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Ranking on Dynamic Graphs: An Effective and Robust
Band-Pass Disentangled Approach
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ABSTRACT
Ranking is an essential and practical task on dynamic graphs, which

aims to prioritize future interaction candidates for given queries.

While existing solutions achieve promising ranking performance,

they leverage a single listwise loss to jointly optimize candidate

sets, which leads to the gradient vanishing issue; and they employ

neural networks to model complex temporal structures within a

shared latent space, which fails to accurately capture multi-scale

temporal patterns due to the frequency aliasing issue. To address

these issues, we propose BandRank, a novel and robust band-pass

disentangled ranking approach for dynamic graphs in the frequency

domain. Concretely, we propose a band-pass disentangled repre-

sentation (BPDR) approach, which disentangles complex temporal

structures into multiple frequency bands and employs non-shared

frequency-enhanced multilayer perceptrons (MLPs) to model each

band independently. We prove that our BPDR approach ensures

effective multi-scale learning for temporal structures by demon-

strating its multi-scale global convolution property. Besides, we

design a robust Harmonic Ranking (HR) loss to jointly optimize

candidate sets and continuously track comparisons between real

and virtual candidates, where we theoretically guarantee its ability

to alleviate the gradient vanishing issue. Extensive experimental

results show that our BandRank achieves an average improvement

of 21.31% against eight baselines while demonstrating superior

robustness across different learning scenarios.
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Figure 1: (a) Frequency spectrum of UCI dataset; and its low-
mid- and high-frequency band illustrations.

1 INTRODUCTION
Dynamic graphs, which preserve evolving relationships (edges)

between entities (nodes) over time, serve as fundamental struc-

tures for modeling complex real-world systems, such as social net-

works [13, 21, 42], recommendation systems [10, 34, 61], and fi-

nancial markets [11, 28, 31]. In these contexts, a common and key

task is predicting and prioritizing future interactions, which intro-

duces link prediction and link ranking tasks. This paper focuses

on link ranking which involves ranking interaction candidates for

given nodes based on their likelihood. For example, on e-commerce

platforms, users are exposed to ranked product lists based on their

previous behaviors, which enhances personalized experiences.

Recent research hasmade progress in ranking on dynamic graphs.

A pioneering work, TGRank [36], tackles the ranking problem by

leveraging a listwise loss and employs a labeling trick to enhance ex-

pressivity. Although achieving promising performance in subgraph-

level ranking, it is constrained by the gradient vanishing problem

stemming from its reliance on a single listwise loss. This compro-

mises the learning ability during model training. Later, TATKC [62]

is designed to mirror the temporal Katz centrality (TKC) calculation

for node ranking over dynamic graphs. It leverages a self-attention

mechanism to learn node embeddings and uses a pairwise loss to

train the model to approximate TKC, enabling graph-level node

ranking. However, despite its focus on TKC approximation, TATKC

employs a pairwise loss that independently optimizes over future

interactions rather than jointly optimizing across candidate sets, re-

sulting in poor generalization ability and sub-optimal performance.

In light of this, we aim to further investigate the ranking problem

over dynamic graphs by tackling the following challenges.

Challenge I: How to accurately model multi-scale temporal
patterns over dynamic graphs? Dynamic graphs naturally ex-

hibit multi-scale temporal patterns, encompassing dynamics that
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(a) Virtual candidate scores (b) Real candidate scores

Figure 2: Previous scores during the training on UCI dataset.

range from long-term to short-term evolution. Existing ranking-

driven approaches over dynamic graphs [36, 62] typically model

multi-scale temporal patterns alongwith temporal structures within

a shared latent space in the time domain. However, they easily over-

fit to long-term evolution (the majority pattern) while overlooking

other dynamics, such as periodic behaviors, resulting in the fre-

quency aliasing issue and thus compromising model robustness.

Although there are a few explorations of dynamic graph learning

in the frequency domain (e.g., FreeDyG [37]), they focus on the link

prediction task and still model multi-scale temporal patterns within

a shared latent space in the time domain, which also leads to the fre-

quency aliasing issue. To further explore the frequency domain, we

visualize the temporal patterns of the UCI dataset using the Fourier

Transform. Fig. 1a reveals that the low-frequency signals domi-

nate the frequency spectrum, reflecting the long-term evolution

inherent in dynamic graphs. In contrast, mid- and high-frequency

signals exhibit lower amplitudes, making it challenging for exist-

ing approaches to accurately capture them. Consequently, these

approaches often overemphasize the ‘highest amplitude’ bands or

become overly sensitive to high-frequency fluctuations, either of

which incurs the frequency aliasing issue, ultimately leading to

sub-optimal performance for ranking tasks (see Fig. 2).

Dynamic Graph Analysis in the Frequency Domain: Ac-
cording to graph signal theory [33], each frequency band pre-

serves distinct temporal patterns in the frequency domain. Tak-

ing the UCI dataset as an example, we make the following

analysis: (1) the low-frequency band (Fig. 1a-1) contains the

highest energy (the largest amplitudes), representing the long-

term evolution that dominates the dynamic graph; (2) the mid-

frequency band (Fig. 1a-2) exhibits multiple peaks with varying

amplitudes, which are less prominent in the overall spectrum,

indicating medium-scale repetitive or periodic patterns, such

as community interactions; and (3) the high-frequency band

(Fig. 1a-3) contains several peaks with the lowest amplitudes,

barely visible in the overall spectrum, highlighting abrupt fluc-

tuations often triggered by unexpected events.

However, existing approaches overlook the properties of tem-

poral dynamics in the frequency domain as well as the frequency

aliasing issue, thus compromising model effectiveness and robust-

ness. This motivates us to explicitly model multi-scale temporal

patterns for the ranking task.

Challenge II: How to prevent the gradient vanishing issue of
the ranking loss in dyanmic graph learning? For the ranking
problem, the listwise loss has been shown to be effective for jointly

optimizing candidate sets, as highlighted in [36]. To explore this

further, we conduct experiments tracking the evolution of previ-

ous scores for virtual and real candidates across epochs on the

UCI dataset using two ranking approaches (i.e., TGRank [36] and

TATKC [62]), where the pairwise loss in TATKC is optimized with

the listwise loss for consistent comparison. We can observe from

Fig. 2 that previous scores of virtual candidates for both TGRank

and TATKC tend to plateau and level off in Fig. 2a, suggesting that

their gradients for virtual candidates vanish over time. This weak-

ens their ability to differentiate between real and virtual candidates

during training, leading to relatively inferior learning ability to-

wards real candidates, as shown in Fig. 2b. We aim to prevent the

gradient vanishing issue to enhance ranking performance.

In this paper, we propose BandRank, a novel and robust Band-

pass disentangled Ranking approach for dynamic graphs in the

frequency domain. To address Challenge I and based on our fre-

quency analysis, we propose a novel band-pass disentangled rep-

resentation (BPDR) approach that contains a band-pass filter with

adaptive quality factor and multi-scale learning for temporal struc-

tures. Concretely, we first design quality factors to adaptively de-

termine frequency centers based on the energy distribution. These

quality factors are employed to disentangle dynamic graph features

into multiple frequency bands via the band-pass filter. Non-shared

frequency-enhanced MLPs are then used to capture temporal pat-

terns and structures within each frequency band, generating band-

specific embeddings while alleviating the frequency aliasing issue.

These embeddings are subsequently integrated to generate high-

quality node representations. We theoretically demonstrate that

our BPDR approach achieves multi-scale global convolution prop-

erty, which ensures a comprehensive understanding of multi-scale

temporal patterns including long-term evolution, periodic patterns,

and abrupt fluctuations. Besides, we design a robust Harmonic

Ranking (HR) Loss that can track comparison between real and

virtual candidates by our proposed harmonic term and jointly op-

timize candidate sets by the listwise loss. We prove that our HR

loss mitigates the gradient vanishing issue by maintaining a con-

sistent gradient signal throughout the training, thus addressing

Challenge II. The main contributions are summarized as

• We provide insights into the properties of temporal pat-

terns within dynamic graphs in the frequency domain. We

propose a novel band-pass disentangled representation ap-

proach that adaptively disentangles these dynamics into dis-

tinct frequency bands, enabling effective multi-scale learn-

ing for temporal structures.

