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ABSTRACT

Web agents hold great potential for automating complex computer tasks, yet their
interactions involve long horizons, multi-step decisions, and actions that can be
irreversible. In such settings, outcome-based supervision is sparse and delayed,
often rewarding incorrect trajectories and failing to support inference-time scaling.
This motivates the use of Process Reward Models (WebPRMs) for web navigation,
but existing approaches remain limited: scalar WebPRMs collapse progress into
coarse, weakly grounded signals, while checklist-based WebPRMs rely on brittle
template matching that fails under layout or semantic changes and often mislabels
superficially correct actions as successful, providing little insight or interpretability.
To address these challenges, we introduce WebArbiter, a reasoning-first, principle-
inducing WebPRM that formulates reward modeling as text generation, producing
structured justifications that conclude with a preference verdict and identify the
action most conducive to task completion under the current context. Training
follows a two-stage pipeline: reasoning distillation equips the model with coherent
principle-guided reasoning, and reinforcement learning corrects teacher biases by
directly aligning verdicts with correctness, enabling stronger generalization. To
support systematic evaluation, we release WEBPRMBENCH, a comprehensive
benchmark spanning four diverse web environments with rich tasks and high-quality
preference annotations. On WEBPRMBENCH, WebArbiter-7B outperforms the
strongest baseline, Gemini Flash, by 10.9%. In reward-guided trajectory search on
WebArena-Lite, it surpasses the best prior WebPRM by up to 7.2%, underscoring
its robustness and practical value in real-world complex web tasks.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Guo et al., 2025a) have demonstrated impres-
sive capabilities in planning (Huang et al., 2024; Zhang et al., 2025a), decision-making (Li et al.,

Figure 1: Performance comparison on WEBPRMBENCH. Left: Average Best-of-N Acc vs. model
size, showing superior efficiency despite smaller scale. Right: Domain-wise Avg BoN Acc, where
WEBARBITER achieves the best results across all environments, confirming robustness and scalability.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2024), and complex task execution (Xi et al., 2024; Zhang et al., 2025b). Extending these abilities
with browser access enables LLM agents to perform complex web tasks similar to humans (OpenAI,
2025a; Anthropic, 2024a; Adept, 2022). However, web interactions involve long horizons, multi-step
decisions, and actions that can be irreversible. For example, submitting an incorrect form may not be
recoverable. This requires agents to make reliable decisions throughout the interaction process, rather
than relying solely on final outcomes. Traditional Outcome Reward Models (ORMs) are ill-suited:
they provide only sparse and delayed feedback, may misclassify incorrect trajectories as successes,
and cannot guide inference-time strategies, such as reward-guided search.

Recent studies on web agents (Zhang et al., 2025b; Koh et al., 2025) have introduced step-level
rewards using LLM-as-judge. While such supervision can be useful, LLM-as-judge suffers from
high cost, limited scalability, and susceptibility to hallucination, often rewarding fluent but incorrect
actions. This motivates the development of dedicated Process Reward Models (WebPRMs) for web
tasks. Existing WebPRMs largely fall into two categories: scalar WebPRM (Miao et al., 2025), which
collapse progress into coarse scores with little interpretability or weak grounding; and generative
WebPRM (Chae et al., 2025), which rely on checklists that are brittle under dynamic layouts and
shifting semantics. Moreover, lacking explicit reasoning, generative WebPRMs remain vulnerable
to surface correlations and sensitive to page changes. These limitations highlight the need for a
reasoning-first WebPRM that can verify progress, resist superficial biases, and provide interpretable
chains for diagnosing errors.

To this end, we propose WebArbiter, a reasoning-first, principle-inducing WebPRM. It formulates
process reward modeling as text generation: given task context and candidate actions with their
reasoning traces, the model produces a structured justification that concludes with a preference verdict,
identifying the action most conducive to task completion. Unlike scalar scores or checklist-based
methods tied to fixed templates, WebArbiter dynamically derives principles from user intent and
the current state, incorporates them into reasoning chains that verify whether an action advances
task completion. Training follows a two-stage pipeline: reasoning distillation equips the model
with coherent principle-guided reasoning, and reinforcement learning corrects teacher biases and
aligns verdicts with correctness. This design transforms reward signals from shallow correlations
into auditable analyses, making judgments robust to environment and page variations, resistant to
spurious cues, and accurate in credit assignment.

To advance the evaluation of WebPRMs, we introduce WEBPRMBENCH, the first comprehensive
evaluation benchmark spanning diverse environments dedicated to WebPRMs. It provides 1,287
step-level preference instances, each consisting of one correct action and four rejected alternatives,
collected across 4 web environments: AssistantBench (Yoran et al., 2024), Mind2Web (Deng et al.,
2023), WorkArena (Drouin et al., 2024; Boisvert et al., 2025), and WebArena (Zhou et al., 2023).
The tasks span everyday activities such as online shopping and forum posting, as well as enterprise
scenarios like updating schedules in IT management platforms. By combining scale, diversity, and
fine-grained supervision, WEBPRMBENCH establishes a unified standard for systematic evaluation
of WebPRMs, with Pairwise and Best-of-N (BoN) Accuracy as the primary metrics.

Extensive experiments on WEBPRMBENCH show that WebArbiter achieves SOTA Avg. BoN Acc,
consistently surpassing both proprietary LLMs and previous SOTA WebPRM, WebShepherd, across
all environments, and outperforming the strongest LLM baseline, Gemini Flash, by +10.9%. Beyond
static evaluation, WebArbiter also proves effective in practice: in reward-guided trajectory search on
WebArena-Lite (Liu et al., 2024b), it delivers substantial gains, surpassing WebShepherd by up to
7.2%, further demonstrating robustness in realistic interaction settings.

The key contributions of this work are:

1. We propose WebArbiter, a reasoning-first, principle-inducing PRM trained with reasoning
distillation and reinforcement learning, providing auditable reasoning chains and correctness-
aligned signals.

2. We release WEBPRMBENCH, the first comprehensive evaluation benchmark to provide
systematic WebPRM evaluation across 4 web environments, using Pairwise and Best-of-N
(BoN) Accuracy as standard metrics.

