
Analyzing CodeBERT’s Performance on Natural Language Code Search

Anonymous ACL submission

Abstract

Large language models such as CodeBERT001
(Feng et al., 2020) perform very well on tasks002
such as natural language code search. We show003
that this is most likely due to the high token004
overlap and similarity between the queries and005
the code in datasets obtained from large code-006
bases, rather than any deeper understanding of007
the syntax or semantics of the query or code.008

1 Introduction009

Inspired by the success of large pre-trained lan-010

guage models like BERT (Devlin et al., 2019), XL-011

Net (Yang et al., 2019), GPT (Brown et al., 2020)012

and RoBERTa (Liu et al., 2019) on core NLP tasks,013

and facilitated by the availability of large datasets014

that pair natural language with code (e.g. Husain015

et al., 2019; Lu et al., 2021), there is a growing016

interest in applying such models to beat the previ-017

ous state-of-the-art approaches at tasks on natural018

language and source code, such as code summa-019

rization (e.g. Miceli Barone and Sennrich, 2017) or020

natural language-based code search (e.g. Gu et al.,021

2018). This work is often motivated by a practical022

need to help software developers, but can also be023

seen as an interesting problem to the NLP commu-024

nity (Allamanis et al., 2018).025

CodeBERT (Feng et al., 2020), one of the first026

large language models trained on data consisting of027

both natural (NL) and programming language (PL)028

sequences, has been shown to perform particularly029

well on code search. Code search models assign030

relevance scores to pairs of source code and natural031

language queries (descriptions). Early models for032

code search (e.g. Hill et al., 2011) relied on simplis-033

tic metrics based on token overlap, since function034

names, variable names and comments in high-level035

programming languages such as Python are often036

highly descriptive, and very similar (or identical)037

to the corresponding English descriptions. In this038

paper, we seek to identify whether CodeBERT ex-039

hibits deeper understanding of the structure or un- 040

derlying semantics of the code, or whether it pro- 041

vides simply a more sophisticated metric of token 042

overlap and similarity, aided by its tokenization and 043

embedding-based token representation. Lu et al. 044

(2021) introduced a test set for code search where 045

function names and variable names are normalized, 046

and CodeBERT performed poorly on this dataset. 047

However, they did not perform any further anal- 048

ysis to explore why CodeBERT fails. Our paper 049

presents a series of studies which investigate how 050

CodeBERT assigns scores to pairs of Python code 051

and English descriptions, and how these scores are 052

related to metrics like token overlap. 053

Since Feng et al. (2020) trained their code search 054

model as a binary classifier, we first focus on an- 055

alyzing these classification scores before we ex- 056

amine the impact of these scores on search, where 057

the presence or absence of distractors with simi- 058

larly high scores matters more than absolute scores. 059

Specifically, we examine the impact of removing or 060

obfuscating certain components of the code, such 061

as function names, comments, and the control struc- 062

tures in the body of the code. In addition to evalu- 063

ating CodeBERT on Husain et al. (2019)’s Code- 064

SearchNet dataset, we also evaluate it on two ver- 065

sions of CoNaLa (Yin et al., 2018), which allow 066

us to examine performance on shorter code snip- 067

pets with queries that are either more abstract, or 068

explicitly designed to contain tokens appearing in 069

the code. Our experiments show that CodeBERT 070

does not rely on the structure of the code, but in- 071

stead largely relies on superficial token similarity, 072

suggesting that it is simply a more sophisticated 073

version of traditional IR models. 074

2 CodeBERT 075

Feng et al. (2020) trained RoBERTa-base (Liu et al., 076

2019), a transformer-based language model with 077

12 layers, 12 heads and a hidden dimension of 078

768 (125M parameters in total), on CodeSearchNet 079

1



(Husain et al., 2019), a dataset of 2.1M sequences080

consisting of natural language descriptions paired081

with code. The resulting model, CodeBERT, in-082

duces general-purpose embeddings of the input083

tokens, and achieves state-of-the-art results on vari-084

ous tasks like natural language code search, code085

documentation and generation with fine-tuning.086

Input to CodeBERT consists of a [CLS] token,087

the natural language description w = w1...wn, and088

the code c = c1...cn, separated by a [SEP] token,089

and followed by [EOS]:090

[CLS], w1, w2, ..wn, [SEP], c1, c2, ..., cm, [EOS].091

The final embedding of the [CLS] token is taken as092

the aggregate representation of the entire sequence.093

Tokenization Both code and natural language094

description are tokenized with the same Word-095

Piece model (Wu et al., 2016) that is used by096

RoBERTa (Liu et al., 2019) for English.097

Pre-training: Feng et al. (2020) pre-trained098

CodeBERT using Masked Language Modeling099

(MLM) and Replaced Token Detection (RTD)100

(Clark et al., 2020). In MLM, the model needs101

to recover input tokens that have been randomly102

replaced by a [MASK] token, while RTD uses a set103

of data generators, one one for w and one for c, to104

randomly replace tokens with plausible alternatives105

that the model has to detect.106

Natural Language Code Search Feng et al.107

(2020) train a binary classifier (a softmax layer that108

receives the final representation of the [CLS] token)109

to distinguish between correct and incorrect code-110

description pairs (while fine-tuning CodeBERT it-111

self during the process), and then simply uses this112

classifier’s score to rank a set of 1,000 code snip-113

pets (only one of which is correct) for each query.114

3 Datasets115

We use two datasets in our experiments, Code-116

SearchNet (Husain et al. (2019), Figure 1a) and117

CoNaLa (Yin et al. (2018), Figure 1b). Both118

pair code with natural language descriptions, but119

CoNaLa has fewer examples, shorter descriptions,120

and shorter code snippets than CodeSearchNet (Ta-121

ble 1). CodeSearchNet was used to pretrain Code-122

BERT and contains additional examples in other123

programming languages.124

CodeSearchNet CodeSearchNet (Husain et al.,125

2019) is a corpus obtained from open-source126

GitHub repositories for Go, Java, JavaScript, PHP,127

Dataset Total Examples Avg. No. of Tokens Per Example

Code Description

CodeSearchNet 503,502 117.15 13.56
CoNaLa 102,379 14.15 8.94

Table 1: CodeSearchNet (Python) vs. CoNaLa

(a) An example from CodeSearchNet

(b) An example from CoNaLa Dataset

Figure 1: CodeSearchNet (a) and CoNaLa (b)

