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ABSTRACT

One of the obstacles which negatively affect the image classification performance
is dataset bias. In particular, if each class has only a few training data samples, the
data are highly likely to have dataset bias. Therefore, dataset bias can be a serious
issue in few-shot learning, but has rarely been studied so far. To address this issue,
we propose a bias prediction network to help improve the performance of few-shot
image classification models. Once the features are extracted from an image data,
the bias prediction network tries to recover the bias of the raw image such as color
from the features. However, if the bias prediction network can recover it easily,
we can assume that the extracted features also contain the color bias. Therefore,
in our proposed framework, the full model tries to extract features that are diffi-
cult for the bias prediction network to recover from. We validate our method by
adding the bias prediction network to several existing models and evaluating the
performance improvement. Our experimental results show that the bias predic-
tion network can suppress the negative effect of the dataset color bias, resulting
in the substantial improvements in existing few-shot classification models. The
proposed bias prediction network, which can be integrated with other models very
easily, could potentially benefit many existing models for various tasks.

1 INTRODUCTION

Few-shot learning, in which a model is trained using only a few training samples in a training task,
is a challenging topic of machine learning. A number of models has been proposed for few-shot
learning (Koch et al.|[2015), (Snell et al.,[2017), (Sung et al., [2018)), (Ren et al.,|2018), (Rusu et al.,
2019), (Lee et al., 2019), (Chu et al., [2019), (L1 et al., 2019), (Zhang et al., 2020), (Medina et al.,
2020). There are a lot of classes we want to classify, so methods for few-shot learning must be able
to quickly adapt to new classes. Meta-learning (Lemke et al.,|2015) can fulfill this requirement and
thus, many recent methods have adopted meta-learning as an effective method for training and the
classification of samples in few-shot learning.

Few-shot image classification is a subtopic of few-show learning. In each task, only a few classes
are given for classification and only a few image data are given for each class. Actually to be a useful
classification method, the method needs to classify many classes. Thus, a few classes are randomly
selected from a given dataset in every task. Additionally, a few images are randomly selected from
each class. The selected classes and images are changed at the start of a task. At the start of the
training stage, the performance of the method will be poor. However as the training stage processes,
the performance of the method will improve, despite using only a small amount of data.

There are many obstacles that reduce the performance of few-shot image classification. Here, we
focus on one of these obstacles, dataset bias. Dataset bias means that some properties of the samples
of a class in the training set are biased or not evenly distributed; thus, the model trained using
this dataset may learn the properties in a biased manner. Figure |1/ shows how the bias in a dataset
could disturb classification. The photographs in the figure are from the Adience dataset (Eidinger
et al., [2014). The dataset contains images of faces of people from different ages. Suppose that the
classification problem is to classify the images into classes of young and old people. One of the
physical characteristics of humans is the color of their skin. If a model is trained using images of
only white-skinned young people (white circles) and black-skinned old people (black circles), both
classifiers (solid line and dotted line) will be adequate to solve the problem. However, if the test
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Figure 1: Problem of training a biased dataset. The figure represents a feature space. The white
circles and the black circles are the training samples, and the white squares and the black squares
are the test samples. We train a model to classify whether each face is young or old. The desirable
classifier is the solid line, but if the model is trained to classify according to the dotted line, the
classification result will be poor.

samples are composed of only black-skinned young people (black squares) and white-skinned old
people (white squares), the solid line classifier is correct, but the dotted line is incorrect. In general,
the greater the number of training samples, the lower the dataset bias in the samples. However, since
only five or fewer training samples are typically used in a single task in few-shot image classification,
dataset bias in the training samples is highly likely. If a model is trained using a dataset including
bias, the model may learn the bias as important information. To prevent this problem, the model
needs an additional mechanism that enables the model embed features that do not include the bias.
To tackle this issue, we introduce a bias prediction network. We focus on the color bias as shown
in Figure [T] in this study, but our approach is also applicable to other types of bias that can be
represented as predictive targets. We train the bias prediction network to recover the bias of the raw
image such as color from the embedded features. If the bias prediction network can almost recover
the color bias, the embedded features are assumed to be highly dependent on the color components
of the raw samples, which means that the features also have the color bias. If the model is trained
to embed features that are difficult for the bias prediction network to recover from, the bias in the
embedded features could be reduced. As a result, the general performance of the few-shot image
classification will be improved.

The major contributions of this paper can be summarized as follows:

* We propose a bias prediction network to tackle the dataset bias issue in few-shot image
classification. To the best of our knowledge, none of the previous studies have thoroughly
investigated such issues.

