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ABSTRACT

Large Language Models (LLMs) have demonstrated immense potential across
various applications. However, aligning these models with specific real-world
tasks and human preferences typically requires resource-intensive fine-tuning pro-
cesses such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from
Human Feedback (RLHF). In this paper, we propose GOOD (Guided Online Opti-
mal Decoding), a novel alignment method that enhances pre-trained models with-
out the need for parameter fine-tuning. We observed that the alignment-related
behavior of one model can be used to guide another model, and based on this in-
sight, we proposed the GOOD method. Utilizing a pair of guiding models, GOOD
identifies critical positions related to alignment and adjusts the model’s output dy-
namically during the response generation. Notably, the interaction between the
guiding models and the guided model occurs at the string level, enabling GOOD
to be applied to align even black-box models. Experiments show that GOOD can
achieve performance comparable to or even surpassing direct fine-tuning in terms
of comprehensive capability and harmless generation, reaching relative scores of
108% and 105% respectively. Even in weak-to-strong alignment, it can recover
up to 94% of the performance of directly fine-tuned models. GOOD can also be
applied to enhance already aligned models (improving pass@1 by 52% in code
enhancement), making it compatible with various existing alignment techniques.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable potential across various applica-
tions. After pre-training on a huge amount of text corpus, they often require further alignment
tuning to adapt to specific real-world tasks as well as human values and preferences. The align-
ment tuning process usually involves Instruction Tuning (Wei et al., 2021) and Preference Learning
(Ouyang et al., 2022). Instruction tuning involves Supervised Fine-Tuning (SFT) that primarily re-
lies on human annotations or data sourced from proprietary LLMs like GPT-4 (Taori et al., 2023;
Wang et al., 2023) to lead LLMs to follow human instructions. Preference learning, particularly
Reinforcement Learning from Human Feedback (RLHF) and some variants like Direct Preference
Optimization (DPO) (Rafailov et al., 2024), further refine a LLM to better align with human pref-
erences. These alignment tuning approaches have significantly enhanced the capabilities of LLMs,
suggesting that extensive fine-tuning is crucial for developing AI assistants (Bubeck et al., 2023).

However, these alignment tuning processes are resource-intensive, necessitating extensive training
data, considerable computational power, and direct access to the model’s parameters, which is often
impractical for state-of-the-art models (e.g., GPT-4 (Achiam et al., 2023)). Furthermore, fine-tuning
procedures typically introduce variability across different versions of the same model, leading to sig-
nificant storage overheads. Given these challenges, there is a growing interest in alignment methods
that do not require fine-tuning. For instance, Zhou et al. (2024) proposed the Superficial Alignment
Hypothesis, suggesting that most of a model’s knowledge and capabilities are acquired during pre-
training, with alignment primarily teaching the model which sub-distribution of responses to utilize
in user interactions. Remarkably, even with as few as 1,000 samples for SFT, it is possible to pro-
duce a high-quality aligned model. Building on this premise, recent work such as URIAL (Lin et al.,
2023) has analyzed token shifts between pre-trained LLMs and their aligned counterparts, finding
that most token distribution changes occur in language style-related tokens (e.g., discourse markers,
safety disclaimers). RAIN (Li et al., 2023) attempts to use the pre-trained LLMs to evaluate their
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own generation and use the evaluation results to guide rewind and generation for AI safety. Liu et al.
(2024a) proposed Proxy-Tuning, which achieves an alignment effect similar to direct fine-tuning by
computing the logits difference between the pre-trained model and its aligned version, then applying
this vector to the output logits of another model in the same model series. However, these non-tuning
alignment methods either rely on specially designed contexts, making them unsuitable for different
types of tasks, or are limited by vocabulary, restricting their use to models within the same family.
These issues severely limit the application scenarios of existing non-tuning alignment methods.

In this paper, we address these limitations by proposing GOOD (Guided Online Optimal Decoding),
a novel alignment method that operates without the need for modifying the model parameters. We
observed that alignment behaviors across different models exhibit similarities, and alignment-related
changes in one model can be used to guide another model. Based on this insight, we propose
the GOOD method, which enhances the model by dynamically adjusting its output during the re-
sponse generation. Specifically, unlike URIAL and similar approaches, which rely on pre-designed
contexts, GOOD uses a pair of guiding models to identify critical locations in the generated re-
sponses that need alignment, and provide corresponding guidance. Through this dynamic adjust-
ment, GOOD achieves comparable performance to direct fine-tuning and exhibits high flexibility,
making it effective for aligning the behavior of black-box models.

Experiments show that GOOD can achieve performance comparable to or even surpassing direct
fine-tuning in terms of comprehensive capability and harmless generation, reaching relative scores
of 108% and 105% respectively. Even in weak-to-strong alignment, it can achieve performance
better than both the guiding model and the guided model, recovering up to 94% of the performance
of directly fine-tuned models. GOOD can also be applied to enhance already aligned models. In our
experiments, the code enhancement from GOOD boosted the guided model’s pass@1 performance
by 52%. Based on these results, our analysis reveals that the performance improvement brought
by GOOD mainly stem from accurately identifying positions that need alignment, and this can be
further enhanced by providing more accurate and stronger guidance, suggesting a potential direction
for non-tuning alignment to approach or even surpass direct alignment.