Python and Ruby. The entire dataset contains 128

2.1M (ci,di) pairs of functions ci documented 129

by English descriptions di (Figure 1a). In our ex- 130

periments, we focus on CodeSearchNet’s Python 131

dataset, which contains 503,502 Python functions 132

with corresponding descriptions (their docstrings).1 133

Since the examples in this dataset are longer and 134

have a wealth of information, including meaning- 135

ful function names and comments, we obfuscate 136

or remove certain parts of the code, to see which 137

components of the data have the highest impact on 138

CodeBERT’s performance (Section 6.1). 139

CoNaLa Dataset CoNaLa (Yin et al., 2018) is a 140

corpus of short Python code snippets (mostly one 141

or two lines long) and English descriptions , created 142

by crawling Stack Overflow (Figure 1b). CoNaLa’s 143

code snippets do not contain function definitions or 144

comments. Each snippet is accompanied by a de- 145

scription that was mined with it, called the original 146

intent. Snippets in CoNaLa’s manually curated 147

part (consisting of 2,379 training examples and 148

500 test examples) are additionally paired with a 149

a rewritten intent, where the curators rephrased 150

the intent to make it more similar to the code, e.g. 151

by using variables that occur in the code. CoNaLa 152

1CodeSearchNet has an additional 652,583 Python func-
tions without descriptions that Feng et al. (2020) used to pre-
train CodeBERT.

2



also has an automatically mined dataset of 600k153

examples, sorted in descending order of confidence154

of the pair being a match. CoNaLa was designed155

to test systems for generating program snippets156

from natural language, but we can re-purpose it157

to work on code search by generating appropriate158

negative examples. For training, we used the top159

100k mined pairs along with the manually curated160

set, for a total of 102,379 positive examples. We161

discuss the process of generating negative exam-162

ples in Section 4.The performance of CodeBERT163

on CoNaLa will tell us whether it generalizes well164

to other datasets in the same language, and how165

well it works on shorter code with less information166

resembling natural language.167

4 Experimental Setup168

In each of our experiments, we start with Feng et al.169

(2020)’s publicly available CodeBERT model2 that170

was trained on all of CodeSearchNet’s training data.171

Like Feng et al. (2020), we then train binary clas-172

sifiers on top of this original CodeBERT model,173

and fine-tuning CodeBERT’s parameters during174

this process, using the same hyper-parameters as175

Feng et al. (2020). Our training data for both Code-176

SearchNet and CoNaLa has balanced positive and177

negative examples. Positive examples are the code-178

description pairs from the training set, and negative179

examples are generated by randomly replacing the180

description in a pair with a description from another181

data point in the training set.182

On a cluster of eight Nvidia GeForce GTX 1080183

Ti GPUs, each model was trained for a total of184

eight epochs and took an average of 797 minutes185

per epoch for CodeSearchNet and 183 minutes for186

CoNaLa.187

We evaluate these classifiers both on classifica-188

tion and on search. For search, we follow Feng et al.189

(2020), and sample 999 distractor snippets for each190

code-description pair in the test sets of CodeSearch-191

Net and CoNaLa. For CodeSearchNet, distractors192

come from the test set, but since CoNaLa’s test193

set has only 500 examples, we use 499 distractors194

from the test set and sample another 500 examples195

from the automatically mined set that were used196

for training.197

2CodeBERT is implemented in PyTorch (Paszke et al.,
2017) and uses HuggingFace’s Transformer library (Wolf
et al., 2020).

Threshold Accuracy F1 Precision Recall

0.9 0.9909 0.1770 0.0974 0.9710
0.99 0.9919 0.1935 0.1075 0.9700
0.999 0.9951 0.2831 0.1661 0.9550
0.9999 0.9979 0.4702 0.3148 0.9290

Table 2: The Accuracy, F-1, Precision, and Recall scores
for different thresholds. While the recall is high for most
thresholds, high precision requires a very high threshold

5 Analyzing CodeBERT as a classifier 198

Before we evaluate our models in search, we ana- 199

lyze the performance of the model trained on Code- 200

SearchNet as a classifier, as measured by accuracy, 201

precision, recall, and F1. Since we are ultimately 202

interested in performance on search, we use the 203

same (unbalanced) test set as in search, which con- 204

tains 999 distractors (negative examples) for each 205

(positive) gold pair. 206

5.1 Classification Results 207

We first examine how classifier performance is af- 208

fected by the threshold that we use to translate its 209

real-valued scores into positive and negative labels. 210

Table 2 shows precision, recall, accuracy, and F1 211

scores for different thresholds. We observe that 212

even a relatively harsh threshold of 0.9 yields a 213

very low F1 score of 0.177: while recall is 0.9710, 214

precision is only 0.0974. Our highest F1 score of 215

0.4702 is obtained at an even harsher threshold of 216

0.9999: precision is now 0.3148, but recall has 217

dropped to 0.9290. A full precision-recall curve 218

can be seen in Appendix A. 219

Despite the seemingly low performance on clas- 220

sification, Section 6 will show that search perfor- 221

mance of this model is very good. In search, the 222

absolute value of the score is of course less impor- 223

tant than whether the score is higher than that of 224

all other code snippets in the search space. 225

5.2 Dependence on Lexical Overlap 226

We hypothesize that the confidence scores assigned 227

by CodeBERT to a code-description pair is influ- 228

enced greatly by their token overlap and high token 229

similarity. In many cases, we observe that a code 230

snippet and a description contain similar tokens, 231

due to the presence of function names, identifier 232

names and comments in the code. For example, in 233

Figure 1a, the function name is very similar to its 234

description. It is difficult to examine how similar a 235

context-dependent language model like CodeBERT 236

3



0.0-0.99
0.99-0.999

0.999-0.9999
>=0.9999

Score Ranges

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f T
ok

en
 O

ve
rla

p 
Va

lu
es

Token Overlap Distribution Vs. Threshold Ranges For Negative Examples

Token Overlap
>50
21-50
11-20
6-10
3-5
2
1
0

(a) Token overlap in negative examples

0.0-0.99
0.99-0.999

0.999-0.9999
>=0.9999

Score Ranges

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f T
ok

en
 O

ve
rla

p 
Va

lu
es

Token Overlap Distribution Vs. Threshold Ranges For Positive Examples

Token Overlap
>50
21-50
11-20
6-10
3-5
2
1
0

(b) Token overlap in positive examples

Figure 2: Distribution of token overlap versus different
score ranges in the test set of CodeSearchNet