3. We show that WebArbiter achieves SOTA performance on WEBPRMBENCH, surpassing
both proprietary LLMs and the previous SOTA WebPRM. WebArbiter delivers up to +7.2%
gains in reward-guided trajectory search on WebArena-Lite.
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4. We analyze the training dynamics of WebArbiter, revealing how different strategies influence
performance.

2 RELATED WORK

2.1 LLM-BASED AUTONOMOUS WEB AGENTS

LLM advances have enabled browser-operating agents (Kim et al., 2024; Sun et al., 2024; Prasad
et al., 2023; Fu et al., 2024; Ma et al., 2023; Zheng et al., 2023b; Tao et al., 2023). One line distills
environment-specific state–action pairs from demonstrations, strong on seen states yet brittle on novel
ones, with SteP as a leading example on WebArena (Sodhi et al., 2024; Zhou et al., 2023). A second
line pursues open-ended exploration via reflexive evaluation and search (Pan et al., 2024; Shinn et al.,
2024; Koh et al., 2024; Zhang et al., 2025b). A third direction applies reinforcement learning (Qi
et al., 2025; Wei et al., 2025), yet real sites provide sparse and delayed signals, which makes value
learning unstable without dense step feedback. Therefore, WebAgents require a process-level judge
that assesses progress step by step and supplies auditable signals for search and planning.

2.2 REWARD MODELS IN REASONING AND WEB TASKS

RMs fall into two families. Scalar RMs attach a single numeric score to a response with a linear
scorer and use either absolute or discriminative schemes for evaluation (Uesato et al., 2022; Ouyang
et al., 2022; Liu et al., 2024a; 2025; Park et al., 2024; Wang et al., 2024a; 2023b; 2024b). Generative
RMs instead produce natural–language feedback from which rewards are extracted, aligning with
LLM-as-Judge and supporting both single-instance evaluation and multi-response comparison; they
show promising scalability but raise reliability concerns due to bias and hallucination (Lightman et al.,
2023; Wang et al., 2023a; Zhang et al., 2025c; Wu et al., 2024; Ye et al., 2025; Zhang et al., 2024;
Zheng et al., 2023a). Building on these, Reasoning RMs cast judging as a deliberate process: they first
generate an explicit, context-grounded chain of principle and analysis, then issue a single preference
verdict, yielding adaptive test-time compute, stronger grounding, and interpretable feedback (Chen
et al., 2025a; Guo et al., 2025b; Mahan et al., 2024). In web agents, action rewards have been
derived by the following methods: LLM-as-Judge (Zhang et al., 2025b; Koh et al., 2025), slow
and unstable during search; scalar scoring (Miao et al., 2025), which collapses progress into coarse
values with little interpretability and weak grounding; and checklist-driven generative feedback (Chae
et al., 2025), whose external templates are brittle under layout and semantic drift and prone to
surface correlations. These limitations motivate a reasoning-first approach that turns rewards from
shallow correlations into auditable analyses. WebArbiter produces structured justifications with a
single preference verdict, induces principles from the current instruction and state, and is trained
by reasoning distillation followed by reinforcement learning, so that judgments remain robust to
environment variations, resist spurious cues, and provide accurate credit assignment while supporting
inference-time scaling.

3 METHODOLOGY

In this section, we present the design of WebArbiter. We begin by framing web navigation as a
Partially Observable Markov Decision Process (POMDP) in §3.1, then describe how we construct a
pairwise-preference dataset for training in §3.2. We introduce the training pipeline of WebArbiter
model in §3.3. For clarity, we summarize all notations in Appendix A.

3.1 BACKGROUND

We formalize web navigation as a POMDP. The environment E is defined by a state space S , an action
space A, and an observation space O. T : S×A→S denotes the state transition function. At step p,
the agent receives a partial observation op∈O, executes ap∈A, and transitions to sp+1 = T (sp, ap)
with a new observation op+1. Following WebArena (Zhou et al., 2024), we represent observations
using accessibility trees, i.e., text-only encodings of visible interactive elements and their attributes.
Given a task instruction I and the initial state s0 ∈ S, the agent aims to generate a trajectory
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Principles

Answer: Response 1

 

Principle 1: Clarity and helpfulness
Principle 2: Correctness of reasoning
Principle 3: Task progress

Principle 1: Clarity and helpfulness
Response 1 provides clear navigation
instructions while Response 2
                                     ....

Inference Phase

Figure 2: Overview of WebArbiter. Given an instruction I, current observation op, and history
(a<p, c<p), the model compares candidate actions (a1p, c

1
p) and (a2p, c

2
p). In Stage 1, principle-guided

reasoning traces are distilled from a stronger teacher LLM. In Stage 2, WEBARBITER is trained with
reinforcement learning using verifiable rewards R ∈ {−1,+1}, producing structured justifications
and a final verdict. During inference, the model induces principles (e.g., clarity, correctness, progress)
from (I, op, a<p, c<p, (a

1
p, r

1
p), (a

2
p, r

2
p)), applies them to candidate actions, and outputs an auditable

judgment identifying the action that best advances task completion.

τ = (a1, . . . , aP ) that completes the task. Here P is the trajectory length and ap ∈ A denotes the
action at step p. The task evaluator determines whether the task is completed based on the final state.

3.2 TRAINING DATASET CONSTRUCTION

We build on the WEBPRM COLLECTION (Chae et al., 2025) for training WebArbiter. Each instance
consists of an instruction I, a sequence of observations O = (o1, . . . , oP ), and expert-annotated
trajectories. Specifically, the dataset provides a set of positive actions A+ = (a+1 , . . . , a

+
P ) taken from

expert demonstrations and negative actions A− = (a−1 , . . . , a
−
P ) obtained from rejected trajectories.

We convert these into pairwise preference samples where each candidate action is paired with its
reasoning trace, yielding the preference dataset DTrain used for WebArbiter training.

3.3 WEBARBITER: A PRINCIPLE-INDUCING REASONING PROCESS REWARD MODEL

WebArbiter is built on a Transformer-decoder backbone and formulates process reward modeling
as a text generation task. At each state, it evaluates candidate actions {(aqp, cqp)}

Q
q=1, where each

action aqp is paired with a reasoning trace cqp explaining why the agent generated this action. Given
task instruction I, observation op, and history (a<p, c<p), the model autoregressively generates
a structured justification j = (j1, . . . , jL) of length L that concludes with a preference verdict
ŷ selecting the most appropriate action among the candidates. The historical traces are c<p =
{c1, . . . , cp−1}, i.e., the per-action reasoning traces for previously executed actions. A concrete
training example is provided in Appendix B. While our experiments instantiate this framework in the
standard pairwise preference setting, the design is general and extends naturally to multi-candidate.

