Analyzing CodeBERT’s Performance on Natural Language Code Search

Anonymous ACL submission

Abstract

Large language models such as CodeBERT
(Feng et al., 2020) perform very well on tasks
such as natural language code search. We show
that this is most likely due to the high token
overlap and similarity between the queries and
the code in datasets obtained from large code-
bases, rather than any deeper understanding of
the syntax or semantics of the query or code.

1 Introduction

Inspired by the success of large pre-trained lan-
guage models like BERT (Devlin et al., 2019), XL-
Net (Yang et al., 2019), GPT (Brown et al., 2020)
and RoBERTa (Liu et al., 2019) on core NLP tasks,
and facilitated by the availability of large datasets
that pair natural language with code (e.g. Husain
et al., 2019; Lu et al., 2021), there is a growing
interest in applying such models to beat the previ-
ous state-of-the-art approaches at tasks on natural
language and source code, such as code summa-
rization (e.g. Miceli Barone and Sennrich, 2017) or
natural language-based code search (e.g. Gu et al.,
2018). This work is often motivated by a practical
need to help software developers, but can also be
seen as an interesting problem to the NLP commu-
nity (Allamanis et al., 2018).

CodeBERT (Feng et al., 2020), one of the first
large language models trained on data consisting of
both natural (NL) and programming language (PL)
sequences, has been shown to perform particularly
well on code search. Code search models assign
relevance scores to pairs of source code and natural
language queries (descriptions). Early models for
code search (e.g. Hill et al., 2011) relied on simplis-
tic metrics based on token overlap, since function
names, variable names and comments in high-level
programming languages such as Python are often
highly descriptive, and very similar (or identical)
to the corresponding English descriptions. In this
paper, we seek to identify whether CodeBERT ex-

hibits deeper understanding of the structure or un-
derlying semantics of the code, or whether it pro-
vides simply a more sophisticated metric of token
overlap and similarity, aided by its tokenization and
embedding-based token representation. Lu et al.
(2021) introduced a test set for code search where
function names and variable names are normalized,
and CodeBERT performed poorly on this dataset.
However, they did not perform any further anal-
ysis to explore why CodeBERT fails. Our paper
presents a series of studies which investigate how
CodeBERT assigns scores to pairs of Python code
and English descriptions, and how these scores are
related to metrics like token overlap.

Since Feng et al. (2020) trained their code search
model as a binary classifier, we first focus on an-
alyzing these classification scores before we ex-
amine the impact of these scores on search, where
the presence or absence of distractors with simi-
larly high scores matters more than absolute scores.
Specifically, we examine the impact of removing or
obfuscating certain components of the code, such
as function names, comments, and the control struc-
tures in the body of the code. In addition to evalu-
ating CodeBERT on Husain et al. (2019)’s Code-
SearchNet dataset, we also evaluate it on two ver-
sions of CoNaLa (Yin et al., 2018), which allow
us to examine performance on shorter code snip-
pets with queries that are either more abstract, or
explicitly designed to contain tokens appearing in
the code. Our experiments show that CodeBERT
does not rely on the structure of the code, but in-
stead largely relies on superficial token similarity,
suggesting that it is simply a more sophisticated
version of traditional IR models.

2 CodeBERT

Feng et al. (2020) trained RoBERTa-base (Liu et al.,
2019), a transformer-based language model with
12 layers, 12 heads and a hidden dimension of
768 (125M parameters in total), on CodeSearchNet

(Husain et al., 2019), a dataset of 2.1M sequences
consisting of natural language descriptions paired
with code. The resulting model, CodeBERT, in-
duces general-purpose embeddings of the input
tokens, and achieves state-of-the-art results on vari-
ous tasks like natural language code search, code
documentation and generation with fine-tuning.

Input to CodeBERT consists of a [CLS] token,
the natural language description w = wj...w,, and
the code ¢ = ¢;...c,, separated by a [SEP] token,
and followed by [EOS]:

[CLS], w1, wa, ..wn, [SEP], c1, 2, ..., ¢m, [EOS].

The final embedding of the [CLS] token is taken as
the aggregate representation of the entire sequence.

Tokenization Both code and natural language
description are tokenized with the same Word-
Piece model (Wu et al., 2016) that is used by
RoBERTa (Liu et al., 2019) for English.

Pre-training: Feng et al. (2020) pre-trained
CodeBERT using Masked Language Modeling
(MLM) and Replaced Token Detection (RTD)
(Clark et al., 2020). In MLM, the model needs
to recover input tokens that have been randomly
replaced by a [MASK] token, while RTD uses a set
of data generators, one one for w and one for c, to
randomly replace tokens with plausible alternatives
that the model has to detect.

Natural Language Code Search Feng et al.
(2020) train a binary classifier (a softmax layer that
receives the final representation of the [CLS] token)
to distinguish between correct and incorrect code-
description pairs (while fine-tuning CodeBERT it-
self during the process), and then simply uses this
classifier’s score to rank a set of 1,000 code snip-
pets (only one of which is correct) for each query.

3 Datasets

We use two datasets in our experiments, Code-
SearchNet (Husain et al. (2019), Figure 1a) and
CoNaLa (Yin et al. (2018), Figure 1b). Both
pair code with natural language descriptions, but
CoNaLa has fewer examples, shorter descriptions,
and shorter code snippets than CodeSearchNet (Ta-
ble 1). CodeSearchNet was used to pretrain Code-
BERT and contains additional examples in other
programming languages.

