mời vượt qua những ngọn đồi và đi xuyên qua các thị trấn để 
tham gia vào buổi tiệc. Nhạc phẩm nhấn mạnh vẻ đẹp và sự quyến rũ của dịp lễ, cũng như niềm hy vọng về một tương lai thịnh vượng và hạnh phúc. Điệu nhạc dễ nhớ và tâm trạng chung là 
niềm vui và sự đoàn kết. Bài hát có nguồn gốc từ truyền thống Scotland và Celtic, phản ánh di sản văn hóa phong phú của khu vực.",
        "scene": "Bối cảnh diễn ra trong một ngôi làng xinh đẹp của Scotland vào một buổi sáng nắng đẹp. Không khí trong lành và bầu trời trong xanh. Người dân trong làng được thấy đang đi qua 
những con đường uốn lượn, bước chân nhanh nhẹn và vui tươi. Họ mang theo hoa và giỏ đồ, khuôn mặt rạng rỡ với niềm hân hoan. Đường họ đi dẫn đến một ngôi nhà thờ nhỏ, cổ kính, được 
trang trí bằng cây cỏ tươi mới và hoa dại. Khi họ tiến gần, âm thanh của cây đàn fiddle và trống bodhrán vang lên, báo hiệu lễ cưới sắp bắt đầu. Bên trong nhà thờ, cô dâu Mairi đứng ở đó, vừa 
lo lắng vừa xinh đẹp, má ửng hồng hạnh phúc. Khách mời, tay trong tay, bước nhảy nhót theo nhạc, chân di chuyển nhịp nhàng theo tiếng trống. Không khí tràn đầy niềm vui và sự chúc tụng, 
mọi người đều mong muốn tham gia vào lễ cưới của Mairi và người yêu dấu của cô."
    }
}

{
"id": "Vj4gbky1QCU",
"title": "'Deed I Do",
"artists": [

"Fred Rose",
"Walter Hirsch"

],
"genre": "Jazz",
"background": "Originally composed in the early 20th century, 'Deed I Do' has been performed by numerous artists and remains a staple in jazz and pop standards. The song's lyrics express 

themes of love and devotion, often interpreted through various musical styles.",
"analysis": "'Deed I Do' features a simple yet effective harmonic structure that allows for expressive vocal interpretations. The song typically follows a AABA form, common in jazz standards, 

where the A sections present the main theme and the B section offers a contrasting idea. The melody is characterized by its lyrical phrasing, which provides opportunities for improvisation and 
personal expression by performers. The use of syncopation and swing rhythm enhances its playful yet romantic feel, making it a favorite among jazz musicians. The lyrics convey a deep 
emotional connection, often evoking feelings of nostalgia and longing.",

"description": "The music is characterized by a smooth, flowing melody that captures the essence of romantic yearning. It features lush harmonies and a moderate tempo that invites 
listeners to engage with its sentimental lyrics. Instrumentation typically includes piano, bass, and light percussion, creating an intimate atmosphere that complements the vocal line. The overall 
sound is warm and inviting, making it suitable for both casual listening and more formal performances.",

"scene": "The music plays softly in a dimly lit jazz club, where patrons are seated at small tables adorned with flickering candles. The air is filled with the rich aroma of coffee and dessert as 
couples lean in closer to hear the tender notes. A singer stands center stage under a spotlight, their voice smooth and emotive, capturing the attention of an audience lost in the moment. 
Outside, rain gently taps against the window, adding to the cozy ambiance as the singer expresses heartfelt sentiments about love and devotion.",

"leadsheet": "X:1\nT:\"Deed I Do\nT:'Deed I Do\nC:Fred Rose\nL:1/8\nM:2/2\nI:linebreak $\nK:C\nV:1 treble nm=\"Voice\"\n%%MIDI program 52\nV:1\n\"Cmaj7\" A c3- c4 |\"Gm7\" A G3-
\"C7\" G4 |\"Fmaj7\" E D3- D4 |\"Fm\" E D3- D4 |\"Em7\" E G3-\"A7\" G4 | %5\nw: Do I *|want you? *|Oh my, *|do I? *|Hon- ey *|\n\"D7\" C4\"G7\" D4 |\"Cmaj7\" C8- |\"Dm7\" C4\"G7\" 
z4 |\"Cmaj7\" A c3- c4 |\"Gm7\" A G3-\"C7\" G4 | %10\nw: 'deed I|do.||Do I *|need you? *|\n\"Fmaj7\" E D3- D4 |\"Fm\" E D3- D4 |\"Em7\" E G3-\"A7\" G4 |\"D7\" C4\"G7\" D4 
|\"Cmaj7\" C8- |\"Gm7\" C4\"C7\" z4 | %16\nw: Oh my, *|do I? *|Hon- ey *|'deed I|do.||\n\"Fmaj7\" z2 A2 B2 c2 | d2 c2 A2 F2 |\"Bdim7\" E8 |\"E7\" B8 |\"Em7\" z2 E2 G2 A2 |\"A7\" B2 
A2 G2 E2 | %22\nw: I'm glad that|I'm the one who|found|you,|that's why I'm|al- ways han- gin'|\n\"D7\" D8 |\"Dm7\"\"G7\" G8 |\"Cmaj7\" A c3- c4 |\"Gm7\" A G3-\"C7\" G4 |\"Fmaj7\" E 
D3- D4 |\"Fm\" E D3- D4 | %28\nw: 'round|you.|Do I *|love you? *|Oh my, *|do I? *|\n\"Em7\" E G3-\"A7\" G4 |\"Dm7\" C4\"G7\" D4 |\"C\" C8 |] %31\nw: Hon- ey *|'deed I|do.|\n\n"
} 868

