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ABSTRACT

Inductive kriging supports high-resolution spatio-temporal estimation with sparse
sensor networks, but conventional training–evaluation setups often suffer from in-
formation leakage and poor out-of-distribution (OOD) generalization. We find
that the common 2×2 spatio-temporal split allows test data to influence model
selection through early stopping, obscuring the true OOD characteristics of in-
ductive kriging. To address this issue, we propose a 3×3 partition that cleanly sep-
arates training, validation, and test sets, eliminating leakage and better reflecting
real-world applications. Building on this redefined setting, we introduce DRIK, a
Distribution-Robust Inductive Kriging approach designed with the intrinsic prop-
erties of inductive kriging in mind to explicitly enhance OOD generalization, em-
ploying a three-tier strategy at the node, edge, and subgraph levels. DRIK per-
turbs node coordinates to capture continuous spatial relationships, drops edges
to reduce ambiguity in information flow and increase topological diversity, and
adds pseudo-labeled subgraphs to strengthen domain generalization. Experiments
on six diverse spatio-temporal datasets show that DRIK consistently outperforms
existing methods, achieving up to 12.48% lower MAE while maintaining strong
scalability.

1 INTRODUCTION

Sensors are widely used to monitor traffic flow (Kong et al., 2024), air quality (Yu et al., 2025),
and solar energy production (Jebli et al., 2021), among other applications. However, their high
deployment costs often limit sensor density and prevent comprehensive coverage of large areas
(Liang et al., 2019; Seo et al., 2017). Inductive kriging provides a promising solution by estimating
values at unsensed locations using data from existing sensors (Wu et al., 2021a; Zheng et al., 2023;
Xu et al., 2025). Kriging models can generate high-resolution spatio-temporal estimates, improving
accuracy while reducing the deployment and maintenance demands of large-scale sensor networks.

1.1 REDEFINING THE INDUCTIVE KRIGING SETTING

The standard training and evaluation protocol for inductive kriging (Wu et al., 2021a) generally
involves three steps, as shown in Figure 1 (a): (1) The complete spatio-temporal dataset X ∈ RN×T

is split along both temporal and spatial dimensions, creating separate training and test periods as
well as training and test nodes. This produces a 2×2 partition, with the final training and test sets
drawn from diagonally opposite sections. (2) During training, the model is fitted to the training set,
typically using masking and reconstruction techniques. (3) During testing, all training nodes from
the test period are used to predict values at the test nodes.

A key limitation of this approach stems from the widespread use of early stopping during model
training (Zheng et al., 2023). In the current protocol, model selection relies on the lowest loss
achieved on the test set, which introduces data leakage by allowing test-set information to influ-
ence model development. Some studies have attempted to address this issue by adding a validation
period along the temporal dimension, resulting in a 2×3 split (Xu et al., 2025; Zhu et al., 2025)
(Figure 1 (b)). However, this adjustment still fails to prevent leakage of spatial information.

We propose a revised inductive kriging protocol that mitigates data leakage through a structured
3×3 partitioning scheme, as illustrated in Figure 1 (c): (1) The dataset is divided along the temporal
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Figure 1: Comparison of inductive kriging settings. For better visualization, the matrix has been
transposed. Blue, green, and yellow indicate the training, validation, and test sets, respectively.
Light green and light yellow represent observed data from the validation and test periods used for
prediction, while gray denotes data that remain unused throughout the process.

dimension into training, validation, and test periods, and along the spatial dimension into separate
sets of training, validation, and test nodes. The training, validation, and test sets occupy the diagonal
of the 3×3 grid. (2) During training, only the training set is used to fit the model. (3) During
validation, all training nodes from the validation period are used to predict values at the validation
nodes, and the model is selected based on the lowest validation loss. (4) During testing, all training
nodes from the test period are used to predict values at the test nodes.

1.2 CHALLENGES AND PROPOSED SOLUTION FOR THE NEW SETTING

Under the new setting, the key out-of-distribution (OOD) property of inductive kriging becomes
clear, while previously it was underestimated due to information leakage (Wu et al., 2022b; Li et al.,
2025). Differences between the training data and the kriging data induce a distinct distribution shift
across both time and space—particularly in the spatial dimension—where the shift is substantial and
cannot be ignored. This arises because current inductive kriging models encode spatial information
with graphs whose topology is fixed during training, yet adding new nodes during kriging inevitably
alters both graph density and topology, creating a significant challenge for model generalization (Xu
et al., 2025). To overcome this challenge, we propose DRIK, an approach that mitigates the OOD
problem and enables distribution-robust inductive kriging without information leakage.

DRIK leverages the unique training characteristics of inductive kriging to enhance distribution ro-
bustness through a three-tier strategy at the node, edge, and subgraph levels (Figure 2). At the node
level, each node is perturbed within a limited range of its true coordinates and treated as a node
domain, introducing controlled noise that captures the continuous spatial relationships required for
kriging but unevenly discretized by graphs. At the edge level, outgoing edges of masked nodes,
along with all edges between them, are removed to reduce ambiguity in information propagation
and increase topological diversity. At the subgraph level, validation nodes are added during training
without using their data; pseudo-labels are first generated through kriging, after which the masking
and kriging steps are repeated. This process further strengthens the model’s ability to generalize to
unseen domains. Extensive experiments demonstrate that the model achieves superior performance
and stronger generalization across multiple datasets.

1.3 CONTRIBUTIONS

Our contributions can be summarized as follows:

• We redefine the inductive kriging setting by redesigning the division of training, validation,
and test sets, eliminating the information leakage found in prior task designs and aligning
the setting more closely with real-world kriging applications.

• We identify distribution shift as a key factor limiting the performance of inductive kriging
models. We demonstrate the OOD property of inductive kriging and introduce a three-level
strategy—node, edge, and subgraph—to enhance distribution robustness.

• We conducted extensive experiments on six spatio-temporal datasets spanning three cat-
egories. Our approach consistently outperformed existing methods, reducing error by up
to 12.48%. It also showed stronger generalization, evidenced by a lower test-to-validation
MAE ratio across all datasets.
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(a) Node Perturbation (b) Edge Dropping

(c) Subgraph Addition

Training Node Masked Node

Node DomainNode Locations

Validation Node

Original Before First Conv Before Other Convs

Adding Kriging

1st Imputed Node

Masking Kriging

2nd Imputed Node

Figure 2: Overview of DRIK. (a) Illustration of node-level strategy. Perturb nodes within a limited
range of their true coordinates to create node domains. (b) Illustration of edge-level strategy. Drop
the outgoing edges of masked nodes and all edges between them. (c) Illustration of subgraph-level
strategy. Add validation nodes in advance, generate pseudo-labels through an initial kriging, then
perform a second masking and kriging.

2 PRIOR WORKS

Inductive Kriging. Kriging is a widely used geostatistical technique for spatial interpolation, where
the value at an unsampled location is predicted from observations at nearby sites (Krige, 1951; Oliver
& Webster, 1990). Kriging can be classified as inductive, which predicts entirely unknown nodes,
or transductive, which resembles missing-value imputation (see Appendix A.1 for details). Graph
neural networks (GNNs) have become the dominant approach for inductive kriging. Pioneering
methods such as KCN (Appleby et al., 2020) and IGNNK (Wu et al., 2021a) were the first to apply
GNNs to kriging, achieving significant improvements over traditional approaches (Zhou et al., 2012;
Bahadori et al., 2014). Building on these, subsequent models including SATCN (Wu et al., 2021b),
LSJSTN (Hu et al., 2023), INCREASE (Zheng et al., 2023), IAGCN (Wei et al., 2024), and DBGNN
(Zhu et al., 2025) have further enhanced the integration of temporal information, spatial information,
and additional covariates, reporting improved performance. KITS (Xu et al., 2025) identified the
graph gap—the training graph is much sparser than the inference graph containing all observed
and unobserved nodes—and sought to mitigate it by replacing the usual decrement training strategy
with an increment training strategy. Despite these advances, existing methods continue to exhibit
information leakage, which understates the severity of the OOD problem, particularly in the spatial
dimension.

