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ABSTRACT

Handling lengthy context is crucial for enhancing the recognition and understand-
ing capabilities of multimodal large language models (MLLMs) in applications
such as processing high-resolution images or high frame rate videos. The rise in
image resolution and frame rate substantially increases computational demands
due to the increased number of input tokens. This challenge is further exacerbated
by the quadratic complexity with respect to sequence length of the self-attention
mechanism. Most prior works either pre-train models with long contexts, over-
looking the efficiency problem, or attempt to reduce the context length via down-
sampling (e.g., identify the key image patches or frames) to decrease the con-
text length, which may result in information loss. To circumvent this issue while
keeping the remarkable effectiveness of MLLMs, we propose a novel approach
using a hybrid transformer-MAMBA model to efficiently handle long contexts
in multimodal applications. Our multimodal model can effectively process long
context input exceeding 100k tokens, outperforming existing models across vari-
ous benchmarks. Remarkably, our model enhances inference efficiency for high-
resolution images and high-frame-rate videos by about 4 times compared to cur-
rent models, with efficiency gains increasing as image resolution or video frames
rise. Furthermore, our model is the first to be trained on low-resolution images or
low-frame-rate videos while being capable of inference on high-resolution images
and high-frame-rate videos, offering flexibility for inference in diverse scenarios.

1 INTRODUCTION

Recent efforts have extended large language models (LLMs) to incorporate multiple modalities,
leading to breakthroughs in various multimodal tasks (Liu et al., 2024d;c;b; Luo et al., 2024a; Chen
et al., 2023b). Despite these advances, existing MLLMs still struggle with tasks that require long
input sequence, e.g. granular visual recognition (Tong et al., 2024), high frame rate videos and
long videos. For example, many well-trained models (e.g., GPT-4V) produce hallucinations when
identifying small and occluded objects in images (Tong et al., 2024) while the same also happens to
video MLLMs (Ma et al., 2023), a limitation that hinders the practical application of MLLMs.

Various methods have been explored to improve multimodality processing in different domains by
incorporating lengthy context, including increasing the resolution of input images (Liu et al., 2024c;
Tong et al., 2024; Hong et al., 2024; Li et al., 2023a; Wang et al., 2023; Luo et al., 2024b), in-
creasing frame rate of input videos and increasing frame sampling rate for long videos. Although
better performance is achieved by incorporating extra lengthy context, increasing context length
directly can significantly escalate computational demands. For instance, increasing the resolution
of images to 448×448 pixels raises the computational complexity of models like LLaVA by ap-
proximately 1.4 times compared to the default 336×336 resolution. Moreover, pre-trained vision
encoders in current MLLMs typically do not support long contexts due to their fixed context length
(Liu et al., 2024d;b; Alayrac et al., 2022), making training unstable with significantly increased
resolution. Consequently, most prior works have pre-trained models with long contexts (Li et al.,
2023a), overlooking efficiency issues. Besides, some works divide the high-resolution images into
smaller patches and then encode them independently (Liu et al., 2024b;c), which might lose the spa-
tial information and also lead to quadratic computational cost increase. Additionally, some methods
shorten the context length (Hong et al., 2024; Luo et al., 2024b) by inject high-resolution image
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features into the hidden layers of LLMs, which leads to varying degrees of visual information loss
and thus reduces effectiveness.

To address these issues, our work proposes using a hybrid transformer-mamba model (e.g., Jamba
(Lieber et al., 2024)) to overcome the quadratic complexity associated with transformer models.
The hybrid architecture enables our multimodal model to efficiently process the long context re-
sulting from high resolutions and frame rates without compromising effectiveness. For instance, it
operates 4× faster than current open-source models (e.g. LLaVA-Next-13B) when the resolution is
4368*4368. In addition, we also propose a train-on-short-infer-on-long recipe, enabling our model
to be trained on inputs with a short context (e.g. low-resolution images) for better training efficiency
and do inference on inputs with longer contexts (e.g. high-resolution images) for better perfor-
mance. This approach addresses both the efficiency and effectiveness problems simultaneously. To
summarize, our contributions include:

• We introduce a hybrid transformer-mamba multimodal model, MMJAMBA, optimized for
efficiently processing lengthy contexts from high resolutions and frame rates. Our ”train-
on-short-infer-on-long” strategy allows the model to train on short-context inputs (e.g.,
low-resolution images) for efficiency and infer on long-context inputs (e.g., high-resolution
images) for enhanced performance.

• We conducte experiments on both images and videos across 18 benchmark datasets fo-
cusing on images and videos. Our results show that MMJAMBA achieves state-of-the-art
performance compared to open-source and proprietary models, consistently outperforming
LLaVA-NeXT (Liu et al., 2024c) and Gemini Pro 1.0 (Team et al., 2023), occasionally
matching or surpassing proprietary models like GPT-4V (OpenAI, 2023). More impor-
tantly, we show that our model achieves the best efficiency when processing high-resolution
images and high frame rate videos.

• We conduct comprehensive model analyses, including ablation and case studies, to eluci-
date the inner workings and demonstrate the model’s performance in real-world scenarios.