We conclude our contributions as follows:

• To the best of our knowledge, GOOD is the first method to achieve black-box LLM align-
ment at decoding time. We addressed some key limitations of existing non-tuning align-
ment methods, including reliance on pre-designed contexts and constraints from model
vocabularies, endowing the GOOD method with high flexibility.

• By proposing the GOOD method, we expanded the exploration of weak-to-strong align-
ment. Our experiments show that GOOD can recover 94% of the relative performance of
directly fine-tuned strong models using weak models. Based on these findings, we per-
formed detailed analyses, indicating that enhancing the recognition and guidance of align-
ment related positions can jointly further improve performance, revealing the potential hope
and direction to surpass traditional methods.

• We conducted evaluations across several experiments. The results show that GOOD can
outperform directly fine-tuned alignment in both comprehensive performance and safety,
achieving up to 108% and 105% of the relative scores, respectively. We further explored the
use of GOOD to enhance already aligned models (improving pass@1 by 52% in code en-
hancement) and its application in scenarios where recognition and guidance are separated.
These demonstrations broaden the application scope of GOOD.

2 RELATED WORK

2.1 TRADITIONAL ALIGNMENT TUNING

Alignment related tuning is critical in adapting LLMs to better reflect human preferences. A com-
mon starting point is SFT, where the model is fine-tuned on datasets containing desired human-
instructed outcomes, providing a basic level of alignment. RLHF builds on SFT by incorporating
a reward model that guides the policy model towards human-preferred behaviors. There are also
several RLHF variants, such as RL from AI Feedback (RLAIF) (Lee et al., 2023), Direct Preference
Optimization (DPO) (Rafailov et al., 2024), etc., have been proposed, each aiming to improve the
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efficiency and effectiveness of the alignment process (Wang et al., 2024). However, there are some
drawbacks associated with these methods. For instance, the extensive computational resources re-
quired and the potential instability of reward models remain significant challenges. Additionally,
the mixed influence of fine-tuning performance and the base model’s capabilities complicates the
evaluation of improvements at each stage, thus hindering the rapid iteration and development of
new models (Saeidi et al., 2024). In light of this, some researchers have explored aligning model
responses without parameter tuning.

2.2 NON-TUNING ALIGNMENT METHODS

The main rationale for using the non-tuning alignment methods is the Superficial Alignment Hy-
pothesis introduced by LIMA Zhou et al. (2024), who fine-tuned a model on only 1,000 carefully
selected examples without any reinforcement learning or preference modeling while the performs
were still either equivalent or strictly preferred to GPT-4 in 43% of human preference evaluation
cases, indicating that the knowledge was already obtained during the pre-training phase and the
alignment is superficial. Following this hypothesis, URIAL (Lin et al., 2023) provides evidence that
alignment tuning mainly impacts stylistic tokens, such as discourse markers and safety disclaimers,
without significantly affecting the model’s core knowledge base. Building on recent advancements
in non-tuning alignment research, we categorize related methods into three classes.:

Pre-decoding alignment methods. Pre-decoding alignment methods primarily rely on pre-provided
examples in In-Context Learning (Mann et al., 2020) to help the model grasp the content that must be
aligned. In-Context Learning enables the LLM to learn new or extended tasks based on the informa-
tion provided in the prompt (e.g., examples, inference traces) without making any explicit updates to
the model parameters. Dependent on a set of few-shot examples for ICL, LLMs can better generate
outputs to user instructions. One example of this is URIAL (Lin et al., 2023), which achieves effec-
tive alignment purely through In-Context Learning with pre-trained LLMs, requiring as few as three
constant stylistic examples and a system prompt. Yet, these methods are highly dependent on the
design of the few-shot examples, which can limit their generalizability and effectiveness in different
contexts.

In-decoding alignment methods. Instead of depending on In-Context Learning, in-decoding align-
ment methods perform adjustments during the model’s response generation, typically achieved by
modifying token logits or employing discrimination and search mechanisms. RAIN (Li et al., 2023)
uses pre-trained LLMs to assess their own outputs and leverage these evaluation results to guide the
process of rewinding and regenerating. DeAL (Huang et al., 2024) views decoding as a heuristic-
guided search process and utilizes a fine-tuned reward model to assist in path decision-making during
the decoding process. DeRa (Liu et al., 2024b) fuses the logits of an unaligned model and an aligned
model to produce a new aligned output. Proxy-tuning (Liu et al., 2024a) calculates the difference
in token logits between a pre-trained model and its tuned counterpart, obtains the difference vector,
and then adds it to the prediction of another guided pre-trained model. EFT (Mitchell et al., 2023)
operates similarly. However, current methods in this paradigm need access to the token logits in the
model output and its vocabulary. Approaches like Proxy-Tuning, which rely on external models, are
consequently restricted to using models from the same series (usually have the same vocabulary).
These factors limits their applicability.