OOD Generalization on Graphs. OOD generalization on graphs (Wu et al., 2022b; Li et al.,
2025) remains a persistent challenge in graph machine learning, as real-world graph data often
exhibit distribution shifts. Data augmentation has emerged as an effective strategy for enhancing
model robustness under such shifts. These methods can be categorized into three types: structural,
feature-based, and hybrid augmentations. Structural augmentation modifies graph topology to ex-
pose models to varied connectivity patterns, as seen in GAug (Zhao et al., 2021), MH-Aug (Park
et al., 2021), and KDGA (Wu et al., 2022a). Feature-based augmentation perturbs node attributes
to promote invariance to feature noise, exemplified by GRAND (Feng et al., 2020), FLAG (Kong
et al., 2022), and LA-GNN (Liu et al., 2022b). Hybrid methods combine both structural and feature
manipulations, such as in GraphCL (You et al., 2020), GREA (Liu et al., 2022a), and AIA (Sui et al.,
2023). For more methods beyond data augmentation, we refer readers to Appendix A.2. Despite
these advances, few methods explicitly address OOD generalization in the context of inductive krig-
ing, which involves distinctive graph characteristics such as spatially embedded nodes, intrinsically
masked nodes, and underutilized substructures. These properties remain underexplored in current
augmentation strategies. Leveraging them could significantly improve generalization performance
in inductive spatio-temporal kriging.
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3 METHODOLOGY

In this section, we first define the problem to be addressed and introduce the spatio-temporal graph
convolution required for kriging, along with the associated OOD challenge. Building on these con-
cepts and the characteristics of inductive kriging, we then present DRIK, a method that improves
OOD generalization by adopting targeted strategies at three levels: node, edge, and subgraph.

3.1 PROBLEM DEFINITION

Terminology. Consider Xo
T−t:T ∈ RNo×t, which represents the observed values of No nodes over

t time intervals. Following the approach of Wu et al. (2021a) and Xu et al. (2025), we construct
a graph on these observed nodes using the Gaussian kernel function to establish the edges. The
adjacency matrix of this graph is denoted as Ao ∈ [0, 1]No×No . The goal of inductive kriging is
to predict the values of Nu unobserved nodes—whose values are unknown until inference—using
both Xo

T−t:T and the graph that incorporates the observed and unobserved nodes. The primary
distinction from previous studies lies in the dataset partitioning, as discussed in Section 1.1.

Spatio-Temporal Graph Convolution (STGC). STGC serves as the core component of the kriging
model, aggregating spatio-temporal features from neighboring nodes via graph convolution (Cini
et al., 2022; Xu et al., 2025). Let the input features be Zi ∈ RNo×D, where i is the time interval Ti

and D is the feature dimension. To capture temporal context, Zi is concatenated with features from
the previous and next m intervals, yielding Zi−m:i+m ∈ RNo×(2m+1)D. Spatial aggregation then
uses the training graph with adjacency matrix Ao, where the diagonal is masked (A−

o ) to remove
self-loops. Formally, STGC can be written as:

Z
(l+1)
i = FC

(
GC

(
Z

(l)
i−m:i+m,A−

o

))
, (1)

where (l) and (l + 1) are layer indices, FC(·) is a fully connected layer, and GC(·) is the inductive
graph convolution layer.

OOD Problem. We train on the observed subgraph Go = (Vo,Ao) and evaluate kriging on the
enlarged graph G = (Vo ∪ Vu,A) with previously unseen nodes Vu. The adjacency matrix is
partitioned as

A =

(
Aoo Aou

Auo Auu

)
, Aoo = Ao. (2)

Consequently, empirical risk minimization fits

Rtrain(θ) = E(Xo,Aoo)∼Po
[ℓ (fθ(X

o;Aoo),Y
o)] , (3)

whereas evaluation on the validation or test set measures

Reval(θ) = E(Xo,A)∼Pou
[ℓ (fθ(X

o;A),Y u)] . (4)

Here, fθ is the STGC stack in Eq. 1. The normalized propagation operator changes from Âoo to
Â, which introduces both a degree-matrix and spectrum shift. The target also shifts from masked
reconstruction on observed nodes Y o to extrapolation on unseen nodes Y u. As a result, intermediate
features undergo both structural and covariate shifts. From a Gaussian-process / kriging perspective
the conditional mean is

µu|o = Kuo K
−1
oo Xo, (5)

where K denotes the kernel matrix. Training only approximates K−1
oo via masked self-supervision

on Vo, whereas evaluation relies on Kuo, which encodes spatial relations between Vu and Vo; this
mismatch yields a natural OOD setting. Additional theoretical details appear in Appendix B.

3.2 DISTRIBUTION-ROBUST INDUCTIVE KRIGING

We instantiate DRIK as a three-pronged scheme acting on (i) node coordinates, (ii) masked-node
connectivity, and (iii) train/validation subgraph composition (see Fig. 2). Concretely, DRIK per-
turbs each node within a geometry-aware node domain to partially restore spatial continuity, prunes
ambiguous edges involving masked nodes to stabilize propagation, and exploits validation-node
topology via a two-stage pseudo-labeling routine—without leaking validation measurements.
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Node Perturbation. Inductive kriging constructs a graph from node coordinates and pairwise dis-
tances, effectively discretizing an underlying continuous spatial process. Because this graph is fixed
once built, adding new nodes can substantially change its structure. To restore spatial continuity
and improve generalization, we introduce node perturbation, which randomly shifts node locations
during training.

Let the observed-node set be Vo, where each node v ∈ Vo has coordinates sv ∈ Rd (typically d = 2).
Let N (v) denote the neighbor set of v under the inductive-kriging graph (for example, a k-nearest-
neighbor graph with a Gaussian kernel). We define the node domain Dv ⊂ Rd as the convex hull of
midpoints between v and its neighbors:

Dv = conv
{
mv,u = sv +

1
2 (su − sv)

∣∣ u ∈ N (v)
}
, (6)

where the scale of Dv is determined by inter-node distances ∥sv − su∥. The vertices of Dv are the
midpoints between v and its neighbors, and their convex hull forms the node domain.

During each training iteration r, all nodes—whether masked or unmasked—are perturbed by sam-
pling

s̃(r)v ∼ Unif(Dv), (7)
followed by rebuilding the adjacency matrix using a kernelized, row-normalized k-nearest-neighbor
graph:

Ã(r)
o (v, u) =

exp
(
− ∥s̃(r)v − s̃

(r)
u ∥2/σ2

)∑
u′∈kNNk(v)

exp
(
− ∥s̃(r)v − s̃

(r)
u′ ∥2/σ2

) · 1{u ∈ kNNk(v) }, v, u ∈ Vo. (8)

Here, σ > 0 is the Gaussian kernel bandwidth (length-scale) that controls how rapidly the edge
weight decays with distance. This continuity-aware perturbation exposes the model to a family of
propagation operators {Ã(r)

o }, reducing sensitivity to graph discretization and improving robustness
to unseen node geometries.

Edge Dropping. Let M ⊆ Vo be the set of masked training nodes in the current mini-batch,
which provide self-supervised targets on Vo. We define the layer-wise edge-drop operator Φ(l) :
RNo×No → RNo×No , applied just before the l-th graph convolution. This operator is central to
a principled masking mechanism in inductive kriging, ensuring that message passing reflects only
reliable information while progressively incorporating masked nodes into the learning process.

