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Figure 1: For text inputs closely associated in semantics but not explicitly containing the erasure
concept, previous methods still generate objects of erasure concept, defined as the concept residue
issue. For example, when it comes to concept of ”airplane”, if we input ”Antonov An-225 Mriya
stunning take off from the airport”, which is a specific name of aircraft, previous MACE method
still generates an image of airplane. While our RealEra method shows the real erasure on airplane,
showing the trade-off between efficacy and specificity.

ABSTRACT

The remarkable development of text-to-image generation models has raised no-
table security concerns, such as the infringement of portrait rights and the gener-
ation of inappropriate content. Concept erasure has been proposed to remove the
model’s knowledge about protected and inappropriate concepts. Although many
methods have tried to balance the efficacy (erasing target concepts) and specificity
(retaining irrelevant concepts), they can still generate abundant erasure concepts
under the steering of semantically related inputs. In this work, we propose RealEra
to address this ”concept residue” issue. Specifically, we first introduce the mech-
anism of neighbor-concept mining, digging out the associated concepts by adding
random perturbation into the embedding of erasure concept, thus expanding the
erasing range and eliminating the generations even through associated concept
inputs. Furthermore, to mitigate the negative impact on the generation of irrel-
evant concepts caused by the expansion of erasure scope, RealEra preserves the
specificity through the beyond-concept regularization. This makes irrelevant con-
cepts maintain their corresponding spatial position, thereby preserving their nor-
mal generation performance. We also employ the closed-form solution to optimize
weights of U-Net for the cross-attention alignment, as well as the prediction noise
alignment with the LoRA module. Extensive experiments on multiple benchmarks
demonstrate that RealEra outperforms previous concept erasing methods in terms
of superior erasing efficacy, specificity, and generality.
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1 INTRODUCTION

In recent years, the surge of generative artificial intelligence (GAI) has brought historic opportunities
for the development of various fields, especially in text-to-image generation (T2I) (Nichol et al.,
2022; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022b). The T2I diffusion models
have produced images of remarkable quality, gratitude to its training on large-scale Internet datasets.
However, these unfiltered large-scale datasets contains abundance of Not-Safe-For-Work (NSFW)
content (Hunter, 2023; Zhang et al., 2023), as well as images involving intellectual property (Jiang
et al., 2023; Roose, 2022; Setty, 2023) or portrait rights (Somepalli et al., 2023). Diffusion models
even learn and memorize these concepts (Carlini et al., 2023; Kumari et al., 2023), making it easy
for users to generate harmful or infringing content, and leading to the spread of disinformation and
greater harm to the society.

To address this security issue, researchers have designed several safety mechanisms for T2I dif-
fusion models. An intuitive solution is to retrain the model using the filtered images (Rombach,
2022), which whereas not only requires expensive computational costs but also leads to a decrease
in generation quality. In addition, the NSFW safety checker which tries to filter out the inappropriate
results after generation (Rando et al., 2022), while the classifier-free guidance aims at eliminating
the concept generation in inference phase (Schramowski et al., 2023). However, they can be easily
circumvented by malicious users due to the open-source model parameters and code.

Recently, some methods propose to erase these concepts by fine-tuning T2I diffusion models
(Gandikota et al., 2023; 2024; Zhang et al., 2024; Kumari et al., 2023; Heng & Soh, 2024; Lu
et al., 2024; Lyu et al., 2024). Specifically, for text inputs containing inappropriate concepts, they
adjust the internal parameters of generation model through fine-tuning, so that the generated content
no longer contains these concepts. Previous work has reached a consensus on the need to solve the
trade-off between efficacy and specificity in concept erasure. Given a text input containing the era-
sure concept, efficacy means that the model outputs irrelevant content while maintaining the overall
naturalness. While specificity implies that if the text input has no relation to the erasure concept, the
output should remain identical to the original model before erasure.

Despite their appealing performance, they fail to produce surprising results when encountering im-
plicitly associated input concept. As shown in Figure 1, for text inputs closely associated in se-
mantics but not explicitly containing the erasure concept, previous methods still generate objects of
erasure concept. For example, when it comes to concept of ”Tom Cruise”, if we input ”A still of
Mission Impossible”, which is Tom Cruise’s most iconic work, previous method can still generate a
portrait of Tom Cruise. Note that ”Mission Impossible” is a concept closely associated with ”Tom
Cruise”, which whereas doesn’t explicitly include ”Tom Cruise”. We define this as the concept
residue issue, i.e., erasure concept still exists in some implicitly associated concepts. This fails to be
tackled by previous methods, which to some extent considered as the word-level erasure, and thus
becomes the motivation of this work.

In this paper, we propose a novel concept erasure framework, named RealEra, which prevents the
diffusion model from regenerating erasure concepts with semantically related inputs. Specifically,
we first mine associated concepts by randomly sampling within the vicinity space of erasure concept.
By introducing the stochasticity into erasure concept’s embedding and shifting it to an associated
concept, RealEra steers the associated concept to the anchor concept. Meanwhile, erasing one con-
cept from diffusion models should prevent the catastrophic forgetting of others, whereas simply sup-
pressing the generation of erasure concept leads to severe concept erosion. To maintain specificity
preservation, we introduce the beyond-concept regularization, which turns the erasure concept into
concepts that are far away and irrelevant by sampling perturbation outside the neighborhood range.
This makes irrelevant concepts maintain their corresponding spatial position, thereby preserving
their normal generation performance. Subsequently, we employ the closed-form solution to opti-
mize weights of U-Net for the cross-attention alignment, as well as the prediction noise alignment
with the LoRA module. RealEra achieves superior performance in both erasing assigned concepts,
and preserving the generation ability of other unrelated concepts.