CodeSearchNet CodeSearchNet (Husain et al.,
2019) is a corpus obtained from open-source
GitHub repositories for Go, Java, JavaScript, PHP,

Dataset Total Examples Avg. No. of Tokens Per Example

Code Description
CodeSearchNet 503,502 117.15 13.56
CoNaLa 102,379 14.15 894

Table 1: CodeSearchNet (Python) vs. CoNaLa

Code:

def get_vid_from url(url):
vid = matchl(url,
'https?://www.mgtv.com/ (2:b|1)/\d+/(\d+).html’)
if not vid:

vid = matchl(url,

'https?://www.mgtv.com/hz/bdpz/\d+/(\d+).html")
return vid

Description:
Extracts video ID from URL.

(a) An example from CodeSearchNet

Code:
os.kill(os.getpid(), signal.SIGUSR1)

Original Intent:
How can | send a signal from a python program?

Rewritten Intent:
send a signal “signal.SIGUSR1" to the current process

(b) An example from CoNalLa Dataset

Figure 1: CodeSearchNet (a) and CoNaLa (b)

Python and Ruby. The entire dataset contains
2.1M (c;,d;) pairs of functions ¢; documented
by English descriptions d; (Figure 1a). In our ex-
periments, we focus on CodeSearchNet’s Python
dataset, which contains 503,502 Python functions
with corresponding descriptions (their docstrings).!
Since the examples in this dataset are longer and
have a wealth of information, including meaning-
ful function names and comments, we obfuscate
or remove certain parts of the code, to see which
components of the data have the highest impact on
CodeBERT’s performance (Section 6.1).

CoNaLa Dataset CoNala (Yin et al., 2018) is a
corpus of short Python code snippets (mostly one
or two lines long) and English descriptions , created
by crawling Stack Overflow (Figure 1b). CoNaLa’s
code snippets do not contain function definitions or
comments. Each snippet is accompanied by a de-
scription that was mined with it, called the original
intent. Snippets in CoNaLa’s manually curated
part (consisting of 2,379 training examples and
500 test examples) are additionally paired with a
a rewritten intent, where the curators rephrased
the intent to make it more similar to the code, e.g.
by using variables that occur in the code. CoNala

'CodeSearchNet has an additional 652,583 Python func-
tions without descriptions that Feng et al. (2020) used to pre-
train CodeBERT.

also has an automatically mined dataset of 600k
examples, sorted in descending order of confidence
of the pair being a match. CoNalLa was designed
to test systems for generating program snippets
from natural language, but we can re-purpose it
to work on code search by generating appropriate
negative examples. For training, we used the top
100k mined pairs along with the manually curated
set, for a total of 102,379 positive examples. We
discuss the process of generating negative exam-
ples in Section 4.The performance of CodeBERT
on CoNaLa will tell us whether it generalizes well
to other datasets in the same language, and how
well it works on shorter code with less information
resembling natural language.

4 Experimental Setup

In each of our experiments, we start with Feng et al.
(2020)’s publicly available CodeBERT model? that
was trained on all of CodeSearchNet’s training data.
Like Feng et al. (2020), we then train binary clas-
sifiers on top of this original CodeBERT model,
and fine-tuning CodeBERT’s parameters during
this process, using the same hyper-parameters as
Feng et al. (2020). Our training data for both Code-
SearchNet and CoNaL a has balanced positive and
negative examples. Positive examples are the code-
description pairs from the training set, and negative
examples are generated by randomly replacing the
description in a pair with a description from another
data point in the training set.

On a cluster of eight Nvidia GeForce GTX 1080
Ti GPUs, each model was trained for a total of
eight epochs and took an average of 797 minutes
per epoch for CodeSearchNet and 183 minutes for
CoNaLa.

We evaluate these classifiers both on classifica-
tion and on search. For search, we follow Feng et al.
(2020), and sample 999 distractor snippets for each
code-description pair in the test sets of CodeSearch-
Net and CoNalLa. For CodeSearchNet, distractors
come from the test set, but since CoNaLa’s test
set has only 500 examples, we use 499 distractors
from the test set and sample another 500 examples
from the automatically mined set that were used
for training.

2CodeBERT is implemented in PyTorch (Paszke et al.,
2017) and uses HuggingFace’s Transformer library (Wolf
et al., 2020).

Threshold Accuracy F1 Precision Recall

0.9 0.9909 0.1770 0.0974 0.9710
0.99 0.9919 0.1935 0.1075 0.9700
0.999 0.9951 0.2831 0.1661 0.9550
0.9999 0.9979 0.4702 0.3148 0.9290

Table 2: The Accuracy, F-1, Precision, and Recall scores
for different thresholds. While the recall is high for most
thresholds, high precision requires a very high threshold

5 Analyzing CodeBERT as a classifier

Before we evaluate our models in search, we ana-
lyze the performance of the model trained on Code-
SearchNet as a classifier, as measured by accuracy,
precision, recall, and F1. Since we are ultimately
interested in performance on search, we use the
same (unbalanced) test set as in search, which con-
tains 999 distractors (negative examples) for each
(positive) gold pair.

5.1 Classification Results

We first examine how classifier performance is af-
fected by the threshold that we use to translate its
real-valued scores into positive and negative labels.
Table 2 shows precision, recall, accuracy, and F1
scores for different thresholds. We observe that
even a relatively harsh threshold of 0.9 yields a
very low F1 score of 0.177: while recall is 0.9710,
precision is only 0.0974. Our highest F1 score of
0.4702 is obtained at an even harsher threshold of
0.9999: precision is now 0.3148, but recall has
dropped to 0.9290. A full precision-recall curve
can be seen in Appendix A.

Despite the seemingly low performance on clas-
sification, Section 6 will show that search perfor-
mance of this model is very good. In search, the
absolute value of the score is of course less impor-
tant than whether the score is higher than that of
all other code snippets in the search space.