Figure 7: Metadata examples from the M4-RAG and WikiMT-X datasets. The top section shows an entry for
“Mairi’s Wedding” from the M4-RAG dataset, including detailed multilingual metadata in English and Vietnamese,
and an associated audio recording identified by a YouTube ID. The bottom section presents an entry for “Deed I Do”
from the WikiMT-X dataset, which includes a YouTube ID linking to an audio recording, a genre label (Jazz, one of
eight predefined categories), four types of long-form text annotations, and a lead sheet in ABC notation.
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B t-SNE Visualizations on WikiMT-X869

We apply t-SNE (t-distributed Stochastic Neighbor870

Embedding) to the WikiMT-X dataset to visualize871

how CLaMP 3 organizes data into a shared rep-872

resentation space. The projections illustrate the873

model’s ability to align data across modalities, lan-874

guages, and semantic categories.875

Fig. 8a includes features from Text (back-876

ground annotations), ABC notation, MIDI, and877

Audio. Each modality forms a distinct cluster, re-878

flecting the inherent differences in how information879

is encoded. Notably, modalities closer to Text tend880

to perform better, aligning with the trend in Table 3,881

suggesting a correlation between embedding prox-882

imity and cross-modal effectiveness. Additionally,883

all musical modalities display a mirrored symmetry884

around the Text cluster, indicating that Text may885

serve as a semantic anchor. This symmetry sug-886

gests CLaMP 3 aligns modalities relative to Text,887

balancing modality-specific features while preserv-888

ing semantic consistency.889

Fig. 8b focuses on background annotations in890

four languages—English, Spanish, Chinese, and891

Amharic—selected to represent varying retrieval892

performance levels. Despite their linguistic dif-893

ferences, these languages largely overlap, indicat-894

ing strong cross-lingual alignment. English and895

Spanish cluster closely, reflecting both their shared896

linguistic roots. Chinese shows moderate over-897

lap with English, suggesting that CLaMP 3 ef-898

fectively bridges typologically distant languages.899

However, Amharic, a low-resource and unseen lan-900

guage, forms more isolated clusters, indicating the901

challenges of aligning low-resource languages.902

Fig. 8c shows four semantic cate-903

gories—Background, Analysis, Description,904

and Scene—showing how CLaMP 3 handles905

different content types. Background, Analysis, and906

Description often converge, reflecting the overlap907

in explanatory texts as they cover related musical908

concepts. In contrast, Scene forms distinct clusters,909

likely because it focuses on visual depictions,910

leading to more consistent semantic patterns tied911

to specific imagery rather than music.912

Across all three visualizations, genre bound-913

aries remain clear despite differences in modal-914

ity, language, or semantic category. This shows915

that CLaMP 3 effectively aligns multimodal and916

multilingual data while preserving genre-specific917

distinctions, demonstrating the model’s strong rep-918

resentational capabilities.919

Classical
Country
Folk
Jazz
Pop
R&B
Religious
Rock

Text
ABC
MIDI
Audio

(a) Modality

Classical
Country
Folk
Jazz
Pop
R&B
Religious
Rock

English
Spanish
Chinese
Amharic

(b) Language

Classical
Country
Folk
Jazz
Pop
R&B
Religious
Rock

Background
Analysis
Description
Scene

(c) Semantics

Figure 8: t-SNE visualization of the WikiMT-X dataset,
illustrating the distribution of samples based on three
distinct factors: (a) Modality, (b) Language, and (c)
Semantics. The representations are extracted using
CLaMP 3saas. Each point represents a data sample, col-
ored according to its genre.
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Table 5: Results for English text-to-music retrieval on several benchmarks: WikiMT and MidiCaps have 1,010 pairs,
Song Describer Dataset (SDD) has 706 audio and 1,106 captions, and MusicCaps-Remake (MC-R) contains 2,777
pairs. MC-R prevents data leakage by using full-length audio and rewritten captions from AudioSet’s evaluation set.