Unlike the scalar WebPRM (Miao et al., 2025) that collapses progress into opaque scores or the
checklist-based WebPRM (Chae et al., 2025), WebArbiter is a reasoning-first, principle-inducing
WebPRM: it dynamically derives principles from user intent and the current state, integrates them into
reasoning chains that explicitly assess whether each candidate action truly advances task completion.
This design moves reward signals beyond shallow correlations toward auditable analyses, yielding
judgments that are robust to environment changes, resistant to spurious cues, and precise in credit
assignment.

4
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Formally, the preference dataset is defined as

DTrain = {(I(i), o(i)p , a
(i)
<p, c

(i)
<p, (a

1(i)
p , c1(i)p ), (a2(i)p , c2(i)p ), y(i))}Mi=1, (1)

where y ∈ {a1p, a2p} denotes the preferred action. For notational simplicity, let

x = (I, op, a<p, c<p, (a
1
p, c

1
p), (a

2
p, c

2
p)). (2)

WebArbiter πθ is parameterized by θ and models the justification j autoregressively:

πθ(j | x) =
L∏

l=1

πθ(jl | x, j<l). (3)

3.3.1 TRAINING OVERVIEW

The overall training objective is to maximize the likelihood that the predicted preference matches the
ground truth:

max
πθ

E(x,y)∼DTrain, ŷ∼πθ(j|x) [1(ŷ = y)] . (4)

Training proceeds in two stages. The first stage, described in §3.3.2, is reasoning distillation, which
equips the model with the ability to generate coherent principle-guided justifications. This stage
encourages judgments to be grounded in explicit reasoning rather than surface correlations, as we
later validate through ablation studies in §5.1.3.

Concretely, we sample K examples from DTrain to form DSFT for supervised distillation, while the
remaining data is used as DRL for reinforcement learning. The second stage, detailed in §3.3.3, is
reinforcement learning, which aligns the verdicts with correctness signals and produces interpretable
step-level rewards for long-horizon tasks. Together, these stages enable WebArbiter to deliver robust,
interpretable, and scalable supervision for web agents.

3.3.2 STAGE 1: REASONING DISTILLATION

Directly prompting an instruction-tuned LLM as a reward model often yields superficial, inconsistent
chains that do not justify why an action advances the task. We therefore distill principle-guided
reasoning from a stronger teacher. Concretely, o3 synthesizes structured justifications that first
derive task-specific principles from the instruction and state, then ground these principles in the
page, compare candidate actions against them, and finally output the preferred action. This equips
WebArbiter with principles rather than surface heuristics. From ablations, we observe that removing
explicit principles and using reasoning-only justifications markedly degrades performance, under-
scoring the importance of principle induction for stable step-level judgments on the web. Given
(x(i), y(i)) ∈ DSFT, the teacher generates a justification ĵ(i) = (ĵ

(i)
1 , . . . , ĵ

(i)
Li

). The distillation dataset
is then: DSFT = {x(i), ĵ(i))}Ki=1.

Objective. Reasoning distillation adjusts θ to maximize the likelihood of generating the teacher
justification ĵ that concludes with the preferred action y given x. We minimize the standard negative
log-likelihood:

LSFT(θ) = − 1

K

K∑
i=1

Li∑
l=1

log πθ

(
ĵ
(i)
l | x(i), ĵ

(i)
<l

)
. (5)

3.3.3 STAGE 2: REINFORCEMENT LEARNING

While distillation provides initial reasoning ability, it inherits teacher biases and may overfit to
superficial patterns, limiting generalization to unseen environments. To further enhance judgment
accuracy, stability, and generalization, we introduce a reinforcement learning stage. WebArbiter πθ is
treated as a policy that outputs a justification j that concludes with a final verdict ŷ. During rollout,
πθ generates the full justification and verdict, after which a correctness reward R(x, ŷ) ∈ {−1, 1} is
assigned solely based on whether ŷ matches the ground-truth preference y. The distilled model from
§3.3.2 serves as the reference policy πref, ensuring stable optimization.

5
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Table 1: Data distribution of WEBPRMBENCH, the first comprehensive evaluation benchmark
spanning diverse environments for WebPRMs.

Models Mind2Web WebArena AssistantBench WorkArena Avg.
Cross-Task Cross-Website Cross-Domain

Count 142 148 417 371 29 180 1287

Objective. Reinforcement learning adjusts θ to maximize the expected reward while stabilizing
reasoning style via KL regularization. The optimization objective is defined as:

LRL(θ) = max
πθ

E(x,y)∼DRL, ŷ∼πθ(j|x)

[
R(x, ŷ)

]
− βDKL(πθ ∥πref) . (6)

In practice, we adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to optimize this
objective, which enables stable updates under binary verifiable rewards. Through this reinforcement
learning stage, WebArbiter directly aligns its verdicts with correctness signals and converts structured
justifications into reliable, interpretable step-level reward signals.

4 WEBPRMBENCH

In this section, we introduce WEBPRMBENCH, the first comprehensive evaluation benchmark
spanning diverse environments for WebPRMs. Details of dataset construction and the evaluation
protocol are provided below.

4.1 BENCHMARK CONSTRUCTION

WEBPRMBENCH is constructed from sucessful trajectories in AGENTREWARDBENCH (Lù et al.,
2025), expanding beyond WEBREWARDBENCH (Chae et al., 2025), which only provides Mind2Web
and limited WebArena data. We enrich WebArena with additional trajectories and incorporate Assis-
tantBench and WorkArena, resulting in broader coverage of real-world tasks across four domains:
Mind2Web, WebArena, AssistantBench, and WorkArena. Mind2Web emphasizes cross-task gen-
eralization across heterogeneous websites. WebArena provides controlled environments such as
shopping, CMS, forums, and GitLab. AssistantBench introduces open-world tasks on real websites.
WorkArena focuses on enterprise workflows, including IT and HR. This diversity enables systematic
evaluation across both consumer-facing and enterprise scenarios, while covering different levels of
control, openness, and task complexity.