5.2 Dependence on Lexical Overlap

We hypothesize that the confidence scores assigned
by CodeBERT to a code-description pair is influ-
enced greatly by their token overlap and high token
similarity. In many cases, we observe that a code
snippet and a description contain similar tokens,
due to the presence of function names, identifier
names and comments in the code. For example, in
Figure 1a, the function name is very similar to its
description. It is difficult to examine how similar a
context-dependent language model like CodeBERT

Loloken Overlap Dlsmbutmn Vs. Threshold Ranges For Negatlve Examples

“99

999 g@
(a) Token overlap in negative examples

80

Token Overlap
- 50
60 21-50
1120
610
- 3 5
40 —
-
-

Percentage of Token Overlap Values

20

99“9

Score Ranges

LogToken Overlap Distribution Vs. Threshold Ranges For Positive Examples

80

Token Overlap

- >50
2150
- 1120
610
- 35
-2
-
-0

o o
000% 99099 9909"9 L 09%°
o

60

a0

Percentage of Token Overlap Values

20

Score Ranges

(b) Token overlap in positive examples

Figure 2: Distribution of token overlap versus different
score ranges in the test set of CodeSearchNet

treats tokens such as ’vid’ and ’video’, but we can
measure the token overlap between code and de-
scriptions. CodeBERT uses WordPiece (Wu et al.,
2016) to tokenize both the code and the descrip-
tion. Figure 3 shows what WordPiece tokens look
like, and illustrates our definition of token overlap,
which is simply the number of WordPiece tokens
in the code that appear in the description, with
repetition allowed (Curl’ only appears once in the
description, but several times in the code, and each
of these occurrences is counted).

In Figure 2 we see how token overlap is dis-
tributed over examples from different score ranges.
In general, CodeBERT assigns higher scores to ex-
amples that have higher token overlap. This reflects
the distribution of positive and negative examples
in the dataset, since we see that the negative ex-
amples in Figure 2a tend to have a much lower
token overlap than the positive examples in Figure
2b. We also performed additional studies comput-
ing the correlation coefficient between confidence
scores and token overlap in Appendix B

This shows that despite being a coarse metric,
token overlap is a strong predictor for classifier
scores. In Figure 3, we see some code-description

Description:

Extracts video ID from URL.
WordPiece Tokens of Description:
‘ext!, 'ract', 's', 'video', 'id", 'from’, 'url'

Code:

def get _vid from url(url):
vid = matchl(url,
'https?://www.mgtv.com/ (?:b|1)/\d+/(\d+).html")
if not vid:

vid = matchl(url,

'https?://www.mgtv.com/hz/bdpz/\d+/(\d+).html’)
return vid

WordPiece Tokens of Code

‘def', 'get', "', vid', '_", "from’, ", "url', (!, 'url’,),

S ||’ u 'https’ 3 ‘//. ‘www' 1 ‘mg

YN, tml', 'aG' Yy, [vv
Id' g 'match' ¢l u o 'ht‘lps' 9
bd, Yply 20N, \v vdv L +). html,

Token Overlap: 9 Confidence Score: 0.9999

(a) An example from CodeSearchNet with high token
overlap between the code and description

Description:

Returns a Google MLEngine service object
WordPiece Tokens of Description:

‘return’, 's', 'a', 'google’, 'ml', 'engine', 'service', 'object'

Code:
def get_conn(self):
authed_http = self._authorize()
'vl', http=authed_http,

return build('ml’,
cache_discovery=False)
WordPiece Tokens of Code:
'def' ‘get' ', 'conn’, (', 'self',).’

‘aut', hed hﬂp ', 'cache’, "'

Token Overlap: 2 Confidence Score: 0.0057

(b) An example from CodeSearchNet with low token
overlap between the code and description

Figure 3: Examples of token overlap and confidence
scores in the test set of CodeSearchNet

pairs from the test set. In 3a, there is a high token
overlap of 9 and also a high confidence score of
0.9999. In 3b, the token overlap is low, only 2, and
one of the common tokens "return” is a common
keyword in Python. As a result, CodeBERT gives
the pair a low score of 0.0057 despite the code
being relevant to the description.

Next, we examine what influences CodeBERT’s
performance on natural language code search.

6 Analyzing CodeBERT for code search

Like Feng et al. (2020), we use the classifier trained
in Section 5 for natural language code search (we
resolve ties as described by McSherry and Najork
(2008)). Now, the relative scores among all the
candidate code snippets for each query is more im-
portant than the absolute values of the scores. To
understand CodeBERT’s performance, we evaluate
it under different scenarios. In each scenario, or
variant, we transform the dataset during both train-
ing and evaluation of the classifier to get a clearer
picture of what effect it has on performance.

6.1 Variants of CodeSearchNet

In our experiments on CodeSearchNet (Husain
et al., 2019), we consider five main transforma-

def get_vid_from_url(url):
return matchl(url, r'youtu\\.be/([~?/1+)') or
matchl(url, r'youtube\\.com/embed/([*~/?]+)"') or
matchl(url, r'youtube\\.com/v/([~/?]+)') or
matchl(url, r'youtube\\.com/watch/([*/?]+)"') or
parse_query_param(url, 'v') or
parse_query_param(parse_query_param(url, 'u'), 'v')

(a) The original example

def hfu_wje_gspn_vsm(url):
return matchl(url, r'youtu\\.be/([*?/1+)') or
matchl(url, r'youtube\\.com/embed/([~/?]+)') or
matchl(url, r'youtube\\.com/v/([~/?]+)"') or
matchl(url, r'youtube\\.com/watch/([~/?]+)"') or
parse_query_param(url, 'v') or
parse_query_param(parse_query_param(url, 'u'), 'v')

(b) Obfuscating function names

def get_vid_from_url(url)