Model
Symbolic Benchmarks WikiMT-X (Sheet Music)

WikiMT MidiCaps Background Analysis Description Scene

CLaMP 3as 0.1973 0.0788 0.2108 0.1660 0.1049 0.1056
CLaMP 3sa 0.3789 0.1322 0.3591 0.3088 0.1316 0.1643
CLaMP 3c2sa 0.4498 0.2826 0.4028 0.3382 0.0835 0.1512
CLaMP 3assa 0.2993 0.0884 0.2919 0.2507 0.1459 0.1464
CLaMP 3saas 0.3555 0.1798 0.3301 0.2758 0.1274 0.1512
CLaMP 3c2saas 0.3631 0.2688 0.3295 0.2957 0.0951 0.1395

Model
Audio Benchmarks WikiMT-X (Audio)

SDD MC-R Background Analysis Description Scene

CLaMP 3as 0.1977 0.1117 0.1602 0.1375 0.0854 0.0819
CLaMP 3sa 0.1607 0.0937 0.1718 0.1586 0.0997 0.0871
CLaMP 3c2sa 0.1612 0.0959 0.1180 0.1206 0.0639 0.0619
CLaMP 3assa 0.2003 0.1045 0.1597 0.1522 0.1020 0.0873
CLaMP 3saas 0.1985 0.1177 0.2017 0.1711 0.0988 0.0963
CLaMP 3c2saas 0.2115 0.1180 0.1583 0.1530 0.0768 0.0885

Table 6: Results for multilingual text-to-music retrieval on translated WikiMT-X background annotations. Languages
marked with asterisks were not included in the M4-RAG training data. The BLEU scores below each language are
calculated by back-translating the text with the SeamlessM4T model and comparing it to the original English text.

Model ru fr es ar zh fi* el* ta* kk* am*
49.69 55.50 62.82 53.38 39.58 39.19 55.55 40.07 36.57 56.08

ABC Notation
CLaMP 3as 0.1750 0.1931 0.1964 0.1594 0.1559 0.1828 0.1641 0.0997 0.1575 0.0876
CLaMP 3sa 0.3262 0.3544 0.3536 0.3072 0.2459 0.3163 0.2879 0.1336 0.2894 0.1317
CLaMP 3c2sa 0.3614 0.3949 0.3921 0.3155 0.2373 0.3524 0.3226 0.1415 0.3397 0.1871
CLaMP 3assa 0.2648 0.2810 0.2817 0.2450 0.2271 0.2644 0.2415 0.1432 0.2561 0.1300
CLaMP 3saas 0.2918 0.3214 0.3239 0.2789 0.2358 0.2919 0.2681 0.1246 0.2703 0.1139
CLaMP 3c2saas 0.2954 0.3171 0.3225 0.2773 0.2144 0.2990 0.2721 0.1348 0.2750 0.1690

MIDI
CLaMP 3as 0.0418 0.0416 0.0432 0.0404 0.0332 0.0456 0.0449 0.0297 0.0398 0.0267
CLaMP 3sa 0.1174 0.1284 0.1316 0.1132 0.0890 0.1217 0.1112 0.0623 0.1117 0.0540
CLaMP 3c2sa 0.1921 0.2101 0.2137 0.1681 0.1316 0.2019 0.1702 0.0804 0.1765 0.1039
CLaMP 3assa 0.0565 0.0582 0.0620 0.0582 0.0517 0.0620 0.0585 0.0394 0.0595 0.0354
CLaMP 3saas 0.1165 0.1319 0.1330 0.1141 0.0937 0.1245 0.1143 0.0601 0.1104 0.0544
CLaMP 3c2saas 0.1499 0.1645 0.1664 0.1408 0.1049 0.1560 0.1399 0.0653 0.1335 0.0793

Audio
CLaMP 3as 0.1267 0.1515 0.1525 0.1210 0.1089 0.1430 0.1428 0.0610 0.1043 0.0559
CLaMP 3sa 0.1619 0.1717 0.1714 0.1529 0.1414 0.1585 0.1544 0.0991 0.1456 0.0774
CLaMP 3c2sa 0.1068 0.1150 0.1202 0.0981 0.0877 0.1112 0.1014 0.0720 0.1005 0.0681
CLaMP 3assa 0.1426 0.1580 0.1588 0.1370 0.1202 0.1468 0.1431 0.0795 0.1276 0.0617
CLaMP 3saas 0.1788 0.1980 0.1962 0.1665 0.1459 0.1770 0.1736 0.0945 0.1561 0.0675
CLaMP 3c2saas 0.1331 0.1566 0.1554 0.1304 0.1208 0.1550 0.1460 0.0901 0.1340 0.0874
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Table 7: Results for emergent cross-modal retrieval on
WikiMT-X pairings across different musical modalities.
S: Sheet Music (ABC notation), P: Performance Signals
(MIDI, converted from ABC), A: Audio recordings.