For each state, the action from the successful trajectory is retained as the positive label, and four
rejected alternatives with associated reasoning traces are synthesized to form preference pairs. To
ensure data quality, we sample negatives from diverse policy models to broaden coverage, apply rule-
based filters to remove invalid or mismatched actions, discard inconsistent cases, and conduct expert
verification to further ensure reliability. We also conduct targeted auditing to eliminate potential
false negatives. Reasoning traces are truncated to a fixed length to minimize formatting noise. The
resulting benchmark spans 1,287 preference pairs across four environments, as shown in Tab. 1.

4.2 EVALUATION PROTOCOL

Evaluating WebPRMs requires metrics that capture both local preference fidelity and global decision
reliability under realistic multi-candidate settings. Inspired by RMB (Zhou et al., 2025), we adopt two
complementary metrics: Pairwise Accuracy, which measures correctness on individual preference
pairs, and Best-of-N (BoN) Accuracy, which evaluates robustness when ranking among multiple
distractors. Compared with Pairwise Acc, BoN Acc applies a stricter criterion by requiring the correct
action to outrank all distractors simultaneously, providing stronger discriminative power and better
alignment with downstream agent performance.

Pairwise Acc. Given a preference pair (a+, a−), where a+ is the correct action and a− a rejected
one, the WebPRM is correct if it assigns higher preference to a+. Formally:

AccPairwise =
1

|DBench|
∑

(a+,a−)∈DBench

1
[
πθ(a

+) ≻ πθ(a
−)

]
. (7)

6
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Table 2: Results on WEBPRMBENCH with Pairwise and BoN Acc. ⋆ denotes our models. Bold num-
bers indicate the best results, while underlined numbers denote the second best. Our WebArbiter-7B
achieves the highest BoN Acc across all environments, with an Avg. BoN Acc of 77.78%, outperform-
ing the second-best baseline, i.e., Gemini Flash, by 10.85%.

Models Mind2Web WebArena AssistantBench WorkArena Avg.
Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN

LLM-as-judge, Proprietary Language Models

GPT-4o-mini 80.28 45.69 81.40 61.46 88.79 68.97 84.86 66.67 83.83 60.70
GPT-4o 80.60 52.84 79.78 56.06 83.62 58.62 85.69 66.67 82.42 58.55
GPT-5 82.06 62.26 76.89 55.26 76.72 58.62 80.83 65.56 79.12 60.42
Claude Sonnet 81.19 59.60 81.40 62.53 76.92 53.85 88.06 72.22 81.89 62.05
Gemini Flash 81.94 57.86 83.89 67.39 84.62 65.38 92.36 77.08 85.70 66.93
DeepSeek-R1 82.18 56.44 81.13 60.38 75.00 51.72 88.61 72.78 81.73 60.33

LLM-as-judge, Open-source Language Models

Qwen2.5-3B-Instruct 76.89 37.66 69.54 35.04 80.17 48.28 70.56 42.22 74.29 40.80
Qwen2.5-7B-Instruct 79.02 41.00 72.44 40.16 76.72 37.93 78.06 51.67 76.56 42.69
Llama-3-70B-Instruct 79.43 50.96 77.90 56.60 78.85 46.15 87.50 70.14 80.92 55.96

WebPRMs (3B)

WebShepherd-3B 37.41 21.22 20.33 9.47 36.54 17.24 10.49 2.44 26.19 12.59
⋆ WebArbiter-3B 93.28 78.75 83.29 56.87 76.72 44.83 84.03 60.56 84.33 60.25

WebPRMs (7B+)

WebShepherd-8B 72.35 46.68 33.16 12.37 55.77 44.83 35.85 12.68 49.28 29.14
⋆ WebArbiter-7B 96.47 90.07 84.30 71.43 80.17 72.41 87.36 77.22 87.08 77.78

BoN Acc. For each instance (a+, a−1 , . . . , a−Q) ∈ DBench, the WebPRM is considered correct only
when a+ is consistently ranked above all Q distractors, with Q = 4 in our benchmark. BoN Acc is:

AccBoN =
1

|DBench|

|DBench|∑
i=1

Q∏
q=1

1[πθ(a
+
i ) ≻ πθ(a

−q

i )]. (8)

5 EXPERIMENTS

We conduct comprehensive experiments to evaluate WebArbiter on the reward modeling benchmark
WEBPRMBENCH in § 5.1 and on practical applications in § 5.2.

5.1 WEBPRMBENCH

5.1.1 EXPERIMENTAL SETUP

Baselines. We compare WebArbiter against three categories of baselines. (1) Proprietary LLM-
as-judge models, including GPT-4o-mini (OpenAI, 2024a), GPT-4o (OpenAI, 2024b), GPT-5 (Ope-
nAI, 2025b), Claude-3.7-Sonnet (Anthropic, 2025), Gemini-2.5-Flash (Comanici et al., 2025), and
DeepSeek-R1 (Guo et al., 2025a), which are prompted to act as judges by selecting the preferred ac-
tion given task context. (2) Open-source LLM-as-judge models, represented by Qwen2.5-3B-Instruct
and Qwen2.5-7B-Instruct (Qwen et al., 2025), and Llama-3-70B-Instruct (Grattafiori et al., 2024),
providing accessible yet competitive instruction-tuned baselines. (3) WebPRMs, where we include
WebShepherd (Chae et al., 2025).

Implementation Details. We train WebArbiter on WEBPRM Collection (Chae et al., 2025), which
comprises 30k step-level preference pairs drawn from the Mind2Web environment. We use 10k pairs
for stage-1 reasoning distillation and the remainder for stage-2 reinforcement learning. Models are
initialized from Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct (Qwen et al., 2025) and fine-tuned
with LoRA (Hu et al., 2022). Further implementation details are provided in the Appendix C.

Evaluation Metrics. We report results using two complementary metrics: Pairwise Accuracy,
which measures correctness on individual preference pairs, and Best-of-N (BoN) Accuracy, which
evaluates robustness under multi-candidate settings. Detailed definitions are provided in § 4.2.

7
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Table 3: Ablation results on WEBPRMBENCH with Qwen2.5-7B-Instruct as backbone. Best results
are in bold and the second best underlined. WEBARBITER, combining principle-guided reasoning
distillation with RL, achieves the highest overall performance.