treats tokens such as ’vid’ and ’video’, but we can237

measure the token overlap between code and de-238

scriptions. CodeBERT uses WordPiece (Wu et al.,239

2016) to tokenize both the code and the descrip-240

tion. Figure 3 shows what WordPiece tokens look241

like, and illustrates our definition of token overlap,242

which is simply the number of WordPiece tokens243

in the code that appear in the description, with244

repetition allowed (’url’ only appears once in the245

description, but several times in the code, and each246

of these occurrences is counted).247

In Figure 2 we see how token overlap is dis-248

tributed over examples from different score ranges.249

In general, CodeBERT assigns higher scores to ex-250

amples that have higher token overlap. This reflects251

the distribution of positive and negative examples252

in the dataset, since we see that the negative ex-253

amples in Figure 2a tend to have a much lower254

token overlap than the positive examples in Figure255

2b. We also performed additional studies comput-256

ing the correlation coefficient between confidence257

scores and token overlap in Appendix B258

This shows that despite being a coarse metric,259

token overlap is a strong predictor for classifier260

scores. In Figure 3, we see some code-description261

(a) An example from CodeSearchNet with high token
overlap between the code and description

(b) An example from CodeSearchNet with low token
overlap between the code and description

Figure 3: Examples of token overlap and confidence
scores in the test set of CodeSearchNet

pairs from the test set. In 3a, there is a high token 262

overlap of 9 and also a high confidence score of 263

0.9999. In 3b, the token overlap is low, only 2, and 264

one of the common tokens "return" is a common 265

keyword in Python. As a result, CodeBERT gives 266

the pair a low score of 0.0057 despite the code 267

being relevant to the description. 268

Next, we examine what influences CodeBERT’s 269

performance on natural language code search. 270

6 Analyzing CodeBERT for code search 271

Like Feng et al. (2020), we use the classifier trained 272

in Section 5 for natural language code search (we 273

resolve ties as described by McSherry and Najork 274

(2008)). Now, the relative scores among all the 275

candidate code snippets for each query is more im- 276

portant than the absolute values of the scores. To 277

understand CodeBERT’s performance, we evaluate 278

it under different scenarios. In each scenario, or 279

variant, we transform the dataset during both train- 280

ing and evaluation of the classifier to get a clearer 281

picture of what effect it has on performance. 282

6.1 Variants of CodeSearchNet 283

In our experiments on CodeSearchNet (Husain 284

et al., 2019), we consider five main transforma- 285

4



(a) The original example

(b) Obfuscating function names

(c) Removing function body

(d) Removing keywords, delimiters and operators

(e) Replacing function name from different function

Figure 4: Different transformations of a Python function
in CodeSearchNet

tions. Figure 4a shows an original code example.286

Given an original example (Figure 4a), we can287

obfuscate function names (4b), remove the entire288

function body (4c), remove keywords, delimiters289

and operators (4d), replace function names with290

those of a different function (4e). Additionally,291

32.5% of snippets have comments, which we can292

keep or remove (Figure 5), resulting in two variants293

of each transformation ((w/ Comments) and (w/o294

Comments)).295

Original Function Names: This is the unmodi-296

fied CodeSearchNet dataset.297

Obfuscated Function names: Function names298

often have a high token overlap with the query.299

We obfuscate function names by replacing each300

character in the name with the next character in301

the alphabet (‘a’ is replaced by ‘b’, ‘b’ by ‘c’ etc.).302

This forces the model to focus on other cues, like303

comments, variable names, or the actual structure304

of the code like for- loops and if-statements.305

Figure 5: Removing comments from code

Adversarial Function Names: We replace the 306

original function name with the name of another 307

function. Unlike the previous transformation, by 308

doing this we trick the model into believing that 309

the function name is present, and performance on 310

this transformation will tell us how well the model 311

works when the function name differs from the ac- 312

tual operations performed in the body of the code. 313

No Function Body: We remove the entire body 314

of the code and leave only the function definition. 315

Here, we will observe how well the model per- 316

forms when it only has the function name and its 317

arguments available. 318

No Code Structure: We remove keywords, op- 319

erators and delimiters from the function. Here, we 320

force the model to only look at function names, 321

identifier names and comments to identify the cor- 322

rect code snippet for a query. The relative perfor- 323

mance of a model on this transformation compared 324

to previous transformations will tell us whether 325

the model leverages function names and comments 326

more than the structure of the code. 327

6.2 Variants of CoNaLa 328

As discussed in Section 3, the CoNaLa dataset has 329

two description fields, the original intent obtained 330

from Stack Overflow, and a manually rewritten 331

intent that contains variables in the code, and hence 332

has higher token overlap with the code. To see the 333

impact of high token overlap due to variable names 334

appearing in the English description, we evaluate 335

CodeBERT on both variants: CoNaLa (Rewritten 336

Intent) and CoNaLa (Original Intent). 337

6.3 Experimental Results 338

In Table 3, we show the Mean Reciprocal Rank 339

(MRR) and Recall at ranks 1, 2, 5 and 10 (R@k) 340

for the different variants of CodeSearchNet and 341

CoNaLa. The MRR is the average of the recipro- 342

5



Model MRR R@1 R@2 R@5 R@10

Original Function Names (w/ Comments) 0.8925 0.8106 0.9072 0.9545 0.9710
Original Function Names (w/o Comments) 0.8800 0.7989 0.9008 0.9515 0.9680
Obfuscated Function Names (w/ Comments) 0.8064 0.7042 0.8180 0.9125 0.9430
Obfuscated Function Names (w/o Comments) 0.7722 0.6404 0.7880 0.8967 0.9375
Adversarial Function Names (w/ Comments) 0.3920 0.1479 0.3472 0.7416 0.9160
Adversarial Function Names (w/o Comments) 0.3420 0.1005 0.2825 0.7140 0.9085