2 RELATED WORKS

Multimodal Large Language Models. Most current multimodal large language models (MLLMs)
integrate large language models (LLMs) with vision encoders, such as ViT (Dosovitskiy, 2020)
and CLIP (Radford et al., 2021), by incorporating image representations into the LLMs (Liu et al.,
2024d;b;c). The LLM then performs various vision-language (VL) tasks in an autoregressive man-
ner. Within this framework, MLLMs primarily differ in their approaches to combining text and
image representations. Most works employ a modular architecture that utilizes an intermediate net-
work to map visual features into the text token embedding space of the LLM. Prominent examples,
such as LLaVA (Liu et al., 2024d), often use a multi-layer perceptron (MLP) layer to link the visual
encoder with the LLM. Alternatively, other approaches use sampler-based modules to bridge the
visual encoder and the LLM (Li et al., 2023c; Dai et al., 2023). While these sampler-based mod-
ules effectively reduce the number of visual tokens, they typically require large-scale pre-training to
achieve satisfactory performance.

MLLMs with High-Resolution Images. MLLMs often use pre-trained visual encoders for vision-
dependent tasks. However, these encoders typically rely on low resolutions, such as 224 × 224 or 336
× 336 pixels, which limits their ability to perceive small or blurry objects. This limitation can lead
to failures in tasks that require clear and recognizable details for fine distinctions between objects,
such as OCR and document understanding (Tong et al., 2024). Recently, various methods have been
introduced to incorporate high-resolution inputs to enhance the capabilities of MLLMs by providing
more fine-grained visual features (Luo et al., 2023a; Hong et al., 2024; Li et al., 2023a; Liu et al.,
2024c; Tong et al., 2024; Wang et al., 2023). Notable examples include LLaVA-Next (Liu et al.,
2024c), LLaVA-HR (Luo et al., 2024b), OtterHD (Li et al., 2023a), InternLM-XComposer2-4KHD
(Dong et al., 2024), and InternVL 1.5 (Chen et al., 2024b). Among them, many methods (Hong
et al., 2024; Liu et al., 2024b;c) divide high-resolution images into smaller patches and encode them
independently. These patches are subsequently concatenated for further processing. While this
approach can enhance performance, it also results in a quadratic increase in computational cost due
to the extended context length.
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Figure 1: Overview of MMJAMBA. Image representations of all divided patches are flattened and
concatenated. The hybrid state space model consists of interleaved Mamba and Transformer layers.

MLLMs for Videos. Several works, such as VideoChat (Li et al., 2023d) and Video-LLaMA (Zhang
et al., 2023), have introduced LLM-based multimodal models for end-to-end, chat-centric video
comprehension. However, these models can only process a limited number of frames, restricting
their ability to handle long videos. To tackle the computational challenges posed by the large number
of visual tokens in long videos, models like mPLUG-Video (Li et al., 2022) and LLaMA-VID (Li
et al., 2023e) have been proposed, mainly relying on visual token reduction, which can result in loss
of visual information.

3 METHOD

3.1 PRELIMINARIES

Traditional structured State Space Models (SSMs) (Gu et al., 2021; Gu et al.) describe the evolution
of system states through time, defined as (∆, A,B,C). A ∈ RN×N describes how current states
evolve into next states, B ∈ RN×1 determines how external inputs influence the evolution, C ∈
R1×N transforms hidden system states to observed measurements, and ∆ is a time-scale parameter
that helps transform A and B into discrete-time parameters Ā and B̄. The discretized form of the
state space model can be obtained as:

Ā = exp(∆A) (1a)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B (1b)

ht = Āht−1 + B̄xt (1c)
yt = Cht (1d)

K =
(
CB̄,CĀB̄, . . . , CĀkB̄, . . .

)
(1e)

y = x ∗K (1f)

Based on the above structured SSM, the selective SSM–Mamba (Gu & Dao, 2023) is further intro-
duced to endow the model with the ability to selectively propagate or forget information according
to the sequential input tokens. Specifically, the selective SSM achieves the content-aware reasoning
by introducing input-dependent coefficients matrix B(x) and C(x), as well as the parameter ∆(x).

Despite advances at handling long-distance relationships, Mamba still falls short in comparison
with similarly sized Transformer models. Jamba (Lieber et al., 2024) combines the strengths of
both by stacking Transformer layers and Mamba layers in a specific ratio, improving efficiency and
performance over the original Transformer and Mamba models.

3.2 ARCHITECTURE

MMJAMBA adopts the standard MLLM architecture, comprising a visual encoder, an MLP adapter,
and a backbone LLM. Detailed design and implementation of the components are provided below.
Figure 1 illustrates the architecture.
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Vision Encoder Our vision encoder is responsible for encoding images or videos. We adopt the
AnyRes approach (Liu et al., 2024c) to process images with varying aspect ratios. Specifically, we
allow a maximum of 4 tiles during training. Consequently, this set includes all 8 possible combina-
tions of aspect ratios formed by 1 to 4 tiles, such as {1:1, 1:2, 2:1, 2:2, 3:1, 1:3, 1:4, 4:1}. Then,
each image is independently encoded to a sequence of visual features by a transformer-based Visual
Encoder. For videos, we adopt a consistent frame sampling approach that extracts a fixed number
of frames from each video. The extracted frames are then fed into the visual encoder. We use
CLIP-ViT-Large (Radford et al., 2021), with the final layer removed, as the vision encoder. During
inference, we adopt an AnyFrame mechanism which samples any number of frames from the input
videos for further encoding. More details are in the appendix (See A.1).