Method Mind2Web WebArena AssistantBench WorkArena Avg.
Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN

Instruct (Original) 79.02 41.00 72.44 40.16 76.72 37.93 78.06 51.67 76.56 42.69
Instruct + Cold Start RL 97.63 91.38 67.59 43.40 71.55 34.48 73.33 55.00 77.53 56.07
Instruct + Cold Start RL + Principles 96.42 87.88 84.10 60.65 79.31 55.17 83.19 55.56 85.75 64.81
Instruct + SFTw/o Principles + RL 94.26 82.39 75.34 49.87 68.97 41.38 78.61 54.44 79.30 57.02

⋆ WebArbiter 96.47 90.07 84.30 71.43 80.17 72.41 87.36 77.22 87.08 77.78

5.1.2 MAIN RESULTS

WebArbiter Significantly Outperforms Baselines. As shown in Tab. 2, WebArbiter consistently
surpasses both proprietary and open-source LLMs across all environments with BoN Acc. While
LLM-as-judge methods often maintain moderate Pairwise Acc, their performance drops sharply on
BoN Acc, revealing poor robustness to hard negatives. In contrast, WebArbiter sustains strong results
on both metrics, establishing its reliability under realistic multi-candidate settings.

Advantage over the SOTA WebPRM. WebShepherd (Chae et al., 2025) represents the previous
SOTA WebPRMs. Trained on the same WEBPRM Collection, which was drawn from the Mind2Web
environment, WebArbiter-7B achieves an Avg. BoN Acc of 77.78%, surpassing WebShepherd-8B
by an absolute gain of 48%. Unlike WebShepherd, which relies on fragile checklists, WebArbiter
employs principle-guided reasoning, yielding judgments robust to environment and page variations.
Case studies illustrating these differences are provided in Appendix E.

Robust Generalization Across Environments. WebArbiter not only excels in-domain, achieving
96.47% Pairwise Acc and 90.07% BoN Acc on Mind2Web, but also generalizes across diverse
benchmarks. On WebArena, it outperforms the second-best baseline by nearly 4% in BoN Acc,
gains about 3% on AssistantBench, and still edges out strong baselines on WorkArena with 77.22%.
These results confirm that principle-guided reasoning supports both strong in-domain learning and
robustness across heterogeneous, noisy, and enterprise-level environments.

5.1.3 ABLATION STUDY

We compare four training variants to disentangle the effects of reinforcement learning, principle
guidance, and justification style. Instruct (Original) denotes a purely instruction-tuned model without
additional optimization. Cold Start RL directly applies RL on top of the instruction model. Cold Start
RL + Principles augments RL with principle prompting during training, enabling explicit principle
induction before judgment. SFTw/o Principles + RL performs reasoning distillation without principles,
followed by RL, thereby testing whether narrative-style justifications alone are sufficient. As shown in
Tab. 3, WebArbiter achieves the best performance. Explicit principles anchor judgments to progress,
producing stable supervision under multi-candidate web settings.

RL Alone is Unstable Across Web Environments. Cold Start RL performs well on in-domain
Mind2Web but collapses on out-of-domain benchmarks. This highlights that reward optimization
without reasoning distillation struggles in noisy and complex environments.

Principles Enable Cross-Environment Generalization. Augmenting RL with principles boosts
Avg. BoN Acc, especially in structurally diverse environments such as WebArena and AssistantBench.
Principles provide transferable facets for reasoning, reducing reliance on brittle layout cues and
improving robustness to web variability.

Reasoning Without Principles is Insufficient. SFTw/o Principles + RL, i.e., narrative-style justifica-
tions alone, improves fluency but lags behind principle-aware settings. This confirms that narrating
reasoning chains without principles cannot ensure alignment with true task progress in complex,
long-horizon real-world web navigation.
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Table 4: Success Rates (%) of trajectory search with GPT-4o-mini and GPT-4o as policy on WebArena-
lite. * Results reported from the WebShepherd (Chae et al., 2025). ∆ is relative to the w/o Trajectory
Search baseline. Our WebArbiter consistently achieves the highest gains across both policy models.

Policy WebPRM Shopping CMS Reddit GitLab Avg. ∆

GPT-4o-mini

w/o Trajectory Search* 21.74 22.86 19.05 34.38 24.51 –

GPT-4o-mini 24.44 22.86 26.32 33.33 26.74 +2.23
WebShepherd-8B* 26.09 45.71 23.81 40.62 34.06 +9.55
⋆ WebArbiter-7B 37.78 42.86 36.84 46.67 41.04 +16.53

GPT-4o

w/o Trajectory Search* 23.91 31.43 28.57 56.25 35.04 –

GPT-4o-mini 26.67 37.14 42.11 40.00 36.48 +1.44
WebShepherd-8B* 30.43 42.86 47.62 46.88 41.95 +6.91
⋆ WebArbiter-7B 44.44 42.86 52.63 56.67 49.15 +14.11

5.2 REWARD-GUIDED TRAJECTORY SEARCH

5.2.1 EXPERIMENTAL SETUP AND IMPLEMENTATIONS

Reward-guided trajectory search represents one of the most practical applications of PRMs, as
it directly leverages fine-grained step-level supervision to improve decision quality during agent
execution. To evaluate WebArbiter in this setting, we conduct experiments on WebArena-Lite1 (Liu
et al., 2024b), which contains diverse, long-horizon tasks such as online shopping and content
management, closely reflecting real-world web activities. Performance is measured with Success
Rate. Following WebShepherd (Chae et al., 2025), we adopt a Best-of-N sampling strategy: the
policy model generates N = 5 candidate actions for each step, and WebArbiter selects the most
promising one through a Knockout Tournament mechanism (Guo et al., 2025b). We evaluate two
policies, GPT-4o-mini (OpenAI, 2024a) and GPT-4o (OpenAI, 2024b).