• We design a robust Harmonic Ranking loss, which opti-

mizes candidate sets jointly while theoretically ensuring a

consistent gradient signal throughout the training process,

thereby preventing the gradient vanishing issue.

• Extensive experimental results validate the effectiveness of

our proposed BandRank in the ranking task, achieving an

average improvement of 21.31% against the best competi-

tors. We empirically demonstrate its superior robustness

from three key perspectives.
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2 RELATEDWORK
We briefly review the dynamic graph learning works and frequency-

domain representation learning techniques.

2.1 Dynamic Graph Learning
Dynamic graph learning has gained significant attention recently

due to its broad applicability. These approaches can be roughly cat-

egorized into two groups: classification-driven and ranking-driven.

The classification-driven line encompasses three main learning

tasks: link prediction [4, 28, 30, 43, 44, 47, 57, 59, 66], node classifica-

tion [12, 28, 35, 40, 47, 50, 63], and anomaly detection [7, 27, 48, 56,

58]. These works primarily focused on developing various temporal

graph neural networks to enhance performance in these tasks. Some

works [19, 38, 41, 47] studied temporal dependency modeling and

structure learning to generate high-quality temporal embeddings,

with TGN [32] serving as a general framework. Building on the

general framework, co-neighbor encoder techniques were explored

to capture co-occurrence events, especially improving performance

in inductive learning settings. Additionally, accelerated techniques

such as cache management were integrated into temporal graph

neural networks to enhance model training efficiency[22–24, 51].

However, these approaches primarily operate in the time domain,

making them challenging to capture long-term periodicities effec-

tively. More recently, FreeDyG [37] introduced an adaptive filter in

the frequency domain, applied before structure learning, allowing

the model to capture periodic patterns and shifting phenomena.

Despite this, it overlooked multi-scale temporal pattern modeling,

which was critical for fully capturing the complexity of dynamic

graphs, thus limiting model performance.

For the ranking-driven line, existing research explores both

representation learning techniques and loss function, aiming to

model a candidate set for each node during training. Specifically,

TGRank [36] addressed the subgraph-level ranking task by applying

a listwise ranking loss to optimize the relative ordering of candidate

nodes. It modeled temporal structures within a shared space in the

time domain using the MLPs. However, TGRank suffered from the

gradient vanishing issue, which resulted in poor discrimination

between real and virtual candidates. The recent TATKC [62] lever-

aged the self-attention mechanism and pairwise loss to mirror the

calculation of temporal Katz centrality (TKC), facilitating graph-

level node ranking in dynamic graphs. Nevertheless, TATKC failed

to jointly optimize across candidate sets based on pairwise loss,

leading to suboptimal performance. Additionally, ranking-driven

approaches typically learn multi-scale temporal patterns within a

shared space in the time domain, leading to the frequency aliasing

issue that compromises the model’s robustness.

2.2 Frequency-domain Representation Learning
The frequency domain inherently represents signals as a sum of

various frequency components, making it a powerful tool in many

fields such as computer vision [16, 25, 26], natural language process-

ing [14, 46, 49, 53], and time series analysis [6, 8, 9, 37, 54, 55, 65].

For instance, several attempts, such as [39, 52, 60, 64, 65], integrated

Fourier theory into deep neural networks to capture temporal and

periodic patterns in data that may not be easily detectable in the

time domain, such as in FourierGNN [54] for multivariate time

series forecasting. Additionally, frequency filters [9, 37, 45] were

extensively investigated to help models preserve important infor-

mation while filtering out irreverent ones, enabling more effective

learning for subsequent tasks, such as image deblurring [18]. Never-

theless, existing approaches often treated all frequency components

uniformly, failing to accurately learn signals within specific fre-

quency bands, which limited their ability to capture multi-scale

patterns effectively. In addition, frequency-enhanced representation

learning remains largely underexplored in dynamic graph learn-

ing. Thus, we aim to explore effective multi-scale temporal pattern

modeling to enhance ranking performance on dynamic graphs.

3 PRELIMINARIES
3.1 Continuous-Time Dynamic Graphs

Definition 1 (Continuous-Time Dynamic Graph (CTDG)). A
continuous-time dynamic graph can be denoted as G = (V, E,X),
whereV is the node set, E is the edge set, and X is the feature matrix.
Each edge 𝑒 (𝑡) ∈ E represents a temporal interaction event occurring
between nodes 𝑢 and 𝑣 at a timestamp 𝑡 .

In a CTDG, multiple interaction events can occur between two

nodes at different timestamps, with the edge feature 𝒙𝑒 potentially

varying over time. For simplicity, we refer to CTDGs as dynamic

graphs when the context is clear.

3.2 Problem Definition
We first define queries in ranking over dynamic graphs. Concretely,

each query 𝑞𝑖 = (𝑐𝑖 ,D𝑖 , 𝑡) occurs at time 𝑡 , comprising a cen-

ter node 𝑐𝑖 and several associated ranking candidate nodes D𝑖 =

{𝑣1, 𝑣2, . . . , 𝑣𝑛𝑖 }. The next interaction of 𝑐𝑖 is referred to as the real
candidate, while others are virtual candidates. A dynamic subgraph

G𝑖 (𝑡) is induced by the query 𝑞𝑖 , recording its 𝐾-hop neighbors

within G before timestamp 𝑡 . Next, we present the problem defini-

tion.

Problem 1 (Ranking on Continuous-Time Dynamic Graphs).

Given a CTDG G = (V, E,X) and a query set {𝑞1, 𝑞2, . . . , 𝑞𝑚}. For
each query 𝑞𝑖 = (𝑐𝑖 ,D𝑖 , 𝑡) and its induced subgraph G𝑖 (𝑡) with can-
didate nodesD𝑖 = {𝑣1, 𝑣2, . . . , 𝑣𝑛𝑖 }, we aim to learn a function F that
encodes induced subgraph G𝑖 (𝑡) and maps each query 𝑞𝑖 to a ranking
score for each candidate node, denoted as F (𝑞𝑖 |G𝑖 (𝑡)) = {𝑦𝑖 𝑗 }𝑛𝑖𝑗=1,
where 𝑦𝑖 𝑗 is a ranking score of 𝑣 𝑗 for 𝑐𝑖 .

3.3 Discrete Fourier Transform
Discrete Fourier Transform (DFT) lays the foundation for exploring

representation learning in the frequency domain, which can convert

time-domain signals into the frequency domain. The DFT allows

us to analyze different frequency components and detect complex

temporal patterns within dynamic graphs. Concretely, given a time-

domain signal represented as a sequence of temporal interactions,

the DFT is defined as

𝑋 (𝑓 ) =
𝑁𝑠−1∑︁
𝑛=0

𝑥 (𝑛)𝑒−𝑖2𝜋 𝑓 𝑛/𝑁𝑠 , (1)

where 𝑥 (𝑛) is the discrete time-domain signal, 𝑁𝑠 is the length of

the signal, and 𝑓 represents the frequency components. To revert
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the signal back to the time domain, the Inverse Discrete Fourier

Transform (IDFT) is used:

𝑥 (𝑛) = 1

𝑁𝑠

𝑁𝑠−1∑︁
𝑓 =0

𝑋 (𝑓 )𝑒𝑖2𝜋 𝑓 𝑛/𝑁𝑠 . (2)

In practice, the Fast Fourier Transform (FFT) is commonly used to

compute the DFT efficiently by recursively breaking down the DFT

computation. Similarly, the IDFT can be efficiently computed using

the inverse Fast Fourier Transform (IFFT). For more derivations,

please refer to [1].