Modality Adapter The adapter is a simple learnable module that aligns the feature of vision and
text by transforming the dimension of the original visual representation to the dimension of the
tokens of language model. We train separate adapters for the image understanding task and the
video understanding task.

LLM Backbone We employ a hybrid transformer-mamba model as the LLM backbone. In particu-
lar, we adopt, Jamba, a hybrid decoder architecture that mixes Transformer layers with Mamba lay-
ers. The largest pretrained Jamaba model leverages a mixture-of-experts (MoE) architecture, scaling
up to 52 billion parameters with 12 billion active. We chose this model for the following reasons:
1) To the best of our knowledge, it is the largest public available model with a hybrid transformer-
MoE architecture at the time of doing this work; 2) it demonstrates strong performance on language
understanding and reasoning benchmarks; 3) The MoE architecture makes it more computationally
efficient compared to models of similar scale.

3.3 MODEL TRAINING

We have two training stages, with the vision encoder remaining frozen throughout.

1st stage - Adapter Pretraining: Following (Liu et al., 2024d), we perform modality alignment
between images (or videos) and text by pre-training the adapter. All other components except for
the adapter are frozen in this stage.

2nd stage - Visual Instruction Fine-Tuning: Here, we activate all parameters except the vi-
sion encoder. The model is trained by minimizing the causal language modeling loss: l =

−
∑|y|

i=1 logpθ(yi|ŷ1:i−1, q), where θ ← (θLLM , θv, θ
′
) represents the model’s trainable parame-

ters, yi is the ground-truth target, and ŷ1:i−1 denotes the i-1 preceding tokens of the output yi.

Train-Short-Inference-Long Due to the recurrent nature of Mamba layer in our Jamba LLM back-
bone, our model could adopt a long context length during inference while using a short context
length during training, which could achieve good efficiency at both training stage and inference
stage. Therefore, for image understanding, we use low resolution images during training for shorter
context length and thus better training efficiency. During inference, we use high resolution im-
ages for longer context length, which contains more fine-grained visual information. For video
understanding, we use a low resolution and lower frame number during training for better training
efficiency. During inference, we use a high resolution and higher frame number for longer context
length, allowing to capture more fine-grained and richer visual information.

4 IMAGE UNDERSTANDING EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details With our train-low-inference-high recipe, we use a maximal resolution of
672*672 during training, corresponding to 2304 tokens. Therefore, the maximal sequence length
is set to 4096 during training. During inference, we use different maximal resolutions including
672*672, 1344*1344 and 2688*2688, corresponding to 2880, 9792 and 37440 visual tokens respec-
tively. Therefore, the maximal sequence length is set to 4k, 12k and 40k respectively. We employ the
pre-trained CLIP ViTL as the vision encoder, a two-layer MLP as the vision-language adapter, and
Jamba-52B as the LLM. All the training processes were conducted for one epoch using the AdamW
(Loshchilov, 2017) optimizer and a cosine learning rate schedule, without further tuning. The learn-
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Table 1: Comparison with state-of-the-art methods on comprehensive zero-shot benchmarks. Act.
means the number of activated parameters.

Methods Act. MME MMB-EN MM-Vet LLaVA-Wild SEED-IMG MMMU-val

7B to 13B Models

InstructBLIP (Dai et al., 2023) 7.9B 36.0 23.7 - 60.5 - -
Qwen-VL-Chat (Bai et al., 2023) - 1487.5 60.6 - - 58.2 -
LLaVA-v1.5 (Liu et al., 2024b) 7.1B 1510.7 64.3 30.5 63.4 66.1 -
LLaMA-VID (Li et al., 2023e) - 1564.1 61.5 - - 59.1 -

VILA (Lin et al., 2023b) 7.1B 1533.0 68.9 34.9 69.7 61.9 -
SPHINX-Intern2 (Liu et al., 2024a) - 1206.4 57.9 36.5 68.8 - 35.5

LLaVA-NeXT (Liu et al., 2024c) 7.6B 1589.7 68.7 47.3 83.2 72.2 35.3
Mini-Gemini (Li et al., 2024c) 7.3B 1523 69.3 40.8 - 36.1 31.4
MM1 (McKinzie et al., 2024) - 1529.3 79.0 42.1 81.5 69.9 37.0

LLAVA-NeXT (Liu et al., 2024c) 13B 1575 70 48.4 87.3 71.9 35.3

MoE Models

SPHINX-MoE (Liu et al., 2024a) 13.5B 1485.3 71.3 40.9 70.2 73.0 31.1
Mini-Gemini (Li et al., 2024c) 13.5B 1639.5 75.6 45.8 - - 41.8

CuMo (Li et al., 2024a) 13.5B 1639.5 75.3 48.7 84.7 73.2 45.0
LongLLaVA (Wang et al., 2024) 13B 1630.1 72.6 40.5 - 68.9 42.1

MMJAMBA 12.4B 1655 80.9 51.6 83.9 72.8 44.4

Private Models

GPT4V (OpenAI, 2023) - 77.0 74.4 - - 56.8 49.9
Gemini 1.5 Pro (Team, 2024) - 74.3 74.3 - - 58.5 52.1

Claude 3 Opus - 63.3 59.2 - - 59.4 50.5
Qwen-VL-Max (Bai et al., 2023) - 1790.1 77.6 66.6 - - 51.4

Table 2: Comparison with state-of-the-art methods on Vision-Language tasks. Act. means the
number of activated parameters.