5.2.2 ANALYSIS

As shown in Tab. 4, WebArbiter achieves substantial average improvements under both policy models,
far surpassing baselines. Its advantages arise from three main factors. First, reasoning mitigates
spurious correlations that often mislead WebPRMs in domains such as Shopping and Reddit. Gains
in Shopping are particularly striking, as tasks require dense semantic retrieval and inference; stronger
policies can roll out more promising candidate actions, and WebArbiter’s structured reward modeling
further amplifies these benefits. Second, in GitLab, tasks frequently allow multiple equivalent paths.
WebShepherd is brittle under such variability, whereas WebArbiter leverages reasoning over historical
trajectories and current states to evaluate action validity, enabling stronger generalization in dynamic
workflows. By contrast, CMS exhibits a more template-driven structure, where actions closely
follow standardized patterns. In such cases, checklist-based supervision remains comparatively
effective, which narrows the relative performance margin. Overall, WebArbiter’s reasoning-first
design consistently provides robust, interpretable, and scalable supervision across diverse domains.

6 CONCLUSION

We presented WEBARBITER, a reasoning-first, principle-inducing process reward model that frames
reward modeling as structured text generation and produces auditable step-level judgments with
rationales. Through reasoning distillation and reinforcement learning, WebArbiter transforms superfi-
cial correlations into robust signals that verify genuine task progress, enforce trajectory consistency,
and generalize across dynamic websites. To support systematic evaluation, we released WEBPRM-
BENCH, the first comprehensive evaluation benchmark spanning diverse environments for WebPRMs
in web navigation, covering four domains with diverse tasks and fine-grained step-level supervi-
sion. Extensive experiments demonstrate SOTA performance on WEBPRMBENCH and substantial
improvements in reward-guided trajectory search on WebArena-Lite, establishing principle-guided
reasoning WebPRMs as a robust and interpretable foundation for scalable web agents.

1We did not have access to the MAP domain during this work and therefore excluded it from our experiments.
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A NOTATION SUMMARY

For clarity, we summarize the main notations used throughout this paper:

• E : web environment, defined by state space S, action space A, and observation space O.
• T : state transition function T : S ×A → S.
• I: task instruction.
• sp, op, ap: state, observation, and action at step p.
• cp: reasoning trace associated with action ap.
• c<p: reasoning traces of all previously executed actions.
• τ = (a1, . . . , aP ): trajectory of length P .
• j = (j1, . . . , jL): structured justification of length L, consisting of explicit reasoning and a

final verdict.
• πθ: WebArbiter model parameterized by θ.
• ŷ: predicted preference verdict.
• DTrain,DSFT,DRL: training datasets for supervised distillation and reinforcement learning.
• DBench: evaluation dataset for WEBARBITER-BENCH.
• a+: action from a successful trajectory (positive label).
• a− or a−q: rejected action (q = 1, . . . , Q).
• Q: number of distractors in WEBARBITER-BENCH (set to 4).
• M : dataset size (training or evaluation).
• R(x, ŷ): verifiable reward signal.

B EXAMPLE OF PREFERENCE DATASET

To illustrate the construction of a preference pair, consider a task instruction from WEBARENA:

• Instruction I: “Find the 2026 conference submission page on the ICLR website.‘’
• Current observation op: [356] banner ’header’, role=’banner’ [359] link ’Home’ [380]

button ’Select Year (2026)’ [386] button ’Dates’ [391] button ’Calls’ [396] button ’Guides’
[401] button ’Organization’ [403] heading ’ICLR 2026’

• History (a<p, c<p):
– a1: Search "ICLR", c1: “I need to find the official ICLR website first. Let me search

for ’ICLR’ to locate it.‘’
– a2: Click link "ICLR homepage", c2: “I can see the ICLR official website link in the

search results. Clicking on it will take me to the ICLR homepage where I can find the
conference submission information.‘’

• Candidate actions and reasoning traces:
– (a1p, c

1
p): Click link "Call for Papers" ; c1p: “I can see a ’Call for Papers’ link on the

ICLR homepage. This link would likely lead to the submission details page, which
should contain information about the 2026 conference submission process that I’m
looking for.‘’

– (a2p, c
2
p): Click "About" link; c2p: “I can see an ’About’ link on the ICLR homepage.

Since I need to find the 2026 conference submission page, the ’About’ section might
contain conference overview information including links to submission details or
important dates for the 2026 conference.‘’

• Label y: a1p is preferred.

This example is represented in the dataset as:

(I, op, a<p, c<p, (a
1
p, c

1
p), (a

2
p, c

2
p), y = a1p).
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C TRAINING DETAILS

All training is conducted on 8 NVIDIA A100-80GB GPUs with fixed random seeds. Our training
framework is bead on LLama-Factory (Zheng et al., 2024) and VERL (Sheng et al., 2024)

Distillation Stage. We train the model for 5 epochs with a learning rate of 8e-4, using
LoRA with a rank of 128. We apply a cosine learning rate scheduler with a warmup ratio of 0.1. We
set the batch size to 256 and the maximum sequence length to 8,192 tokens.

RLVR Stage. We employ the VERL framework for GRPO training. The learning rate is
set to 7.0 × 10−6. The training uses a fixed batch size of 1,024 with mini-batch size of 128, and
adopts Fully Sharded Data Parallel (FSDP) for enhanced memory efficiency. For rollout generation,
we deploy vLLM with tensor parallelism of 4 and GPU memory utilization limited to 0.4. Response
sampling uses standard parameters (temperature=1.0, top-p=1.0), generating 7 candidate responses
per prompt. We apply KL regularization with a coefficient of 1.0× 10−3 and clip ratio of 0.2. The
maximum input sequence length is 8,192 tokens, and the maximum response length is 4,096 tokens.

D PROMPT REPOSITORY

WebArbiter

You are a skilled expert at evaluating assistant responses. You
should evaluate given responses based on the given judging
criteria.\n Given the context of the conversation and two
responses from the Assistant, you need to determine the better
response. Provide an overall comprehensive comparison upon them.

#### Intent ####
{intent}
#### AXTREE ####
Note: [bid] is the unique alpha-numeric identifier at the

beginning of lines for each element in the AXTree. Always use
bid to refer to elements in your actions.

{observation}
#### Trajectory ####
Note: The trajectory contains the sequence of previous actions and

their corresponding thoughts. Each entry reflects the agent’s
internal reasoning (‘thought‘) and the concrete operation it
performed (‘action‘).

{trajectory}
#### start url ####
{start_url}
#### current url ####
The URL provides clues about the user’s position in the

application flow. Use both the path and query parameters to
infer page type (e.g., homepage, search results, product
detail, cart, checkout).