Our contributions can be summarized as follows:
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• We present a novel concept erasure framework RealEra to solve the concept residue issue
because of associated concept input, which aims at steering the associated concept to the
anchor concept by mechanism of neighbor-concept mining.

• RealEra also employs specificity preservation with beyond-concept regularization, which
compensates for the negative impact of erasing associated concepts on unrelated concepts.

• Extensive experiments demonstrate that the our method greatly boosts the effectiveness of
concept erasure, especially for the implicitly associated concept inputs.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

Training on large-scale datasets, the text-to-image (T2I) generation models have achieved great suc-
cess recently. T2I generation involves creating visual images from textual prompts, which has made
significant advances with diffusion models. Various methods have been developed to achieve high-
resolution text-to-image generations. As a pioneer work, GLIDE (Nichol et al., 2022) trains a 3.5B
text-conditional diffusion model at a 64 × 64 resolution, as well as a 1.5B parameter text-conditional
up-sampling diffusion model to increase the resolution to 256 × 256. DALL-E 2 (Ramesh, 2023)
proposes transforming a CLIP (Radford et al., 2021) text embedding into a CLIP image embed-
ding with a prior model, and then decoding this image embedding into the image. Imagen (Saharia
et al., 2022a) adopts a cascaded diffusion model and T5, a large pretrained language model, as text
Encoder to generate images. Stable Diffusion (SD) (Rombach et al., 2022) is built on the latent
diffusion model, which operates on the latent space instead of pixel space, enabling SD to generate
high-resolution images. SD v1.x employs 123.65M CLIP as text encoder and trains at different steps
on the laion-improved-aesthetics or laion-aesthetics v2 5+ datasets. SD v2.x uses laion-aesthetics v2
4.5+ datasets, a larger dataset and 354.03M OpenCLIP (Cherti et al., 2023), a more powerful CLIP
text encoder.

2.2 CONCEPT ERASURE IN DIFFUSION MODELS

T2I models (Nichol et al., 2022; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022b) are
mostly trained on large-scale web-scraped datasets, such as LAION-5B (Schuhmann et al., 2022).
Unfiltered datasets can cause T2I models to learn and generate a series of inappropriate content that
violates copyright and privacy. To alleviate this concern, many studies explore and devising vari-
ous solutions: training datasets filtering (Rombach, 2022), post-generation content filtering (Rando
et al., 2022), classifier-free guidance (Schramowski et al., 2023), and fine-tuning pretrained mod-
els (Gandikota et al., 2023; 2024; Zhang et al., 2024; Kumari et al., 2023; Heng & Soh, 2024; Lu
et al., 2024; Lyu et al., 2024). The Stable Diffusion 2.0 (Rombach, 2022) applies an NSFW detector
to filter inappropriate content from the training dataset, but this leads to high retraining costs and
generation quality decrease. Post-generation content filtering adopts the safety checker to filter out
NSFW content, but this can easily be disabled by users. SLD (Schramowski et al., 2023) suppresses
the generation of inappropriate content during the inference process with negative guidance, based
on the classifier-free guidance.

Recently, some researches erase inappropriate concepts by fine-tuning the parameters of the T2I
models. ESD (Gandikota et al., 2023) fine-tunes the pretrained model by guiding the model output
away from the erasure concept with a negative conditioned score, so that the model learns from its
own knowledge to steer the diffusion process away from the undesired concept. FMN (Zhang et al.,
2024) utilizes attention re-steering to fine-tune UNet to minimize each of the intermediate attention
maps associated with the erasure concepts. AC (Kumari et al., 2023) fine-tunes the model to match
the prediction noise between the erasure concepts and corresponding anchor concepts, so that steer-
ing the erasure concepts towards anchor concepts. SA (Heng & Soh, 2024) incorporates EWC and
generative replay to forget the erasure concept and remember the retention concepts, respectively.
UCE (Gandikota et al., 2024) employs a closed-form solution to optimize the cross-attention weights
of pretrained models, thereby mapping erasure concepts to anchor concepts. MACE (Lu et al., 2024)
trains a separate LoRA module for each erasure concept by combining a closed-form method and
minimizing activation values of erasure concept, and fuses multiple LoRA modules to achieve mass
concepts erasure. SPM (Lyu et al., 2024) proposes to train a lightweight adapter for each erasure
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concept, adopts a latent anchoring strategy to re-weight preserve loss based on semantic similarity,
and utilizes an facilitated transport mechanism to regulate the multiple concepts erasure. However,
these methods have not focused on the erasure performance of implicitly associated concepts while
ensuring overall erasure performance.