4 THE PROPOSED BANDRANK
4.1 Overview
In this paper, we propose a band-pass disentangled ranking ap-

proach (BandRank) for dynamic graphs, which can accuratelymodel

multi-scale temporal patterns inherent in dynamic graphs. To achieve

this, we first design a band-pass disentangled representation (BPDR)

approach inspired by the concept of a band-pass filter, which adap-

tively disentangles the frequency components of temporal struc-

tures into 𝑁 bands, allowing the model to selectively focus on

specific frequency ranges during the learning. Here we leverage

non-shared frequency-enhanced MLPs for each frequency band,

theoretically ensuring comprehensive multi-scale learning within

dynamic graphs. Additionally, we design a harmonic ranking loss

based on listwise loss to jointly optimize candidate sets, which

alleviates the gradient vanishing issue. We elaborate on each com-

ponent below.

4.2 Band-Pass Disentangled Representation
4.2.1 Motivation. Dynamic graphs are complex data structures

that evolve over time, inherently exhibiting multi-scale temporal

patterns, including (1) long-term evolution, representing smooth

changes in graph structures over extended periods; (2) periodic

patterns, where structures recur at regular intervals; and (3) abrupt

fluctuations, which involve abrupt changes or anomalies. Different

temporal patterns are naturally projected into distinct frequency

bands with individual energy distribution, as shown in Figs. 1a-1 to

a-3. Looking at Fig. 1a, it becomes evident that the low-frequency

energy distribution dominates the entire frequency spectrum. In

light of the above, existing solutions tend to overemphasize the low-

frequency patterns or become overly sensitive to high-frequency

fluctuations, leading to the frequency aliasing issue. Motivated by

our analysis, we aim to disentangle complex dynamics to accurately

capture temporal structures for ranking-driven dynamic graph

learning.

4.2.2 Overall of the Proposed BPDR. Here, we explore the potential
of applying the concept of band-pass filtering [5] to dynamic graph

representation learning and propose a novel Band-Pass Disentan-

gled Representation (BPDR) approach in the frequency domain for

dynamic graph ranking. It consists of three key modules: adaptive
quality factor computation, band-pass filter, and multi-scale learning
for temporal structures. Concretely, we define the quality factor

based on the energy distribution, serving to adaptively determine

the optimal bandwidth for frequency disentanglement. Based on it,

we implement a band-pass filter to disentangle the graph signal into

𝑁 frequency bands, which isolate specific temporal patterns within

each band. For each frequency band, we formulate a structure learn-

ing process using the frequency-enhanced MLP that captures the

unique characteristics of graph dynamics, generating band-specific

embeddings. We then integrate these embeddings to update node

embeddings. We formulate this process below.

4.2.3 Adaptive Quality Factor Computation. For each query 𝑞𝑖 =

(𝑐𝑖 ,D𝑖 , 𝑡), we have G𝑖 (𝑡) = (V𝑖 (𝑡), E𝑖 (𝑡),X𝑖 (𝑡)) to represent a can-

didate subgraph for the center node 𝑐𝑖 before timestamp 𝑡 . Our

objective is to rank the candidate nodes based on their relevance to

the center node. We initialize these nodes with learnable vectors,

such as m0

𝑣 (𝑡) ∈ R𝑑 . For each edge 𝑒 (𝑡) = (𝑐, 𝑣, 𝑡) ∈ E𝑖 (𝑡), the
𝑙-layer time-domain information h𝑙𝑒 (𝑡) is constructed by concate-

nating previous node embeddingsm𝑙−1
𝑐 (𝑡 ′),m𝑙−1

𝑣 (𝑡 ′) with the time

encoding and features, capturing the temporal relationship between

nodes 𝑐 and 𝑣 at time 𝑡 by h𝑙𝑒 (𝑡) = [m𝑙−1
𝑐 (𝑡 ′)∥m𝑙−1

𝑣 (𝑡 ′)∥𝜙 (Δ𝑡)∥𝒙𝑒 ],
where 𝜙 (·) is the time encoding function [32, 47] and 𝒙𝑒 is the fea-

tures including node features and edge features (if available). Given

the 𝑙-layer input with 𝐵 subgraphs {G𝑗 (𝑡)}𝐵𝑗=1 and time-domain

temporal information H𝑙 (𝑡), we transform the batch of messages

into the frequency domain by

H 𝑙 (𝑓 ) = DomainConversion(H𝑙 (𝑡)), (3)

where DomainConversion(·) denotes FFT in Eq. (1). Frequency-

domain signalH 𝑙 (𝑓 ) preserves the underlying temporal structures

from each subgraph. Then we aim to disentangle the complex tem-

poral structures into 𝑁 independent bands in the frequency domain.

To achieve this, we define the adaptive quality factor based on the

energy for frequency component disentanglement. Concretely, we

first compute the energy for each frequency component 𝑓𝑖 and then

compute adaptive quality factor 𝑄𝑘 to determine the frequency

center for the 𝑘-th frequency band, which can be formulated as

𝐸 (𝑓𝑖 ) = |H 𝑙 (𝑓𝑖 ) |2, 𝑖 ∈ [1, 𝐹 ], 𝑄𝑘 = 𝛼𝑘
(2𝑘 − 1)∑𝐹

𝑖 𝐸 (𝑓𝑖 )
2𝑁

. (4)

Here,𝛼𝑘 is a scaling factor that is updated according to the gradients

𝜕L𝐻𝑅

𝜕𝛼𝑘
during the training. It allows the model to adaptively adjust

the bandwidth of each band for subsequent band-pass filter based on

the energy distribution of the signal. Consequently, higher energy

levels would produce higher 𝑄𝑘 , which corresponds to narrower

bandwidths, focusing the band-pass filter on specific frequency

components. Conversely, lower energy levels may yield smaller𝑄𝑘 ,

corresponding to broader bandwidths, capturing a wider range of

frequencies. By doing so, the quality factor can adaptively adjust

its sensitivity to the signal during training, making the band-pass

filtering process responsive to various energy components.

4.2.4 Band-Pass Filter. With computed quality factors𝑄 = [𝑄1, 𝑄2,

. . . , 𝑄𝑁 ], we aim to disentangle all frequency components of tempo-

ral structures into 𝑁 frequency bands. For computation efficiency,

we leverage the simple distance function to assign a specific band

for each frequency component 𝑓𝑖 of H 𝑙 (𝑓 ), which is formulated as

𝐵(𝑓𝑖 ) = argmin

𝑘
∥𝐸 (H 𝑙 (𝑓 )) −𝑄𝑘 ∥2, ∀𝑘 ∈ [1, 𝑁 ], (5)

where 𝐵(𝑓𝑖 ) is the spectral mask, recording its corresponding fre-

quency band. In this way, each frequency component is assigned to
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its closest band based on the energy and quality factors. Thus, we

achieve B = {B𝑘 }𝑁𝑘=1 for all components of H 𝑙 (𝑓 ) and then apply

the band-pass filter to disentangle the messages into 𝑁 message

representations by

H 𝑙
𝑘
(𝑓 ) = H 𝑙 (𝑓 ) ⊙ I(B = 𝑘), 𝑘 ∈ [1, 𝑁 ] . (6)

Here, ⊙ denotes element-wise multiplication, and I(B = 𝑘) is an
indicator function that ensures only the frequency components

corresponding to 𝑘-th band are kept. This filtering process dis-

entangles frequency-domain temporal patterns into 𝑁 frequency

bands based on the energy distribution. By adaptively adjusting the

quality factors𝑄𝑘 , the band-pass filters effectively capture the most

relevant frequency components for different temporal patterns,

from long-term evolution in the low-frequency bands to short-term

fluctuation in the high-frequency bands.