Before the first convolution (l = 0), we remove all edges between masked nodes as well as all
outgoing edges from masked nodes,(

Φ(0)(Ão)
)
vu

= Ão,vu 1{v /∈M}1{¬(v ∈M∧ u ∈M)}. (9)

This initial pruning is crucial. At the outset, masked nodes have no reliable feature representations
because their true labels are intentionally hidden for self-supervised learning. If their outgoing
edges were retained, these nodes could inject uninformative or misleading signals into neighboring
unmasked nodes. Furthermore, links between masked nodes would allow mutual reinforcement
of uninitialized features, amplifying noise during the very first aggregation step and degrading the
quality of propagated information.

For subsequent convolutions (l ≥ 1), the dropping rule is relaxed to remove only edges between
masked nodes, (

Φ(l)(Ão)
)
vu

= Ão,vu 1{¬(v ∈M∧ u ∈M)}. (10)
By this stage, masked nodes already encode partially aggregated and more reliable feature signals
derived from earlier rounds of message passing. Consequently, their outgoing edges to unmasked
neighbors are reinstated to allow normal propagation, while masked-to-masked connections remain
suppressed to avoid circular error accumulation and to maintain stability during the kriging of un-
known values. This progressive relaxation allows masked nodes to gradually participate in the graph
convolution while still guarding against feedback loops that could compromise prediction accuracy.

Unlike conventional random edge-drop strategies, our edge-dropping method is a task-aware mech-
anism aligned with the inductive-kriging objective. By selectively controlling edge participation, it
reduces early-stage ambiguity, limits spurious correlations, and enhances both training stability and
generalization to unseen graph structures.
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Subgraph Addition. In the redefined kriging setting, we exploit the validation nodes by revealing
only their induced topology while masking their measurements (reserved for validation loss and
model selection). This topology-only augmentation regularizes the operator and enhances gener-
alization to unseen domains without leaking validation information into training. Let Vtr and Vval

denote the training and validation node sets, respectively, and let Ã∪ be the adjacency matrix con-
structed in the same way as for the training graph but over the union of nodes. The augmented graph
is therefore

G∪ =
(
Vtr∪Vval, Ã∪

)
. (11)

We perform two kriging passes on G∪ using disjoint training masks. In the first pass, we randomly
select a masked setM1 ⊂ Vtr and mask all nodes in Vval. Using only the available training mea-
surements X as input features, we compute(

Ŷ
(1)
Vtr

, Ŷ
(1)
Vval

)
= fθ

(
X; Φ(0:L−1)

(
Ã∪

))
, ỸVval

:= stopgrad
(
Ŷ

(1)
Vval

)
, (12)

so that
∂ỸVval

∂θ
= 0, (13)

ensuring that no gradient flows back from the validation predictions.

In the second pass, we resample another masked setM2 ⊂ Vtr withM2 ∩M1 = ∅ and clamp the
validation-node features to ỸVval

:

X
∣∣
Vval
← ỸVval

, Ŷ
(2)
Vtr

= fθ

(
X; Φ(0:L−1)

(
Ã∪

))
. (14)

Training minimizes MAE over all training nodes masked in either pass:

LDRIK =
1

|M1 ∪M2|
∑

v∈M1∪M2

∣∣Ŷ (π(v))
v − Yv

∣∣, π(v) =

{
1, v ∈M1,

2, v ∈M2,
(15)

where Yv represents the true measurement at node v. Only training nodes contribute to LDRIK,
while the validation loss is computed separately on Vval using their true measurements.

4 EXPERIMENTS

In this section, we conduct experiments to address the following research questions:

• RQ1: How does DRIK perform on inductive kriging tasks compared with baseline methods?
Does it demonstrate advantages across different spatio-temporal datasets?

• RQ2: How can the degree of distribution shift in inductive kriging be measured? Can DRIK
effectively mitigate the OOD problem?

• RQ3: How do the three levels of strategies in DRIK interact to achieve the final results? Does
each module contribute meaningfully to overall performance?

• RQ4: How does DRIK’s performance change as the degree of missingness varies? Is DRIK robust
across different missing rates (e.g., under high missingness)?

4.1 EXPERIMENTAL SETUP

We begin by briefly outlining the datasets, baseline methods, and evaluation metrics. A more de-
tailed description of the experimental settings is provided in Appendix C.

Datasets & Splits. We evaluate DRIK on six public datasets drawn from diverse real-world sce-
narios: two traffic datasets (METR-LA and PEMS-BAY) (Li et al., 2018), two solar-power datasets
(NREL-AL and NREL-MD) (Bloom et al., 2016), and two air-quality datasets (AQI-36 and AQI)
(Yi et al., 2016). Following Wu et al. (2021a), we randomly select 25% of sensors in each dataset
as unobserved locations, with the remainder serving as observed locations. The training, validation,
and test nodes account for 60%, 20%, and 20% of the observed locations, respectively. Along the

6
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Table 1: Comparison of DRIK with existing methods on the inductive kriging task. The best results
are highlighted in bold, while the second-best results are underlined. “Improvements” show the
improvement of our DRIK over the best baseline.

Method
METR-LA (207) PEMS-BAY (325) NREL-AL (137)

MAE↓ RMSE↓ MAPE↓ MAE↓ RMSE↓ MAPE↓ MAE↓ RMSE↓ MAPE↓
MEAN 8.272 11.417 22.133 4.999 8.474 12.862 5.492 8.353 166.221

OKriging 7.294 10.277 18.896 4.874 8.266 12.412 7.960 10.580 406.106
KNN 7.987 12.370 19.820 5.678 10.431 14.087 7.962 10.582 410.155
KCN 7.190 12.470 23.983 4.676 9.253 13.514 4.541 6.697 155.001

IGNNK 5.801 8.914 15.581 3.445 6.067 8.378 4.531 6.619 160.523
INCREASE 5.992 9.198 16.854 3.599 6.850 9.457 5.524 7.950 116.402

KITS 5.666 8.981 15.096 3.410 6.445 8.602 4.532 6.510 177.941

DRIK(Ours) 5.197 8.101 13.154 3.218 5.840 7.728 3.966 6.357 81.963
Improvements 8.28% 9.12% 12.86% 5.63% 3.75% 7.76% 12.48% 2.35% 29.59%

Method
NREL-MD (80) AQI-36 (36) AQI (437)

MAE↓ RMSE↓ MAPE↓ MAE↓ RMSE↓ MAPE↓ MAE↓ RMSE↓ MAPE↓
MEAN 11.257 16.387 294.610 18.431 31.631 49.586 39.718 59.968 142.226

OKriging 11.947 16.455 703.908 16.003 28.744 42.670 23.827 39.846 85.340
KNN 11.953 16.464 706.322 14.727 26.800 37.737 18.376 32.490 52.270
KCN 10.961 17.032 173.269 21.963 36.647 57.988 21.012 35.111 61.017

IGNNK 11.011 17.308 195.432 20.138 33.993 69.964 16.315 29.448 44.635
INCREASE 10.282 16.271 147.958 16.963 32.854 41.619 16.034 29.862 43.268

KITS 11.601 17.589 444.394 19.600 34.668 76.466 16.068 29.791 39.033
DRIK(Ours) 10.151 16.163 95.635 13.443 25.550 28.433 15.364 28.437 40.180

Improvements 1.28% 0.66% 35.36% 8.71% 4.67% 24.65% 4.18% 3.43% −2.94%

temporal dimension, following Xu et al. (2025), the training, validation, and test periods cover 70%,
10%, and 20% of the total time span.

Baseline Methods & Evaluation Metrics. We compare our method against several inductive krig-
ing baselines, including Mean imputation, OKriging (Cressie & Wikle, 2015), K-nearest neighbors
(KNN), KCN (Appleby et al., 2020), IGNNK (Wu et al., 2021a), INCREASE (Zheng et al., 2023)
and KITS (Xu et al., 2025). We employ the Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE) as evaluation metrics.