* The bias prediction network is integrated into existing few-shot classification networks to
predict the color bias and encourages the feature extraction module of the network not to
learn the color bias. Therefore, the learning is done in an adversarial manner.

* The proposed network is compatible with and can be easily integrated with other models.

» Experiments show that the bias prediction network improves the performance of various
existing few-shot classification models; thus, the proposed approach could potentially ben-
efit many existing models for various tasks.
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2 RELATED WORKS

2.1 FEW-SHOT LEARNING

Few-shot learning (FSL) is a challenging research topic where models learn a new concept or class
from very few examples. An active subtopic of FSL is few-shot image classification (FSIC), in
which images are classified using a method of FSL.

Generally, FSIC is performed by meta-learning. The FSIC model is trained using a chain of training
tasks, and each training task contains a few data. The FSIC problem is called an N-way K-shot
problem, where N is the number of classes (labels) and K is the number of data samples from each
class. Every task is composed of a support set and a query set. The support set is used to learn to
classify adequately. IV classes are randomly selected and K data samples are randomly selected for
each class. These NV x K data form the support set. Additionally, to form the query set, some data
are randomly selected from the N classes, but none of these data should be identical to any data
from the support set. The query set is used to evaluate the performance on this task.

During training, the FSIC model extracts features from the given support set and generates classi-
fiers. Then the model evaluates the performance on the data from the query set, and the model is
updated depending on the performance. After a task is done, N new classes are randomly selected
in the next task, and the evaluation and updating are repeated.

During testing, data from classes that are completely different from those selected for the training
are used. Although the model has not learned these new classes before, the model can adequately
classify the data.

The methods for FSIC models can be divided into two categories: distance-based methods and
graph-based methods. Distance-based methods compare two feature vectors according to metrics. A
Siamese network (Koch et al.|[2015) extracts each feature vector from two images randomly selected
from the support set and then compares the feature vectors using a trainable L1 distance. Matching
Networks (Vinyals et al.,[2016) also learn the distance function between the support vectors and the
query vector. Prototypical networks (Snell et al.l 2017) embed images to extract feature vectors and
calculate the prototype vector for each class. Then when a feature vector is extracted from a query
image, the image is predicted to be the class whose prototype vector is the nearest to the feature
vector.

Graph-based methods include the graph neural network (GNN) model (Satorras & Estrach, |2018)),
in which each node represents the feature vector of each image and nodes are connected with edges.
The similarities between neighboring nodes are calculated and used as the weight of the edge. The
weighted average vector of the neighboring nodes is aggregated with the feature vector of the node.
EGNN (Kim et al., 2019b) also utilizes the GNN architectures, and each edge between two nodes
has the value of similarity between the two nodes. Then the values predict whether the two images
belong to the same class.

More recently, methods focusing on classifiers have also been studied. MetaOptNet (Lee et al.,
2019) utilizes linear classifiers trained using a linear support vector machine (SVM). DeepEMD
(Zhang et al., |2020) has classifiers as subspaces and classify a feature vector by evaluating the
distances from the feature vector to each subspace.

2.2 BIAS PREDICTION

Every dataset may have dataset bias such that the features of the data are not accurately represented.
Dataset bias may lead to misclassification of the test samples. For example, if a dataset for facial
analysis is largely composed of lighter-skinned subjects, error may occur when analyzing darker-
skinned subjects (Buolamwini & Gebru, [2018]).

Bias prediction is a method that predicts bias in a dataset and minimizes the bias to regularize data
features. In a previous study for bias prediction (Kim et al., [2019a)), the principle of adversarial
learning (Goodfellow et al., 2014) was used. If the dataset bias exists, the labels can be predicted
depending on the bias of the samples. This means that the mutual information between the bias of
the training samples and labels will be large. Thus, the corresponding labels are closely related to
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Figure 2: Overall architecture of neural networks with the bias prediction network. Generally an
image classification model consists of a feature embedding network ¢ ¢ and a classification network
¢.. Here, the bias prediction network ¢; is following the feature embedding network. The bias
prediction network gets the CNN-structured embedded features as input, and outputs bias prediction
result. From the result, the bias prediction loss Ly;,s is obtained by calculating the cross-entropy
between the resized raw image and the bias prediction result. The classification loss L, 1S calcu-
lated by the original model, and used to calculate the total loss L;,t4;. The image samples are from
Adience dataset.

the dataset bias. For instance, we assume that the dataset bias is the biased color distribution (e.g.
human face skins in samples are all white or black). Then, we calculate the entropy of the embedded
features from the feature embedding networks. If the bias prediction results represent a clear color
distribution of the training samples, the entropy will be small. If a clear color distribution cannot be
found from the bias prediction results, the entropy will be large. Therefore, the networks are trained
to increase the entropy to reduce the effects of the dataset color bias. This network architecture is
expected to achieve good performance despite the biased training dataset.