Model S→P S→A P→S P→A A→S A→P

CLaMP 3as 0.1637 0.0557 0.1477 0.0248 0.0456 0.0237
CLaMP 3sa 0.3205 0.0739 0.3054 0.0397 0.0479 0.0237
CLaMP 3c2

sa 0.4547 0.0543 0.5293 0.0313 0.0492 0.0383
CLaMP 3assa 0.1911 0.0619 0.1646 0.0299 0.0513 0.0264
CLaMP 3saas 0.3262 0.0578 0.3146 0.0397 0.0410 0.0303
CLaMP 3c2

saas 0.3909 0.0688 0.4375 0.0467 0.0558 0.0431

C Performance of CLaMP 3 Variants920

A straightforward way to train CLaMP 3 would be921

to align symbolic music, audio, and text all at once.922

However, early experiments showed that this led923

to unstable training. The text encoder struggled924

because symbolic and audio data had very differ-925

ent distributions (Fig.8a) and pulled it in opposite926

directions, making alignment ineffective. To solve927

this, we adopted a multi-stage alignment strategy928

(Sec. 2.1) that gradually integrates each modality,929

ensuring stable and effective alignment.930

To explore the best way to align modalities,931

we tested different training orders, leading to sev-932

eral model variants. The main difference among933

them is how and when the text encoder is aligned934

with symbolic music and audio encoders:935

CLaMP 3as: A two-stage alignment where936

text is first aligned with audio, then the text encoder937

is frozen while aligning with symbolic music.938

CLaMP 3sa: The reverse of CLaMP 3as, first939

aligning text with symbolic music, then freezing940

the text encoder while aligning with audio.941

CLaMP 3c2
sa : Same as CLaMP 3sa, but start-942

ing with pre-trained text and symbolic encoders943

from CLaMP 2.944

CLaMP 3assa: A four-stage alignment: audio945

→ symbolic → symbolic → audio, with the text946

encoder frozen in the second and fourth stages to947

maintain stability.948

CLaMP 3saas: A four-stage alignment: sym-949

bolic → audio → audio → symbolic, also freezing950

the text encoder in the second and fourth stages.951

CLaMP 3c2
saas: Same as CLaMP 3saas, but952

initialized with pre-trained text and symbolic en-953

coders from CLaMP 2.954

We evaluate these six variants across all ex-955

periments in Sec. 4 to assess their effectiveness in956

different retrieval tasks.957

Table 5 shows that aligning text with sym- 958

bolic music before audio improves generalization 959

in English text-to-music retrieval. CLaMP 3sa out- 960

performs CLaMP 3as in symbolic retrieval without 961

compromising audio performance. Four-stage mod- 962

els outperform two-stage models in audio retrieval, 963

emphasizing the importance of iterative alignment. 964

Among them, CLaMP 3saas achieves the best bal- 965

ance between symbolic and audio retrieval. Lever- 966

aging CLaMP 2’s weight initialization enhances 967

symbolic retrieval, as seen in CLaMP 3c2
sa leading 968

symbolic tasks. However, it does not consistently 969

improve audio retrieval, likely because CLaMP 2 970

was trained only on symbolic music, limiting its 971

text encoder’s adaptability to audio alignment. 972

Table 6 demonstrates the impact of pre- 973

training and training order on multilingual text- 974

to-music retrieval. In symbolic retrieval, using 975

CLaMP 2’s pre-trained text-symbolic encoders pro- 976

vides a clear advantage, with CLaMP 3c2
sa achieving 977

the highest scores across most languages. This sug- 978

gests that pre-training helps build a strong shared 979

representation space, especially for MIDI, where 980

M4-RAG’s limited native data weakens overall per- 981

formance. However, pre-training is not always 982

decisive, as some non-pretrained models surpass 983

pre-trained variants in certain languages for ABC 984

retrieval. In contrast, audio retrieval is consistently 985

strongest with CLaMP 3saas, even in unseen lan- 986

guages, suggesting that training order plays a more 987

crucial role in cross-lingual generalization. 988

Table 7 evaluates emergent cross-modal re- 989

trieval, where no direct supervised alignment exists 990

among musical modalities. CLaMP 3c2
sa achieves 991

the best symbolic retrieval (S↔P), showing that 992

CLaMP 2 pre-training strengthens symbolic-text 993

alignment, which indirectly benefits symbolic re- 994

trieval. For symbolic-audio retrieval, CLaMP 3c2
saas 995

performs best, leading in P→A (0.0467), A→S 996

(0.0558), and A→P (0.0431). It consistently out- 997

performs CLaMP 3saas, suggesting that pre-training 998

provides a stronger shared representation space, 999

leading to better cross-modal generalization be- 1000

tween unpaired modalities. 1001

These results show the importance of both 1002

training order and pre-training in MIR. Multi-stage 1003

alignment stabilizes training, while training order 1004

plays a key role, particularly in audio retrieval 1005

and cross-lingual generalization. Pre-training with 1006

CLaMP 2 strengthens symbolic retrieval and im- 1007

proves cross-modal generalization, but its benefits 1008

are limited for audio retrieval. 1009
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Table 8: Symbolic classification performance for ABC notation and MIDI was assessed across three datasets:
WikiMT (1,010 pieces, 8 genres), VGMIDI (204 pieces, 4 emotions), and Pianist8 (411 pieces, 8 composers).