No Code Structure (w/ Comments) 0.8833 0.7841 0.8932 0.9524 0.9685
No Code Structure (w/o Comments) 0.8830 0.7622 0.8884 0.9485 0.9680
No Function Body (w/ Comments) 0.6754 0.5319 0.7010 0.8273 0.8858
No Function Body (w/o Comments) 0.6140 0.4547 0.6250 0.7783 0.8510

CoNaLa (Rewritten Intent) 0.7145 0.5770 0.7260 0.8840 0.9400
CoNaLa (Original Intent) 0.3290 0.1770 0.2930 0.4700 0.6610

Table 3: Retrieval Scores of all the variants on the test sets of both CodeSearchNet and CoNaLa

cal of the ranks of the gold item returned for each343

variant, so it gives us a glimpse at the overall distri-344

bution of the ranks through a single metric. R@k345

shows us the fraction of gold items that appear at346

rank k or above, so it gives us a more detailed view347

of the distribution of ranks. R@1 is particularly348

interesting, since it shows us the fraction of gold349

items that are ranked at the top for each variant.350

For all variants, we report results from a single351

run, except for Adversarial Function Names, where352

we report the mean scores of 10 runs, since the353

new function name generated in the variant after354

replacement changes with every run.3 We can see355

that the original CodeSearchNet is a much easier356

dataset than either version of CoNaLa.357

6.4 Analysis of Retrieval Scores on358

CodeSearchNet359

In the top part of Table 3, we see a noticeable drop360

in performance, especially MRR and R@1 when361

we obfuscate function names. MRR drops by al-362

most 9 percentage points and R@1 drops by more363

than 10 percentage points. This suggests that when364

the entire code is available, CodeBERT places more365

weight on the function names, and when they are366

obfuscated, the gold example is no longer ranked367

at the top in at least 10 percent of additional test368

cases. Removing comments causes a bigger drop369

in R@1 when the function names are obfuscated370

(around 6 percentage points), compared to when371

function names are present (less than 2 percent-372

age points). This means that CodeBERT relies373

on comments more when function names are not374

available. We get the biggest drop in R@1 in Ad-375

3Adversarial Function Names (w/ Comments): mean MRR
= 0.3920 (std. dev. 0.006); Adversarial Function Names (w/o
Comments): mean MRR = 0.3420 (std. dev.= 0.009).

versarial Function Names (more than 66 percentage 376

points), where the function name is from a differ- 377

ent function. This means that when the function 378

name and the body of the code are not in agreement, 379

the model chooses to prioritize the function name 380

for discerning the meaning of the code. Remov- 381

ing comments from Adversarial Function Names 382

causes an additional drop of 4 percentage points in 383

R@1, showing again how important comments are 384

when correct function names are not present. 385

In the second part of Table 3, we see that No 386

Code Structure shows a small drop in R@1 (2.65 387

percentage points) compared to Original Function 388

Names. Removing comments from this variant re- 389

duces R@1 by an additional 2.19 percentage points. 390

Even though this variant does not contain any syn- 391

tactically correct code, since all keywords, opera- 392

tors and delimiters have been removed, the impact 393

on performance is small compared to the other vari- 394

ants. In No Function Body w/ comments, the R@1 395

drops to 0.5319 (w/o comments: R@1 = 0.4547). 396

Since this variant only contains the function def- 397

inition, this big drop in performance shows that 398

CodeBERT does need the function body to per- 399

form well. However, CodeBERT still returns the 400

correct code snippet at rank 1 for around half of 401

queries in these variants. 402

6.5 Analysis of Retrieval Scores on CoNaLa 403

The third part of Table 3 shows the performance on 404

both variants of CoNaLa. The overall lower scores 405

(as compared to CodeSearchNet) could be because 406

CodeBERT was pre-trained on CodeSearchNet, or 407

because the examples in CodeSearchNet are longer, 408

giving the model more information. But impor- 409

tantly, we observe that R@1 drops sharply by 40 410

percentage points when we use the Original Intent 411

6



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ranks

0.0

0.2

0.4

0.6

0.8

1.0
Co

nf
id

en
ce

 S
co

re
s

Plot of Median Confidence Scores versus Ranks

Original Function Names
Obfuscated Function Names
Adversarial Function Names
No Code Structure
No Function Body

Figure 6: Median confidence scores by rank for each
variant of CodeSearchNet (w/comment)

instead of the Rewritten Intent. This suggests that412

CodeBERT is dependent on using variable names413

when they are available, and has an easier time per-414

forming retrieval when the gold result has a high415

token overlap with the user query. However, in416

real-world scenarios, user queries will typically not417

contain variables used in the required code snip-418

pet, making the performance on the original intent419

much closer to real-world performance.420

6.6 Impact of Variants on Confidence Scores421

As we go down the ranked lists returned by Code-422

BERT, the confidence scores of the code snippets423

decrease. Figure 6 shows the drop-off of the me-424

dian confidence scores (across all queries) by ranks425

in all the variants of CodeSearchNet (with com-426

ments). Appendix C gives a more detailed anal-427

ysis of the distribution of this drop-off. We see428

that a large drop-off occurs much earlier in better-429

performing models like Original Function Names430

(after rank 7) and No Code Structure (after rank431

9), whereas the slope of the curve is much gen-432

tler for worse-performing models like Adversarial433

Function Names, where the score starts dropping434

after rank 14. This suggests that when CodeBERT435

has access to the original code, it is not only able436

to identify the gold example as a match, but also437

assigns lower scores to more examples that are not438

a match. But obfuscating or removing parts of the439

data leads to more false positives, since CodeBERT440

assigns high scores to more negative examples.441

6.7 Impact of Token Overlap on Ranking442

To understand how ranking is affected by token443

overlap, we plot the distribution of token overlaps444

for all gold examples, top-ranked gold examples,445

gold examples that were not top-ranked, and top-446

All Gold
Top-Ranked Gold

Not Top-Ranked Gold
Top-Ranked Negatives

Class of Examples

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f T
ok

en
 O

ve
rla

p 
Va

lu
es

Distribution of Token Overlap for Different Examples

Token Overlap
>50
21-50
11-20
6-10
3-5
2
1
0

Figure 7: Distribution of token overlap for gold vs top-
ranked examples across all queries