(c) Removing function body

get_vid_from_url url

matchl url r'youtu\\.be/([~?/1+)'

matchl url r'youtube\\.com/embed/([*/?]1+)"
matchl url r'youtube\\.com/v/([~/?2]+)"
matchl url r'youtube\\.com/watch/([*/?]1+)"

parse_query_param url 'v
parse_query_param parse_query_param url 'u' 'v'

(d) Removing keywords, delimiters and operators

def train(url):
return matchl(url, r'youtu\\.be/([*?/1+)') or
matchl(url, r'youtube\\.com/embed/([~/?]+)') or
matchl(url, r'youtube\\.com/v/([~/?]1+)"') or
matchl(url, r'youtube\\.com/watch/([~/?]+)') or
parse_query_param(url, 'v') or
parse_query_param(parse_query_param(url, 'u'), 'v')

(e) Replacing function name from different function

Figure 4: Different transformations of a Python function
in CodeSearchNet

tions. Figure 4a shows an original code example.
Given an original example (Figure 4a), we can
obfuscate function names (4b), remove the entire
function body (4c), remove keywords, delimiters
and operators (4d), replace function names with
those of a different function (4e). Additionally,
32.5% of snippets have comments, which we can
keep or remove (Figure 5), resulting in two variants
of each transformation ((w/ Comments) and (w/o
Comments)).

Original Function Names: This is the unmodi-
fied CodeSearchNet dataset.

Obfuscated Function names: Function names
often have a high token overlap with the query.
We obfuscate function names by replacing each
character in the name with the next character in
the alphabet (‘a’ is replaced by ‘b’, ‘b’ by ‘¢’ etc.).
This forces the model to focus on other cues, like
comments, variable names, or the actual structure
of the code like for- loops and if-statements.

def _set_env_from_extras(self, extras):
key_path = self._get_field(extras , 'key_path' , False)
keyfile_json_str = self. get_field(extras , 'keyfile_dict' , False)
if not key_path and not keyfile_json_str:
self.log.info('Using gcloud with application default credentials.')
elif key_path :
os.environ[G_APP_CRED] = key_path
else : # Write service account JSON to secure file for gcloud to reference
service_key = tempfile.NamedTemporaryFile(delete = False)
service_key.write(keyfile_json_str)
os.environ [G_APP_CRED] = service_key.name # Return file object to have a pointer to close after use,

thus deleting from file system.
return service_key
def _set_env_from_extras(self, extras):
key_path = self._get_field(extras , 'key_path' , False)
keyfile_json_str = self._get_field(extras , 'keyfile_dict' , False)
if not key_path and not keyfile_json_str:
self.log.info('Using gcloud with application default credentials.')
elif key_path :
os.environ[G_APP_CRED] = key_path
else :
service_key = tempfile.NamedTemporaryFile(delete = False)
service_key.write(keyfile_json_str)

os.environ [G_APP_CRED] = service_key.name
return service_key

Figure 5: Removing comments from code

Adversarial Function Names: We replace the
original function name with the name of another
function. Unlike the previous transformation, by
doing this we trick the model into believing that
the function name is present, and performance on
this transformation will tell us how well the model
works when the function name differs from the ac-
tual operations performed in the body of the code.

No Function Body: We remove the entire body
of the code and leave only the function definition.
Here, we will observe how well the model per-
forms when it only has the function name and its
arguments available.

No Code Structure: We remove keywords, op-
erators and delimiters from the function. Here, we
force the model to only look at function names,
identifier names and comments to identify the cor-
rect code snippet for a query. The relative perfor-
mance of a model on this transformation compared
to previous transformations will tell us whether
the model leverages function names and comments
more than the structure of the code.

6.2 Variants of CoNaLa

As discussed in Section 3, the CoNaLa dataset has
two description fields, the original infent obtained
from Stack Overflow, and a manually rewritten
intent that contains variables in the code, and hence
has higher token overlap with the code. To see the
impact of high token overlap due to variable names
appearing in the English description, we evaluate
CodeBERT on both variants: CoNaLa (Rewritten
Intent) and CoNaLa (Original Intent).

6.3 Experimental Results

In Table 3, we show the Mean Reciprocal Rank
(MRR) and Recall at ranks 1, 2, 5 and 10 (R@k)
for the different variants of CodeSearchNet and
CoNaLa. The MRR is the average of the recipro-

Model MRR Re@1 R@2 R@5 R@10
Original Function Names (w/ Comments) 0.8925 0.8106 0.9072 0.9545 0.9710
Original Function Names (w/o Comments) 0.8800 0.7989 0.9008 09515 0.9680
Obfuscated Function Names (w/ Comments) 0.8064 0.7042 0.8180 09125 0.9430
Obfuscated Function Names (w/o Comments) 0.7722 0.6404 0.7880 0.8967 0.9375
Adversarial Function Names (w/ Comments) 0.3920 0.1479 03472 0.7416 0.9160
Adversarial Function Names (w/o Comments) 0.3420 0.1005 0.2825 0.7140 0.9085
No Code Structure (w/ Comments) 0.8833 0.7841 0.8932 0.9524 0.9685
No Code Structure (w/o Comments) 0.8830 0.7622 0.8884 0.9485 0.9680
No Function Body (w/ Comments) 0.6754 0.5319 0.7010 0.8273 0.8858
No Function Body (w/o Comments) 0.6140 0.4547 0.6250 0.7783 0.8510
CoNaLa (Rewritten Intent) 0.7145 0.5770 0.7260 0.8840 0.9400
CoNalLa (Original Intent) 0.3290 0.1770 0.2930 0.4700 0.6610

Table 3: Retrieval Scores of all the variants on the test sets of both CodeSearchNet and CoNaLa

cal of the ranks of the gold item returned for each
variant, so it gives us a glimpse at the overall distri-
bution of the ranks through a single metric. R@k
shows us the fraction of gold items that appear at
rank k or above, so it gives us a more detailed view
of the distribution of ranks. R@1 is particularly
interesting, since it shows us the fraction of gold
items that are ranked at the top for each variant.
For all variants, we report results from a single
run, except for Adversarial Function Names, where
we report the mean scores of 10 runs, since the
new function name generated in the variant after
replacement changes with every run.> We can see
that the original CodeSearchNet is a much easier
dataset than either version of CoNaLa.