3 PRELIMINARIES

3.1 LATENT DIFFUSION MODEL

To enhance the generative efficiency of the diffusion model, Latent Diffusion Model (LDM) (Rom-
bach et al., 2022) proposes to shift the diffusion process from the pixel space of the images to the
low-dimensional latent space, so it needs to train a VAE (Kingma, 2013) model to encode and de-
code images. In addition, in order to achieve conditional generation, text or image is converted
into condition embedding and fed into the diffusion model, then the diffusion process is controlled
conditionally by the attention mechanism in U-Net. Given a user’s input prompt, it is first encoded
into text embedding by the text encoder. The text embedding will then be projected into K and V
vectors respectively by the projection matrix WK and WV . Then, the K vectors dot-product with
Q vectors from the noisy image to get the attention maps. The image-text fusion feature is obtained
by multiplying the attention maps and V vectors, then the final predicted noise is derived from the
subsequent network structure of U-Net. The final training optimization objective is:

LLDM = Ezt,t,c,ϵ∼N (0,1)

[
∥ϵ− ϵθ (zt, t, c)∥22

]
, (1)

where zt represents the latent space variable of image x through the VAE, c represents the multi-
modal condition inputs such as text or image, connected to the diffusion model through the cross-
attention mechanism.

3.2 LOW-RANK ADAPTATION

To reduce the cost of downstream transfer learning for large-scale models, the concept of parameter-
efficient fine-tuning (PEFT) (Mangrulkar et al., 2022) has been introduced. Low-Rank Adaptation
(LoRA) (Hu et al., 2021), as a structure in PEFT, enhances parameter efficiency by freezing the pre-
trained weight matrices and integrating additional trainable low-rank matrices within the network.
This method is based on the observation that pre-trained models exhibit low “intrinsic dimension”.
Given the pretrained weights matrix of the diffusion model W ∈ Rm×n, LoRA constrain its update
with a low-rank decomposition W ′ = W + BA, where B ∈ Rm×r and A ∈ Rr×n, and satisfying
r ≪ min(n,m). In training phase, only A and B are trainable and receive gradient updates, while
W ′ is frozen. W ′ and BA multiply the same input and sum them to output. Thus, as for input x and
output h:

h = W ′x = Wx+BAx, (2)

where LoRA adopts a random Gaussian initialization for A and zero for B.

4 METHOD

4.1 EFFICACY ERASURE WITH NEIGHBOR-CONCEPT MINING

The previous methods mainly focus on mapping the erasure concepts to the anchor one. How-
ever, as for erasure concept, there are still multiple related concepts within its neighborhood that
can easily condition the diffusion model to generate erasure concepts, e.g., ”airport” and ”An-225
Mriya” for ”airplane”, and ”Mission Impossible” for ”Tom Cruise”. Therefore, to prevent the model
from generating erasure concept through these associated concepts, we propose the mechanism of
Neighbor-Concept Mining. Specifically, when fine-tuning the model, we add random perturbations
to the input embedding of erasure concept, shifting them towards associated concepts in the adjacent
semantic space. We fine-tune the diffusion model by mapping both these mined-out concepts and
erasure concept to the anchor concept. Regarding the addition of stochasticity introduced by ran-
dom sampling, we design the following scheme: suppose we have the prompt pc corresponding to
the erasure concept c, whose corresponding embedding is e, and the defined perturbation as η. For
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Figure 2: The overall pipeline of the proposed RealEra method. We mine and erase the associ-
ated concepts in the neighborhood of the erasure concepts, and to remain the mapping relationship
of other unrelated concepts, we introduce additional beyond-concept regularization to preserve its
generative ability. Finally, we apply these two manipulation to closed-form solution and noise align-
ment, as two optimization process for diffusion.

the perturbed embeddings, we expect them to be within the adjacent space of the erasure concept,
rather than being too far from it. Thus, we make constraints on perturbation η from both the aspects
of Euclidean Distance and Cosine Similarity:

d(e, e+ η)⩽D1, (3)

S2⩽cos(e, e+ η)⩽S1, (4)
where D and S1, S2 are thresholds of Euclidean Distance and Cosine Similarity, respectively. d(·, ·)
denotes the Euclidean distance and cos(·, ·) the Cosine Similarity. To that end, we first sample a
random vector v from the standard normal distribution N (0, 1), which is the same dimension as e,
and calculate the unit direction vector v̂ pointing from e to v: v̂ = v−e

∥v−e∥ . Next, we also sample the
radius r from a uniform distribution U [0, D]. Finally, we can derive the sampled perturbation η by:

η = rv̂, (5)

and we can thereby filter the η as follows:

η =

{
η, if S2⩽cos(e, e+ η)⩽S1

0, otherwise.
(6)

Our intuition of introducing certain stochasticity is to fully explore the neighborhood space of the
erasure concept, so that the obtained associated concepts can represent the entire range D1. One
possible solution is to sample and obtain M perturbations, and add them into embeddings of erasure
concept token and its subsequent tokens. For simplicity, the subsequent are referred to as adding
perturbations to e. We expect to map these associated concepts to anchor concept to erase the
concept residue. However, we empirically find that mapping multiple associated concepts to one
anchor concept is too strict, which can damage the generative performance of the model to some
extent. Therefore, we hope to introduce some tolerance in the mapping process, allowing associated
concepts to map to a smaller neighborhood around anchor concept, rather than a specific one.