{current_url}
#### Assistant Responses ####
[The Begin of Response 1]
THOUGHT:
{thought1}
ACTION:
{action1}
[The End of Response 1]
[The Begin of Response 2]
THOUGHT:
{thought2}
ACTION:
{action2}
[The End of Response 2]

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

### Output Instructions ###
Format your output strictly using the following XML-style tags:
<State>Summarize the current state based on the URL, AXTree, and

previous actions. Include what page the user is currently on,
and what relevant UI elements or information are
visible.</State>

<Criteria>Other potential criteria specific to the query and the
context, and the weights of each criteria.</Criteria>

<Analysis>Compare Response 1 and Response 2 in detail according to
the <State> and <Criteria>.</Analysis>

<Answer>Response 1 or Response 2</Answer>
Rules for <Answer>:
- If Response 1 is better, output exactly: <Answer>Response

1</Answer>
- If Response 2 is better, output exactly: <Answer>Response

2</Answer>
Important Notes:
- Be objective and base your evaluation strictly on the content of

the responses.
- Do not let the response order, length bias your judgment.

E CASE STUDY: WEBARBITER VS. WEBSHEPHERD

To further illustrate the differences between WebArbiter and WebShepherd, we present a representa-
tive example from WEBARENA. The task instruction is:

“What is the rating of Ugreen lightning to 3.5mm cable? Round to the nearest
whole number.”

At the current step, the agent observes a search-results page listing the target product. The snippet
already shows a “65%” rating in the result list, but the product detail page has not been opened yet.
Two candidate actions are considered:

• a1p: send_msg_to_user with “65%”.
c1p: “The list view already shows a 65% rating, so answer directly.”

• a2p: Click the target product entry to open its detail page, then extract and (if needed) round
the rating.
c2p: “Verify the rating on the product page (correct product, correct field) before responding.”

WebShepherd. WebShepherd evaluates candidates using checklist-style templates that are precom-
piled before the next observation. These checklists typically include predicates such as “verify on the
product page”; hence, even when a rating is already visible in an earlier search-results snippet, the
checklist still requires verification, and thus tends to favor a2p. When the actual page deviates from the
ex-ante forecast (e.g., an early results page surfaces), the precompiled predicates become stale: they
enforce a verification path that may be unnecessary or even brittle under interstitials or layout drift.

WebArbiter. WebArbiter derives principles such as “answer directly when the objective’s required
field is already unambiguously satisfied by the current observation,” “ensure correct rounding,” and

“avoid redundant navigation when the answer is already grounded.” It performs dynamic expectation
alignment: (i) it forms expectation about what evidence is needed, (ii) compares the actual page with
that expectation, and (iii) revises principle weights and candidate scoring accordingly. Concretely,
upon seeing a clear “65%” rating in the snippet, it downweights “must verify on product page” and
upweights “answer directly with proper rounding,” issuing a preference verdict for a1p and correctly
completing the task with minimal steps.

Discussion. This case illustrates a key limitation of precompiled, open-loop checklists: they conflate
procedural requirements (“must navigate to detail page”) with goal satisfaction and thus underperform
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when early observations already satisfy the objective. In contrast, WebArbiter grounds decisions
in explicit, principle-guided reasoning and closed-loop, dynamic expectation alignment (predict →
observe → compare → revise), enabling it to act on already-sufficient evidence and remain robust to
goal–observation mismatches.

F BENCHMARK CONSTRUCTION

Positive samples. We construct WEBPRMBENCH using the successful trajectories from AGEN-
TREWARDBENCH, a human-verified evaluation suite that aggregates over a thousand trajectories
generated by multiple LLM-based web agents across diverse real-world environments. Each trajec-
tory in AGENTREWARDBENCH is annotated for success and execution quality by expert annotators,
providing a reliable source of environment-grounded optimal behavior. From this dataset, we select
only those trajectories that complete each task with the minimum number of steps. Each trajectory is
independently reviewed by annotators to ensure monotonic progress and to verify that no redundant
or detour actions are present. When deviations are identified, annotators revise the trajectory to
recover the shortest valid execution path consistent with successful task completion. For consistency,
missing reasoning traces are completed to ensure that every state–action pair is paired with a coherent
rationale. The resulting actions from these validated minimal-step trajectories serve as positive labels,
reflecting actions empirically verified to succeed in the real web environment.

Negative samples. For each state, we sample four alternative actions and their associated reasoning
from a diverse ensemble of policy models, covering both open-source and proprietary LLMs. The
pool includes high-capacity instruction-tuned models such as Qwen2.5-7B / 72B-Instruct (Qwen et al.,
2025), Llama-3.3-8B / 70B-Instruct (Grattafiori et al., 2024), as well as frontier commercial models
including GPT-4o / 4o-mini (OpenAI, 2024a;b), Claude-3.5-Haiku / Claude-3.7-Sonnet (Anthropic,
2024b; 2025), and Gemini-2.5-Flash / Gemini-2.5-Pro (Comanici et al., 2025). This ensures that
alternative actions exhibit broad stylistic and policy diversity rather than reflecting any single model’s
reasoning behavior. Since alternative actions may still succeed under certain web interfaces, we
apply a rule-based filtering procedure to remove actions that remain potentially valid. We retain
only actions that are clearly invalid or non-progressing, ensuring that negative samples correspond
to failures under the actual environment dynamics rather than differences in reasoning style. To
ensure consistency and avoid false negatives, the filtered actions are manually reviewed, and any
remaining actions that appear potentially valid are discarded. If more than four valid rejected actions
remain after filtering, we randomly sample a subset to maintain a consistent number of action pairs
per instance. All rationales are truncated to a fixed length to reduce formatting noise while preserving
semantic content.

The final benchmark consists of 1,287 step-level preference pairs across four environments, each
containing one environment-verified positive action and four rule-filtered negative alternatives.

G GENERAL-DOMAIN GENERATIVE REWARD MODELS AND THEIR
TRANSFERABILITY TO WEB TRAJECTORIES

This section presents additional evaluations of general-domain generative reward models, including
RM-R1 (Chen et al., 2025b), RRM (Guo et al., 2025b), Think-RM (Hong et al., 2025), and R3 (Anu-
graha et al., 2025). Although these models represent SOTA approaches within preference-based
reward modeling, they are trained primarily on static QA, dialogic reasoning, mathematical problem
solving, and related preference datasets. Consequently, their training objectives do not incorporate
key structural properties of interactive web environments, such as AXTree-grounded observations.