Model Modality
WikiMT VGMIDI Pianist8

F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy

M3 ABC 0.2349 0.4010 0.6016 0.6341 0.7395 0.7590
CLaMP ABC 0.3452 0.4267 0.6453 0.6866 0.7067 0.7152
CLaMP 2 ABC 0.3990 0.4653 0.7449 0.8049 0.8025 0.8072
CLaMP 3as ABC 0.3135 0.4307 0.6638 0.7073 0.6872 0.6867
CLaMP 3sa ABC 0.3225 0.4455 0.7725 0.8049 0.7403 0.7590
CLaMP 3c2sa ABC 0.3316 0.4356 0.6845 0.7317 0.7722 0.7711
CLaMP 3assa ABC 0.3102 0.4455 0.4990 0.6341 0.6796 0.6988
CLaMP 3saas ABC 0.3177 0.4356 0.7969 0.8049 0.7716 0.7952
CLaMP 3c2saas ABC 0.3568 0.4257 0.6694 0.7561 0.7891 0.7952

M3 MIDI 0.2621 0.4257 0.5399 0.6098 0.9199 0.9157
CLaMP 2 MIDI 0.2898 0.4455 0.5246 0.6585 0.8927 0.8916
CLaMP 3as MIDI 0.3361 0.4653 0.5600 0.5854 0.8186 0.8313
CLaMP 3sa MIDI 0.2614 0.4010 0.6864 0.7073 0.8461 0.8554
CLaMP 3c2sa MIDI 0.3073 0.4455 0.6223 0.7073 0.8696 0.8675
CLaMP 3assa MIDI 0.2882 0.4406 0.5001 0.6098 0.8076 0.8193
CLaMP 3saas MIDI 0.2721 0.4158 0.5723 0.6341 0.7834 0.7952
CLaMP 3c2saas MIDI 0.2943 0.4208 0.5474 0.6829 0.8565 0.8554

Table 9: Audio classification performance is evaluated on multiple benchmarks included in MARBLE: MTT (25,860
clips, 50 tags), GS (7,035 clips, 24 keys), GTZAN (1,000 clips, 10 genres), EMO (744 clips, valence/arousal
regression), Nsynth (305,979 clips, 11 instrument categories, 88 pitches), and VocalSet (7,506 clips, 17 singing
techniques, 20 singers).

Model
MTT GS GTZAN EMO Nsynth Nsynth VocalSet VocalSet

Tagging Key Genre Emotion Instrument Pitch Tech Singer

ROC AP Acc Acc R2V R2A Acc Acc Acc Acc

MERTmean 0.9068 0.3915 0.6475 0.6689 0.5185 0.7501 0.6963 0.9152 0.7219 0.8961
CLAP 0.9066 0.3897 0.1596 0.8207 0.5408 0.7025 0.7817 0.5146 0.6868 0.6327
TTMR++ 0.9082 0.3922 0.1672 0.8551 0.5599 0.7116 0.6735 0.5012 0.6342 0.5352
CLaMP 3as 0.9097 0.3888 0.4935 0.8379 0.5944 0.7413 0.6445 0.8601 0.6780 0.8491
CLaMP 3sa 0.9084 0.3863 0.2533 0.8448 0.6031 0.6949 0.6338 0.8647 0.7061 0.8419
CLaMP 3c2sa 0.9092 0.3924 0.2545 0.8551 0.5477 0.6876 0.6147 0.8574 0.6710 0.8007
CLaMP 3assa 0.9098 0.3935 0.1498 0.8793 0.5921 0.7327 0.6411 0.8742 0.6842 0.8555
CLaMP 3saas 0.9109 0.3941 0.5377 0.8655 0.5907 0.7004 0.6377 0.8689 0.7053 0.8441
CLaMP 3c2saas 0.9095 0.3938 0.3907 0.8138 0.5368 0.6589 0.6562 0.8732 0.6798 0.8470

Table 10: Audio classification performance on the MTG-Jamendo dataset (55,000+ tracks) was evaluated across
four tasks: instrument classification (41 tags), mood/theme classification (59 tags), genre classification (95 tags),
and top-50 multi-label classification.

Model
Instrument Mood/Theme Genre Top50

ROC AP ROC AP ROC AP ROC AP

MERTmean 0.7421 0.1764 0.7598 0.1383 0.8672 0.1818 0.8280 0.2837
CLAP 0.7480 0.1812 0.7601 0.1323 0.8544 0.1716 0.8197 0.2773
TTMR++ 0.7806 0.2111 0.7705 0.1477 0.8742 0.2030 0.8340 0.3049
CLaMP 3as 0.7895 0.2254 0.7814 0.1476 0.8750 0.2114 0.8321 0.3068
CLaMP 3sa 0.7780 0.2112 0.7823 0.1533 0.8713 0.2008 0.8276 0.3011
CLaMP 3c2sa 0.7832 0.2168 0.7796 0.1475 0.8679 0.2046 0.8220 0.2964
CLaMP 3assa 0.7911 0.2269 0.7828 0.1486 0.8763 0.2109 0.8290 0.3041
CLaMP 3saas 0.7872 0.2208 0.7835 0.1547 0.8703 0.2076 0.8242 0.3021
CLaMP 3c2saas 0.7803 0.2145 0.7825 0.1522 0.8734 0.2092 0.8296 0.3074
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D Music Classification1010