4.2 SPECIFICITY PRESERVATION WITH BEYOND-CONCEPT REGULARIZATION

Despite delving into the associated concepts, directly mapping them to the anchor concept will
greatly affect the generation of other unrelated concepts. Although we can balance the performance

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of erasing concepts and retaining irrelevant concepts by adjusting the number of digging N , it is
still sub-optimal. We argue that when the mapping relationships of most data points within the
erasure concept neighborhood are changed, concepts in a larger range in the same manifold space
would also be involved. Therefore, to further alleviate this problem while maintaining the ability to
erase concept residue, we sample N points within the range greater than D1 and less than S2 in the
same way, and keep the original positions of the sampling points unchanged. In this regularization
way, we only modify the mapping relationships of associated concepts within range D1, keeping
the mapping relationships of unrelated concepts outside of range D1 unchanged, which ensures the
model’s generative capability.

Fine-tuning. To that end, we can use the above-mentioned associated concepts and those to be
retained to fine-tune the diffusion model. In diffusion U-Net, the text embedding will be projected
into K and V vectors respectively by the projection matrix WK and WV . Our objective is to steer
the K and V vectors corresponding to erasure concept into the anchor concept’s in the original
model. We fine-tune the WK and WV utilizing the closed-form solution, which can be formulated
as follows:

min
W

∑
ei∈E

∥Wei −W orge∗i ∥
2
2 + λ1

∑
ej∈P

∥Wej −W orgej∥22 , (7)

where ei and e∗i refer to the prompt embedding of erasure concept and anchor concept, respectively.
E and P denote the prompt embedding set that contains erasure concepts and preservation concepts,
respectively. We add the delved associated concepts to E, and add the preserve concepts to P . We
also use W to concisely represent WK and WV , and the same for W org.

4.3 PREDICTION NOISE ALIGNMENT

Since the closed-form solution is an approximation of the least squares instead of the exact solution,
we need to further optimize the diffusion model. For this, we choose the parameter-efficient fine-
tuning (PEFT) method LoRA. We aim to steer the prediction noise of erasure concept towards anchor
concept’s. Therefore, we input the prompt p(c) that includes the erasure concept and the prompt
p(c∗) that includes the anchor concept into the model, and align two prediction noises to train the
LoRA model. During training, we add perturbations to ei as described above, and alternate the
perturbed ei and the original ei as inputs to the model. This ensures the erasure of specified concepts

Algorithm 1 Algorithm of RealEra Method
Input: Diffusion U-Net ϵθ , erasure concept c, anchor concept c∗ and epochs T .
Output: Diffusion U-Net ϵ̂θ with concept c erased
1: Initialize: Prompt p corresponding to c, prompt p∗ corresponding to c∗, text embedding e of p, text

embedding e∗ of p∗, prompt set P = {p}, text embedding set E = {e}, anchor text embedding set
E∗ = {e∗} and preserved set Pre = {}

2: for pi ∈ P do
3: m,n = 0
4: while m < M do
5: Sample v ∼ N (0,1), r ∼ U[0,D1) and

r′ ∼ U[0,D′
1)

6: Calculate v̂ = v−e
∥v−e∥ , η = rv̂,

η′ = r′v̂ and cos(e, e+ η)
7: if S2⩽cos(e, e+ η)⩽S1 then
8: ec = e.clone() + η and

e∗c = e∗.clone() + η′

9: E = E ∪ {ec} and E∗ = E∗ ∪ {e∗c}
10: m = m+ 1
11: end if
12: end while
13: while n < N do
14: Sample v ∼ N (0,1) and l ∼ U[D1,D2)
15: Calculate as the same as step 6

16: if cos(e, e+ η) < S2 then
17: e′ = e+ η
18: Pre = Pre ∪ {e′}
19: n = n+ 1
20: end if
21: break
22: end while
23: end for
24: Derive closed-form solution ϵ′θ with E, E∗ & Pre
25: E = {e} and E∗ = {e∗}
26: Initialize LoRA weights ∆ϵθ
27: for t = T, . . . , 1 do
28: Resample as step 2 ∼ 23 to obtain E, E∗

29: Update ∆ϵθ with Lnoise

30: end for
31: ϵ̂θ = ϵ′θ +∆ϵθ
32: return ϵ̂θ
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Table 1: Evaluation of concept erasing on the CIFAR-10 classes. Our RealEra can erase concepts
excellantly while maintaining specificity, effectively addressing the issue of concept residual, and
have a brilliant generality on associated concepts.

Method Airplane Erased Automobile Erased Bird Erased Cat Erased Average across 10 Classes
Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑

FMN 96.76 98.32 94.15 6.13 95.08 96.86 79.45 11.44 99.46 98.13 96.75 1.38 94.89 97.97 95.71 6.83 96.96 96.73 82.56 6.13
AC 96.24 98.55 93.35 6.11 94.41 98.47 73.92 13.19 99.55 98.53 94.57 1.24 98.94 98.63 99.10 1.45 98.34 98.56 83.38 3.63
SPM 86.61 98.90 95.25 10.16 92.26 98.88 73.22 16.98 77.86 98.46 94.43 12.77 22.29 98.55 81.10 39.51 76.59 98.59 79.85 23.16
UCE 40.32 98.79 49.83 64.09 4.73 99.02 37.25 82.12 10.71 98.35 15.97 90.18 2.35 98.02 2.58 97.70 13.54 98.45 23.18 85.48
SLD-M 91.37 98.86 89.26 13.69 84.89 98.86 66.15 28.34 80.72 98.39 85.00 23.31 88.56 98.43 92.17 13.31 84.14 98.54 67.35 26.32
ESD-x 33.11 97.15 32.28 74.98 59.68 98.39 58.83 50.62 18.57 97.24 40.55 76.17 12.51 97.52 21.91 86.98 26.93 97.32 31.61 76.91
ESD-u 7.38 85.48 5.92 90.57 30.29 91.02 32.12 74.88 13.17 86.17 20.65 83.98 11.77 91.45 13.50 88.68 18.27 86.76 16.26 83.69
MACE 9.06 95.39 10.03 92.03 6.97 95.18 14.22 91.15 9.88 97.45 15.48 90.39 2.22 98.85 3.91 97.56 8.49 97.35 10.53 92.61
ReaEra 3.38 96.18 8.87 94.58 1.93 97.54 4.82 96.88 9.03 94.08 9.33 91.88 2.67 95.43 2.41 96.77 5.71 95.91 8.37 93.85
SD v1.4 96.06 98.92 95.08 - 95.75 98.95 75.91 - 99.72 98.51 95.45 - 98.93 98.60 99.05 - 98.63 98.63 83.64 -

and associated concepts. Therefore, the training objective of odd steps is formulated as:

Lnoise = ∥ϵθ(zt, t, pc)− ϵ̂θ(zt, t, pc∗)∥22 , (8)

and that of even steps is defined as:

Lnoise = ∥ϵθ(zt, t, p′c)− ϵ̂θ(zt, t, pc∗)∥
2
2 +

∥ϵθ(zt, t, p′′c )− ϵ̂θ(zt, t, p
′′
c )∥

2
2 ,

(9)

where zt refers to noisy intermediate latent corresponding to image generated by p(c∗). p′c is asso-
ciated concept with perturbation and p′′c is preserved concepts with perturbation. ϵθ and ϵ̂θ denote
the new U-Net and the original U-Net, respectively.

5 EXPERIMENT

In this section, we extensively study our proposed method on four tasks: object erasure, celebrity
erasure, explicit content erasure, and artistic style erasure. We also validate the effectiveness of our
method in erasing residual concepts. In closed-form solution, we set λ1 to 0.1. We train LoRA for
200 epochs, with a learning rate of 1e− 5. In addition,we set γ1 is 0.3 and γ2 is 0.7.

5.1 OBJECT ERASURE

We evaluate the performance of object erasure task on the CIFAR-10 dataset. We assess individual
erasure results of one object class in CIFAR-10 each time, and finally evaluate the average per-
formance across 10 classes. Acce is derived from CLIP classifying 200 images generated with ”a
photo of the {erasure class}”, while Accs is similarly derived from CLIP generated with ”a photo
of the {remaining class}” for each of the remaining nine classes. Accg is also derived from CLIP
generated with ”a photo of the {synonym class}”. Ho is the harmonic mean of these three metrics.
Settings of synonyms for objects erasure refer to MACE (Lu et al., 2024).

As shown in Table 1, we demonstrate that RealEra surpasses the previous SOTA method, MACE,
in the erasure performance on the 10 classes of CIFAR-10. It improves the comprehensive erasure
metric Ho by 1.3% compared to MACE, showing that RealEra not only shows good effectiveness
but also maintains excellent specificity and generality. Meanwhile, our approach impressively out-
performs on the synonym erasure, with an Accg decrease of 20.5% compared to MACE. More
qualitative generations are reported in Figure 3. These precisely illustrate that our noise perturba-
tion has broadened the erasure range of concepts, causing the associated concepts also to be mapped
to the anchor concept.

5.2 CELEBRITY ERASURE

In this section, we assess the erasure performance of celebrity portraits. We use the GIPHY Celebrity
Detector (GCD) to assess the accuracy of the generated images. The erasure concept corresponding
images should have a lower accuracy rate Acce, while the preserved concept corresponding images
should have a higher accuracy rate Accs. For each identity, we select well-known character names
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MACE OursSD v1.4 SLD UCE ESD

Efficacy: ‘A photo of the airplane’

Specificity: ‘A photo of the truck’

Generality: ‘A photo of the aircraft’

Figure 3: Qualitative comparison of erasing objects. Compared with other methods, our RealEra can
maintain the generation ability of other irrelevant concepts, while can superiorly erase the concepts
when others regeneration post-erasing

MACE OursSD v1.4 SLD UCE ESD

Efficacy: ‘A portrait of Jennifer Lawrence’

Specificity: ‘A portrait of Jason Statham’

Generality: ‘A still of Katniss Everdeen in the Hunger Games’

Figure 4: Qualitative comparison of erasing celebrities. Compared with other methods, our approach
enables the concepts erasure with minimal alterations and can produce more attractive results.

or honorary titles to construct associated concepts. In Figure 4 RealEra’s effectiveness in single
concept erasure is better than MACE, and specificity is excel all methods except MACE. Although
almost all methods can easily erase the celebrity concepts, previous methods fail to maintain the
quality of generating preserved concepts. MACE shows the best specificity, but it falls slightly short
in terms of erasure efficacy and erasure the associated concepts. Figure 4 indicates that RealEra can
erase the erasure concept while causing minimal impact on other concepts, and it can also prevent
the ”concept residue” issue.