4.2 PERFORMANCE ON INDUCTIVE KRIGING (RQ1)

Table 1 presents the inductive-kriging results on six datasets. Additional experimental results, in-
cluding analyses of model stability under different node divisions, are provided in Appendix D.1.
From Table 1, we draw the following observations:

• Obs 1: DRIK achieves superior performance across all datasets and metrics. It outperforms
existing methods in terms of MAE, RMSE, and MAPE. For example, on the NREL-AL dataset
DRIK reduces MAE by 12.48% compared with the best baseline; on the AQI-36 dataset, it reduces
MAPE by up to 24.65%; and on METR-LA, it achieves gains of 8.28%, 9.12%, and 12.86% in
MAE, RMSE, and MAPE, respectively. These improvements stem from DRIK’s three-tier strat-
egy—node perturbation, edge dropping, and subgraph addition—which together enhance distri-
butional robustness and alleviate OOD generalization issues.

• Obs 2: DRIK demonstrates strong generalization across diverse application domains, with
more pronounced advantages in complex scenarios. The method delivers notable improve-
ments on traffic, solar energy, and air quality datasets, reflecting its adaptability to varied data
characteristics. In tasks with greater spatial heterogeneity, such as air quality and solar energy,
DRIK achieves MAPE improvements of up to 35.36%, 29.59%, and 24.65% on the NREL-MD,
NREL-AL, and AQI-36 datasets, respectively, underscoring its capacity to handle complex spatio-
temporal distributions.
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Figure 3: OOD property evaluation of IGNNK, KITS, and DRIK. A smaller test-to-validation MAE
ratio indicates stronger generalization ability.

4.3 OOD PROPERTY EVALUATION (RQ2)

To further verify the OOD property of inductive kriging and the OOD generalization capabil-
ity of DRIK, we recorded the MAE values of three representative models—IGNNK, KITS, and
DRIK—during training and evaluation. Specifically, we documented the lowest validation MAE,
which was used to select the best model, and the MAE of that selected model on the test set (consis-
tent with Table 1). Training MAE was not recorded because differences in masking strategies during
training make cross-method comparisons unreliable. Figure 3 contains two subplots: one shows the
validation MAE, and the other shows the ratio of test MAE to validation MAE. A smaller ratio in-
dicates stronger generalization ability. Additional results are provided in Appendix D.2. Based on
Figure 3, we draw the following observations:

• Obs 3: The new 3×3 data-split format reveals the true differences in kriging accuracy and
OOD capability among models. Under the traditional 2×2 data-split setting, the validation MAE
typically serves as the final evaluation metric, but the ranking of models based on validation MAE
often differs from their test-set performance, highlighting the need for the new data-split setting
to accurately assess model capability.

• Obs 4: DRIK’s performance gains across datasets primarily stem from its enhanced OOD
generalization. In terms of the test-to-validation MAE ratio, DRIK consistently outperforms
the other two methods and shows clear advantages on the NREL-MD and AQI-36 datasets. A
comparison of KITS and DRIK—both of which use the same STGC module—shows that DRIK
does not always have a clear advantage in validation MAE (e.g., on NREL-MD and PEMS-BAY),
yet its stronger OOD generalization leads to a significant overall performance improvement.

4.4 ABLATION STUDY (RQ3)

Table 2: Component-wise ablation study. “NP”,
“ED”, and “SA” denote Node Perturbation, Edge
Dropping, and Subgraph Addition, respectively.
Method NP ED SA MAE↓ RMSE↓ MAPE↓

M-0 6.090 9.372 16.274

M-1 ✓ 5.781 9.115 16.682
M-2 ✓ 5.713 8.994 15.459
M-3 ✓ 6.419 10.092 17.056

M-4 ✓ ✓ 5.368 8.335 14.685
M-5 ✓ ✓ 5.589 8.604 13.465
M-6 ✓ ✓ 5.674 9.031 15.252

M-7 ✓ ✓ ✓ 5.197 8.101 13.154

Table 2 demonstrates the efficacy of each pro-
posed module. M-0 denotes a configuration
with no DRIK modules. According to Table 2
we can find that:

• Obs 5: Single modules are not reliably ef-
fective, whereas combining modules yields
consistent gains. In isolation, NP improves
MAE/RMSE but hurts MAPE, and SA de-
grades all metrics; even ED, the best single
module, offers only modest gains. In con-
trast, pairwise combinations improve all met-
rics. This pattern suggests complementary in-
ductive biases: NP enforces spatial continuity
but can shift scale, ED suppresses noisy mes-
sage passing yet has limited capacity alone,
and SA’s pseudo-labels are unstable without structural regularization. When combined, these
effects counterbalance—stabilizing topology and scale while enriching supervision—yielding ro-
bust, across-the-board improvements.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Comparisons with different missing ratios α.

• Obs 6: Using all three modules together yields the best overall robustness. The full model
(NP+ED+SA) achieves 5.197/8.101/13.154, improving over the base by−14.7% MAE,−13.6%
RMSE, −19.2% MAPE, and further surpassing the best two-module setting (NP+ED) by MAE
−3.2%, RMSE −2.8%, MAPE −10.4%. The flip of SA from harmful in isolation to net-positive
in combinations indicates complementary supervision: pseudo-labels add value once edge ambi-
guity is reduced (ED) and spatial continuity is modeled (NP).

4.5 MISSING RATIO INFLUENCE ANALYSIS (RQ4)

As shown in Figure 4, we compare DRIK with other baseline methods as the missing ratio α in-
creases from 12.5% to 87.5%, making the kriging task progressively harder. The results show that:

• Obs 7: DRIK consistently achieves the best performance across datasets and metrics at low
and medium missing ratios. For example, when the missing ratio is below 50%, the MAE values
at 12.5%, 25%, and 37.5% missing ratios are 5.216, 5.197, and 5.759, representing reductions of
4.96%, 8.28%, and 4.35%, respectively, compared with the best baseline method.

• Obs 8: DRIK remains competitive even at high missing ratios. KITS employs an incremental
training strategy (see Appendix A.3), which offers a clear advantage when the missing ratio is
high. By contrast, DRIK adopts a decremental training approach, and additional edge dropping
can further increase the likelihood of isolated nodes, hindering model training and potentially
reducing accuracy. Even so, DRIK achieves performance comparable to KITS, indicating that
subgraph addition effectively counteracts the node isolation caused by both decremental training
and edge dropping.

5 LIMITATIONS & FUTURE DISCUSSION

While DRIK demonstrates strong capability and distributional robustness for inductive kriging, we
also recognize its limitations. Under extreme conditions with very high missing ratios, DRIK can
increase the likelihood of isolated nodes. Balancing generalization with the risk of excessive dis-
connection, for example through adaptive pruning based on local connectivity or spectral radius,
remains an important direction for future work. Furthermore, our evaluation currently covers only
traffic, photovoltaic, and air quality tasks, whereas kriging also has promising applications such as
dynamical field reconstruction and regional subsidence estimation, which merit further exploration.
These avenues offer opportunities to enhance both the applicability and scalability of our method.

6 CONCLUSIONS

In this work, we first identify the risk of information leakage in existing inductive kriging settings
and propose a protocol that decouples data splitting across temporal and spatial dimensions, thereby
revealing the OOD nature of inductive kriging. Building on this foundation, we introduce DRIK, a
three-layer strategy comprising node perturbation, task-aware edge dropping, and subgraph addition
to enhance OOD generalization. Extensive experiments on six datasets show that DRIK lowers MAE
by up to 12.48%, achieves a markedly reduced test-to-validation MAE ratio, and delivers significant
gains at low and medium missing rates while remaining competitive even at high missing rates.
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LARGE LANGUAGE MODEL USAGE STATEMENT

Large Language Models (LLMs) were used to assist in refining the manuscript’s language and im-
proving clarity. Their role was limited to polishing grammar, enhancing readability, and ensuring
a consistent academic tone. All substantive ideas, analyses, and conclusions remain the authors’
original work.