To enable comparison, we adapt each model’s preference interface for step-level scoring on
WEBPRMBENCH. As shown in Tab. 5, all general-domain reward models achieve substantially lower
Avg. Pairwise Acc and Avg. BoN Acc than WebArbiter. Because these models are trained exclusively
on static, text-only preference corpora, their learned reward functions emphasize linguistic plausibility
and abstract reasoning rather than the procedural validity required for web actions. They do not model
the environment-dependent factors that govern real web interaction, such as action executability under
the current state, UI structural changes, and whether an action produces measurable task progress,
making them fundamentally mismatched to process-level reward modeling. Overall, these results
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Table 5: Results on WEBPRMBENCH with Pairwise and BoN Acc. ⋆ denotes our models. Bold num-
bers indicate the best results, while underlined numbers denote the second best. Our WebArbiter-7B
achieves the highest BoN Acc across all environments, with an Avg. BoN Acc of 77.78%, outperform-
ing the second-best baseline, i.e., Gemini Flash, by 10.85%.

Models Mind2Web WebArena AssistantBench WorkArena Avg.
Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN

LLM-as-judge, Proprietary Language Models

GPT-4o-mini 80.28 45.69 81.40 61.46 88.79 68.97 84.86 66.67 83.83 60.70
GPT-4o 80.60 52.84 79.78 56.06 83.62 58.62 85.69 66.67 82.42 58.55
GPT-5 82.06 62.26 76.89 55.26 76.72 58.62 80.83 65.56 79.12 60.42
Claude Sonnet 81.19 59.60 81.40 62.53 76.92 53.85 88.06 72.22 81.89 62.05
Gemini Flash 81.94 57.86 83.89 67.39 84.62 65.38 92.36 77.08 85.70 66.93
DeepSeek-R1 82.18 56.44 81.13 60.38 75.00 51.72 88.61 72.78 81.73 60.33

LLM-as-judge, Open-source Language Models

Qwen2.5-3B-Instruct 76.89 37.66 69.54 35.04 80.17 48.28 70.56 42.22 74.29 40.80
Qwen2.5-7B-Instruct 79.02 41.00 72.44 40.16 76.72 37.93 78.06 51.67 76.56 42.69
Llama-3-70B-Instruct 79.43 50.96 77.90 56.60 78.85 46.15 87.50 70.14 80.92 55.96

Generative RMs

RM-R1-Qwen2.5-Instruct-7B 69.11 23.77 63.68 20.22 73.28 34.48 62.36 18.33 67.11 24.20
RRM-7B 82.28 48.51 74.60 48.25 86.21 68.97 77.78 55.56 80.22 55.32
Think-RM-3B 70.93 28.57 60.44 26.42 62.93 24.14 68.75 33.89 65.76 28.25
Think-RM-8B 75.45 45.54 74.33 48.79 77.59 51.72 83.47 63.33 77.71 52.35
R3-Qwen3-4B-LoRA-4k 78.32 43.56 76.48 48.25 83.19 62.78 83.19 62.78 80.30 54.34

WebPRMs (3B)

WebShepherd-3B 37.41 21.22 20.33 9.47 36.54 17.24 10.49 2.44 26.19 12.59
⋆ WebArbiter-3B 93.28 78.75 83.29 56.87 76.72 44.83 84.03 60.56 84.33 60.25

WebPRMs (7B+)

WebShepherd-8B 72.35 46.68 33.16 12.37 55.77 44.83 35.85 12.68 49.28 29.14
⋆ WebArbiter-7B 96.47 90.07 84.30 71.43 80.17 72.41 87.36 77.22 87.08 77.78

show that general-domain Generative RMs do not generalize to procedural, state-dependent web
tasks and highlight the need for domain-grounded reasoning and environment-verified supervision in
WebPRMs.
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Trajectory
Thought: On One Stop Market’s homepage, the search ...
Action: type [2826] "Ugreen lightning to 3.5mm cable"
Thought: The current Page is on ....
...

Websheperd Analysis

✗Action Candidate 1

Checklist 1: Search for Product (Yes)
Results for ‘Ugreen lightning to 3.5mm cable’ are visible; the list
view already shows a 65% rating, so I can answer directly.

Checklist 2: Extract Rating (No) 
Outputs ‘65%’ from the results snippet without locating a rating
field or confirming formatting on the product page.

Checklist 3: Verify Page (No)
Does not open the product detail page; no on-page verification
or source evidence is performed.

✓ Action Candidate 2

Checklist 1: Search for Product (Yes)
Results are visible, but the correct next step is to open the
product page to verify the rating.

Checklist 2: Extract Rating (In Progress)
Plan to locate the rating on the product page and then round,
the action moves toward the rating field, but the value has not
yet been located or parsed at this step.

Checklist 3: Verify Page (No)
Does not open the product detail page; no on-page verification
or source evidence is performed.

WebAribiter Analysis

 Principle

1. Correctness of the rating value (60%)  

2. Correct rounding to the nearest whole number（20%）

3. Reference to the right product (not a different product) 
（10%）

4. Action appropriateness (should not click a wrong element) 
（10%）

Comparing against the principle:  

1. Correct rating – both fine.  

2. Rounding – both fine.  

3. Correct product 
- Action Candidate1 implicitly correct
- Action Candidate 2 may be off.  

4. Action appropriateness 
- Action Candidate 1 minimal

Conclusion:

✓ Action Candidate 1 — more accurate and progressive 
(Chosen)

✗ Action Candidate 2 — may click the wrong element

Instruction
What is the rating of Ugreen lightning to 3.5mm cable?
Round to the nearest whole number. 

Action Candidate 1
Thought: The page lists a 65% rating on the search
results snippet.
Action: send_msg_to_user ["65%"]

Action Candidate 2
Thought: Open the product page to verify the rating, then
round to nearest whole.
Action: click [6368]

Figure 3: Case study on product rating in WebArena-Lite. The snippet shows “65%” before opening
the product page. WebShepherd, constrained by fixed checklists, may enforce redundant verification.
WebArbiter, using principle-guided reasoning, recognizes the snippet as sufficient and selects the
correct action.
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