Methods Act. SQA-IMG TextVQA (VQAT) GQA POPE VQA v2 Vizwiz

7B to 13B Models

InstructBLIP (Dai et al., 2023) 7.9B 60.5 50.1 49.2 - 60.9 34.5
Qwen-VL-Chat (Bai et al., 2023) - 68.2 61.5 57.5 - 78.2 38.9
LLaVA-v1.5 (Liu et al., 2024b) 7.1B 66.8 58.2 62.0 85.9 78.5 50.0
LLaMA-VID (Li et al., 2023e) - 65.2 51.1 56.4 - - -

VILA (Lin et al., 2023b) 7.1B 68.2 64.4 62.3 85.5 79.9 -
SPHINX-Intern2 (Liu et al., 2024a) - 59.1 38.1 56.2 - 55.7 -

LLaVA-NeXT (Liu et al., 2024c) 7.6B 72.8 65.7 64.8 87.3 82.2 57.6
Mini-Gemini (Li et al., 2024c) 7.3B 65.2 51.3 - - - -
MM1 (McKinzie et al., 2024) - 72.6 72.8 - 86.6 82.8 -

LLAVA-NeXT (Liu et al., 2024c) 13B 73.6 67.1 65.4 86.2 82.8 60.5

MoE Models

SPHINX-MoE (Liu et al., 2024a) 13.5B 74.5 68.0 63.8 89.6 81.1 61.9
Mini-Gemini (Li et al., 2024c) 13.5B - 69.2 - - - -

CuMo (Li et al., 2024a) 13.5B 77.9 66.0 63.8 85.7 81.8 -
LongLLaVA (Wang et al., 2024) 13B 75.9 - 62.2 - - -

MMJAMBA 12.4B 77.3 70.7 64.7 87.8 82.6 57.6

Private Models

GPT4V (OpenAI, 2023) - - 78.0 - - - -
Gemini 1.5 Pro (Team, 2024) - - 73.5 - - - -

Claude 3 Opus - - 76.0 - - - -
Qwen-VL-Max (Bai et al., 2023) - - 79.5 - - - -

ing rate is set to 1e-3 for pre-training the MLP adapter and reduced to 7e-6 for visual instruction
tuning. All experiments were performed on 32 A100 GPUs with an accumulative batch size of 256.

Training Datasets For two training stages of our model , we utilize high-quality data to enhance
cross-modality understanding and generation. This dataset includes LLaVA-558K (Liu et al., 2024d)
for modality alignment during MLP adapter pretraining and LLaVA665K (made up of LLaVA-
Instruct-158K (Liu et al., 2024d), ShareGPT-40K (Chen et al., 2023a), VQAv2 (Antol et al., 2015),
GQA (Hudson & Manning, 2019), OKVQA (Marino et al., 2019), OCRVQA (Mishra et al., 2019),
A-OKVQA (Schwenk et al., 2022), RefCOCO (Yu et al., 2016) and VG Krishna et al. (2017)),
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Table 3: Main Results on Multiple-Choice Video QA (MC-VQA) and Open-Ended Video QA (OE-
VQA) benchmarks. Act. means the number of activated parameters.

Methods Act. EgoSchema Perception MVBench VideoMME MSVD ActivityNet

Proprietary Models

Gemini 1.0 Pro (Team et al., 2023) - 55.7 51.1 - - - 49.8/-
Gemini 1.5 Pro (Team, 2024) - 63.2 - - 75.7 - 56.7/-

GPT4V (OpenAI, 2023) - 55.6 - 43.7 60.7 - 59.5/-
GPT4O (OpenAI, 2024) - 72.2 - - 66.2 - 61.9/-

Open-source Models

LLaMA-VID (Li et al., 2023e) 7B 38.5 44.6 41.9 25.9 69.7/3.7 47.4/3.3
Video-LLaVA (Lin et al., 2023a) 7B 38.4 44.3 41.0 40.4 70.7/3.9 45.3/3.3

VideoChat2 (Li et al., 2024b) 7B 42.2 47.3 51.1 33.7 70.0/3.9 49.1/3.3
LLaVA-NeXT-Video Liu et al. (2024c) 7B 43.9 48.8 46.5 33.7 67.8/3.5 53.5/3.2

VideoLLaMA2 Cheng et al. (2024) 7B 50.5 49.6 53.4 44.0 71.7/3.9 49.9/3.3
VideoLLaMA2-Mixtral Cheng et al. (2024) 13.5B 53.3 52.2 53.9 48.4 70.5/3.8 50.3/3.4

LongLLaVA (Wang et al., 2024) 13B - - 54.6 51.7 - -
MMJAMBA 12.4B 58.7 55.8 61.0 50.1 73.7/4.1 48.6/3.5

ShareGPT4V (Chen et al., 2023a), LAION-GPT4V1, DocVQA (Mathew et al., 2021), AI2D (Kem-
bhavi et al., 2016), ChartQA (Masry et al., 2022), DVQA (Kafle et al., 2018) and ALLaVA-Instruct-
4V (Chen et al., 2024a) (about 1.68 million single- or multi-round conversations) for visual instruc-
tion fine-tuning.