REPRODUCIBILITY STATEMENT

The supplementary material contains the code and configuration files needed to reproduce the ex-
periments and replicate the reported results. All datasets are publicly available, and download links
are provided in the supplementary material. To ensure reproducibility and consistency across ex-
periments and baselines, we use random number generators with fixed seeds to generate missing
data.
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APPENDIX

A MORE DETAILED RELATED WORKS

A.1 TRANSDUCTIVE KRIGING

Transductive kriging is a spatio-temporal interpolation method in which the set of unobserved lo-
cations must remain fixed during training. In essence, it performs spatio-temporal data imputation
under the assumption that the prediction targets are known in advance. Existing approaches gener-
ally fall into three main categories. The first treats kriging as a missing-data completion problem and
uses matrix or tensor factorization on a static tensor organized as location × time × variables (Zhou
et al., 2012; Bahadori et al., 2014; Takeuchi et al., 2017; Deng et al., 2021). For example, GLTL (Ba-
hadori et al., 2014) fills unobserved entries with zeros and applies tensor decomposition to estimate
the missing values. This family of methods benefits from well-studied optimization techniques but
often struggles to capture highly dynamic temporal patterns. A second category employs graph neu-
ral networks combined with recurrent architectures for spatio-temporal imputation (Cini et al., 2022;
Marisca et al., 2022; Kong et al., 2023; Shen et al., 2023). Representative work such as GRIN (Cini
et al., 2022) integrates message-passing mechanisms with Gated Recurrent Units (GRUs) to capture
complex spatial dependencies and model temporal dynamics simultaneously, thereby reconstructing
missing data at unobserved nodes more effectively than purely factorization-based models. A third
direction frames transductive kriging as a generative modeling task, using probabilistic frameworks
to impute missing data (Xu et al., 2020; Liu et al., 2023; Yun et al., 2023). Methods such as PriSTI
(Liu et al., 2023) learn to generate plausible values for unobserved locations under uncertainty. Al-
though effective within their respective settings, these methods remain inherently transductive: they
assume that all unobserved nodes are predefined during training. Consequently, they cannot gen-
eralize to new or unseen locations without retraining, underscoring the need for inductive kriging
approaches that can handle novel spatial contexts while maintaining robust temporal predictions (Jin
et al., 2024)

A.2 ADDITIONAL METHODS FOR GRAPH OOD GENERALIZATION

Beyond data augmentation, a growing body of work improves OOD generalization through model-
based approaches that encode prior knowledge to learn stable, transferable representations. Rep-
resentative methods include DisenGCN (Ma et al., 2019), IPGDN (Liu et al., 2020), FactorGCN
(Yang et al., 2020), DisC (Fan et al., 2022), OOD-GNN (Li et al., 2022a), and CIGA (Chen et al.,
2022). Disentanglement-based models such as DisenGCN and IPGDN separate latent factors using
multi-channel convolutions and independence-promoting objectives. In contrast, causality-oriented
methods like OOD-GNN and CIGA decorrelate causal and noncausal features or identify critical
causal subgraphs to preserve stable relationships under distribution shifts.

Another major line of research focuses on learning-strategy methods, which refine training objec-
tives and optimization schemes without altering the model architecture. Key directions include graph
invariant learning (e.g., DIR (Wu et al., 2022c) and DIDA (Zhang et al., 2022)), which discovers in-
variant subgraphs or minimizes environment-wise risk; graph adversarial training (e.g., GraphAT
(Feng et al., 2019) and WT-AWP (Wu et al., 2023)), which improves robustness through adversarial
perturbations and co-adversarial optimization; and graph self-supervised learning (e.g., PATTERN
(Yehudai et al., 2021) and RGCL (Li et al., 2022b)), which leverages contrastive or rationale-aware
pretext tasks to learn generalizable representations. Together, these strategies complement data aug-
mentation by enhancing stability and robustness across feature-level, topology-level, and hybrid
distribution shifts.

Each category presents distinct trade-offs. Data augmentation is simple and broadly applicable,
offering rapid robustness gains, but it may fail to cover truly novel distributions and can degrade
performance if the augmentations diverge excessively from real data. Model-based methods provide
strong theoretical grounding and capture stable causal or disentangled structures, yet they often re-
quire complex architectures and carefully chosen prior assumptions. Learning-strategy approaches
are flexible and integrate easily with existing GNNs, but many rely on explicit or inferred environ-
ment splits, which limits effectiveness when such information is unavailable. Collectively, these
methods are complementary and can be combined to achieve stronger OOD generalization.
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Figure 5: Comparison of decremental and incremental training strategies (Xu et al., 2025). The
advantage of KITS (red line) becomes more pronounced as the missing ratio increases.

A.3 INCREMENTAL AND DECREMENTAL TRAINING STRATEGY FOR INDUCTIVE KRIGING

Inductive kriging methods have traditionally been trained with a decremental strategy, in which val-
ues of some observed nodes are masked and the model learns to reconstruct them. KITS (Xu et al.,
2025) reports that this approach produces a sparser training graph than the denser inference graph
containing both observed and unobserved nodes, creating a “graph gap” that hampers transferabil-
ity. To address this issue, KITS introduces an incremental training strategy that inserts virtual nodes
during training to mimic future unobserved nodes and learns in a semi-supervised manner on the
expanded graph, thereby aligning the topology of training and inference and improving generaliza-
tion. These enhancements collectively reduce the graph-gap and the fitting issues that have limited
previous inductive approaches. As shown in Figure 5, when the missing ratio is high and the graph
is sparse, the insertion of virtual nodes further densifies the graph, making KITS’s advantage even
more pronounced.

B THEORETICAL ANALYSIS OF DISTRIBUTION SHIFT IN INDUCTIVE
KRIGING

Goal. Under the 3×3 setting, show that for any non-trivial family of normalized (space-time) graph
convolutions fθ (including the STGC in Eq. 1), training on the observed subgraph Go = (Vo,Aoo)
but evaluating on the enlarged graph G = (Vo∪Vu,A) inevitably induces a distribution shift between
training and testing (i.e., OOD), unless certain degenerate conditions hold.

Preliminaries and notation. Let |Vo| = No, |Vu| = Nu > 0. The adjacency is block-partitioned as
in Eq. 2:

A =

(
Aoo Aou

Auo Auu

)
, Aoo = Ao. (16)

Define the degree matrix D = diag(A1) and the normalized propagation operator Â =

D−1/2AD−1/2; write Âoo = D
−1/2
oo AooD

−1/2
oo . The (space-time) propagation of the STGC stack

(Eq. 1) is
H(0) = Zi−m:i+m ∈ RNo×(2m+1)D, (17)

H(l+1) = σ
(
ÂH(l)Wl

)
, l = 0, . . . , L− 1, (18)

where at training time Â is replaced by Âoo. From the Gaussian-process (GP) / kriging perspective,
for spatial sets Vo, Vu and a stationary kernel k,

Koo = [k(si, sj)]i,j∈Vo
, (19)

Kuo = [k(si, sj)]i∈Vu, j∈Vo , (20)

µu|o = KuoK
−1
oo Xo. (21)
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Empirical risk minimization in the main text reads

Rtrain(θ) = E(Xo,Aoo)∼Po

[
ℓ
(
fθ(X

o;Aoo),Y
o
)]
, (22)

Reval(θ) = E(Xo,A)∼Pou

[
ℓ
(
fθ(X

o;A),Y u
)]
. (23)

Proposition 1 (Structural shift: propagation operator changes). If Nu > 0 and there exists at
least one cross-block edge (some entry in Auo or Aou is positive), then Â and Âoo have different
spectra. Moreover, for any family with ∥Wl∥ > 0 and non-constant activation σ, if H(0) has
non-zero covariance under the training distribution, then for some layer l we have

Ptrain(H
(l)) ̸= Ptest(H

(l)). (24)