ranked negative examples returned for each query 447

in the test set of the Original Function Names (w/ 448

comments) variant (Figure 7). We see that top- 449

ranked negatives have the highest overall token 450

overlap. This makes sense, since these examples 451

fool the classifier into thinking they are most rele- 452

vant to the query, so having a high token overlap 453

is likely helpful. Top-ranked gold examples have 454

a slightly lower overlap. We hypothesize this is 455

either because there are no negatives with lower 456

token overlap for these queries, or because these 457

examples were ranked highly not just due to high 458

token overlap, but also due to the nature of the 459

tokens overlapping, like the function names. Un- 460

surprisingly, gold examples that were not ranked 461

at the top have the highest fractions of low or zero 462

overlaps values. We do not know if the top-ranked 463

negatives with zero overlap occur in cases where 464

the non-top-ranked gold item has also zero overlap. 465

6.8 Summary of Findings 466

Our experiments (Table 3) show that CodeBERT 467

does not need syntactically correct code (or even 468

code with any control structure) in order to per- 469

form well on search. Function names seem to be 470

important though: obfuscating them causes a no- 471

ticeable drop in performance, and replacing them 472

with a name from a different function causes a 473

much more drastic drop. Comments seem to be 474

less important when the correct function name is 475

present. We also see in Figure 7 that CodeBERT 476

performs poorly in ranking when there are other 477

distractor code snippets present that have a higher 478

token overlap than the gold example, meaning it 479

places more importance on the text similarity than 480

the actual semantics of the code when computing 481

7



its relevance to an English description.482

7 Discussion and Related Work483

Earlier models for code search (Hill et al., 2011;484

McMillan et al., 2011; Lv et al., 2015) used classi-485

cal IR approaches that are based on simple word486

overlap, but were outperformed by simple neural487

models (Gu et al., 2018), including approaches that488

incorporate Abstract Syntax Trees (Zhang et al.,489

2019; Wan et al., 2019; Haldar et al., 2020), Graph490

Neural Networks (Sieper et al., 2020; Ling et al.,491

2021; Liu et al., 2021), and reinforcement learn-492

ing (Yao et al., 2019). However, CodeBERT (Feng493

et al., 2020) set a new benchmark for code search494

and other applications by employing a transformer-495

based large language model. Unlike some earlier496

neural models, CodeBERT uses only the tokenized497

code and the English description to perform bet-498

ter at benchmark tasks for program understand-499

ing and generation. However, our results indicate500

the CodeBERT may in fact simply be better at501

modeling overlap, both because it does not treat502

tokens as atomic symbols, and because its tok-503

enization greatly increases overlap between queries504

and gold snippets. While other transformer-based505

models in this domain have been proposed, like506

PLBART (Ahmad et al., 2021) and CoTexT (Phan507

et al., 2021) and CodeGPT (Lu et al., 2021), they508

still treat code and text as a series of tokens, and509

are expected to have the same issues as CodeBERT.510

Moreover, bigger is not always better. Cambronero511

et al. (2019) presented an improved version of512

NCS (Sachdev et al., 2018) and showed that a513

simple bag-of-words-based network outperformed514

the larger sequence-of-words-based CODEnn (Gu515

et al., 2018) and SCS (Husain, 2018; Husain and516

Wu, 2018). This indicates that we need to find517

novel ways of preprocessing source code instead518

of treating it like a regular document. In this pa-519

per, we did not evaluate if models like GraphCode-520

BERT (Guo et al., 2020), which incorporate data521

flow in addition to tokenized codes, address these522

challenges effectively, but leave this analysis to523

future work.524

8 Conclusion525

In this paper, we presented a series of experiments526

to gain a deeper insight into what makes Code-527

BERT effective at natural language code search.528

We saw that token overlap between code and de-529

scriptions plays a big role, while the structure of530

the code has little to no importance to CodeBERT, 531

since it performs essentially equally well when all 532

structure, i.e. keywords, operators and delimiters, 533

are removed from the code. There are some limi- 534

tations to our study: we did not specifically study 535

the impact of variable names, and how much they 536

contribute to token overlap. We also only looked 537

at function names in the definition, but not at func- 538

tion calls in the body of the function. We also only 539

analyzed the confidence score CodeBERT assigns 540

to examples for code search, and did not look at 541

the attention weights of the model or what type 542

of information each layer produces. Despite that, 543

our experiments establish a clear trend between the 544

predictions of CodeBERT and the token overlap 545

between the function and the query. Future work 546

should also address to what extent a model that 547

fine-tunes CodeBERT with an explicit ranking loss 548

could overcome these shortcomings. And while 549

our work highlighted a big difference in perfor- 550

mance between both versions of CodeSearchNet 551

and CoNaLa, we did not attempt to analyze (or 552

overcome) the reasons for this discrepancy, which 553

are likely due to the different sizes of the datasets 554

and the code snippets they contain, and to Code- 555

BERT’s pre-training on CodeSearchNet. CoNaLa 556

may also simply be harder because it is concerned 557

with generic algorithmic questions (e.g. "how do I 558

zip lists in Python?") that are answered on Stack- 559

Overflow, and does not contain code and docstrings 560

taken from large code-bases, where the intelligibil- 561

ity of variable and function names is crucial from 562

a software engineering perspective. Conversely, 563

this might imply that models like CodeBERT that 564

do not attempt to "understand" code, but simply 565

capture surface similarities of code and natural lan- 566

guage, might be sufficient for practical applications, 567

since such similarities are likely abundant in well- 568