This section evaluates CLaMP 3 variants and base-1011

lines via linear probing, assessing their ability to1012

classify musical attributes in symbolic and audio1013

music, as well as musical modalities and text anno-1014

tations in WikiMT-X.1015

D.1 Symbolic Music Classification1016

Table 8 presents symbolic music classification re-1017

sults for ABC notation and MIDI across three1018

benchmarks:1019

WikiMT (Wu et al., 2023a) consists of 1,0101020

lead sheets in ABC notation sourced from Wiki-1021

fonia3, labeled into 8 genre categories based on1022

corresponding Wikipedia entries.1023

VGMIDI (Ferreira and Whitehead, 2019) con-1024

tains 204 MIDI transcriptions of video game sound-1025

tracks, annotated with 4 emotion labels derived1026

from valence and arousal levels.1027

Pianist8 (Chou et al., 2021) includes 411 pi-1028

ano performances, transcribed from audio to per-1029

formance MIDI, and labeled with their respective1030

composers across eight categories.1031

To enable evaluation in both formats, all1032

datasets were converted between ABC and MIDI.1033

Despite improved text alignment, CLaMP 31034

does not surpass CLaMP 2 in sheet music clas-1035

sification. This is likely because CLaMP 3 was1036

trained on only half as much symbolic data. While1037

stronger textual supervision benefits retrieval, it1038

does not fully offset the reduced symbolic training1039

for classification. However, CLaMP 3 still out-1040

performs M3—the symbolic music encoder it was1041

initialized from—on most benchmarks, suggest-1042

ing that contrastive text supervision enhances the1043

semantic salience of extracted features.1044

These results indicate that retrieval and clas-1045

sification improvements are relatively indepen-1046

dent. In text-to-music retrieval (Table 2, Table 3),1047

CLaMP 3—especially CLaMP 3c2
sa —significantly1048

outperforms CLaMP 2, yet this advantage does not1049

extend to classification. A possible explanation is1050

that retrieval requires rich representations and effec-1051

tive interaction between text and music encoders,1052

while classification depends solely on an encoder’s1053

ability to extract features relevant to predefined la-1054

bels. Thus, while higher-quality text annotations1055

enhance retrieval, they do not necessarily improve1056

symbolic music classification.1057

3http://www.synthzone.com/files/Wikifonia/
Wikifonia.zip

D.2 Audio Music Classification 1058

To evaluate the audio classification performance 1059

of CLaMP 3 variants and baselines, we conduct 1060

linear probing on MARBLE (Yuan et al., 2023) 1061

and MTG-Jamendo (Bogdanov et al., 2019). 1062

MARBLE is a comprehensive benchmark col- 1063

lection for music representation evaluation. We 1064

assess models on 8 tasks covering different aspects 1065

of audio understanding. MTG-Jamendo is a large- 1066

scale benchmark with over 55,000 music tracks 1067

annotated for multiple classification tasks. It fo- 1068

cuses on high-level musical attributes, making it 1069

well-suited for evaluating a model’s ability to cap- 1070

ture semantic meaning in music. 1071

We also assess the self-supervised model 1072

MERT, CLaMP 3’s audio feature extractor, aver- 1073

aging embeddings to one per 5-second clip across 1074

layers and time steps. 1075

Table 9 shows the strengths of contrastive 1076

and self-supervised models in audio classification. 1077

CLaMP 3 variants excel in high-level tasks, like 1078

genre classification (GTZAN) and tagging (MTT), 1079

where capturing abstract musical meaning is cru- 1080

cial. MERT, however, performs better in low-level 1081

tasks such as key detection (GS) and pitch classifi- 1082

cation (Nsynth), where fine spectral detail is more 1083

important. Contrastive models generally struggle 1084

with short-duration audio (e.g., 4-second clips in 1085

Nsynth) because their focus on aligning longer seg- 1086

ments with text limits their ability to capture fine 1087

acoustic details. These results suggest contrastive 1088

learning is better for semantic tasks, while self- 1089

supervised models are more effective for detailed 1090

acoustic analysis, particularly for short clips. 1091

Table 10 shows that contrastive models, partic- 1092

ularly CLaMP 3 variants, consistently outperform 1093

MERT across all MTG-Jamendo tasks. Notably, 1094

CLaMP 3 models achieve the highest scores in 1095

most tasks, demonstrating how diverse and high- 1096

quality text annotations help contrastive models 1097

learn and capture complex musical semantics. 1098

In summary, contrastive models perform well 1099

in high-level classification tasks but struggle with 1100

short clips and fine-grained acoustic details. Their 1101

effectiveness heavily depends on the text annota- 1102

tions used during training. For instance, CLAP 1103

achieves strong results in instrument classification 1104

(Nsynth) because its training data is dominated by 1105

instrument and genre descriptions. However, it per- 1106

forms poorly in key detection (GS), where such 1107

annotations offer little relevant information. 1108
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Table 11: Classification performance on WikiMT-X (1,000 entries, 8 genres) across different musical modalities and
text annotations.