Proof. Adding Vu and cross-block edges modifies degrees from Doo to

D =

(
Doo +Aou1 0

0 Duu

)
, (25)

so the oo-block of Â = D−1/2AD−1/2 differs from Âoo. If Aou ̸= 0 or Auo ̸= 0, standard matrix
perturbation implies at least one eigenvalue shift, hence a spectral change. Applying different linear
operators to identically distributed inputs, followed by a non-degenerate linear map Wl and non-
constant σ, changes the output law; otherwise operator identifiability together with non-constancy
of σ would be violated. □

Proposition 2 (Target shift: supervision changes). Training targets in-domain masked reconstruc-
tion on Vo (Y o), while evaluation targets out-of-domain extrapolation on Vu (Y u). If

P
(
Y o

∣∣Xo,Aoo

)
̸≡ P

(
Y u

∣∣Xo,A
)
, (26)

then the ERM solution θ⋆ = argminθRtrain(θ) generally does not minimize Reval(θ). Proof. The
conditional laws differ because (i) the conditioning graph changes (Prop. 25), and (ii) the supervised
index sets are disjoint (Vo ∩ Vu = ∅), changing the support. For losses such as MAE/MSE, the risk
minimizer is invariant across environments only if the two laws coincide or the problem degenerates
(see Theorem below). □

Theorem (Inductive kriging is OOD except in degenerate cases). Assume Nu > 0. Then the test
distribution differs from the training distribution (i.e., OOD) unless one of the following degenerate
situations holds:

1. No cross-block edges: Aou = Auo = 0, and the model at test time also uses only Âoo;
2. Adjacency-invariant model: every layer satisfies Wl = 0 or σ is constant, so outputs

ignore Â;
3. Target equality: P(Y u|Xo,A) = P(Y o|Xo,Aoo).

Proof. Sufficiency: Under (1), the evaluation operator equals the training operator and Vu is unused;
under (2), outputs are insensitive to adjacency; under (3), the target law is identical. HenceReval =
Rtrain. Necessity: If any of (1)–(3) fails, then either Prop. 1 changes P(H(l)) or Prop. 2 changes
the target law; either impliesReval ̸= Rtrain. □

GP / kriging view (sufficient evidence for covariate shift). Let the inter-node distance d have
different laws for “O–O pairs” vs. “U–O pairs”: poo(d) ̸= puo(d). For a stationary kernel k(d),

E[Koo] = Ed∼poo
[k(d)], (27)

E[Kuo] = Ed∼puo
[k(d)]. (28)

If poo ̸= puo and k is non-constant, the spectra and condition numbers of Koo and Kuo generically
differ; therefore the mapping

µu|o = KuoK
−1
oo Xo (29)

at evaluation time is distributed differently from the masked estimator learned at train-
ing—constituting covariate shift. Only when poo = puo or k is constant (degenerate) do these
differences vanish, matching the theorem.
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Table 3: Overview of six datasets spanning three application domains.

Data Type Dataset Data partition Region Start Time Samples Nodes Sampling Rate
Temporal Spatial

Traffic Speed METR-LA 7/1/2 3/1/1 Los Angeles 3/1/2012 34,272 207 5 minutes
PEMS-BAY 7/1/2 3/1/1 San Francisco 1/1/2017 52,116 325 5 minutes

Solar Power NREL-AL 7/1/2 3/1/1 Alabama 1/1/2016 105,120 137 5 minutes
NREL-MD 7/1/2 3/1/1 Maryland 1/1/2016 105,120 80 5 minutes

Air Quality (PM2.5) AQI-36 1/1/1 3/1/1 Beijing 5/1/2014 8,759 36 1 hour
AQI 1/1/1 3/1/1 43 cities in China 5/1/2014 8,760 437 1 hour

Conclusion. Whenever previously unseen nodes participate in test-time propagation or supervision,
inductive kriging is inherently an OOD problem. This aligns with the “OOD Problem” in the main
text: the normalized operator changes from Âoo to Â (degree & spectrum shift), and the target
changes from Y o to Y u. Consequently, intermediate features undergo both structural and covariate
shifts, which the 3 × 3 split explicitly exposes; the robustness strategies in the method section can
thus be viewed as targeted defenses against these shifts.

C DETAILED EXPERIMENTAL SETUP

C.1 DATASETS

In this appendix, we provide more details on the datasets that we used to run experiments. Table 3
summarizes the six datasets used in our experiments. Detailed descriptions are as follows:

• METR-LA: A traffic speed dataset containing average vehicle speeds from 207 detectors on Los
Angeles County highways, collected every 5 minutes from March 1 to June 27, 2012.

• PEMS-BAY: A traffic speed dataset comprising measurements from 325 sensors in the San Fran-
cisco Bay Area, sampled every 5 minutes between January 1 and June 30, 2017.

• NREL-AL: A solar power dataset recording output from 137 photovoltaic plants in Alabama
throughout 2016, with 5-minute sampling intervals.

• NREL-MD: A solar power dataset capturing output from 80 photovoltaic plants in Maryland
during 2016, sampled every 5 minutes.

• AQI-36: A subset of the Air Quality Index (AQI) dataset selected from the Urban Computing
Project, beginning on May 1, 2014, and commonly used in kriging studies.

• AQI: The full Air Quality Index dataset containing hourly measurements of six pollutants from
437 monitoring stations across 43 Chinese cities; consistent with prior work such as GRIN (Cini
et al., 2022) and KITS (Xu et al., 2025), we focus on PM2.5 concentrations.

Data partition. To ensure fair evaluation and consistent comparison across methods, we partition
each dataset along both temporal and spatial dimensions. For all datasets except AQI-36 and AQI,
we adopt a temporal split of 7:1:2 for training, validation, and testing, respectively. In parallel, we
apply a spatial split of 3:1:1, dividing the monitoring locations (e.g., sensors, photovoltaic plants,
or stations) into three groups for training, validation, and testing. For the AQI-36 and AQI datasets,
which span longer periods and exhibit pronounced seasonal patterns, we follow KITS (Xu et al.,
2025) and adopt a temporal split of 1:1:1 to capture seasonal variability. Entire months are allocated
to each subset: March, June, September, and December form the test set, February, May, August,
and November constitute the validation set, and the remaining months are used for training. The
spatial split remains 3:1:1, dividing monitoring nodes into training, validation, and testing groups
as in the other datasets. This dual partitioning strategy—uniformly separating data across time
and space—encourages models to generalize to unseen periods and locations, providing a rigorous
assessment of forecasting performance.

Creating Random Missing. For most experiments, the missing ratio α is fixed at 25% across all
datasets. To create random missing patterns, we shuffle the node order and partition by index using
a fixed spatial split of 3:1:1 for training, validation, and testing, respectively. Specifically, suppose a
dataset contains N nodes and the missing ratio is α = 0.25. We first generate a random permutation
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of all node indices to eliminate any spatial or temporal bias. Based on this shuffled sequence, we
assign the first ⌊0.6N⌋ nodes to the training set, the next ⌊0.2N⌋ nodes to the validation set, and
the remaining nodes to the test set. To ensure reproducibility, we fix the random seed to 42 for both
the numpy and random libraries across all datasets by default.

Data Normalization. Proper normalization is essential to stabilize model training and ensure com-
parability across heterogeneous measurements. We consider two widely used approaches:min–max
normalization (implemented via the MinMaxScaler in scikit-learn) and zero-mean normalization
(implemented via the StandardScaler in scikit-learn). For the NREL-AL and NREL-MD solar power
datasets, the rated capacity (i.e., maximum output) of each photovoltaic plant is known. We apply
min–max normalization on a per-node basis, dividing each node’s time series by its own capacity
so that the normalized values lie in the range [0, 1]. This node-specific scaling preserves the rela-
tive generation profile of each plant while removing the effect of differing absolute capacities. For
all other datasets, where node-level maximum values are either unavailable or not meaningful (e.g.,
traffic speed or air-quality measurements), we uniformly adopt zero-mean normalization, transform-
ing each feature to have zero mean and unit variance. This standardization balances the input scale
across variables and facilitates stable, efficient training for downstream models.