written and well-documented code. However, this 569

then implies further that code search might not be 570

a useful test case for questions about language un- 571

derstanding. While the large size of real-world 572

datasets makes this task attractive, it may in fact 573

not require any models that try to go deeper, and, 574

as argued e.g. by Bender and Koller (2020), it may 575

be impossible to induce semantic models of code 576

from such data alone. Another open question is 577

how effective models like CodeBERT would be on 578

natural languages other than English, although re- 579

cent progress on unsupervised machine translation 580

suggests this may not be a significant hurdle either. 581

8



References582

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and583
Kai-Wei Chang. 2021. Unified pre-training for pro-584
gram understanding and generation. In Proceedings585
of the 2021 Conference of the North American Chap-586
ter of the Association for Computational Linguistics:587
Human Language Technologies, pages 2655–2668,588
Online. Association for Computational Linguistics.589

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu,590
and Charles Sutton. 2018. A survey of machine learn-591
ing for big code and naturalness. ACM Comput. Surv.,592
51(4).593

Emily M. Bender and Alexander Koller. 2020. Climbing594
towards NLU: On meaning, form, and understanding595
in the age of data. In Proceedings of the 58th Annual596
Meeting of the Association for Computational Lin-597
guistics, pages 5185–5198, Online. Association for598
Computational Linguistics.599

Tom Brown, Benjamin Mann, Nick Ryder, Melanie600
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind601
Neelakantan, Pranav Shyam, Girish Sastry, Amanda602
Askell, Sandhini Agarwal, Ariel Herbert-Voss,603
Gretchen Krueger, Tom Henighan, Rewon Child,604
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens605
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-606
teusz Litwin, Scott Gray, Benjamin Chess, Jack607
Clark, Christopher Berner, Sam McCandlish, Alec608
Radford, Ilya Sutskever, and Dario Amodei. 2020.609
Language models are few-shot learners. In Ad-610
vances in Neural Information Processing Systems,611
volume 33, pages 1877–1901. Curran Associates,612
Inc.613

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik614
Sen, and Satish Chandra. 2019. When deep learn-615
ing met code search. In Proceedings of the 2019616
27th ACM Joint Meeting on European Software En-617
gineering Conference and Symposium on the Foun-618
dations of Software Engineering, ESEC/FSE 2019,619
page 964–974, New York, NY, USA. Association for620
Computing Machinery.621

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and622
Christopher D. Manning. 2020. ELECTRA: Pre-623
training text encoders as discriminators rather than624
generators. In ICLR.625

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and626
Kristina Toutanova. 2019. BERT: Pre-training of627
deep bidirectional transformers for language under-628
standing. In Proceedings of the 2019 Conference of629
the North American Chapter of the Association for630
Computational Linguistics: Human Language Tech-631
nologies, Volume 1 (Long and Short Papers), pages632
4171–4186, Minneapolis, Minnesota. Association for633
Computational Linguistics.634

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-635
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,636
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-637
BERT: A pre-trained model for programming and638

natural languages. In Findings of the Association 639
for Computational Linguistics: EMNLP 2020, pages 640
1536–1547, Online. Association for Computational 641
Linguistics. 642

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. 643
Deep code search. In 2018 IEEE/ACM 40th Interna- 644
tional Conference on Software Engineering (ICSE), 645
pages 933–944. 646

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 647
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy- 648
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun 649
Deng, Colin B. Clement, Dawn Drain, Neel Sundare- 650
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2020. 651
Graphcodebert: Pre-training code representations 652
with data flow. CoRR, abs/2009.08366. 653

Rajarshi Haldar, Lingfei Wu, JinJun Xiong, and Julia 654
Hockenmaier. 2020. A multi-perspective architecture 655
for semantic code search. In Proceedings of the 58th 656
Annual Meeting of the Association for Computational 657
Linguistics, pages 8563–8568, Online. Association 658
for Computational Linguistics. 659

Emily Hill, Lori Pollock, and K. Vijay-Shanker. 2011. 660
Improving source code search with natural language 661
phrasal representations of method signatures. In 2011 662
26th IEEE/ACM International Conference on Auto- 663
mated Software Engineering (ASE 2011), pages 524– 664
527. 665

Hamel Husain. 2018. How to create natural language 666
semantic search for arbitrary objects with deep learn- 667
ing. 668

Hamel Husain and Ho-Hsiang Wu. 2018. Towards natu- 669
ral language semantic code search. 670

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 671
Allamanis, and Marc Brockschmidt. 2019. Code- 672
SearchNet challenge: Evaluating the state of seman- 673
tic code search. arXiv preprint arXiv:1909.09436. 674

Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, 675
Tengfei Ma, Fangli Xu, Alex X. Liu, Chunming Wu, 676
and Shouling Ji. 2021. Deep graph matching and 677
searching for semantic code retrieval. ACM Trans. 678
Knowl. Discov. Data, 15(5). 679

Shangqing Liu, Xiaofei Xie, Lei Ma, Jingkai Siow, and 680
Yang Liu. 2021. Graphsearchnet: Enhancing gnns 681
via capturing global dependency for semantic code 682
search. arXiv preprint arXiv:2111.02671. 683

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 684
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 685
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 686
Roberta: A robustly optimized BERT pretraining 687
approach. CoRR, abs/1907.11692. 688

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey 689
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, 690
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li- 691
dong Zhou, Linjun Shou, Long Zhou, Michele Tu- 692
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun- 693
daresan, Shao Kun Deng, Shengyu Fu, and Shujie 694