5.3 ARTISTIC STYLE ERASURE

In the task of erasing artistic styles, we evaluate the efficacy and specificity of RealEra. The Acce
tests efficacy, which is calculated CLIP score between the prompts of the erased artists and the
generated images, and lower indicates better efficacy. Similarly, the Accs assesses specificity by
calculating CLIP score between the prompts of the retained artists and the generated images, and

8
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Table 2: Assessment of explicit content removal.

Method Results of NudeNet Detection on I2P (Detected Quantity) MS-COCO 30K

Armpits Belly Buttocks Feet Breasts (F) Genitalia (F) Breasts (M) Genitalia (M) Total ↓ CLIP ↑
FMN 43 117 12 59 155 17 19 2 424 30.39
AC 153 180 45 66 298 22 67 7 838 31.37
UCE 29 62 7 29 35 5 11 4 182 30.85
SLD-M 47 72 3 21 39 1 26 3 212 30.90
ESD-x 59 73 12 39 100 6 18 8 315 30.69
ESD-u 32 30 2 19 27 3 8 2 123 30.21
SA† 72 77 19 25 83 16 0 0 292 -
MACE 17 19 2 39 16 2 9 7 111 29.41
RealEra 19 6 2 37 23 4 0 2 93 29.46

SD v1.4 148 170 29 63 266 18 42 7 743 31.34
SD v2.1 105 159 17 60 177 9 57 2 586 31.53

(a) D and S evaluation (b) M and N evaluation

Figure 5: Ablation study of hyper-parameters, i.e., D, S, M and N.

higher value indicates better specificity. More detailed results are in the appendix A.3, our proposed
RealEra method has the superior performance on generated results.

5.4 EXPLICIT CONTENT ERASURE

We adopt the I2P dataset (Schramowski et al., 2023) to assess the performance of RealEra in erasing
explicit content and utilize the Nudenet to detect nude parts in the generated images. As can been
seen in Table 2, our method successfully generates the least amount of explicit content. Meanwhile,
we evaluate CLIP scores on MS-COCO prompts and its generation images, indicating the compara-
ble performance of irrelevant concept preservation. After our erasure, the model minimally produces
nude components from inappropriate prompts, indicating RealEra’s extensive erasing effect.

5.5 ABLATION STUDY

We further investigate the effects of various components and hyperparameters in RealEra. and erase
the automobile from SD v1.4. we combine the following components to compare four variants in
Table 3. Variant 1 only employs closed-form solution. Although its efficacy and specificity are
attractive, there is a poor performance in Accg because it doesn’t involve the associated concepts.
Variant 2 integrates prediction noise alignment. The noise alignment of erasure concept to anchor
concept further improves the overall performance. Variant 3 extend neighbor-concept mining for
erasing associated concepts, avoiding the possibility that the post-erasure diffusion model can gen-
erate erasure concepts from associated concepts. Therefore, it enhances the variant 1’s performance
in Acce and Accg , but it also greatly damages the performance of specificity. Our methods fur-
ther introduces beyond-concept regularization, treating points beyond the neighborhood of erasure
concepts as preserved concepts consistent with the original model. This compensates for the com-
promise to the preserved concepts caused by expanding the erasure range, thereby boosting Accs
while maintaining Accg and Acce.

9
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Table 3: Ablation study on the impact of key components in erasing the Automobile. Variant 1
(only closed-form) don’t involve associated concepts, so erasing performance is poor. Variant 2
(add prediction noise alignment) further enhance performance on all metrics. Variant 3 (integrate
neighbor-concept mining) sharply boost erasure performance, but specificity was impaired. Ours
further integrate beyond-concept regularization, we achieve a trade-off between the performance of
erasure and preservation, and attain SOTA on overall performance.

Variant Components Metrics

A B C D Acce ↓ Accs ↑ Accg ↓ Hc ↑
1 ✓ × × × 3.42 98.85 22.68 89.84
2 ✓ ✓ × × 3.41 98.87 22.20 90.03
3 ✓ ✓ ✓ × 1.90 88.21 3.18 94.17
Ours ✓ ✓ ✓ ✓ 1.93 97.54 4.82 96.91
SD v1.4 - - - - 95.75 98.95 92.65 -

In Figure 5(a), we illustrate the impact of the threshold for the sampling range on D and S. z
axis is Accs minus Acce. Since we focus on associated concepts that induce the model to continue
generating erasure concepts, we need to mine these concepts within a certain range D of the erasure
concept neighborhood. Too large D and too small S may make the sampling range of associated
concepts too large, resulting in a excellent efficacy but a poor specificity, so the less Accs−e is.
Conversely, if the sampling range is too small, the erasing performance of associated concepts will
deteriorate. Therefore there is a trade-off between values of D and S. Figure 5(b) presents the effect
of the number of samples on M and N . Too large M and too small N mean that there are too many
sampling points for associated concepts and too few sampling points for preserved concepts, which
will be conductive to efficacy but have poor specificity, so Accs−e will become smaller; Conversely,
too few sampling points for associated concepts will make erasing performance worse, so the values
of M and N need to be balanced. Sampling outside the neighborhood range mitigates this issue.
As the number of out-of-range samples increases, specificity Accs will gradually recover. However,
generality Accg would be compromised. Therefore, to trade off specificity and generality.