4.2.5 Multi-Scale Learning for Temporal Structures. With the dis-

entangled inputs [H 𝑙
1
(𝑓 ),H 𝑙

2
(𝑓 ), . . . ,H 𝑙

𝑁
(𝑓 )], we accomplish the

multi-scale learning for temporal structures, including band-specific

embedding generation and node embedding update. First, given a

band-specific inputH 𝑙
𝑘
(𝑓 ) in the 𝑘-th band, we leverage a simple

frequency-enhanced MLP to model temporal patterns, generating

band-specific embeddings. We then integrate these band-specific

embeddings to generate temporal embeddings and transform them

into the time domain for the node embedding update. We formulate

these process as

Z𝑙
𝑘
(𝑓 ) = FreMLP𝑘

(
H 𝑙

𝑘
(𝑓 )

)
, 𝑘 ∈ [1, 𝑁 ], (7)

Z𝑙 (𝑓 ) = 𝜓
(
𝑁∑︁
𝑘=1

Z𝑙
𝑘
(𝑓 )

)
, (8)

Z𝑙 (𝑡) = DomainInversion

(
Z𝑙 (𝑓 )

)
, (9)

where DomainInversion(·) denotes IFFT in Eq. (2), Z𝑙
𝑘
(𝑓 ) repre-

sents the band-specific embedding from the 𝑘-th frequency band

and𝜓 (·) denotes a complex number linear function.Z𝑙 (𝑓 ) is the
frequency-domain temporal embedding aggregated from 𝑁 fre-

quency bands, which is transformed to the time domain to gener-

ate time-domain temporal embedding Z𝑙 (𝑡). Therefore, based on

Eqs. (7) - (9), different temporal patterns are independently mod-

eled in different latent spaces, allowing for accurate learning of

multi-scale temporal patterns and thus alleviating the frequency

aliasing issue.

Last, we update the embedding of each node by aggregating the

temporal embeddings Z𝑙 (𝑡) from its neighbors within the batch. For

each node 𝑢, we update its node embedding based on its neighbor

N𝑢 (𝑡) by

m𝑙
𝑢 (𝑡) = UPDATE

𝑙
(
m𝑙−1
𝑢 (𝑡),

{
z𝑙𝑢,𝑣 (𝑡) |𝑣 ∈ N𝑢 (𝑡)

})
, (10)

where we leverage a simple sum pooling together with a nonlinear

function for the update function UPDATE(·). Based on Eq. (10),

the node embeddings are iteratively refined, preserving multi-scale

temporal and structural information. Leveraging our band-pass dis-

entangled representation approach, we perform temporal structure

learning across multiple latent spaces, effectively preventing the

mutual interfere of distinct temporal patterns. Next, we demonstrate

how our approach achieves multi-scale learning in the frequency

domain by formulating the following theorem.

Theorem 1 (Multi-Scale Global Convolution Theorem).

Let H(𝑓 ) be a frequency-domain dynamic graph signal, and
assume that H(𝑓 ) can be decomposed into 𝑁 non-overlapping
frequency bands via our band-pass filter. Let {FreMLP𝑘 }𝑁𝑘=1 be
a set of independent frequency-enhanced multilayer perceptrons
(MLPs) for all frequency bands and {I𝑘 }𝑁𝑘=1 be a set of filter
indicators based on {B𝑘 }𝑁𝑘=1. Thus, the learning process of band-
pass disentangled representation approach in frequency domain is
equivalent to

∑𝑁
𝑘=1

I𝑘 ⊙H(𝑓 ) ⊙C𝑘 (𝑓 ), where ⊙ denotes element-
wise multiplication and C𝑘 (𝑓 ) are the complex number weight.

The proof of Theorem 1 is provided in Appendix B.1. Theorem 1

ensures the multi-scale learning capability of our band-pass disen-

tangled representation learning approach, providing a theoretical

foundation for modeling complex temporal structures over dynamic

graphs.

4.3 The Proposed Harmonic Ranking Loss
Listwise loss has been widely used in ranking tasks due to its ability

to jointly optimize candidate sets [2, 3, 36]. However, we found that

it suffers from the gradient vanishing problem for dynamic graph

ranking, particularly for virtual candidate nodes, as highlighted in

Challenge II and Fig. 2. This weakens the discriminative ability

between real and virtual candidates, thus leading to sub-optimal

ranking performance over dynamic graphs. To address this, we aim

to design a robust ranking loss that can jointly optimize candidate

sets and continuously track gradient signals from candidate sets.

Concretely, we first design a harmonic term to track the comparison

between real and virtual candidates during the training. Given a

query 𝑞 = (𝑐,D, 𝑡), we aim to select hard virtual candidates for

comparison and formulate it as

L
harmonic

= − log

(
1

1 + exp(−(𝑦𝑟 − 𝑦hard𝑛 ))

)
, (11)

where 𝑦𝑟 is the score of unique real candidate node 𝑣𝑟 that 𝑐 is

to connect to next. 𝑦hard𝑛 is selected as the hard candidates within

D(𝑡). The selection strategy is similar to [15]. By focusing on the

“hard" candidate, our harmonic term remains sensitive to the critical

distinctions between real and virtual candidates, maintaining a con-

sistent gradient signal throughout the training process. Building on

it, we then present our Harmonic Ranking (HR) loss that integrates

our harmonic term with listwise loss, which can be formulated as

LHR = L
listwise

+ 𝛽L
harmonic

, (12)

where L
listwise

= − log

(
exp(𝑦r )∑|D(𝑡 ) |

𝑗=1
exp(𝑦 𝑗 )

)
and 𝛽 controls the balance

between the listwise loss and our harmonic term. Unlike listwise

loss, where samples contribute less over time, our HR Loss con-

sistently drives the model to distinguish between real and virtual

candidates, leading to a robust optimization process that alleviates

gradient vanishing and maintains model robustness throughout

training. To support this, we provide a Theorem below.
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Table 1: Dataset Statistics

Dataset # Nodes &
Attr.

# Edges &
Attr.

# Time
Span

# Transductive &
Inductive Test Edges

Reddit 10,984 & 172 672,447 & 172 1 month 100,867 & 21,470

Wikipedia 9,227 & 172 157,474 & 172 1 month 23,621 & 11,715

MOOC 7,144 & 0 411,749 & 4 17 months 61,763 & 29,179

LastFM 1,980 & 0 1,293,103 & 0 1 month 193,966 & 98,442

Enron 184 & 0 125,235 & 0 3 years 18,785 & 4,206

UCI 1,899 & 0 59,835 & 0 196 days 8,976 & 5,932

Theorem 2 (Robustness of Harmonic Ranking Loss for

Virtual Condidates). Given a query 𝑞 = (𝑐,D, 𝑡) with its real
candidate 𝑣𝑟 and its virtual candidates D \ 𝑣𝑟 . We can obtain that
the gradient of our Harmonic Ranking (HR) loss with respect to
virtual candidate scores 𝒚D\𝑣𝑟 is greater than those of Listwise
loss, satisfying the following inequality:

𝜕𝐿HR
𝜕𝒚D\𝑣𝑟

− 𝜕𝐿listwise
𝜕𝒚D\𝑣𝑟

> 0. (13)

The proof is provided in Appendix B.2. Theorem 2 ensures that

our harmonic ranking loss maintains a greater gradient for virtual

candidates compared to the listwise loss, thereby alleviating the

gradient vanishing problem and enhancing ranking robustness.

5 EXPERIMENTS
5.1 Experimental Setting
5.1.1 Datasets. We collect six real-world dynamic graphs from [19,

20, 41] for ranking evaluation, covering domains such as social

networks, user-item interactions, and music engagement. Table 1

presents detailed statistics of these datasets.

5.1.2 Baselines. We evaluate our BandRank against eight state-of-

the-art dynamic graph learning approaches in the ranking setting.