Evaluation Benchmarks To show our model’s effectiveness, we evaluated our model on zero-
shot multimodal benchmarks, including SEED (Li et al., 2023b) (Image), MMB (Liu et al., 2023)
(MMBench), MME (Fu et al., 2024a), MM-Vet (Yu et al., 2023), MMMU (Yue et al., 2024), and
MathVista (Lu et al., 2023) datasets. Additionally, we reported results on well-known visual ques-
tion answering datasets, such as VQAT (TextVQA), GQA (Hudson & Manning, 2019), VQA v2
(Antol et al., 2015), VizWiz (Gurari et al., 2018), and SQAI (Lu et al., 2022) (ScienceQA-Image).

4.2 MAIN RESULTS

Comprehensive Multimodal Benchmarks In Table 1, we compare our approach with previous
leading open-source and closed-source methods across various comprehensive zero-shot multimodal
benchmarks. These benchmarks assess the model’s visual understanding, reasoning, multidisci-
plinary abilities, and even logical thinking and math capabilities. Overall, we observe a competitive
performance to even better performance compared with the open-source models with the same and
even slightly larger parameter size, confirming the effectiveness of our proposed method. It should
be noted that our model outperforms the LongLLaVA, a concurrent work, (Wang et al., 2024) by a
large margin on all the benchmarks, which further shows the effectiveness of our model.

Visual Question Answering Benchmarks In Table 3, we also present a comparison of MM-
JAMBA with existing methods on widely used visual question answering benchmarks. Datasets
such as TextVQA (VQAT) require the model to have certain OCR (Optical Character Recognition)
capabilities to read and reason over the text and scene in the given images. Similarly, noticeable
performance improvements can be observed on the five datasets compared to baselines with the
same and even larger number of activated parameters. In particular, the performance increases using
MMJAMBA on TextVQA and GQA are considerably significant, demonstrating its ability to han-
dle distinct details from images by incorporating granular visual information from high-resolution
images.

5 VIDEO UNDERSTANDING EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details With our train-short-inference-long recipe, we use a frame number of
8 during training. During inference, we use different frame numbers including 8, 16, 32 and 64.
We employ the pre-trained CLIP ViT as the vision encoder, a 2D convolution layer as the vision-
language adapter, and Jamba-52B as the LLM. All the training processes were conducted for one

1https://huggingface.co/datasets/laion/gpt4v-dataset
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Figure 2: Efficiency analysis across different models and resolutions. First inference latency is
the time used to generate 1 token and throughput is calculated as average tokens processed when
generating 1024 tokens.

epoch using the AdamW optimizer and a cosine learning rate schedule, without further tuning. The
learning rate is set to 1e-3 for pre-training the adapter and reduced to 7e-6 for visual instruction
tuning. All experiments were performed on 32 A100 GPUs with an accumulative batch size of 256.

Training Datasets For two training stages of our model , we utilize high-quality data to enhance
cross-modality understanding and generation. This dataset includes LLaVA-558K and Valley-
702k (Luo et al., 2023b) for modality alignment during adapter pretraining and LLaVA665K,
ShareGPT4V, LAION-GPT4V, DocVQA, AI2D, ChartQA, DVQA, ALLaVA-Instruct-4V and
VideoChat2 (Li et al., 2024b) (about 2.7 million single- or multi-round conversations) for visual
instruction fine-tuning.

Evaluation Benchmarks We evaluated our models on Multi-choice Video Question Answering
(MC-VQA) and Open-Ended Video Question Answering (OE-VQA) to systematically assess the
video understanding capabilities of our model. For the MC-VQA task, we select EgoSchema (Man-
galam et al., 2023), Perception-Test (Pătrăucean et al., 2023), MVBench (Li et al., 2024b), and
VideoMME (Fu et al., 2024b). We report the top-1 accuracies for all benchmarks. For open-ended
question answering, we conduct comparative studies using the MSVD-QA (Xu et al., 2016) and
ActivityNet-QA (Yu et al., 2019) benchmarks. Following the protocols of Maaz et al. (2024), we em-
ploy a GPT-assisted evaluation to assess the quality of the generated answers. Specifically, GPT-3.5
provides a binary ”Yes-or-No” decision on the correctness of answers, and we report the percentage
of ”Yes” responses as Accuracy.