Constructing Adjacency Matrix. A widely used approach for constructing a spatial adjacency
matrix is to apply a thresholded Gaussian kernel, which connects each node to its geographically
nearby nodes within a specified radius. The weighted adjacency matrix is defined as

A(v, u) = exp
(
− ∥sv − su∥2/σ2

)
· 1{∥sv − su∥ ≤ δ}, v, u ∈ V, (30)

where A is the adjacency matrix; v and u are node indices; sv and su denote the spatial coordinates
of nodes v and u; σ > 0 is the Gaussian kernel bandwidth (length scale) controlling how rapidly
the edge weight decays with distance; and δ > 0 is the distance threshold (radius) that sparsifies the
graph by retaining only nearby connections. Intuitively, the exponential term assigns higher weights
to edges linking spatially closer nodes, while the indicator function 1{∥sv − su∥ ≤ δ} ensures that
long-range connections beyond the threshold δ are removed, yielding a sparse graph that reflects
local spatial correlations. Following GRIN (Cini et al., 2022) and KITS (Xu et al., 2025), we set
σ to the empirical standard deviation of all pairwise node distances, which provides a data-driven
scale for the Gaussian kernel and avoids manual tuning.

C.2 BASELINES

Mean Imputation. Missing values are filled with the average of all available node observations at
each time interval, rather than node-wise means, to avoid bias from sparsely observed nodes.

OKriging. Ordinary Kriging exploits the geographic relationships among nodes and models spatial
correlations with a Gaussian process to perform purely spatial interpolation.

KNN. The K-Nearest Neighbors method estimates the value of an unobserved node by averaging
the values of its ten nearest neighbors (K = 10) based on geographic distance.

KCN (Appleby et al., 2020). KCN first unifies GCNs and kriging by directly using neighbor obser-
vations within the convolution—recovering classical kriging as a special case—and augments it with
attention for better interpolation. Among its three variants—Graph Convolutional Networks (GCN),
Graph Attention Networks (GAT), and GraphSAGE—we evaluate the GraphSAGE implementation.

IGNNK (Wu et al., 2021a). IGNNK learns a transferable spatial message-passing scheme via ran-
dom subgraphs and signal reconstruction, enabling inductive kriging on unseen sensors/graphs. It
Uses a total-reconstruction loss over all nodes (not only masked ones), encouraging global general-
ization of message passing.

INCREASE (Zheng et al., 2023). INCREASE encodes three heterogeneous relations—spatial
proximity, functional similarity, and transition probability—and uses relation-aware GRUs plus
multi-relation attention to fuse spatiotemporal signals for inductive kriging at new locations.

KITS (Xu et al., 2025). KITS bridges the train–inference ‘graph gap’ by incrementally adding
virtual nodes during training, pairing/fusing them with similar observed nodes and supervising with
pseudo labels, so the learned patterns transfer reliably to real unobserved nodes.
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Table 4: Error bars of inductive methods with 4 different random seeds on the METR-LA dataset.
Seed 0 corresponds to 42, seed 1 corresponds to 3407, seed 2 corresponds to 1202, seed 3 corre-
sponds to 6666. The best results are shown in bold, and the second-best results are underlined.
“Improvements” indicate the performance gain of our DRIK method over the best baseline.

Method Metric Seed 0 Seed 1 Seed 2 Seed 3 Mean ± Std

Mean

MAE

8.272 9.318 8.282 8.932 8.701±0.473
OKriging 7.294 7.907 7.793 7.663 7.664±0.239

KNN 7.987 8.332 8.881 8.610 8.453±0.374
KCN 7.190 7.281 8.112 7.101 7.421±0.455

IGNNK 5.801 6.006 7.579 6.479 6.466±0.726
INCREASE 5.992 6.221 7.680 6.978 6.718±0.732

KITS 5.666 6.031 6.848 6.621 6.292±0.475
DRIK(Ours) 5.197 5.450 6.731 5.635 5.753±0.603

Improvements 8.280% 9.260% 1.710% 14.890% 8.035%
Mean

RMSE

11.417 12.804 11.334 12.845 12.100±0.748
OKriging 10.277 11.354 10.871 11.299 10.950±0.429

KNN 12.370 13.151 13.423 13.901 13.211±0.563
KCN 12.470 12.490 13.110 13.371 12.860±0.376

IGNNK 8.914 9.686 11.311 10.562 10.118±0.955
INCREASE 9.198 10.095 12.120 11.624 10.759±1.157

KITS 8.981 9.945 10.257 11.043 10.057±0.810
DRIK(Ours) 8.101 8.895 9.763 8.955 8.929±0.583

Improvements 9.120% 8.160% 4.820% 15.210% 9.328%
Mean

MAPE

22.133 27.922 22.677 29.392 25.031±3.298
OKriging 18.896 23.822 20.528 24.610 21.964±2.393

KNN 19.820 25.307 22.728 26.487 23.585±2.904
KCN 23.983 24.583 23.556 24.181 24.076±0.427

IGNNK 15.581 18.313 18.945 21.864 18.676±2.366
INCREASE 16.854 18.494 18.960 25.345 19.913±3.350

KITS 15.096 18.230 17.648 21.832 18.202±2.712
DRIK(Ours) 13.154 15.740 17.043 16.722 15.665±1.520

Improvements 12.860% 13.660% 3.430% 23.410% 13.840%

C.3 EVALUATION METRICS

We mainly adopt Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Mean Relative Error (MRE) to evaluate the performance of all methods. The formulas are given as
follows:

MAE =
1

|Ω|
∑
i∈Ω

∣∣Y i − Ŷ i

∣∣ (31)

RMSE =

√
1

|Ω|
∑
i∈Ω

(
Y i − Ŷ i

)2
(32)

MAPE =
1

|Ω|
∑
i∈Ω

∣∣Y i − Ŷ i

∣∣∣∣Y i

∣∣ (33)

where Ω is the index set of unobserved nodes used for evaluation, Y denotes the ground-truth data,
Ŷ is the estimation generated by the kriging models, and Ȳ is the average value of the labels.

C.4 IMPLEMENTATION DETAILS FOR REPRODUCIBILITY

Our code is implemented in Python 3.8 with PyTorch 1.8.1, PyTorch Lightning 1.4.0, and
CUDA 11.3. All experiments are conducted on a single NVIDIA A100 80GB GPU. Unless oth-
erwise noted, we fix the random seed of numpy, random, PyTorch, and PyTorch Lightning to 42,
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Table 5: Error bars of inductive methods with 4 different random seeds on the PEMS-BAY dataset.
Seed 0 corresponds to 42, seed 1 corresponds to 3407, seed 2 corresponds to 1202, seed 3 corre-
sponds to 6666. The best results are shown in bold, and the second-best results are underlined.
“Improvements” indicate the performance gain of our DRIK method over the best baseline.