9

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3338906.3340458
https://doi.org/10.1145/3338906.3340458
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/3180155.3180167
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
https://doi.org/10.18653/v1/2020.acl-main.758
https://doi.org/10.18653/v1/2020.acl-main.758
https://doi.org/10.18653/v1/2020.acl-main.758
https://doi.org/10.1109/ASE.2011.6100115
https://doi.org/10.1109/ASE.2011.6100115
https://doi.org/10.1109/ASE.2011.6100115
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/
https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/
https://github.blog/2018-09-18-towards-natural-language-semantic-code-search/
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Liu. 2021. Codexglue: A machine learning bench-695
mark dataset for code understanding and generation.696
CoRR, abs/2102.04664.697

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang,698
Dongmei Zhang, and Jianjun Zhao. 2015. Code-699
how: Effective code search based on api understand-700
ing and extended boolean model (e). In 2015 30th701
IEEE/ACM International Conference on Automated702
Software Engineering (ASE), pages 260–270.703

Collin McMillan, Mark Grechanik, Denys Poshyvanyk,704
Qing Xie, and Chen Fu. 2011. Portfolio: finding705
relevant functions and their usage. In 2011 33rd706
International Conference on Software Engineering707
(ICSE), pages 111–120.708

Frank McSherry and Marc Najork. 2008. Computing in-709
formation retrieval performance measures efficiently710
in the presence of tied scores. In Proceedings of the711
IR Research, 30th European Conference on Advances712
in Information Retrieval, ECIR’08, page 414–421,713
Berlin, Heidelberg. Springer-Verlag.714

Antonio Valerio Miceli Barone and Rico Sennrich. 2017.715
A parallel corpus of python functions and documen-716
tation strings for automated code documentation and717
code generation. In Proceedings of the Eighth In-718
ternational Joint Conference on Natural Language719
Processing (Volume 2: Short Papers), pages 314–720
319, Taipei, Taiwan. Asian Federation of Natural721
Language Processing.722

Adam Paszke, Sam Gross, Soumith Chintala, Gregory723
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,724
Alban Desmaison, Luca Antiga, and Adam Lerer.725
2017. Automatic differentiation in pytorch.726

Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James727
Annibal, Alec Peltekian, and Yanfang Ye. 2021. Co-728
TexT: Multi-task learning with code-text transformer.729
In Proceedings of the 1st Workshop on Natural730
Language Processing for Programming (NLP4Prog731
2021), pages 40–47, Online. Association for Compu-732
tational Linguistics.733

Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun734
Kim, Koushik Sen, and Satish Chandra. 2018. Re-735
trieval on source code: A neural code search. In736
Proceedings of the 2nd ACM SIGPLAN International737
Workshop on Machine Learning and Programming738
Languages, MAPL 2018, page 31–41, New York,739
NY, USA. Association for Computing Machinery.740

Anna Abad Sieper, Omar Amarkhel, Savina Diez, and741
Dominic Petrak. 2020. Semantic code search with742
neural bag-of-words and graph convolutional net-743
works. In SKILL 2020 - Studierendenkonferenz Infor-744
matik, pages 103–115, Bonn. Gesellschaft für Infor-745
matik e.V.746

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou747
Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-modal748
attention network learning for semantic source code749
retrieval. In Proceedings of the 34th IEEE/ACM750

International Conference on Automated Software En- 751
gineering, ASE ’19, page 13–25. IEEE Press. 752

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 753
Chaumond, Clement Delangue, Anthony Moi, Pier- 754
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 755
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 756
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 757
Teven Le Scao, Sylvain Gugger, Mariama Drame, 758
Quentin Lhoest, and Alexander Rush. 2020. Trans- 759
formers: State-of-the-art natural language processing. 760
In Proceedings of the 2020 Conference on Empirical 761
Methods in Natural Language Processing: System 762
Demonstrations, pages 38–45, Online. Association 763
for Computational Linguistics. 764

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc Le, 765
Mohammad Norouzi, Wolfgang Macherey, Maxim 766
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff 767
Klingner, Apurva Shah, Melvin Johnson, Xiaobing 768
Liu, ukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, 769
Taku Kudo, Hideto Kazawa, and Jeffrey Dean. 2016. 770
Google’s neural machine translation system: Bridg- 771
ing the gap between human and machine translation. 772

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car- 773
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019. 774
Xlnet: Generalized autoregressive pretraining for lan- 775
guage understanding. In Advances in Neural Infor- 776
mation Processing Systems, volume 32. Curran Asso- 777
ciates, Inc. 778

Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan 779
Sun. 2019. Coacor: Code annotation for code re- 780
trieval with reinforcement learning. In The World 781
Wide Web Conference, WWW 2019, San Francisco, 782
CA, USA, May 13-17, 2019, pages 2203–2214. ACM. 783

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan 784
Vasilescu, and Graham Neubig. 2018. Learning to 785
mine aligned code and natural language pairs from 786
stack overflow. In International Conference on Min- 787
ing Software Repositories, MSR, pages 476–486. 788
ACM. 789

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, 790
Kaixuan Wang, and Xudong Liu. 2019. A novel 791
neural source code representation based on abstract 792
syntax tree. In 2019 IEEE/ACM 41st International 793
Conference on Software Engineering (ICSE), pages 794
783–794. 795

10

https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1145/1985793.1985809
https://doi.org/10.1145/1985793.1985809
https://doi.org/10.1145/1985793.1985809
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://aclanthology.org/I17-2053
https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.18653/v1/2021.nlp4prog-1.5
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.1145/3308558.3313632
https://doi.org/10.1145/3308558.3313632
https://doi.org/10.1145/3308558.3313632
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086


A Precision-Recall Curve of Classifier796

We plot the Precision-Recall curve of the classifier797

from Section5 in Figure 8. We observe a sharp798

drop in precision after the recall goes beyond 0.8,799

suggesting that it is impossible to get this model to800

perform well on classification if we require a recall801

higher than 0.8.802

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve
AUC = 0.77

Figure 8: Precision-Recall Curve of the CodeBERT
binary classifier on the test set of CodeSearchNet