6.4 Analysis of Retrieval Scores on
CodeSearchNet

In the top part of Table 3, we see a noticeable drop
in performance, especially MRR and R@1 when
we obfuscate function names. MRR drops by al-
most 9 percentage points and R@1 drops by more
than 10 percentage points. This suggests that when
the entire code is available, CodeBERT places more
weight on the function names, and when they are
obfuscated, the gold example is no longer ranked
at the top in at least 10 percent of additional test
cases. Removing comments causes a bigger drop
in R@1 when the function names are obfuscated
(around 6 percentage points), compared to when
function names are present (less than 2 percent-
age points). This means that CodeBERT relies
on comments more when function names are not
available. We get the biggest drop in R@1 in Ad-

3 Adversarial Function Names (w/ Comments): mean MRR
=0.3920 (std. dev. 0.006); Adversarial Function Names (w/o
Comments): mean MRR = 0.3420 (std. dev.= 0.009).

versarial Function Names (more than 66 percentage
points), where the function name is from a differ-
ent function. This means that when the function
name and the body of the code are not in agreement,
the model chooses to prioritize the function name
for discerning the meaning of the code. Remov-
ing comments from Adversarial Function Names
causes an additional drop of 4 percentage points in
R@1, showing again how important comments are
when correct function names are not present.

In the second part of Table 3, we see that No
Code Structure shows a small drop in R@1 (2.65
percentage points) compared to Original Function
Names. Removing comments from this variant re-
duces R@1 by an additional 2.19 percentage points.
Even though this variant does not contain any syn-
tactically correct code, since all keywords, opera-
tors and delimiters have been removed, the impact
on performance is small compared to the other vari-
ants. In No Function Body w/ comments, the R@1
drops to 0.5319 (w/o comments: R@1 = (0.4547).
Since this variant only contains the function def-
inition, this big drop in performance shows that
CodeBERT does need the function body to per-
form well. However, CodeBERT still returns the
correct code snippet at rank 1 for around half of
queries in these variants.

6.5 Analysis of Retrieval Scores on CoNaLa

The third part of Table 3 shows the performance on
both variants of CoNaLa. The overall lower scores
(as compared to CodeSearchNet) could be because
CodeBERT was pre-trained on CodeSearchNet, or
because the examples in CodeSearchNet are longer,
giving the model more information. But impor-
tantly, we observe that R@1 drops sharply by 40
percentage points when we use the Original Intent

Plot of Median Confidence Scores versus Ranks
1.0

0.8

0.6

0.4

—— Original Function Names
Obfuscated Function Names

—— Adversarial Function Names

—— No Code Structure

0.0 No Function Body

Confidence Scores

0.2

1 2 3 4 5 6 7 8
Ranks

9 10 11 12 13 14 15

Figure 6: Median confidence scores by rank for each
variant of CodeSearchNet (w/comment)

instead of the Rewritten Intent. This suggests that
CodeBERT is dependent on using variable names
when they are available, and has an easier time per-
forming retrieval when the gold result has a high
token overlap with the user query. However, in
real-world scenarios, user queries will typically not
contain variables used in the required code snip-
pet, making the performance on the original intent
much closer to real-world performance.

6.6 Impact of Variants on Confidence Scores

As we go down the ranked lists returned by Code-
BERT, the confidence scores of the code snippets
decrease. Figure 6 shows the drop-off of the me-
dian confidence scores (across all queries) by ranks
in all the variants of CodeSearchNet (with com-
ments). Appendix C gives a more detailed anal-
ysis of the distribution of this drop-off. We see
that a large drop-off occurs much earlier in better-
performing models like Original Function Names
(after rank 7) and No Code Structure (after rank
9), whereas the slope of the curve is much gen-
tler for worse-performing models like Adversarial
Function Names, where the score starts dropping
after rank 14. This suggests that when CodeBERT
has access to the original code, it is not only able
to identify the gold example as a match, but also
assigns lower scores to more examples that are not
a match. But obfuscating or removing parts of the
data leads to more false positives, since CodeBERT
assigns high scores to more negative examples.

6.7 Impact of Token Overlap on Ranking

To understand how ranking is affected by token
overlap, we plot the distribution of token overlaps
for all gold examples, top-ranked gold examples,
gold examples that were not top-ranked, and top-

100 Distribution of Token Overlap for Different Examples

®
3

Token Overlap
- >50
21-50
11-20

@
3

6-10
- 35
-2

1
- 0

»
S

Percentage of Token Overlap Values
N
S

Al Gold

0

Top-Ranked Gold Not Top-Ranked GO\\%D.Ranked Negatives

Class of Examples

Figure 7: Distribution of token overlap for gold vs top-
ranked examples across all queries

ranked negative examples returned for each query
in the test set of the Original Function Names (w/
comments) variant (Figure 7). We see that top-
ranked negatives have the highest overall token
overlap. This makes sense, since these examples
fool the classifier into thinking they are most rele-
vant to the query, so having a high token overlap
is likely helpful. Top-ranked gold examples have
a slightly lower overlap. We hypothesize this is
either because there are no negatives with lower
token overlap for these queries, or because these
examples were ranked highly not just due to high
token overlap, but also due to the nature of the
tokens overlapping, like the function names. Un-
surprisingly, gold examples that were not ranked
at the top have the highest fractions of low or zero
overlaps values. We do not know if the top-ranked
negatives with zero overlap occur in cases where
the non-top-ranked gold item has also zero overlap.