5.2 MAIN RESULTS

Results on MC-VQA The overall performance on multiple-choice video question answering (MC-
VQA) tasks are summarized in Table 3. MMJAMBA demonstrates strong performance compared
to open-source models and shows competitive results against proprietary models in certain bench-
marks. For MC-VQA, MMJAMBA exhibits substantial improvements over open-source models. On
the EgoSchema benchmark, MMJAMBA achieves an accuracy of 58.74%, outperforming the previ-
ous SOTA VideoLLaMA2-Mixtral (53.3%) by a large margin. Similarly, on the Perception-Test and
MV-Bench datasets, MMJAMBA attains accuracies of 55.8% and 60.99%, respectively, surpassing
other open-source models. Notably, MMJAMBA also outperforms the proprietary model GPT4-V
on both EgoSchema and MVBench dataset. Additionally, MMJAMBA shows competitive perfor-
mance on the VideoMME benchmark with an accuracy of 50.1%, highlighting its robust capabilities
in video understanding tasks. It should be noted that our model outperforms the LongLLaVA (Wang
et al., 2024) by a large margin on MVBench and obtain a comparable performance on VideoMME
with 16 times fewer frames. As shown later, when we increased the number of frames from 8 to 32,
our model’s performance on VideoMME is improved to 51.8, which is better than the performance
of LongLLaVA.

Results on OE-VQA The performance on Open-Ended Video Question Answering (OE-VQA)
tasks is summarized in Table 3. MMJAMBA demonstrates strong performance compared to both
proprietary and open-source models across several benchmarks. For the MSVD dataset, MMJAMBA
gets an accuracy of 73.7% with a score of 4.1, outperforming other open-source models by a large
margin, e.g., LLAVA-NeXT-Video (67.8%/3.5) and VideoLLaMA2-Mixtral (70.5%/3.8). However,
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Table 4: Resolution distribution of different benchmarks.
Resolution GQA LLaVA MM MME vqav2 POPE MMMU SEED VisWiz TextVQA mmbench SQA

Wild Vet val IMG EN IMG
336*336 94 0 17 304 478 0 254 0 74 0 1157 962
672*672 12484 12 79 966 106916 8910 386 206 794 51 3220 1004

1344*1344 0 32 89 736 0 0 220 12428 3091 4944 0 51
2688*2688 0 12 29 160 0 0 40 1266 4041 3 0 0

higher 0 4 4 208 0 0 0 333 0 2 0 0

Table 5: Performance comparison of various models on different resolutions. Res. refers to the max
resolution used during inference.

Methods Res. MME MMB MM LLaVA SEED MMMU SQA VQAT GQA POPE VQAv2 VizwizEN Vet Wild IMG val IMG

LLAVA-NeXT-7b 6722 1519 67.4 43.9 81.6 70.2 35.8 70.1 64.9 64.2 86.5 81.8 57.6
LLAVA-NeXT-7b 13442 1246 67.4 30.9 30.0 20.2 33.0 68.5 19.4 64.1 86.5 81.8 6.07
LLAVA-NeXT-7b 26882 1158 67.4 22.4 14.2 5.21 31.9 68.5 0.50 64.1 86.5 81.8 6.06

LLAVA-NeXT-13b 6722 1575 70 48.4 87.3 71.9 35.3 73.6 67.1 65.4 86.2 82.8 60.5
LLAVA-NEXT-13b 13442 1353 70 35.6 32.8 32.9 32.4 72.6 25.4 65.4 86.2 82.8 6.51
LLAVA-NEXT-13b 26882 1251 70 24.1 16.8 7.57 30.9 72.6 1.15 65.4 86.2 82.8 6.47

MMJAMBA 6722 1655 80.9 51.6 83.9 72.8 44.4 77.3 70.7 64.7 87.8 82.6 57.6
MMJAMBA 13442 1647 80.9 53.1 82.2 72.8 44.8 77.0 71.2 64.7 87.8 82.6 56.0
MMJAMBA 26882 1640 80.9 53.1 80.0 72 44.6 77.0 70.7 64.7 87.8 82.6 54.3

Table 6: Performance comparison of our model on different samples frames. Frame. refers to the
number of frames used during inference.

Methods Frame. EgoSchema Perception MVBench VideoMME MSVD ActivityNet

MMJAMBA 8 58.7 55.8 61.0 50.1 73.7/4.1 48.6/3.5
MMJAMBA 16 58.42 55.95 61.3 51.7 74.2/4.1 48.3/3.4
MMJAMBA 32 57.23 56.04 60.83 51.8 74.8/4.1 48.0/3.4
MMJAMBA 64 52.45 56.21 58.8 46.3 75.0/4.1 48.6/3.4

on the ActivityNet dataset, MMJAMBA attains an accuracy of 48.6% with a score of 3.5, which is
slightly lower than LLAVA-NeXT-Video (53.5%/3.2).

6 ANALYSIS

Efficiency. In Figure 2, we present a comparative analysis of our approach against leading open-
source methods under various conditions, including different resolutions and parameter counts. We
focus on two aspects: first inference latency and throughputs. We measure time for generating out-
puts of 1 token and 1024 tokens. First inference latency is the time used to generate 1 token and
throughput is calculated as average tokens processed when generating 1024 tokens. The results in-
dicate that for both LLaVA-NeXT-7b and LLaVA-NeXT-13b, an increase in the maximum inference
resolution significantly raises first inference latency but maintains a stable throughput, highlighting
the inefficiency of previous leading methods. In contrast, our proposed model exhibits a markedly
smaller increase in first inference latency with rising maximum inference resolution. More impor-
tantly, our model demonstrates a larger increase in throughput as the maximum inference resolution
increases. Notably, at an inference resolution of 43682, our model achieves a throughput that is
about four times greater than that of LLaVA-NeXT-13b, which would even larger when the infer-
ence resolution is higher.