B Correlation Between Token Overlap803

and Confidence Score804

To further explore how token overlap and confi-805

dence scores are correlated over different score806

ranges, we used three different correlation metrics807

in this study - the Pearson, the Spearman’s Rank808

and the Kendall Rank Correlation Coefficient.809

While Pearson Coefficient looks at the correla-810

tion between the absolute values of the respective811

scores, the other two metrics look at the rank cor-812

relation or how well items are ranked using these813

scores, which is more relevant since in the ranking814

task we are more concerned with the rank assigned815

to a candidate code-description pair instead of the816

absolute value of its relevance score.817

Threshold Pearson Spearman Kendall

0.9 0.1007 0.3047 0.2155
0.99 0.1368 0.2799 0.196
0.999 0.2282 0.3793 0.267
0.9999 0.192 0.3954 0.2735

Table 4: The Pearson, Spearman and Kendall rank coef-
ficients for code-description pairs at different threshold
cutoffs

In Table 4 we see the correlation coefficients818

for all code-description pairs in the test set of the 819

CodeSearchNet dataset above a certain threshold. 820

Higher thresholds give us the correlation between 821

the pairs that were scored high by CodeBERT. We 822

see that there is a high rank correlation coefficient 823

(both Spearman and Kendall) for high scoring ex- 824

amples, whereas the correlation between them is 825

low when we consider all pairs. For instance, code- 826

description pairs with scores above 0.9999 have 827

a Spearman correlation coefficient of 0.3954 be- 828

tween their scores and their token overlap, whereas 829

for examples scoring above 0.9, the correlation falls 830

to 0.3047. This shows that during the ranking task, 831

high token overlap in negative examples makes it 832

difficult to find the gold example. 833

C Additional Analysis of Confidence 834

Scores in Code Search 835

C.1 Median of Drop-off in Confidence Scores 836

on CoNaLa 837

0 20 40 60 80 100
Ranks

10 3

10 2

10 1

100

Co
nf

id
en

ce
 S

co
re

s

Plot of Median Confidence Scores versus Ranks

Rewritten Intent
Original Intent

Figure 9: Median confidence scores of the top 50 ranks
for all test examples for the CoNaLa dataset over each
variant

Similar to Section 6.6, we computed the me- 838

dian drop-off in confidence scores on the test set 839

of the CoNaLa dataset in Figure 9. We see that 840

the drop-off in confidence scores is sharper when 841

using the Rewritten Intent compared to the Orig- 842

inal Intent. This is because here too for higher 843

performing variants the model has an easier time 844

identifying negative examples and scoring them 845

low to make ranking easier. However, the perfor- 846

mance here is much worse than on CodeSearch- 847

Net. In Rewritten Intent, there is a large drop in 848

confidence scores only after rank 35, whereas in 849

Original Intent, we do not see a large drop even 850

after rank 50. This means given a query, the model 851

will return a large number of candidate code snip- 852

11



pets with high confidence scores that it believes to853

be correct. This shows that even after being fine-854

tuned on CoNaLa, CodeBERT does not perform855

well on this dataset, suggesting that it cannot be856

easily be used on new datasets, even with the same857

programming language.858

C.2 Distribution of Drop-off in Confidence859

Scores on CodeSearchNet860

We plot boxplots showing the distribution of confi-861

dence scores on the test set of CodeSearchNet for862

each of the top 15 ranks. Similar to plotting the863

median, the box plots in Figure 10 show that higher864

performing variants show a large drop-off in scores865

much earlier than worse-performing variants. The866

first column, shows the distribution of confidence867

scores for the gold examples, and the subsequent868

columns show the distribution of confidence scores869

at each rank. The orange lines in Figure 10 denote870

the median, and the blue bars show the first and871

third quartiles. The whiskers show the highest and872

lowest scores at each rank.873

We see in Figure 10a that in Original Function874

Names, which is the best-performing variant, all the875

examples in the top 3 ranks are assigned very high876

confidence scores. In the second-best variant, No877

Code Structures in Figure 10d, we see a large drop878

in confidence scores after rank 4. In Obfuscated879

Function Names in Figure 10b, most queries see880

at least eight candidate code snippets with very881

high confidence scores. Both Adversarial Function882

Names (10c) and No Function Body (10e), the883

model returns more candidate code snippets for884

each query. This implies that worse performing885

variants have far more false positives, and given a886

query there is a lot more ambiguity as to what the887

correct code snippet is. We observe that out of all888

the variants where we modified the original data,889

the best performing variant is No Code Structures890

(10d) which does not even contain syntactically891

correct code.892

C.3 Distribution of Drop-off in Confidence893

Scores on CoNaLa894

We also computed the boxplots showing the distri-895

bution of confidence scores of the top 25 results in896

the test set of the CoNaLa dataset and showed them897

in Figure 11. Overall, we see that the confidence898

scores in this dataset are much more ambiguous899

compared to the scores in CodeSearchNet, mean-900

ing that all examples in the top 25 ranks have very901

confidence scores (above 0.998). This shows that902

given a query in CoNaLa, CodeBERT is not very 903

confident what the correct code snippet is out of a 904

pool of candidates. 905

12



. Gold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ranks

0.0

0.2

0.4

0.6

0.8

1.0
Co

nf
id

en
ce

 S
co

re
s

(a) Original Function Names

. Gold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ranks

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

s

(b) Obfuscated Function Names

. Gold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ranks

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

s

(c) Adversarial Function Names

. Gold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ranks

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

s

(d) No Code Structure

. Gold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ranks

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

Co
nf

id
en

ce
 S

co
re

s

(e) No Function Body

Figure 10: Boxplots of Confidence Scores versus the top 15 Ranks for each variant. The scores drop off earliest for
(a) and the general trend is for lower performing models the scores drop off more gently.

. Gold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ranks

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

Co
nf

id
en

ce
 S

co
re

s

(a) CoNaLa (Rewritten Intent)

. Gold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ranks

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

s

(b) CoNaLa (Original Intent)

Figure 11: Boxplots of confidence scores assigned to the top-20 ranks and the gold examples for when we use the
rewritten intent vs the intent.

13