6.8 Summary of Findings

Our experiments (Table 3) show that CodeBERT
does not need syntactically correct code (or even
code with any control structure) in order to per-
form well on search. Function names seem to be
important though: obfuscating them causes a no-
ticeable drop in performance, and replacing them
with a name from a different function causes a
much more drastic drop. Comments seem to be
less important when the correct function name is
present. We also see in Figure 7 that CodeBERT
performs poorly in ranking when there are other
distractor code snippets present that have a higher
token overlap than the gold example, meaning it
places more importance on the text similarity than
the actual semantics of the code when computing

its relevance to an English description.

7 Discussion and Related Work

Earlier models for code search (Hill et al., 2011;
McMillan et al., 2011; Lv et al., 2015) used classi-
cal IR approaches that are based on simple word
overlap, but were outperformed by simple neural
models (Gu et al., 2018), including approaches that
incorporate Abstract Syntax Trees (Zhang et al.,
2019; Wan et al., 2019; Haldar et al., 2020), Graph
Neural Networks (Sieper et al., 2020; Ling et al.,
2021; Liu et al., 2021), and reinforcement learn-
ing (Yao et al., 2019). However, CodeBERT (Feng
et al., 2020) set a new benchmark for code search
and other applications by employing a transformer-
based large language model. Unlike some earlier
neural models, CodeBERT uses only the tokenized
code and the English description to perform bet-
ter at benchmark tasks for program understand-
ing and generation. However, our results indicate
the CodeBERT may in fact simply be better at
modeling overlap, both because it does not treat
tokens as atomic symbols, and because its tok-
enization greatly increases overlap between queries
and gold snippets. While other transformer-based
models in this domain have been proposed, like
PLBART (Ahmad et al., 2021) and CoTexT (Phan
et al., 2021) and CodeGPT (Lu et al., 2021), they
still treat code and text as a series of tokens, and
are expected to have the same issues as CodeBERT.
Moreover, bigger is not always better. Cambronero
et al. (2019) presented an improved version of
NCS (Sachdev et al., 2018) and showed that a
simple bag-of-words-based network outperformed
the larger sequence-of-words-based CODEnn (Gu
et al., 2018) and SCS (Husain, 2018; Husain and
Wu, 2018). This indicates that we need to find
novel ways of preprocessing source code instead
of treating it like a regular document. In this pa-
per, we did not evaluate if models like GraphCode-
BERT (Guo et al., 2020), which incorporate data
flow in addition to tokenized codes, address these
challenges effectively, but leave this analysis to
future work.

8 Conclusion

In this paper, we presented a series of experiments
to gain a deeper insight into what makes Code-
BERT effective at natural language code search.
We saw that token overlap between code and de-
scriptions plays a big role, while the structure of

the code has little to no importance to CodeBERT,
since it performs essentially equally well when all
structure, i.e. keywords, operators and delimiters,
are removed from the code. There are some limi-
tations to our study: we did not specifically study
the impact of variable names, and how much they
contribute to token overlap. We also only looked
at function names in the definition, but not at func-
tion calls in the body of the function. We also only
analyzed the confidence score CodeBERT assigns
to examples for code search, and did not look at
the attention weights of the model or what type
of information each layer produces. Despite that,
our experiments establish a clear trend between the
predictions of CodeBERT and the token overlap
between the function and the query. Future work
should also address to what extent a model that
fine-tunes CodeBERT with an explicit ranking loss
could overcome these shortcomings. And while
our work highlighted a big difference in perfor-
mance between both versions of CodeSearchNet
and CoNalLa, we did not attempt to analyze (or
overcome) the reasons for this discrepancy, which
are likely due to the different sizes of the datasets
and the code snippets they contain, and to Code-
BERT’s pre-training on CodeSearchNet. CoNaLa
may also simply be harder because it is concerned
with generic algorithmic questions (e.g. "how do I
zip lists in Python?") that are answered on Stack-
Overflow, and does not contain code and docstrings
taken from large code-bases, where the intelligibil-
ity of variable and function names is crucial from
a software engineering perspective. Conversely,
this might imply that models like CodeBERT that
do not attempt to "understand" code, but simply
capture surface similarities of code and natural lan-
guage, might be sufficient for practical applications,
since such similarities are likely abundant in well-
written and well-documented code. However, this
then implies further that code search might not be
a useful test case for questions about language un-
derstanding. While the large size of real-world
datasets makes this task attractive, it may in fact
not require any models that try to go deeper, and,
as argued e.g. by Bender and Koller (2020), it may
be impossible to induce semantic models of code
from such data alone. Another open question is
how effective models like CodeBERT would be on
natural languages other than English, although re-
cent progress on unsupervised machine translation
suggests this may not be a significant hurdle either.

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655-2668,
Online. Association for Computational Linguistics.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu,
and Charles Sutton. 2018. A survey of machine learn-
ing for big code and naturalness. ACM Comput. Surv.,
51(4).

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185-5198, Online. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and Satish Chandra. 2019. When deep learn-
ing met code search. In Proceedings of the 2019
27th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2019,
page 964-974, New York, NY, USA. Association for
Computing Machinery.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In /ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume I (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and

natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536-1547, Online. Association for Computational
Linguistics.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.
Deep code search. In 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE),
pages 933-944.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2020.
Graphcodebert: Pre-training code representations
with data flow. CoRR, abs/2009.08366.