Resolution. In Table 5, we present the performance of our approach under various image resolu-
tions during inference. Overall, we observe that increasing the image resolution during inference
enhances the performance of our proposed model across several benchmarks. Specifically, as the
resolution increases from 6722 to 13442, there is a notable improvement in performance on bench-
marks such as MM-Vet, MMMU-val, and TextVQA. For most benchmarks, including MMB-EN,
SEED-IMG, GQA, POPE, VQA-v2, and SQA-IMG, performance remains consistent with higher
resolutions. However, some benchmarks, such as MME, LLaVA-wild, and Vizwiz, exhibit a slight
decline in performance when the resolution increases. We attribute these performance variations to
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what is the year on the 
calendar?

A cup of coffee.

To the left of the laptop on the right desk, 
there is a small white cup or container.

To the left of the laptop on the right desk, there is a 
small, black desk lamp with a flexible neck. This lamp 
is positioned to provide light to the workspace, which 
is particularly useful for tasks that require attention to 
detail, such as reading or writing.

LLaVA-NeXT-13B

The year on the calendar is 2012

CuMo-Mixtral-8x7B

The year on the calendar is 2012

MMJamba

The year on the calendar is 2010

How many crayons are in 
the box?

LLaVA-NeXT-13B

There are 24 crayons in the box.

CuMo-Mixtral-8x7B

MMJamba

There are 0 crayons in the box.

There are 8 crayons in the box.

On the right desk, what is to 
the left of the laptop? 

LLaVA-NeXT-13B

CuMo-Mixtral-8x7B

MMJamba

What is the name of this dish?

LLaVA-NeXT-13B

CuMo-Mixtral-8x7B

MMJamba

The dish in the image appears to be a type of Korean tofu 
stew, commonly known as "soondubu jjigae" or "spicy soft 
tofu stew.” It's a popular Korean dish made with soft tofu, 
vegetables, and a spicy, flavorful broth.

The dish in the image is a type of Chinese hot pot, specifically 
a Sichuan-style hot pot. The main ingredient is tofu, which is a 
staple in Chinese cuisine and is often used in hot pot dishes.

The dish in the image is known as Mapo Tofu, a popular 
Chinese dish that originates from the Sichuan province. It is 
characterized by its spicy and piquant flavor, which comes 
from the use of Sichuan peppercorns and chili oil.

Figure 3: Dialogues between the user and MLLMs. Examples on videos are presented in Sec A.2.

the inherent nature and characteristics of different benchmarks, which may include factors such as
the number of images at varying resolutions and the reliance on fine-grained visual information.
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Table 7: Performance comparison of various models on different resolutions without AnyRes. Res.
refers to the max resolution used during inference.

Methods Res. MME MMB MM LLAVA SEED MMMU SQA VQAT GQA POPEEN Vet Wild IMG val IMG

LLAVA-NeXT-7b 6722 1531 76.0 44.0 69.4 70.2 36.4 70.0 61.3 64.1 87.4
LLAVA-NeXT-7b 13442 6 3.3 4.9 3.6 0 22.7 7.2 0.48 0.27 50.6
LLAVA-NeXT-7b 26882 0 0 3.3 9.4 0 25.1 0 0.06 0 50.5

LLAVA-NeXT-13b 6722 1567 77.8 49.4 76.7 70.2 36.0 73.3 64.3 65.6 87.3
LLAVA-NEXT-13b 13442 7 4.0 6.7 4.1 0 23.9 8.7 0.55 0.31 50.6
LLAVA-NEXT-13b 26882 0 0 0 10.9 0 26.0 0 0.01 0 50.5

MMJAMBA 6722 1652 80.8 52.5 82.7 72.8 44.3 75.4 70.6 64.6 87.8
MMJAMBA 13442 1612 79.4 48.9 78.4 72.1 44.3 76.0 70.4 63.5 87.5
MMJAMBA 26882 1417 73.4 33.2 72.8 67.8 40.9 73.3 65.1 59.4 83.6

Frames. In Table 6, we present the performance of our approach under various video frames during
inference. Overall, we observe that increasing the sampled frames during inference enhances the
performance of our proposed model across several benchmarks including Perception, VideoMME
and MSVD. However, other benchmarks, such as EgoSchema, MVBench and ActivityNet, exhibit a
slight decline in performance when the number of frames increases. We attribute these performance
variations to the inherent nature and characteristics of different benchmarks, which may include
factors such as the number of videos at varying length and the reliance on visual informations from
more frames.