Selected baselines covers three groups: ranking-driven approaches

(TGRank [36] and TATKC [62]), classification-driven approaches

(DyRep [38], JODIE [19], TGAT [47], TGN [32], and CAWN [41]),

and a frequency-enhanced classification-driven approach (FreeDyG

[37]). To improve TATKC’s performance in subgraph-level ranking,

we replace its original pairwise loss with the listwise loss ( called

‘TATKC-LW’), as the original version does not yield satisfactory re-

sults. For a fair comparison, all comparative approaches are trained

using the same subgraph sampling strategy from [36].

5.1.3 Evaluation Metrics. We evaluate the model under two learn-

ing scenarios: transductive and inductive learning. In the transduc-

tive setting, each dataset is chronologically divided into training

[0,𝑇train], validation [𝑇train,𝑇val], and testing intervals [𝑇
val
,𝑇 ] fol-

lowing a 70%-15%-15% split, aligned with previous studies [32, 36,

47]. For the inductive setting, we reserve 10% of the nodes for induc-

tive tasks through random sampling, ensuring that both the center

nodes and their real candidates in the test queries remain entirely

unseen during training. For each query 𝑞 = (𝑐,D, 𝑡), we extract

the induced subgraph G𝑐 (𝑡) and perform node downsampling. For

the evaluation metrics, we employ the mean reciprocal rank (MRR)

and Hits@5, both of which are widely used metrics for ranking

tasks [36, 45]. We repeat the experiments five times with random

seeds and report the mean as well as the standard deviation.

5.1.4 Training Configurations. We run all experiments on a sin-

gle machine with Intel(R) Core(TM) i9-10980XE 3.00GHz CPUs,

NVIDIA RTX A6000, and 48 GB RAM memory. We run 8 baselines

using their official codes. We set the batch size 𝐵 as 128 and the

band count as 3. We train the BandRank with Adam optimizer [17],

with an empirical learning rate of 0.0001.

5.2 Effectiveness Evaluation
We evaluate the ranking performance of our BandRank across two

learning scenarios under two metrics against eight baselines.

Exp-1: Temporal Interaction Ranking in Transductive and
Inductive Settings. As shown in Table 2, we observe that (1) Ban-

dRank significantly outperforms the eight baselines in nearly all

cases, achieving an average improvement of 21.24% in the trans-

ductive setting and 21.38% in the inductive setting compared to the

best competitors. These results demonstrate the effectiveness of our

band-pass disentangled representation learning approach and the

Harmonic Ranking loss for ranking tasks over dynamic graphs.

(2) Our BandRank outperforms the ranking-driven approaches

(TGRank and TATKC) by an average of 30.85% in MRR and 16.24%

in Hits@5. This improvement is attributed to the limitations of

existing ranking-driven approaches, which employ a single listwise

loss for ranking, making them suffer from the gradient vanish-

ing issue that degrades model performance. Additionally, these

approaches model multi-scale temporal patterns in a shared latent

space, causing the frequency aliasing issue. TATKC, in particu-

lar, emphasizes approximating temporal Katz centrality ranking,

resulting in high computational complexity and limited scalabil-

ity. (3) Classification-driven approaches consistently show inferior

performance compared to ranking-driven ones, highlighting the

priority of ranking-driven mechanisms in achieving superior per-

formance on ranking tasks over dynamic graphs. (4) Listwise-based

approaches (e.g., BandRank, TGRank, and TATKC-LW) generally

outperform pointwise-based ones, confirming the importance of

jointly optimizing candidate sets for the ranking task. (5) Our Ban-

dRank outperforms FreeDyG by an average of 59.89% in MRR and

43.91% in Hit@5, suggesting that FreeDyG’s adaptive filter in the

frequency domain is insufficient for capturing multi-scale graph

patterns accurately. FreeDyG is a link prediction approach that can-

not jointly optimize candidate sets, further compromising ranking

performance. In contrast, BandRank disentangles complex tempo-

ral structures into multiple frequency bands, allowing for accurate

multi-scale learning and thus leading to superior performance.

5.3 Robustness Evaluation
To evaluate the robustness of our BandRank, we conduct exper-

iments on two key learning scenarios: Random Dropout Iter-
ations and Different-level Noise in Figs. 3 and 4 compared to

the ranking-driven TGRank. We also conduct two variants of our

BandRank to investigate their contribution to the model robustness,

called ‘w/o Distangle’ and ‘w/o HR loss’, where we remove our

frequency disentanglement and Harmonic loss term, respectively.

Exp-2: Robustness against Dropout Iterations. We plot virtual

candidate score distributions over 100 dropout iterations for four
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Table 2: Transductive and inductive temporal interaction ranking performance in MRR (mean ± std.) and Hits@5 (mean ± std.).
TLE signifies that a 12-hour time limit exceeded during link ranking inference. * denotes results collected from [36]. The best
and second-best results are marked in bold and underline, respectively.

Dataset Reddit Wikipedia MOOC LastFM Enron UCI
Metric MRR Hits@5 MRR Hits@5 MRR Hits@5 MRR Hits@5 MRR Hits@5 MRR Hits@5

Transductive
DyRep* 0.519 ± 0.007 0.642 ± 0.011 0.473 ± 0.013 0.606 ± 0.009 0.122 ± 0.016 0.172 ± 0.013 0.065 ± 0.018 0.084 ± 0.010 0.200 ± 0.013 0.297 ± 0.018 0.029 ± 0.009 0.027 ± 0.010

JODIE* 0.376 ± 0.003 0.539 ± 0.008 0.287 ± 0.006 0.514 ± 0.008 0.110 ± 0.013 0.156 ± 0.020 0.031 ± 0.012 0.034 ± 0.016 0.104 ± 0.018 0.126 ± 0.021 0.023 ± 0.008 0.019 ± 0.007

TGAT* 0.413 ± 0.006 0.536 ± 0.007 0.497 ± 0.012 0.737 ± 0.006 0.188 ± 0.009 0.264 ± 0.008 0.098 ± 0.011 0.122 ± 0.014 0.252 ± 0.007 0.424 ± 0.012 0.198 ± 0.004 0.288 ± 0.005

TGN* 0.552 ± 0.004 0.678 ± 0.010 0.575 ± 0.015 0.795 ± 0.013 0.208 ± 0.012 0.329 ± 0.011 0.089 ± 0.008 0.095 ± 0.013 0.242 ± 0.008 0.397 ± 0.009 0.203 ± 0.001 0.280 ± 0.006

CAWN* TLE TLE 0.795 ± 0.022 0.868 ± 0.018 0.206 ± 0.003 0.265 ± 0.016 TLE TLE 0.386 ± 0.011 0.614 ± 0.003 0.518 ± 0.005 0.683 ± 0.008

FreeDyG 0.325 ± 0.025 0.526 ± 0.004 0.616 ± 0.008 0.782 ± 0.003 0.057 ± 0.003 0.051 ± 0.009 TLE TLE 0.254 ± 0.012 0.420 ± 0.013 0.322 ± 0.022 0.544 ± 0.014

TGRank* 0.663 ± 0.005 0.821 ± 0.009 0.792 ± 0.006 0.870 ± 0.001 0.321 ± 0.001 0.436 ± 0.002 0.165 ± 0.009 0.230 ± 0.010 0.414 ± 0.007 0.650 ± 0.006 0.685 ± 0.002 0.781 ± 0.004
TATKC TLE TLE 0.189 ± 0.036 0.247 ± 0.037 0.028 ± 0.009 0.026 ± 0.008 TLE TLE 0.191 ± 0.035 0.327 ± 0.074 0.039 ± 0.010 0.042 ± 0.014

TATKC-LW TLE TLE 0.781 ± 0.008 0.901 ± 0.002 0.182 ± 0.007 0.303 ± 0.015 TLE TLE 0.533 ± 0.023 0.653 ± 0.018 0.381 ± 0.004 0.584 ± 0.011