Model ABC MIDI Audio Background Analysis Description Scene
Accuracy
CLaMP 0.7000 - - 0.8050 0.7900 0.6900 0.6250
CLaMP 2 0.6800 0.6350 - 0.7900 0.8150 0.7250 0.6150
CLAP - - 0.6450 0.6950 0.6800 0.6500 0.5550
TTMR++ - - 0.7150 0.7400 0.7600 0.6700 0.5950
CLaMP 3as 0.6850 0.6100 0.7050 0.8200 0.8350 0.7800 0.6550
CLaMP 3sa 0.7000 0.6650 0.6850 0.8000 0.8600 0.7700 0.6500
CLaMP 3c2sa 0.6850 0.6350 0.6850 0.7850 0.8550 0.7750 0.6500
CLaMP 3assa 0.7000 0.6300 0.7200 0.8650 0.8650 0.7700 0.6850
CLaMP 3saas 0.7150 0.6800 0.7050 0.8400 0.8550 0.7800 0.6650
CLaMP 3c2saas 0.6750 0.6300 0.6850 0.8300 0.8500 0.7700 0.6850

F1-macro
CLaMP 0.5252 - - 0.6835 0.6486 0.6079 0.4447
CLaMP 2 0.5287 0.3784 - 0.6617 0.6832 0.6333 0.3710
CLAP - - 0.3943 0.5913 0.5491 0.4921 0.3100
TTMR++ - - 0.4714 0.6914 0.6694 0.6254 0.4246
CLaMP 3as 0.5431 0.4005 0.4755 0.7424 0.7933 0.7639 0.4780
CLaMP 3sa 0.5345 0.5108 0.4881 0.7917 0.8199 0.7372 0.4527
CLaMP 3c2sa 0.5428 0.4171 0.4589 0.6626 0.7439 0.7318 0.4260
CLaMP 3assa 0.5499 0.3976 0.5130 0.8486 0.8277 0.6878 0.5207
CLaMP 3saas 0.5720 0.4967 0.4995 0.8123 0.8225 0.7484 0.4742
CLaMP 3c2saas 0.5182 0.4313 0.4432 0.7811 0.8054 0.7082 0.4999

D.3 Classification on WikiMT-X1109

Table 11 presents classification results across dif-1110

ferent musical modalities (ABC, MIDI, Audio) and1111

text annotations (Background, Analysis, Descrip-1112

tion, Scene) on WikiMT-X.1113

Compared to the WikiMT results in Table 8,1114

all models show substantial gains in genre classifi-1115

cation accuracy and F1-macro for ABC and MIDI.1116

This confirms that reannotating genre labels signifi-1117

cantly reduced label noise, leading to more reliable1118

classification. The improvements suggest that ear-1119

lier inconsistencies in genre annotations were a1120

major limiting factor in classification performance.1121

The reorganized label taxonomy and refined an-1122

notations in WikiMT-X provide a more structured1123

and consistent genre framework, making it a more1124

reliable benchmark for music classification.1125

Across different musical modalities, the best-1126

performing models for ABC, MIDI, and Audio1127

achieve comparable classification results. This sug-1128

gests that genre-related features are well-preserved1129

regardless of musical representation. Fig. 8a1130

further supports this observation, showing clear1131

genre boundaries across all modalities, indicating1132

CLaMP 3 models can effectively extract genre in-1133

formation from both representations, reinforcing1134

the idea that genre characteristics are consistently1135

encoded in musical data.1136

A clear distinction emerges between text and 1137

music classification: models perform significantly 1138

better on text annotations (Background, Analysis, 1139

Description) than on music data. This is likely 1140

because text often contains explicit genre-related 1141

cues, making classification more direct. For ex- 1142

ample, descriptions like “syncopated piano chords 1143

and walking bass” strongly suggest jazz. In con- 1144

trast, classifying music requires models to infer 1145

genre from intricate relationships between har- 1146

mony, rhythm, and timbre. However, Scene classifi- 1147

cation behaves differently from other text-based cat- 1148

egories—it describes environmental settings rather 1149

than musical attributes, making its classification 1150

challenge more similar to music than text. 1151

Models trained solely on audio-text alignment 1152

(i.e., CLAP, TTMR++) perform worse in text clas- 1153

sification, likely due to the limited diversity of an- 1154

notations in large-scale audio-text datasets, which 1155

often list only instruments and genres. In contrast, 1156

symbolic-text datasets provide richer semantics, 1157

including background context and musicological 1158

analysis. CLaMP 3as is an exception—though its 1159

text encoder was fully updated during audio align- 1160

ment, it achieves much stronger text classification 1161

than models like CLAP and TTMR++. This is 1162

likely due to M4-RAG’s well-curated and diverse 1163

annotations, which offer a broader and more expres- 1164

sive linguistic representation of musical content. 1165
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Table 12: Results for English text-to-music retrieval on MusicCaps, reflecting data leakage in baseline models.
Evaluations are conducted on both the full set and the AudioSet evaluation set. R/O denotes the use of rewritten or
original captions, while F/C indicates retrieval using full tracks or clips.