Rajarshi Haldar, Lingfei Wu, JinJun Xiong, and Julia
Hockenmaier. 2020. A multi-perspective architecture
for semantic code search. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 8563—-8568, Online. Association
for Computational Linguistics.

Emily Hill, Lori Pollock, and K. Vijay-Shanker. 2011.
Improving source code search with natural language
phrasal representations of method signatures. In 20171
26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011), pages 524—
527.

Hamel Husain. 2018. How to create natural language
semantic search for arbitrary objects with deep learn-
ing.

Hamel Husain and Ho-Hsiang Wu. 2018. Towards natu-
ral language semantic code search.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv: 1909.09436.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan,
Tengfei Ma, Fangli Xu, Alex X. Liu, Chunming Wu,
and Shouling Ji. 2021. Deep graph matching and
searching for semantic code retrieval. ACM Trans.
Knowl. Discov. Data, 15(5).

Shangqing Liu, Xiaofei Xie, Lei Ma, Jingkai Siow, and
Yang Liu. 2021. Graphsearchnet: Enhancing gnns
via capturing global dependency for semantic code
search. arXiv preprint arXiv:2111.02671.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3338906.3340458
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/3180155.3180167
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
https://doi.org/10.18653/v1/2020.acl-main.758
https://doi.org/10.18653/v1/2020.acl-main.758
https://doi.org/10.18653/v1/2020.acl-main.758
https://doi.org/10.1109/ASE.2011.6100115
https://doi.org/10.1109/ASE.2011.6100115
https://doi.org/10.1109/ASE.2011.6100115
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/
https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/
https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang,
Dongmei Zhang, and Jianjun Zhao. 2015. Code-
how: Effective code search based on api understand-
ing and extended boolean model (e). In 2015 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 260-270.

Collin McMillan, Mark Grechanik, Denys Poshyvanyk,
Qing Xie, and Chen Fu. 2011. Portfolio: finding
relevant functions and their usage. In 2011 33rd
International Conference on Software Engineering

(ICSE), pages 111-120.

Frank McSherry and Marc Najork. 2008. Computing in-
formation retrieval performance measures efficiently
in the presence of tied scores. In Proceedings of the
IR Research, 30th European Conference on Advances
in Information Retrieval, ECIR’08, page 414-421,
Berlin, Heidelberg. Springer-Verlag.

Antonio Valerio Miceli Barone and Rico Sennrich. 2017.
A parallel corpus of python functions and documen-
tation strings for automated code documentation and
code generation. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 314—
319, Taipei, Taiwan. Asian Federation of Natural
Language Processing.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James
Annibal, Alec Peltekian, and Yanfang Ye. 2021. Co-
TexT: Multi-task learning with code-text transformer.
In Proceedings of the Ist Workshop on Natural
Language Processing for Programming (NLP4Prog
2021), pages 40-47, Online. Association for Compu-
tational Linguistics.

Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun
Kim, Koushik Sen, and Satish Chandra. 2018. Re-
trieval on source code: A neural code search. In
Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, MAPL 2018, page 3141, New York,
NY, USA. Association for Computing Machinery.

Anna Abad Sieper, Omar Amarkhel, Savina Diez, and
Dominic Petrak. 2020. Semantic code search with
neural bag-of-words and graph convolutional net-
works. In SKILL 2020 - Studierendenkonferenz Infor-
matik, pages 103—115, Bonn. Gesellschaft fiir Infor-
matik e.V.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou
Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-modal
attention network learning for semantic source code
retrieval. In Proceedings of the 34th IEEE/ACM

10

International Conference on Automated Software En-
gineering, ASE 19, page 13-25. IEEE Press.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, ukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, and Jeffrey Dean. 2016.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan
Sun. 2019. Coacor: Code annotation for code re-
trieval with reinforcement learning. In The World
Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019, pages 2203-2214. ACM.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476-486.
ACM.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages
783-794.

https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1145/1985793.1985809
https://doi.org/10.1145/1985793.1985809
https://doi.org/10.1145/1985793.1985809
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.1145/3308558.3313632
https://doi.org/10.1145/3308558.3313632
https://doi.org/10.1145/3308558.3313632
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086

A Precision-Recall Curve of Classifier

We plot the Precision-Recall curve of the classifier
from Section5 in Figure 8. We observe a sharp
drop in precision after the recall goes beyond 0.8,
suggesting that it is impossible to get this model to
perform well on classification if we require a recall
higher than 0.8.

Precision-Recall Curve

— AUC=10.77

0.8

0.6

Precision

0.4

0.2

0.0
0.2 0.4

Recall

0.6 0.8 1.0

Figure 8: Precision-Recall Curve of the CodeBERT
binary classifier on the test set of CodeSearchNet

B Correlation Between Token Overlap
and Confidence Score

To further explore how token overlap and confi-
dence scores are correlated over different score
ranges, we used three different correlation metrics
in this study - the Pearson, the Spearman’s Rank
and the Kendall Rank Correlation Coefficient.

While Pearson Coefficient looks at the correla-
tion between the absolute values of the respective
scores, the other two metrics look at the rank cor-
relation or how well items are ranked using these
scores, which is more relevant since in the ranking
task we are more concerned with the rank assigned
to a candidate code-description pair instead of the
absolute value of its relevance score.