BandRank 0.853 ± 0.111 0.921 ± 0.045 0.931 ± 0.001 0.944 ± 0.002 0.550 ± 0.010 0.536 ± 0.010 0.567 ± 0.008 0.557 ± 0.008 0.570 ± 0.005 0.685 ± 0.004 0.739 ± 0.002 0.738 ± 0.002

Inductive
DyRep* 0.388 ± 0.008 0.528 ± 0.007 0.474 ± 0.004 0.609 ± 0.007 0.125 ± 0.014 0.173 ± 0.008 0.112 ± 0.015 0.152 ± 0.009 0.137 ± 0.014 0.200 ± 0.016 0.035 ± 0.015 0.040 ± 0.008

JODIE* 0.042 ± 0.010 0.048 ± 0.009 0.264 ± 0.009 0.459 ± 0.008 0.069 ± 0.012 0.085 ± 0.013 0.055 ± 0.012 0.061 ± 0.017 0.119 ± 0.010 0.162 ± 0.009 0.029 ± 0.009 0.028 ± 0.011

TGAT* 0.374 ± 0.013 0.493 ± 0.013 0.523 ± 0.007 0.746 ± 0.010 0.169 ± 0.004 0.230 ± 0.007 0.117 ± 0.013 0.134 ± 0.011 0.201 ± 0.008 0.360 ± 0.011 0.221 ± 0.007 0.321 ± 0.004

TGN* 0.537 ± 0.009 0.650 ± 0.008 0.604 ± 0.007 0.786 ± 0.006 0.228 ± 0.005 0.355 ± 0.010 0.120 ± 0.010 0.126 ± 0.021 0.219 ± 0.005 0.376 ± 0.008 0.230 ± 0.006 0.315 ± 0.004

CAWN* TLE TLE 0.798 ± 0.008 0.847 ± 0.007 0.200 ± 0.010 0.261 ± 0.008 TLE TLE 0.395 ± 0.013 0.609 ± 0.007 0.521 ± 0.004 0.681 ± 0.009

FreeDyG 0.321 ± 0.016 0.515 ± 0.016 0.627 ± 0.009 0.781 ± 0.004 0.056 ± 0.003 0.049 ± 0.008 TLE TLE 0.222 ± 0.004 0.377 ± 0.017 0.325 ± 0.021 0.544 ± 0.013

TGRank* 0.608 ± 0.004 0.761 ± 0.008 0.797 ± 0.008 0.866 ± 0.009 0.299 ± 0.002 0.403 ± 0.005 0.194 ± 0.008 0.273 ± 0.005 0.432 ± 0.008 0.648 ± 0.006 0.684 ± 0.003 0.782 ± 0.002
TATKC TLE TLE 0.183 ± 0.039 0.238 ± 0.040 0.028 ± 0.008 0.026 ± 0.007 TLE TLE 0.173 ± 0.032 0.288 ± 0.060 0.044 ± 0.012 0.049 ± 0.016

TATKC-LW TLE TLE 0.784 ± 0.008 0.896 ± 0.007 0.177 ± 0.003 0.291 ± 0.005 TLE TLE 0.553 ± 0.032 0.687 ± 0.009 0.379 ± 0.002 0.583 ± 0.012

BandRank 0.826 ± 0.130 0.905 ± 0.054 0.919 ± 0.002 0.937 ± 0.002 0.541 ± 0.002 0.530 ± 0.001 0.568 ± 0.006 0.539 ± 0.007 0.607 ± 0.006 0.713 ± 0.002 0.733 ± 0.001 0.735 ± 0.002

Figure 3: Comparison of virtual candidate score distribution
across 100 dropout iterations. Narrower and taller distribu-
tions indicate stronger robustness.

comparative approaches in Fig. 3, using kernel density estimation

(KDE) [29]. Our BandRank exhibits the most concentrated distri-

bution and the least mean score compared to TGRank and its two

variants. This suggests the best model robustness, as it consistently

produces stable results despite the stochastic nature of dropout. In

contrast, TGRank demonstrates the widest and flattest distribution

and the largest mean score, which implies that its candidate scores

fluctuate significantly across dropout iterations, revealing weaker

robustness. Between our two variants, ‘w/o HR loss’ has a wider

distribution and relatively greater mean score, further confirming

that our harmonic term plays a crucial role in improving robustness

under random dropout conditions. This is aligned with Theorem 2.

Overall, these findings validate the robustness of BandRank, show-

ing it is less sensitive to training randomness and more reliable in

generating stable prediction across different conditions.

(a) Transductive setting (b) Inductive setting

Figure 4: Comparison of Hit@5 performance under different
noise levels on Enron dataset.

Exp-3: Robustness against Different-level Noise.We present

the results of four comparative approaches under varying noise

levels by adding Gaussian noise of different intensities to the dy-

namic graphs. As shown in Fig. 4, the performance of TGRank

decreases rapidly with increasing noise. In contrast, our BandRank

demonstrates relatively stable performance. Notably, BandRank

without the frequency disentanglement (‘w/o disentangle’) shows

reduced noise robustness compared to the full BandRank model

but still outperforms TGRank, as it can partially mitigate noise

during complex structure learning in the frequency domain. As

noise levels increase, the performance gap between BandRank and

the other three comparative approaches widens by up to 24.66% in

Hit@5, highlighting the superior noise robustness of our band-pass

disentangled representation learning.

5.4 Ablation Study
We investigate the contribution of different modules within our

BandRank by evaluating its performance when each module is

removed individually. The following analysis is conducted from

two key perspectives: ranking accuracy and training robustness.

Exp-4: Ranking Accuracy Perspective.We conduct three vari-

ants to assess their impact on ranking performance across three

datasets in two learning scenarios. Specifically, we evaluate: (1)

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW, April 28 – May 02, 2025, Sydney, AU Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Ablation study on three datasets under MRR metric
in transductive and inductive settings.

Setting Transductive MRR Inductive MRR
Dataset UCI Enron Wikipedia UCI Enron Wikipedia
BandRank 0.739 0.570 0.931 0.733 0.607 0.919

w/o disentangle 0.715 0.524 0.916 0.708 0.551 0.906

w/o HR Loss 0.703 0.508 0.907 0.695 0.536 0.902

w/o Frequency 0.688 0.544 0.892 0.681 0.574 0.871

removing the frequency disentanglement (‘w/o disentangle‘), (2)

removing the harmonic term (‘w/o HR Loss‘), and (3) replacing

the BPDR approach with a time-domain MLP (‘w/o Frequency‘).

As shown in Table 3, we observe that (1) The frequency disentan-

glement enhances ranking performance by an average of 4.50% in

terms of MRR, as it alleviates the frequency aliasing issue during

structure learning and accurately models multi-scale temporal pat-

terns. (2) The ‘w/o HR Loss‘ variant performs worse than BandRank,

with an average decrease of 6.18%. This highlights the importance

of the harmonic term, which integrates a hard comparison between

real and virtual candidates, thereby mitigating the gradient vanish-

ing issue. Additionally, ‘w/o HR Loss‘ has a more significant impact

on overall model performance than ‘w/o disentangle‘ in both trans-

ductive and inductive learning scenarios since it can enhance model

discriminative ability. (3) Frequency-enhanced structure learning

in our BPDR approach, is well-suited for structure learning over dy-

namic graphs, improving ranking performance by up to 7.09%. This

improvement is attributed to the ability to project complex dynam-

ics into distinct frequency bands, enabling the model to selectively

learn multi-scale dynamics and structure evolution.

(a) Virtual candidate scores (b) Real candidate scores

Figure 5: Comparison of previous scores during training on
Enron dataset.

Exp-5: Training Robustness Perspective. To evaluate training

robustness, we plot the previous score curves for real and virtual

candidates across increasing training epochs on the Enron dataset.