Since a few training data samples can hardly represent the color information of each class, we
assume that the potential color bias must exist in the training data in FSIC problems. Thus, it
is expected that our proposed bias prediction method can reduce the color bias and improve the
performance of the original few-shot learning models.

3 ALGORITHM

3.1 THE BIAS PREDICTION NETWORK

Suppose that we have been given the training set X = {z;, y,-}i.vzl, where x; € R? is the i-th image
of the set and y; € Y is the corresponding label.

Generally, most of image classification models have two deep neural network modules: feature
embedding and classifier. First, the feature embedding network extracts features from the raw image.
Then the classifier obtains the features and outputs the classification result. The feature embedding
network is denoted as ¢ ¢, and the classifier is denoted as ¢.. Accordingly, the features, or the output
of the feature embedding network can be written as ¢ ¢(x), where x is a raw image data. The result
of the classifier is denoted as ¢. (¢f(x)).

We introduce the bias prediction network, denoted as ¢,. This network follows ¢; and takes the
embedded features as input. If the features have the CNN-structure, the bias prediction network and
the classifier both take ¢ ¢(z) as input. Otherwise, ¢ should be modified to output CNN-structured
features as well, since ¢, is implemented to take CNN-structured data as input. The bias prediction
network ¢, is followed by a softmax function, and we need to define results both before and after
the softmax. The bias prediction result before the softmax is written as Z = ¢, (¢¢(z)), and the
result after the softmax is denoted as o (¢, (¢5(x))) = 0(Z), where ¢ is the softmax function.
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Figure 3: The detailed architecture of the bias prediction network ¢; predicting color bias. A raw
image is resized and split into three channels, and then the value of each pixel is grouped into eight
intervals to match the size to the output of the bias prediction network. Then the bias prediction loss
is obtained by calculating the cross-entropy between the data of each channel and the output of the
network.

We implement the bias prediction network with the algorithm introduced in (Kim et al.| 2019a).
Since we add a bias prediction network to the existing model at the output of the feature embedding
network, the bias prediction network obtains embedded features as input and outputs the bias predic-
tion result. The detailed structure of the bias prediction network is described in the next subsection.

We introduce two main loss functions in this algorithm; total loss and bias prediction loss. The total
loss is denoted as L,¢q;, and the bias prediction loss is denoted as Lp;qs. First, Liotq; is calculated
and the original model (¢ and ¢.) is updated, and then Ly, is calculated and ¢, is updated. This
is one cycle of the training procedure for an image, and this cycle is repeated for other images.

3.2 THE ToTAL LossS

The total loss is given by

‘Ctotal = ‘Cclass —\H (O'(Z)), (1)
where L;qss denotes the classification loss, H (-) denotes the entropy, and A is the hyperparameter
for the entropy regularization. Since the total loss is defined as above, the original feature embedding
network ¢ is trained to make the entropy H (o(Z)) larger. The output o(Z) of the bias prediction
network ¢y, is for the color labels of the contracted image that the network recovers from the embed-
ded features. Thus, if ¢; could expect each pixel of the contracted image easily, the entropy of the
output would be low. However, if ¢, can easily expect the raw image from the embedded features,
we can assume that the features highly depend on the color data of the raw image. Thus, ¢y tries to
embed features that are barely dependent on the color distribution of the raw image.

3.3 THE B1AS PREDICTION LOSS

Bias is most problematic when features do not represent the corresponding class labels in the dataset.
For instance, hair color is not sufficient to represent cats and dogs, and a training dataset in which
most cats have white hair and most dogs have black hair would lead to adequate classification of
white cats and black dogs but not cats and dogs of other colors.