6 LIMITATIONS

We focus on the phenomenon that may lead to the regeneration of erasure concepts in concept
erasing and define it as the “concept residual”. We achieve excellent erasing results and effectively
preserve other concepts, but the trade-off between efficacy and specificity is yet a challenge since
associated concepts inevitably expand the scope of erasing. In addition, the canonical definition of
associated concepts and the controllability of erasure scope are also issues worth exploring by the
relevant communities in the future.

7 CONCLUSION

This paper focuses on solving the challenge of concept residue, and proposes the novel RealEra
method, aiming to achieve semantic-level concept erasure in the diffusion model. The modified
diffusion model can circumvent malicious users from generating inappropriate content by feeding
implicitly associated concepts, defined as the Concept Residue issue. RealEra shifts the erasure con-
cept into associated concepts by sampling perturbation in its neighborhood, while sampling outside
the neighborhood to maintain the generation ability of unrelated concepts. Extensive evaluations
have demonstrated the superior efficacy and generality of RealEra over existing concept erasing
methods. We hope our work will inspire future research on comprehensively and precisely erasing
inappropriate concepts in generative models.
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A APPENDIX

A.1 ADDITIONAL EVALUATION RESULTS OF ERASING THE CIFAR-10 CLASSES

Table 1 presents the results of erasing the final six object classes of the CIFAR-10 dataset. Our ap-
proach shows the highest harmonic mean across the erasure of most object classes. This underscores
the superior erasure capabilities of our approach, striking an effective balance between specificity
and generality. Additionally, note that some methods are slightly superior in removing specific fea-
tures of a subject, whereas they fail to maintain the preservation of irrelevant concept. Clearly, our
RealEra method still achieves better harmonic mean across the erasure of these six object classes.

Table 1: Evaluation of Erasing the CIFAR-10 Classes.

Method Deer Erased Dog Erased Frog Erased Horse Erased Ship Erased Truck Erased
Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑

FMN 98.95 94.13 60.24 3.04 97.64 98.12 96.95 3.94 91.60 94.59 63.61 19.10 99.63 93.14 46.61 1.10 97.97 98.21 96.75 3.70 97.64 97.86 95.37 4.62
AC 99.45 98.47 64.78 1.62 98.50 98.57 95.76 3.29 99.92 98.62 92.44 0.24 99.74 98.63 45.29 0.77 98.18 98.50 77.47 4.97 98.50 98.61 95.12 3.40
SPM 73.74 98.44 68.86 37.34 97.85 98.56 96.81 3.80 76.29 98.44 90.82 18.60 57.47 98.47 44.76 57.94 88.52 98.58 60.16 24.52 93.00 98.64 93.18 10.01
UCE 11.88 98.39 8.94 92.34 13.22 98.69 14.63 89.90 20.86 98.32 18.50 85.53 4.66 98.32 12.70 93.42 6.13 98.41 21.44 89.44 20.58 98.16 50.00 70.13
SLD-M 57.62 98.45 39.91 59.53 94.27 98.53 82.84 12.35 81.92 98.19 59.78 33.20 81.76 98.44 36.71 37.14 89.24 98.56 41.02 24.99 91.06 98.72 80.62 17.29
ESD-x 19.01 96.98 10.19 88.77 28.54 96.38 44.49 70.78 11.56 97.37 13.73 90.45 16.86 97.02 15.05 87.96 33.35 97.93 34.78 73.99 36.06 97.24 44.29 68.38
ESD-u 18.14 73.81 6.93 82.17 27.03 89.75 28.52 77.24 12.32 88.05 7.62 89.32 17.69 82.23 9.89 84.73 18.38 94.32 15.93 86.33 26.11 85.35 21.47 78.98
MACE 13.47 97.71 6.08 92.48 11.07 96.77 10.86 91.47 11.45 97.75 13.08 90.83 4.89 97.48 7.85 94.86 8.58 98.56 14.40 91.56 7.29 98.38 9.38 93.79
RealEra 7.73 97.67 5.68 94.70 9.54 94.91 10.99 91.39 11.1 96.27 11.45 91.10 5.21 97.45 16.79 91.38 4.27 94.36 7.87 94.05 2.21 95.21 5.54 95.80
SD v1.4 99.87 98.49 70.02 - 98.74 98.62 98.25 - 99.93 98.49 92.04 - 99.78 98.50 45.74 - 98.64 98.63 64.16 - 98.89 98.60 95.00 -

A.2 THE EVALUATION SETUP FOR ARTISTIC STYLE AND CELEBRITY ERASURE

For Celebrity Erasure, we use ”A portrait of name” as prompts to generate 200 images for each era-
sure concept. And we refer to celebrity concepts preserved group in MACE (Lu et al., 2024), utilize
same prompts to generate 5 images for each one in perserved group. For Artistic Style Erasure, we
use ”An artwork by name” as prompts to generate 200 images for each erasure concept. And we
refer to artist concepts preserved group in MACE, utilize same prompts to generate 5 images for
each one in perserved group. The prompts of associated concepts for artist style and celebrity era-
sure concept are shown in Table 2. We randomly select characters or titles that represent celebrities
and artists to construct prompts of associated concepts, so that these prompts would not explicitly
include but semantically explicitly represent erasure concepts. These prompts may cause ”concept
residue” problems for concept erasur.