Here, we introduce a variant of BandRank by removing the har-

monic term (called ‘BandRank w/o harmonic’). As shown in Fig. 5,

BandRank with the harmonic term illustrates a sharper slope in the

candidate score curves of both real and virtual candidates, indicat-

ing that our HR Loss is more effective at distinguishing between

real and virtual candidates compared to the listwise loss. This sug-

gests that our HR Loss can facilitate more robust model training in

the ranking task, thereby enhancing overall ranking performance

as evidenced in Table 3.

Exp-6: Effectiveness of Our Harmonic Term. We also plug our

harmonic term into the listwise loss of the existing TGRank model

(referred to as ‘TGRank + harmonic’) and plot the candidate score

curves on the Enron dataset in Fig. 5. We can observe from Fig. 5a

that the harmonic term effectively mitigates the gradient vanishing

issue for virtual candidates. Additionally, it enhances the learning

ability of real candidates, with the scores of real candidates in

‘TGRank + harmonic’ surpassing those of TGRank in final epochs,

as illustrated in Fig. 5b. These results further demonstrate that our

HR loss is well-suited for temporal interaction ranking on dynamic

graphs.

5.5 Hyperparameter Sensitivity Analysis
During multi-scale learning, we disentangle all frequency com-

ponents into 𝑁 distinct frequency bands, where 𝑁 is a tunable

hyperparameter. To evaluate its effect, we conduct experiments by

varying 𝑁 from 1 to 7 on the Enron and UCI datasets.

(a) Enron Dataset (b) UCI Dataset

Figure 6: Effect of hyperparameter (𝑁 ) on two datasets in
transductive (T) and inductive (I) settings under two metrics.

Exp-7: Effect of Hyperparameter 𝑁 . As shown in Fig. 6, (1)

our BandRank achieves optimal performance when the frequency

components are disentangled into three bands: low, mid, and high

frequencies. In this configuration, BandRank effectively captures

long-term evolution, periodic patterns, and abrupt fluctuations.

When 𝑁 is set to 2 or 4, the ranking performance slightly decreases

but still surpasses the ‘w/o disentangle’ case (𝑁 = 1), confirming

the effectiveness of frequency disentanglement for dynamic graph

learning. However, when 𝑁 exceeds 5, the ranking performance

progressively deteriorates. This is likely due to over-disentangling,

which can overly separate similar temporal patterns into multiple

frequency bands, distorting temporal integrity and thus degrading

performance. Throughout this paper, we set 𝑁 = 3.

6 CONCLUSION
In this paper, we investigate the ranking task over dynamic graphs

and propose an effective and robust band-pass disentangled ranking

approach, comprising two key modules: the band-pass disentan-

gled representation learning and the harmonic ranking loss. Specif-

ically, we propose a novel band-pass disentangled representation

approach that adaptively disentangles complex temporal structures

into multiple frequency bands based on our defined quality fac-

tors and band-pass filter, enabling accurate multi-scale learning

for temporal structures to generate high-quality node embeddings.

Additionally, we design a Harmonic Ranking loss to jointly opti-

mize candidate sets while preventing the gradient vanishing issue.

Comprehensive experimental results validate the effectiveness and

robustness of our BandRank across various learning scenarios from

several perspectives.
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A REPRODUCIBILITY
The source codes of the proposed BandRank and eight selected

baselines are available at

https://anonymous.4open.science/r/BandRank-61E7.

B PROOF
B.1 Proof of Theorem 1
Given the time-domain representation of the temporal messages

H(𝑡) at time 𝑡 , with its frequency components represented byH(𝑓 ).
We first prove the global convolution theorem for the case where

the disentanglement parameter 𝑁 = 1. This case serves as the

foundation for Theorem 1, which extends the result to 𝑁 ≥ 2.

Case 1: 𝑁 = 1. In this case, we can consider the process as disen-

tangling the frequency components into a single frequency band.

We aim to prove that our band-pass disentangled representation

approach in the frequency domain is equivalent to a global convolu-

tion in the time domain based on the theorem 2 in [55]. Concretely,

suppose that we conduct Fourier transform F in the 𝑑-dimension,

then we have

F (H(𝑡) ∗ C(𝑡)) =
∫ ∞

−∞
(H(𝑡) ∗ C(𝑡))𝑒−𝑖2𝜋 𝑓 𝑡𝑑𝑡 . (14)

According to the convolution theorem,H(𝑡)∗C(𝑡) =
∫ ∞
−∞ H(𝜏)C(𝑡−

𝜏)𝑑𝜏 , we have

F (H(𝑡) ∗ C(𝑡)) =
∫ ∞

−∞

(∫ ∞

−∞
H(𝜏)C(𝑡 − 𝜏)𝑑𝜏

)
𝑒−𝑖2𝜋 𝑓 𝑡𝑑𝑡, (15)

=

∫ ∞

−∞

∫ ∞

−∞
C(𝑡 − 𝜏)𝑒−𝑖2𝜋 𝑓 𝑡𝑑𝑡H(𝜏)𝑑𝜏 . (16)

Next, we perform a change of variables 𝑥 = 𝑡 − 𝜏 :

F (H(𝑡) ∗ C(𝑡)) =
∫ ∞

−∞

∫ ∞

−∞
C(𝑥)𝑒−𝑖2𝜋 𝑓 (𝑥+𝜏 )𝑑𝑥H(𝜏)𝑑𝜏, (17)

=

∫ ∞

−∞

∫ ∞

−∞
C(𝑥)𝑒−𝑖2𝜋 𝑓 𝑥𝑒−𝑖2𝜋 𝑓 𝜏𝑑𝑥H(𝜏)𝑑𝜏, (18)

=

∫ ∞

−∞
H(𝜏)𝑒−𝑖2𝜋 𝑓 𝜏𝑑𝜏

∫ ∞

−∞
C(𝑥)𝑒−𝑖2𝜋 𝑓 𝑥𝑑𝑥,

(19)

= H(𝑓 ) ⊙ C(𝑓 ) . (20)

This indicates that convolving H(𝑡) and C(𝑡) in the time domain

is equivalent to multiplying their Fourier transforms in the fre-

quency domain. Therefore, in the case where 𝑁 = 1, the frequency-

domain learning process can be viewed as applying a global convolu-

tion in the time domain, that is, FreMLP(H (𝑓 )) = F (H(𝑡)∗C(𝑡)) =
H(𝑓 ) ⊙ C(𝑓 ).

Case 2: 𝑁 ≥ 2. Based on Case 1, we proceed to prove that our

band-pass representation approach is equivariant to the multi-scale

global convolution in the time domain when 𝑁 ≥ 2. Concretely,

taking a single-layer network (𝑙 = 1) as an example, we disentangle

the frequency signal H(𝑓 ) into 𝑁 distinct and non-overlapping

frequency bands, which is done by the spectral mask. For each

frequency bandH𝑘 (𝑓 ), we leverage frequency-enhanced MLP to

generate band-specific embeddings Z𝑘 (𝑓 ), which can formulated

as

H𝑘 (𝑓 ) = I𝑘 ⊙ H(𝑓 ), (21)

Z𝑘 (𝑓 ) = FreMLP𝑘 (H𝑘 (𝑓 )) (22)

= H𝑘 (𝑓 ) ⊙ C𝑘 (𝑓 ), (23)

= I𝑘 ⊙ H(𝑓 ) ⊙ C𝑘 (𝑓 ), (24)

whereH𝑘 (𝑓 ) represents the frequency-domain representation of

the 𝑘-th frequency band at layer 𝑙 , C𝑘 (𝑓 ) is the corresponding

complex number weight in the frequency domain. The filter indica-

tors I𝑘 in Eq. (21) can adaptively isolate the frequency components

based on quality factors defined in Eq. (5). Since the frequency

masks are mutually exclusive, the operations performed on each

10
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frequency band are independent. Thus, for the 𝑘-th frequency band,

we perform global convolution in the frequency domain based on

Eqs. 21- 24. That means we perform 𝑁 independent global con-

volutions over the frequency spectrum. The final output of our

band-pass disentangled representation approach in the frequency

domain is the sum of the contributions from all 𝑁 frequency bands

based on Eq. (25), which can be represented as:

Z(𝑓 ) =
𝑁∑︁
𝑘=1

I𝑘 ⊙ H(𝑓 ) ⊙ C𝑘 (𝑓 ), (25)

where Z𝑙 (𝑓 ) is the multi-scale convolution result. Overall, the

proof is completed.