In this study, we predict the color bias of the raw images. Since the number of training samples is too
small (less than or equal to five in most few-show learning), it is almost impossible to represent all
the colors of each corresponding object. This means that a color bias must exist for each label. Thus,
we structure the bias prediction network ¢;, to recover the color components of the input image from
the embedded features. To examine how many elements of the output o(Z) of the bias prediction
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network ¢y, recovered correctly, we compare the color labels of the resized raw image and the output
of the network. Here, we use a cross-entropy function to define the bias prediction loss:

ACbias =H (07 Z) 5 (2)

where H (-, -) denotes a cross-entropy function and C'is a matrix of true color labels, whose detailed
description as follows.

Figure [3] shows the bias prediction network. Suppose the output of the feature embedding network
has the size of 128 x 21 x 21, the features are passed through the two CNNs and the bias prediction
results are obtained with a size of 8 x 21 x 21. To compare the bias prediction results with the true
color labels, we match both sizes of the results and the labels. Thus, both the height and the width
of the results are resized to 21 pixels. In addition, since the range of the values of the red, green, and
blue channels is 0 to 255, if we apply color binning to each channel to split the range into eight equal
intervals ([0, 31], [32,63], - - - , [224, 255]), then finally we get the color labels of the raw image that
have the same size as the bias prediction results. The compressed data of the raw images are denoted
by C.

The bias prediction loss is calculated by

ﬁ(red) +£(green) +£(blue)

Ebias _ “bias bia§ bias (3)
1 8 21 21
) _ | -
‘Cbias = m;;;%k log zijk, 4)

where L7, £L97%") “and £{%") are the color bias prediction losses for the red, green, and blue
channel, respectively, and ¢;; and z;5(i = 1,--- ,8,j = 1,---,21,k = 1,--- ,21) are elements

of C' and Z, respectively.

3.4 TRAINING PROCEDURE

The original networks ¢y and ¢, are trained to minimize L;,¢41, Whereas the additional bias pre-
diction network ¢y, is trained to minimize Ly;,s. The classification loss £.;4ss depends on the loss
function of the original networks, and H (¢(Z)) is related to ¢,. On the other hand, Ly, is evalu-
ated when ¢, predicts the color labels of the raw image from the embedded features.

In Eq. [1] since Lyotq; becomes smaller if the entropy H (o (Z)) is higher, ¢ tries to embed features
that ¢y, can hardly expect the color component of the raw image from. After ¢ is updated, ¢y tries
to recover the color components of the raw image from the embedded features to minimize Ly;qs.
Then, ¢, is updated. This procedure is repeated for another training sample.

4 EXPERIMENTS

In this section, we first explain the datasets used in our experiments and how we set the conditions of
the network architectures. Next, we present the experimental results of applying the bias prediction
network to different existing models and datasets.

4.1 DATASETS AND IMPLEMENTATION DETAILS

We added the bias prediction network to the existing networks for few-shot classification, such as
EGNN (Kim et al., [2019b)), MetaOptNet (Lee et al.l 2019), and DeepEMD (Zhang et al., [2020).
We used the datasets minilmageNet, CIFAR-FS, FC-100, and Adience (Eidinger et al., 2014) for
experiments.

To clearly illustrate the effect of the bias prediction network, we first created modified datasets from
the minilmageNet. Figure [5a] shows some examples of the modified datasets. From the original
dataset, we created grayscale, red channel, green channel, and blue channel version datasets. Each
of these datasets was used in the training stage, whereas the test set of the original dataset was used
in the testing stage. Additionally, we tested the bias prediction network on the Adience face dataset,
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5-way 1-shot 5-way 5-shot
Original BP Added Original BP Added

EGNN 46.68% 47.14% 61.50% 61.24%
MetaOptNet  54.68% 56.06% 71.07% 71.19%
DeepEMD  63.77% 64.57% 79.43% 79.99%

Models

Table 1: Performances for the application of the bias prediction network on the minilmageNet
datasets

5-way 1-shot 5-way 5-shot
Original BP Added Original BP Added

EGNN 51.69% 52.89% 64.86% 65.23%
MetaOptNet  59.58% 61.10% 73.61% 73.87%
DeepEMD  64.41% 65.88% 80.05% 80.42%

Models

Table 2: Performances for the application of the bias prediction network on the CIFAR-FS datasets

where we trained the model with data from old black-skinned and young white-skinned people, and
validated the model using samples from old white-skinned and young black-skinned people for age
classification task.

The potential color bias in the dataset is expected to be larger when the size of the dataset is small.
The minilmageNet dataset contains 600 images of each class. We also tested the network by using
only 300 or 100 images per class.