Method Metric Seed 0 Seed 1 Seed 2 Seed 3 Mean ± Std

Mean

MAE

4.999 4.916 4.896 4.654 4.866±0.147
OKriging 4.874 4.887 4.874 4.609 4.811±0.124

KNN 5.678 5.678 5.628 5.320 5.576±0.162
KCN 4.676 4.779 4.693 4.559 4.677±0.085

IGNNK 3.445 3.593 3.556 3.392 3.497±0.083
INCREASE 3.599 3.804 3.770 3.494 3.667±0.130

KITS 3.410 3.651 3.733 3.590 3.596±0.132
DRIK(Ours) 3.218 3.468 3.419 3.254 3.340±0.105

Improvements 5.630% 3.490% 3.850% 4.070% 4.260%
Mean

RMSE

8.474 8.366 8.243 7.775 8.215±0.269
OKriging 8.266 8.351 8.108 7.717 8.111±0.252

KNN 10.431 10.347 9.941 9.682 10.100±0.342
KCN 9.253 10.110 9.198 8.015 9.144±0.838

IGNNK 6.067 6.248 6.126 5.876 6.079±0.138
INCREASE 6.850 6.886 6.878 6.228 6.711±0.309

KITS 6.445 6.521 6.638 6.279 6.471±0.149
DRIK(Ours) 5.840 6.009 5.919 5.550 5.830±0.193

Improvements 3.750% 3.840% 3.380% 5.540% 4.130%
Mean

MAPE

12.862 12.267 11.979 11.069 12.044±0.712
OKriging 12.412 12.027 11.732 10.855 11.757±0.607

KNN 14.087 13.371 13.044 12.107 13.152±0.887
KCN 13.514 14.011 13.010 12.827 13.341±0.509

IGNNK 8.378 8.577 8.268 7.592 8.204±0.362
INCREASE 9.457 9.748 9.536 8.211 9.238±0.631

KITS 8.602 8.775 8.733 8.092 8.550±0.300
DRIK(Ours) 7.728 8.101 7.561 7.310 7.675±0.296

Improvements 7.760% 5.560% 8.550% 3.720% 6.900%

and set the missing ratio to α = 25%. For all datasets, following KITS (Xu et al., 2025), the tempo-
ral window size is 24, and the feature dimension and batch size are fixed at 64 and 32, respectively.
Within the STGC module, the parameter m is set to 1, indicating that spatio-temporal feature ag-
gregation uses data from one historical, one current, and one future time interval. We employ the
Adam optimizer with a fixed learning rate of 0.0001 and apply gradient clipping with a threshold of
1.0 to stabilize training. The model is trained for up to 300 epochs with an early stopping strategy:
validation is performed after each epoch, and training halts if the validation performance shows no
improvement for 50 consecutive epochs. The model achieving the best validation performance is
saved and used for final inference.

D MORE EXPERIMENTAL RESULTS

D.1 MODEL STABILITY UNDER DIFFERENT NODE DIVISIONS

To assess how each method performs when the set of observed and unobserved nodes varies, we
evaluate model stability across different node divisions. For each dataset with a fixed missing ratio
α, we randomly partition nodes into training, validation, and test groups using four different random
seeds, producing distinct spatial splits and missing patterns. Each method is trained and tested on
these splits, and we report the mean and standard deviation of key metrics in Tables 4, 5, and 6. This
analysis captures two aspects of stability: (1) the model’s ability to learn consistently despite random
parameter initialization, and (2) its robustness to changes in the spatial distribution of observed
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Table 6: Error bars of inductive methods with 4 different random seeds on the AQI-36 dataset. Seed
0 corresponds to 42, seed 1 corresponds to 3407, seed 2 corresponds to 1202, seed 3 corresponds
to 6666. The best results are shown in bold, and the second-best results are underlined. “Improve-
ments” indicate the performance gain of our DRIK method over the best baseline.

Method Metric Seed 0 Seed 1 Seed 2 Seed 3 Mean ± Std

Mean

MAE

18.431 16.800 24.983 24.021 21.059±3.50
OKriging 16.003 14.824 21.105 20.920 18.713±2.88

KNN 14.727 13.517 20.420 22.122 17.697±3.89
KCN 21.963 14.111 19.978 20.019 19.018±3.27

IGNNK 20.138 13.683 18.055 18.272 17.037±2.88
INCREASE 16.963 12.437 17.411 17.150 15.990±2.24

KITS 19.600 13.531 18.831 19.294 17.814±2.78
DRIK(Ours) 13.443 10.949 15.991 16.502 14.221±2.32

Improvements 8.710% 11.970% 8.160% 3.780% 8.655%
Mean

RMSE

31.631 27.266 42.812 42.233 35.985±7.02
OKriging 28.744 24.879 37.603 37.401 32.157±6.26

KNN 26.800 23.300 37.425 39.620 31.286±6.82
KCN 36.647 25.510 38.579 36.778 34.378±5.93

IGNNK 33.993 21.483 31.361 31.586 29.606±5.58
INCREASE 32.854 22.126 32.948 31.159 29.772±4.90

KITS 34.668 23.851 36.738 37.055 33.078±6.22
DRIK(Ours) 25.550 18.260 29.513 29.345 25.667±4.58

Improvements 4.670% 15.000% 5.890% 5.820% 7.845%
Mean

MAPE

49.586 51.848 85.004 65.456 62.974±14.7
OKriging 42.670 46.733 71.152 61.158 55.428±10.7

KNN 37.737 42.213 66.196 61.294 51.860±12.8
KCN 57.988 45.123 59.001 59.333 55.361±6.55

IGNNK 69.964 42.215 56.094 48.399 54.668±10.4
INCREASE 41.619 32.662 46.929 42.331 40.885±5.79

KITS 76.466 33.981 48.896 37.327 49.168±16.5
DRIK(Ours) 28.433 30.018 46.054 37.090 35.399±7.50

Improvements 24.650% 8.100% 1.860% 0.630% 8.810%

versus unobserved nodes. The results reveal how each inductive kriging approach maintains—or
loses—performance when node divisions vary. From Tables 4, 5, and 6, we observe the following:

• DRIK consistently outperforms all baseline methods across all datasets and metrics. For
instance, on METR-LA (Table 4), DRIK achieves an average MAE of 5.753 ± 0.603, which is
8.035% lower than the best baseline (KITS: 6.292± 0.475). Similarly, on PEMS-BAY (Table 5),
DRIK reduces MAE by 4.26%compared to KITS, and on AQI-36 (Table 6), it achieves an 8.655%
improvement in MAE over INCREASE. These gains are consistent across RMSE and MAPE,
demonstrating the robustness of DRIK’s three-tier strategy.

• DRIK exhibits strong stability under varying node divisions. The standard deviations of
DRIK’s metrics are competitive and often lower than those of other methods. For example, on
METR-LA, DRIK’s MAE standard deviation is 0.603, compared to 0.475 for KITS and higher
values for other baselines. On AQI-36, DRIK’s MAE standard deviation is 2.32, which is lower
than most baselines, indicating consistent performance despite changes in node composition.

• The impact of randomness due to parameter initialization and node division is well mitigated
by DRIK. The relatively small standard deviations across runs suggest that DRIK is less sensitive
to initial conditions and spatial splits. This stability is particularly notable in complex scenarios
such as AQI-36, where seasonal and spatial heterogeneity are pronounced.

In summary, DRIK not only achieves superior predictive accuracy but also maintains robust per-
formance under different node divisions, highlighting its suitability for real-world inductive kriging
applications where sensor layouts may vary.
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IGNNK

KITS

DRIK(Ours)

Figure 6: Comparison of validation loss during training across methods.

D.2 VISUALIZATION OF LOSS CURVE DURING TRAINING

This section provides a qualitative view of the training dynamics of inductive kriging methods,
complementing the quantitative results. Visualizing loss curves (Figure 6) reveals how each model
converges, whether it overfits or underfits, and how stable learning remains across different initial-
izations and node splits—key factors for assessing robustness under the proposed 3×3 partitioning
scheme.

In Figure 6, training lengths differ intentionally: slower models were extended to observe full con-
vergence and potential overfitting. This enables a clearer comparison of learning trends. DRIK
shows smoother, more stable convergence than IGNNK and KITS, with a steadily decreasing vali-
dation loss that plateaus without rebound, indicating lower sensitivity to noise and distribution shifts.
It also reaches a lower validation loss more consistently across random seeds and node divisions,
aligning with its design to enhance robustness through node perturbation, edge dropping, and sub-
graph addition.

Overall, the loss curves highlight DRIK’s training stability and resistance to overfitting, supporting
its strong OOD generalization.
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