B.2 Proof of Theorem 2
Given a query 𝑞 = (𝑐,D, 𝑡) and its scores of all the candidates in

the subgraph {𝑦 𝑗 } |D(𝑡 ) |
𝑗=1

, which includes real candidate score 𝑦r and

virtual candidate scores 𝒚D\𝑣𝑟 , we first present the loss functions
of listwise and our harmonic, which are formulated as

L
listwise

= − log
©« exp(𝑦r)∑ |D(𝑡 ) |

𝑗=1
exp(𝑦 𝑗 )

ª®¬ , (26)

LHR = − log
©« exp(𝑦r)∑ |D(𝑡 ) |

𝑗=1
exp(𝑦 𝑗 )

ª®¬ − 𝛽 log
(

1

1 + exp(−(𝑦𝑟 − 𝑦hard𝑛 ))

)
.

(27)

Then we compute the gradients of our harmonic ranking loss and

listwise loss. Here, the gradients involve two cases: a hard virtual

candidate and normal virtual candidates, which are discussed re-

spectively. For the hard virtual candidate score 𝑦𝑛 , we obtain the

gradient of listwise loss as

𝜕L
listwise

𝜕𝑦𝑛
=

exp(𝑦𝑛)∑ |D(𝑡 ) |
𝑗=1

exp(𝑦 𝑗 )
. (28)

Then we compute the gradient of our harmonic ranking loss LHR.

For the hard candidate score 𝑦𝑛 , we can achieve its gradient as:

𝜕LHR

𝜕𝑦𝑛
=

exp(𝑦𝑛)∑ |D(𝑡 ) |
𝑗=1

exp(𝑦 𝑗 )
+ 𝛽 1

1 + exp(𝑦r − 𝑦𝑛)
. (29)

To compare its robustness in learning virtual candidates, we com-

pute the difference between their gradients, denoted as ΔGradient:

ΔGradient =
𝜕LHR

𝜕𝑦𝑛
− 𝜕L

listwise

𝜕𝑦𝑛
, (30)

= 𝛽
1

1 + exp(𝑦r − 𝑦𝑛)
, (31)

> 0, (32)

where 𝑣𝑟 and 𝑣𝑛 ∈ D(𝑡) . For normal virtual candidates 𝑣𝑛 ∈ D \
{𝑣𝑟 , 𝑣hard𝑛 }, the gradient of our HR Loss is equivalent to the original

listwise loss. Thus, we can conclude that

𝜕LHR

𝜕𝒚D\𝑣𝑟
>
𝜕L

listwise

𝜕𝒚D\𝑣𝑟
. (33)

Overall, the proof of Theorem 2 is completed.

C ADDITIONAL EXPERIMENTAL SETTINGS
C.1 Datasets Descriptions
We present the detailed descriptions for the datasets used in our

experiments below.

• Reddit is a bipartite interaction graph spanning 30 days, in-
volving users and subreddits. Here, an edge is added when-

ever a user interacts with a subreddit. Each edge is anno-

tated with continuous timestamps and textual attributes

derived from the user’s posts.

• Wikipedia is a bipartite interaction graph spanning 30

days, where users interact with wiki pages by editing them.

These interactions include continuous timestamps and tex-

tual attributes related to the edits.

• MOOC is a bipartite interaction graph that covers 17months,

representing user actions on an online education platform.

Here, nodes correspond to students and course content.

Edges are created based on various interactions between stu-

dents and content, which contain continuous timestamps.

• LastFM is a bipartite interaction graph that covers 1month

where edges represent user interactions with songs on a

music platform. These edges capture user-song interactions

with continuous timestamps but do not include any addi-

tional attributes.

• Enron is a communication network based on email ex-

changes between employees over 3 years. Here, edges rep-

resent email interactions annotated with timestamps but

without any additional attributes.

• UCI is a communication network formed by message ex-

changes in an online student community over 196 days,

similar to the Enron dataset but on a different scale.

C.2 Baselines
We compare our proposed BandRank against eight baselines in-

clude:

• JODIE [19] employs dual recurrent neural networks (RNNs)

to update the representations of both nodes involved in each

edge interaction, incorporating node prediction into the

training process. It is designed for the link prediction task.

• DyRep [38] focuses on learning dynamic node embeddings

with the self-attention mechanism to handle node and edge-

level events in evolving graphs. It is designed for the link

prediction task.

• TGAT [47] leverages the vanilla self-attention mechanism

for dynamic graph modeling, together with a time encoding

function. It is designed for the link prediction task.

• TGN [32] is a general learning framework from the dy-

namic graph, including twomain modules: memory module

and message passing. It is designed for the link prediction

task.

• CAWN [41] extracts causal anonymous walks by temporal

random walks and then encodes them to generate temporal

embeddings. It is designed for the link prediction task.

• FreeDyG [37] is a frequency-enhanced dynamic graph

model that incorporates frequency domain processing to

11
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detect periodic patterns and abrupt events. It is designed

for the link prediction task.

• TGRank [36] addresses ranking tasks by optimizing the

relative order of candidate nodes through listwise ranking

loss. It is designed for the subgraph-level ranking task.

• TATKC [62] focuses on modeling hierarchical structures

in temporal graphs, employing attention mechanisms to

capture multi-level dependencies. It is designed for the

graph-level ranking task based on the temporal Katz cen-

trality computation.

C.3 Additional Implementation Details
We set the embedding dimension to 128 for all datasets and fix the

time encoding dimension at 128. The number of frequency bands is

set to 3. We perform a grid search over the encoder layers, selecting

from {1, 2, 3}. The dropout ratio is set to 0.1. We apply the HR Loss

function with a parameter 𝛽 = 0.3. Additionally, we incorporate

layer normalization within the UPDATE module to ensure training

stability.

D ADDITIONAL EXPERIMENTAL RESULTS
In our proposed Harmonic Ranking (HR) loss function, the hyperpa-

rameter 𝛽 plays a crucial role in balancing the contributions of the

listwise loss and the harmonic term, as defined in Eq. (12). Specifi-

cally, 𝛽 controls the trade-off between encouraging the model to

distinguish real candidates from virtual ones (via the harmonic

term) and maintaining overall ranking performance (via the list-

wise loss). To analyze the effect of 𝛽 , we conduct experiments on

both the Enron and UCI datasets, varying 𝛽 from 0.1 to 0.5.

(a) Enron Dataset (b) UCI Dataset

Figure 7: Effect of hyperparameter 𝛽 on two datasets in trans-
ductive (T) and inductive (I) settings under two metrics.

Exp-8: Effect of Hyperparameter 𝛽. As shown in Fig. 7, we ob-

serve that the model performance increases as 𝛽 rises from 0.1 to 0.3.

This improvement occurs because the harmonic term progressively

provides more gradient signals to optimize the virtual candidates,

effectively distinguishing between real and virtual candidates and

enhancing model performance, especially in the inductive setting.

However, when 𝛽 is set to higher values (e.g., 𝛽 = 0.4 or 𝛽 = 0.5),

the harmonic term’s influence becomes overly dominant in the loss

function, which compromises the joint optimization ability among

the candidate set. In this paper, we set 𝛽 to 0.3 throughout the exper-

iments. This choice strikes the best balance between the harmonic

term and the listwise loss, ensuring the model’s robustness and

ranking effectiveness across different datasets.
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