4.2 EFFECT OF THE BIAS PREDICTION NETWORK

We tested the bias prediction network on several datasets and existing models for few-shot learning.
We assumed the conditions of 5-way 1-shot and 5-way 5-shot learning as in most previous studies.
We evaluated the accuracy depending on the application of the bias prediction network to each
dataset and each existing model. Table m Table E], and Table E] show that in most cases, the bias
prediction network improves the performance of the existing models.

4.3 EFFECT ON BIASED DATASETS

We performed another test using the Adience dataset where the training samples and test samples
were biased in the color of human skin. As shown in Figure [I] the training sample set consisted
of white young people (white circles) and black old people (black circles), and the test sample
set consisted of black young people (black squares) and white old people (white squares). We
used EGNN as a base model, and tested the 2-way 5-shot learning problem of classifying young
(approximately 25-32 years old) vs. old (approximately 60-100 years old) groups. The left part of
Figure 4| shows the results. We verified that the original EGNN model was substantially improved
byy the addition of the bias prediction network.

4.4 EFFECT ON COLOR-FILTERED DATASETS

In this experiment, we tested the performance of the bias prediction network on the color-filtered
minilmageNet datasets. To adjust the severity of the color bias, we split the raw images into red,
green, and blue channels. Additionally, we desaturated the images to grayscale. Then, we evaluated
the image classification results on each dataset. Some examples from the color-filtered minilma-
geNet dataset are displayed in Figure [5a] The base model was MetaOptNet, and we test under the
5-way 5-shot setting. Figure [5b]shows the results. Compared to the models without the bias pre-
diction network (A = 0), the proposed model improved the performance on the red, green, and blue
datasets. On the other hand, the bias prediction network did not improve the performance of the
model on the grayscaled dataset. When images are grayscaled, red, green, and blue all have same
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5-way 1-shot 5-way 5-shot
Original BP Added Original BP Added

EGNN 32.19% 33.55% 43.79% 44.07%
MetaOptNet  34.02% 34.72% 47.60% 47.93%
DeepEMD  41.23% 42.75% 53.43% 53.99%

Models

Table 3: Performances for the application of the bias prediction network on the F'C-700 datasets

~
[N}

B Original EGNN
M EGNN with Bias Prediction

Accuracy

Number of Classes

Figure 4: The results of the performance of the bias prediction network on the biased Adience
dataset. EGNN was used as the original model. The horizontal axis represents the number of
classes. The vertical axis represents the performance (accuracy) depending on the application of the
bias prediction network. In both tests, the bias prediction network improved the performance of the
original EGNN.

the value; thus, the color bias of the dataset is significantly reduced. Therefore, the bias prediction
network barely improved the original model.

4.5 COMPARISON BETWEEN DIFFERENT SIZES OF DATASETS

In this experiment, we verified the performance of the bias prediction network depending on the size
of the minilmageNet datasets. The condition was 5-way 5-shot and the number of samples per class
was set to 600, 300, and 100. Figure [f] shows the results. The results showed that the improvement
of the performance was the greatest when each class contained 100 samples. This is since a fewer
samples of each class can include larger potential color bias.

5 CONCLUSIONS

In this work, we tackled the problem of de-biasing extracted features from the existing models for
few-shot learning and proposed a bias prediction network for color bias to improve the performance.
Once the existing feature embedding network outputs features from the raw image, the bias predic-
tion network tries to recover the color labels of the raw image from the embedded features. If the
training set is color biased, then the existing model embeds features that are highly dependent on
the color values of the training samples, and the bias prediction network can easily recover the raw
image from the embedded features. Therefore, if the bias prediction network can almost recover the
most part of the raw image, it is assumed that the embedded features are highly biased. Thus, we
introduced a loss function to promote the ability of the existing model to embed features that are
difficult for the bias prediction network to recover. Experimental results showed that our bias pre-
diction network could improve the performance of various existing models. The proposed network
is easy to integrate with various other models to provide potential benefits.
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(a) The color-filtered versions of minilmageNet
dataset. The first row shows the grayscaled version of
the original examples. The second row, the third row,
and the fourth row show the red, the green, and the
blue channel images of the examples, respectively.

Figure 5: Several examples of the color-filtered minilmageNet datasets and the experimental results
for each dataset.
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Figure 6: The results of the performance of the bias prediction network depending on the size of the
minilmageNet dataset. EGNN was used as a base model. The horizontal axis represents the number
of the samples of each class. The vertical axis represents the performance (accuracy) depending
on the application of the bias prediction network. The lower the number of the samples used, the
greater the effect of the bias prediction network.
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