Table 2: The evaluation setup of artistic style and celebrity erasure.

Erasure Task Erasure Concept Prompt corresponding to the Associated Concept

Celebrity

Tom Cruise A still of Ethan Hunt in Mission Impossible
Elon Musk The founder of SpaceX and OpenAI
Jennifer Lawrence A still of Katniss Everdeen in the Hunger Games
Mariah Carey Guinness World Record certified ”Songbird Supreme”
Leonardo Dicaprio A still of Jack in Titanic(1997)

Artistic Style

Van Gogh An artwork by the famous Post-Impressionist painter from the Netherlands
Claude Monet An artwork by the most famous French Impressionist painter
Pablo Picasso An artwork by the famous Spanish artist who pioneered Cubism
Greg Rutkowski An artwork by the famous Polish digital artist
Slavador Dali An artwork by the famous Spanish Catalan surrealist painter

A.3 ADDITIONAL RESULTS

Figure A.2 provides further qualitative concept generations to compare our method with previous
baselines. As can be seen, these visualizations are in consistent with reported quantitative results, di-
rectly showing the SOTA erasing performance of our RealEra method. Our method can achieve real
erasing with the same prompt that regenerates the erasure concepts in other methods, and achieve
excellent balance of erasing and preservation performance.
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MACE OursSD v1.4 SLD UCE ESD

Efficacy: ‘A photo of the automobile’

Specificity: ‘A photo of the ship’

Generality: ‘A photo of the car’

MACE OursSD v1.4 SLD UCE ESD

Efficacy: ‘A portrait of Elon Musk’

Specificity: ‘A portrait of Aaron Paul’

Generality: ‘The founder of SpaceX and OpenAI’

MACE OursSD v1.4 SLD UCE ESD

Efficacy: ‘An artwork by Van Gogh’

Specificity: ‘An artwork by A.J.Casson’

Generality: ‘An artwork by the famous Post-Impressionist painter from the Netherlands’

Figure A.2: More Qualitative Comparison.
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Table 3: Evaluation of concept erasing on celebrities.

Method Tom Cruise Elon Musk Jennifer Lawrence Mariah Carey Leonardo Dicaprio

Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑
AC 0 86.49 4.97 93.50 1.03 89.69 0 94.81 0 79.39 48.19 71.60 0.51 86.67 0 94.97 0 88.50 0.54 95.68
UCE 0 83.13 0 93.66 0 87.45 0 95.43 0 76.81 0 90.86 0 79.27 0 91.98 0 80.16 0 92.38
SLD 2.74 80.38 0 91.68 4.17 84.42 0 92.93 1.03 74.43 0.52 89.31 4.69 79.51 0 90.72 1.60 84.63 0 93.81
ESD 0 42.30 0 68.74 0 59.12 0 81.27 0 49.64 1.54 74.44 0 38.39 0 65.44 0 49.04 0 74.27
MACE 6.03 96.97 5.11 95.26 0.50 96.76 0 98.73 0.50 95.54 25.95 88.18 0 96.96 2.20 98.24 1.01 96.14 0 98.35
RealEra 1.00 91.16 5.05 94.93 0.50 90.74 0 96.55 0.50 92.14 11.57 93.13 0 90.56 0 96.64 0 91.95 0 97.16

SD v1.4 97.49 97.36 20.74 - 97.42 97.36 43.16 - 99.50 97.36 82.05 - 100 97.36 0.71 - 99 97.36 1.03 -

Table 4: Assessment of erasing artistic styles.

Method Van Gogh Claude Monet Pablo Picasso Greg Rutkowski Salvador Dalı́

Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑
AC 25.05 28.40 28.44 47.98 25.39 28.34 27.91 47.95 24.62 28.67 30.02 48.05 26.09 28.06 24.24 48.10 27.49 28.47 27.81 47.79
UCE 28.73 28.55 28.76 47.55 27.47 28.62 28.41 47.85 27.32 28.62 30.43 47.56 25.21 28.67 25.21 48.68 28.53 28.60 29.09 47.57
SLD 26.89 26.80 27.18 46.35 21.41 25.94 24.94 46.44 24.60 26.96 28.18 46.67 22.68 26.41 23.41 46.98 25.97 27.57 24.98 47.54
ESD 21.82 25.75 25.79 46.08 18.92 21.60 21.25 42.06 20.94 23.51 23.95 43.90 23.91 22.77 22.66 42.86 21.75 22.33 24.32 42.39
MACE 24.29 28.56 24.83 48.76 24.71 28.53 25.30 48.61 24.91 28.54 25.75 48.52 23.71 28.58 24.42 48.92 24.43 28.54 27.86 48.28
RealEra 22.83 27.78 23.15 48.41 23.71 27.33 23.27 47.82 22.95 27.80 25.24 48.13 22.84 27.42 25.09 47.79 23.60 27.50 25.83 47.67

SD v1.4 30.36 28.62 25.60 - 32.24 28.62 28.02 - 31.20 28.62 26.76 - 26.94 28.62 24.55 - 31.96 28.62 30.64 -
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