Training Recipe. In Table 5, we present the performance of our proposed approach utilizing a
train-short-inference-long methodology. During training, the maximum resolution of input images
is set to 6722, which allows for shorter sequences and consequently reduces training time. For in-
ference, we experiment with three different maximum resolutions for input images: 6722, 13442,
and 26882. To ensure a fair comparison, we evaluate our approach alongside previous leading open-
source methods, all following the same train-short-inference-long strategy. Our results indicate that
as the resolution of images during inference increases, the performance of baseline methods sig-
nificantly deteriorates on approximately half of the benchmarks, including MM-Vet, LLaVA-wild,
SEED-IMG, MMMU-val, TextVQA, and VizWiz. For other half of the benchmarks, they do not
contain images with resolution higher than 6722. Therefore, the performance of baselines on these
benchmarks will not change. In contrast, our model maintains or even improves its performance on
all benchmarks with higher inference resolutions. Only three benchmarks, such as MME, LLaVA-
wild, and Vizwiz, exhibit a slight decline in performance consistently when the resolution increases.
This demonstrates that our proposed model can be effectively trained using lower resolutions for
enhanced training efficiency while achieving superior performance when tested with higher resolu-
tions.

7 CONCLUSION

In this work, we introduce MMJAMBA, a multimodal instruction tuned model utilizing the hybrid
state space model–Jamba. MMJAMBA aims to effectively process long context input brought up by
the higher resolutions of the images and more frames of the videos, thereby enhancing multimodal
visual comprehension and recognition. We propose a train-on-short-inference-on-long recipe, which
could enable our model to be trained on inputs with a short context (e.g. low-resolution images)
and tested on inputs with longer contexts (e.g. high-resolution images). Extensive experiments
on 12 benchmarks on images and 6 benchmarks on videos validate the efficacy of MMJAMBA.
We compared our models with both open-source models, such as LLaVA-NeXT, and closed-source
models, such as Gemini Pro 1.0 and GPT-4V, demonstrating the superiority of our approach. More
importantly, we show that our model achieves the best efficiency when processing high-resolution
images, e.g. 4 times faster than current open-source models with a comparable number of activated
parameters. Additionally, we conducted extensive model analyses to understand the efficiency of
our model and effectiveness of our train-short-inference-long recipe and demonstrate its capability
in solving real-world multimodal tasks.
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A APPENDIX

A.1 VISION ENCODING

Image Encoder Utilizing a static input image size for processing images or videos with varying
aspect ratios, is neither efficient nor effective. To overcome this limitation, we utilize the AnyRes
approach (Liu et al., 2024c), as shown in Figure 1. Our method segments the image into smaller
patches, while trying to maintain the integrity of the original image’s aspect ratio. More specifically,
we dynamically match the optimal aspect ratio from a pre-defined set of aspect ratios. Due to
limited computational resources, we allow a maximum of 4 tiles during training. Consequently, this
set includes all 8 possible combinations of aspect ratios formed by 1 to 4 tiles, such as {1:1, 1:2, 2:1,
2:2, 3:1, 1:3, 1:4, 4:1}. During the matching process, for each input image, we calculate its aspect
ratio and compare it with the 8 pre-defined aspect ratios by measuring the absolute difference. Then
the model is sliced into multiple patches, whose resolution is same with the resolution that the vision
encoder is pre-trained on. To keep the overall layout information, the raw image is also resized to the
low-resolution one as the global image. Then, each image is independently encoded to a sequence
of visual features by a transformer-based Visual Encoder.

Video Encoder For videos, we adopt a consistent frame sampling approach that extracts a fixed
number of frames from each video. The extracted frames are then fed into the visual encoder. We
use CLIP-ViT-Large (Radford et al., 2021), with the final layer removed, as the vision encoder.
During inference, we adopt an AnyFrame mechanism which samples any number of frames from
the input videos for further encoding.
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Question: In which direction does the gray sphere move in the video? 

MMJamba:  The gray sphere moves down and to the left in the video

Question: How many times did the person show objects to the camera? 

MMJamba: The person show objects to the camera 5 times.  

(a) Spatial-temporal Orientation Awareness Case.

(b) Action Counting.
Question: Can you describe the video in detail?

MMJamba: Sure, the video shows a man performing a gymnastics routine on a balance beam. He starts by standing on 
the beam and then proceeds to do a handstand. He then flips off the beam and lands on a mat. The man's movements 
are precise and controlled, demonstrating his skill and balance. The balance beam is a narrow, elevated apparatus used 
in gymnastics, and it requires a great deal of strength, flexibility, and coordination to perform on it. The man's routine 
showcases his ability to execute complex movements with ease and grace. Overall, the video is an impressive display of 
athleticism and gymnastics skill.

(c) Global Scene Description Case.
Question: How does the game play as shown in the video?

MMJamba: The game is played by throwing balls at the opposing team while trying to avoid getting hit. The players are 
divided into two teams and they take turns throwing the balls at each other. The objective is to hit the opposing team 
members with the balls while avoiding getting hit yourself.

(d) Reasoning.

Figure 4: Qualitative Video Understanding Cases from different perspectives of MMJAMBA.

A.2 VIDEO CASE STUDY

In Figure 4, we provide more examples of our MMJAMBA on video understanding tasks from dif-
ferent perspectives including spatial-temporal orientation awareness, action counting, global scene
description and reasoning.

16


	Introduction
	Related Works
	Method
	Preliminaries
	Architecture
	Model Training

	Image Understanding Experiments
	Experimental Setup
	Main Results

	Video Understanding Experiments
	Experimental Setup
	Main Results

	Analysis
	Conclusion
	Appendix
	Vision Encoding
	Video Case Study