Model Full Set (5,521 pairs) Eval Set (2,858 pairs)

RF RC OF OC RF RC OF OC

CLAP 0.0536 0.0743 0.0640 0.0894 0.0657 0.0886 0.0774 0.1113
TTMR++ 0.1410 0.2315 0.1757 0.3155 0.1248 0.1341 0.1219 0.1382
CLaMP 3as 0.0874 0.0642 0.0696 0.0536 0.1119 0.0830 0.0917 0.0699
CLaMP 3sa 0.0741 0.0591 0.0530 0.0431 0.0934 0.0735 0.0661 0.0572
CLaMP 3c2sa 0.0729 0.0609 0.0619 0.0504 0.0961 0.0832 0.0822 0.0651
CLaMP 3assa 0.0830 0.0592 0.0743 0.0530 0.1045 0.0784 0.0897 0.0723
CLaMP 3saas 0.0890 0.0705 0.0652 0.0523 0.1177 0.0889 0.0890 0.0682
CLaMP 3c2saas 0.0973 0.0737 0.0762 0.0550 0.1180 0.0933 0.0961 0.0710

E Data Leakage of MusicCaps1166

MusicCaps, a widely used text-to-music retrieval1167

benchmark, includes 5,521 music-text pairs with1168

10-second audio clips. As a subset of AudioSet,1169

many models are trained on overlapping data, rais-1170

ing concerns about reliability, as they may mem-1171

orize seen examples rather than learning true re-1172

trieval patterns.1173

Table 12 shows text-to-music retrieval results1174

on MusicCaps, examining data leakage in base-1175

line models. We evaluate performance on the full1176

dataset (Full Set) and the AudioSet evaluation sub-1177

set (Eval Set), while also assessing the effects of1178

caption rewording (Original vs. Rewritten) and1179

audio length (Clip vs. Full Track).1180

Leakage varies across models: TTMR++ is1181

the most affected, having been trained on Music-1182

Caps pairs from the training set of AudioSet, ex-1183

posing it to half the benchmark; CLAP, trained on1184

the full AudioSet, has seen all MusicCaps audio;1185

in contrast, CLaMP 3 has minimal exposure, with1186

only 150 audio recordings appearing in M4-RAG.1187

To mitigate leakage effects, we introduce1188

rewritten captions generated using Qwen, ensur-1189

ing semantic consistency while incorporating struc-1190

tured aspect lists—detailed annotations of key mu-1191

sical attributes such as instrumentation, mood, and1192

rhythm. Additionally, we conduct retrieval on both1193

10-second clips and full-length tracks, forming four1194

evaluation settings:1195

• RF: Rewritten captions with full tracks.1196

• RC: Rewritten captions with clips.1197

• OF: Original captions with full tracks.1198

• OC: Original captions with clips.1199

Table 12 reveals clear data leakage. TTMR++ 1200

is the only model that performs worse on the eval- 1201

uation set than on the full benchmark, despite the 1202

evaluation set containing fewer retrieval candidates, 1203

which should naturally lead to higher MRR scores. 1204

This suggests severe overfitting to seen MusicCaps 1205

training data. Additionally, both TTMR++ and 1206

CLAP show performance drops with rewritten cap- 1207

tions and full-length tracks. For TTMR++, this 1208

suggests that these modifications help reduce leak- 1209

age effects, though not entirely. For CLAP, the 1210

decline is likely due to rewritten captions incor- 1211

porating more detailed semantic information from 1212

aspect lists, which may shift retrieval behavior. 1213

In contrast, all CLaMP 3 variants show im- 1214

proved performance with rewritten captions, likely 1215

due to M4-RAG’s use of Qwen, making them more 1216

attuned to its text patterns. They also gain an advan- 1217

tage in full-track retrieval. While baseline models 1218

rely on 10-second clips and average embeddings 1219

across segments, CLaMP 3 processes up to 640 sec- 1220

onds of audio, enabling it to capture relationships 1221

across an entire track. In contrast, baselines extract 1222

semantics from isolated clips, restricting their abil- 1223

ity to utilize long-form audio context effectively. 1224

These results raise broader concerns about 1225

benchmark reliability in text-to-music retrieval. 1226

Other benchmarks also face leakage risks—SDD, 1227

for instance, comes from MTG-Jamendo, which 1228

was included in CLAP’s training data. In contrast, 1229

WikiMT-X, manually curated for this study, mit- 1230

igates leakage by sourcing audio from the web 1231

rather than existing datasets. However, since this 1232

audio remains publicly accessible, large-scale mod- 1233

els may still have exposure. To further reduce leak- 1234

age, future benchmarks should prioritize private or 1235

newly recorded datasets for unbiased evaluation. 1236
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