Threshold Pearson Spearman Kendall

0.9 0.1007 0.3047 0.2155
0.99 0.1368 0.2799 0.196
0.999 0.2282 0.3793 0.267
0.9999 0.192 0.3954 0.2735

Table 4: The Pearson, Spearman and Kendall rank coef-
ficients for code-description pairs at different threshold
cutoffs

In Table 4 we see the correlation coefficients

11

for all code-description pairs in the test set of the
CodeSearchNet dataset above a certain threshold.
Higher thresholds give us the correlation between
the pairs that were scored high by CodeBERT. We
see that there is a high rank correlation coefficient
(both Spearman and Kendall) for high scoring ex-
amples, whereas the correlation between them is
low when we consider all pairs. For instance, code-
description pairs with scores above 0.9999 have
a Spearman correlation coefficient of 0.3954 be-
tween their scores and their token overlap, whereas
for examples scoring above 0.9, the correlation falls
to 0.3047. This shows that during the ranking task,
high token overlap in negative examples makes it
difficult to find the gold example.

C Additional Analysis of Confidence
Scores in Code Search

C.1 Median of Drop-off in Confidence Scores

on CoNaLa

Plot of Median Confidence Scores versus Ranks
10°

H
<

Confidence Scores
=
Q

10~3 —— Rewritten Intent

Original Intent

0 20 40

Ranks

60 80 100

Figure 9: Median confidence scores of the top 50 ranks
for all test examples for the CoNaLa dataset over each
variant

Similar to Section 6.6, we computed the me-
dian drop-off in confidence scores on the test set
of the CoNaLa dataset in Figure 9. We see that
the drop-off in confidence scores is sharper when
using the Rewritten Intent compared to the Orig-
inal Intent. This is because here too for higher
performing variants the model has an easier time
identifying negative examples and scoring them
low to make ranking easier. However, the perfor-
mance here is much worse than on CodeSearch-
Net. In Rewritten Intent, there is a large drop in
confidence scores only after rank 35, whereas in
Original Intent, we do not see a large drop even
after rank 50. This means given a query, the model
will return a large number of candidate code snip-

pets with high confidence scores that it believes to
be correct. This shows that even after being fine-
tuned on CoNaLa, CodeBERT does not perform
well on this dataset, suggesting that it cannot be
easily be used on new datasets, even with the same
programming language.

C.2 Distribution of Drop-off in Confidence
Scores on CodeSearchNet

We plot boxplots showing the distribution of confi-
dence scores on the test set of CodeSearchNet for
each of the top 15 ranks. Similar to plotting the
median, the box plots in Figure 10 show that higher
performing variants show a large drop-off in scores
much earlier than worse-performing variants. The
first column, shows the distribution of confidence
scores for the gold examples, and the subsequent
columns show the distribution of confidence scores
at each rank. The orange lines in Figure 10 denote
the median, and the blue bars show the first and
third quartiles. The whiskers show the highest and
lowest scores at each rank.

We see in Figure 10a that in Original Function
Names, which is the best-performing variant, all the
examples in the top 3 ranks are assigned very high
confidence scores. In the second-best variant, No
Code Structures in Figure 10d, we see a large drop
in confidence scores after rank 4. In Obfuscated
Function Names in Figure 10b, most queries see
at least eight candidate code snippets with very
high confidence scores. Both Adversarial Function
Names (10c) and No Function Body (10e), the
model returns more candidate code snippets for
each query. This implies that worse performing
variants have far more false positives, and given a
query there is a lot more ambiguity as to what the
correct code snippet is. We observe that out of all
the variants where we modified the original data,
the best performing variant is No Code Structures
(10d) which does not even contain syntactically
correct code.

C.3 Distribution of Drop-off in Confidence
Scores on CoNaLa

We also computed the boxplots showing the distri-
bution of confidence scores of the top 25 results in
the test set of the CoNaLa dataset and showed them
in Figure 11. Overall, we see that the confidence
scores in this dataset are much more ambiguous
compared to the scores in CodeSearchNet, mean-
ing that all examples in the top 25 ranks have very
confidence scores (above 0.998). This shows that

12

given a query in CoNaLa, CodeBERT is not very
confident what the correct code snippet is out of a
pool of candidates.

1.0

0.8

0.6

0.4

Confidence Scores

0.2

0.0

. Gold1l 2 3 4

1.0

0.8

0.6

0.4

Confidence Scores

0.2

0.0

.Goldl 2 3 4 5 6 7 8

1.0000

0.9995

0.9990

0.9985

0.9980

0.9975

Confidence Scores

0.9970

0.9965

0.9960

7 8 9 10 11 12 13 14 15
Ranks

i i |
5 6

(a) Original Function Names

N

9 10 11 12 13 14 15

Ranks

(c) Adversarial Function Names

=y

.Godl 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ranks

(e) No Function Body

1.0

© ° 4
> o =)

Confidence Scores

o
N}

0.0

o o o
IS o ©

Confidence Scores

°
N

0.0

.God1l 2 3 4 5 6 7 8

.Goldl 2 3 4 5 6 7 8

9 10 11 12 13 14 15
Ranks

(b) Obfuscated Function Names

1 ||||||||

9 10 11 12 13 14 15

Ranks

(d) No Code Structure

Figure 10: Boxplots of Confidence Scores versus the top 15 Ranks for each variant. The scores drop off earliest for
(a) and the general trend is for lower performing models the scores drop off more gently.

0.9998

0.9996

0.9994

0.9992

0.9990

Confidence Scores

0.9988

0.9986

- HHW”””

.Goldl 2 3 4 5 6 7 8 91011121314151617181920
Ranks

(a) CoNaLa (Rewritten Intent)

1.0

4 4 e
> o o

Confidence Scores

e
N}

0.0

.Goldl 2 3 4 5 6 7 8 91011121314151617181920

Ranks

(b) CoNaLa (Original Intent)

Figure 11: Boxplots of confidence scores assigned to the top-20 ranks and the gold examples for when we use the
rewritten intent vs the intent.

13