Post-decoding alignment methods. Different from the above methods, post-decoding alignment
methods split the alignment process into two stages: generating the initial response in the first stage
and refining it in the second stage. Aligner (Ji et al., 2024) trains a separated model that learns
correctional residuals between initial and aligned outputs without the need for fine-tuning the base
LLM. In contrast to RLHF methods that need to train and load multiple models, the Aligner requires
only an extra module stacked onto the upstream LLM. Nevertheless, the effectiveness of Aligner is
limited by the initial generation step, which makes it difficult to align responses if the base model
produces poor answers. Additionally, it still requires fine-tuning of the downstream model.

2.3 LLM ENSEMBLE

LLM ensemble methods leverage multiple models, each contributing unique insights and diverse
reasoning patterns, thereby compensating for individual model weaknesses and reducing biases.
However, due to the vocabulary differences among various LLMs, directly merging the output prob-
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Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's harmful to property and can cause fear in others.
It's important to understand that: 1. **Vandalism is a crime:**  You can face serious consequences if caught, including fines and
jail time. 2. **It's disrespectful:**  Vandalism damages ...

harmful

Figure 1: The principle of GOOD. GOOD uses a pair of guiding models to identify key positions that
need alignment and provides corresponding guidance during the response generation. Interaction
between the guiding models and the guided model occurs at the string level, where the output from
the guiding models is decoded into a string, which is subsequently converted into a token sequence
for the guided model.

ability distributions presents significant challenges. Some studies have explored methods for ef-
fective integration under conditions of inconsistent vocabularies. Lu et al. (2024) provides a more
detailed introduction.

Taking the GaC method (Yu et al., 2024) as an example, GaC treats each token generation as a
classification task and averages the classification probability vectors across multiple LLMs dur-
ing inference. This approach utilizes the token-level probability information from each model and
integrates multiple models at the inference stage, improving overall performance and preventing
early-generation errors from cascading into larger mistakes.

3 METHOD

Method Overview. The goal of GOOD is to generate aligned outputs without accessing the original
model parameters and vocabularies. Specifically, GOOD identifies the positions that need to be
aligned in real time during the guided model’s response generation, and introduces the output of
the guiding model at that position as a substitute for the decoding results of the guided model.
The implementation of the method is based on the assumption that different models acquire similar
alignment skills during fine-tuning, allowing the alignment abilities learned by one model to be
applied to another. As illustrated in Figure 1, GOOD works by accurately identifying the positions
that require alignment. To achieve this, GOOD introduces a pair of guiding models, referred to as
model A and model Ait (the aligned version of model A). While the guided model decodes, the
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guiding models also predict the next token. By comparing the logits (predicted token probability
distributions) generated by model A and model Ait, it can be inferred whether model A needs to
be aligned at this location. Based on our assumption, we also consider that model B (the guided
model) is likely in the same state at that position.

Implementation of Guidance. If alignment is deemed necessary, the output from model Ait is
converted into a string and then decoded into model B’s token sequence. Since the vocabularies
of model Ait and B may differ, a single token in one vocabulary might correspond to multiple
tokens in the other, and vice versa. This string is then appended to the output generated so far.
Essentially, the interaction between the guided model A and the guiding model is conducted through
strings rather than tokens, which gives the GOOD method sufficient flexibility. Throughout this
process, we consistently perform incremental decoding. When substitution results from the guiding
model are applied at specific positions, multiple tokens might be added to the sequence of model
B simultaneously. This could lead to differences in token sequence lengths between the guiding
model and the guided model. However, our algorithm ensures that all models receive identical
string content, thereby maintaining consistency in the context used for predicting the next token
across the guiding and guided models.

Details of Alignment Discrimination. The criteria for determining whether alignment is needed are
diverse. For the logits (predicted probability distribution of the next token) generated by model A
and model Ait, one approach is to compare whether their most probable tokens match (Max Match).
This method checks if the most probable token predicted by model A matches that of model Ait. If
they differ, it is inferred that alignment is needed. Another approach could be to measure the overlap
of Top P/K tokens from both logits, or other methods might be employed. Top P refers to the tokens
with the highest probabilities whose cumulative probability sum is less than or equal to P. Top K
refers to the top K tokens with the highest individual probabilities from the output distribution. If
the Top P/K tokens of model A share less than a certain threshold proportion of tokens with model
Ait, alignment is triggered. To further illustrate, consider a practical example: if model A predicts
tokens with logits [0.6, 0.3, 0.1] for tokens t1, t2, t3, and model Ait predicts logits [0.4, 0.5, 0.1]
for the same tokens, the most probable token differs (t1 for A, t2 for Ait). Here, alignment would
be triggered under the Max Match criterion. By using different discrimination methods or adjusting
related hyper-parameters, the sensitivity of GOOD’s alignment can be controlled. In the following
content, unless otherwise specified, the default discrimination method is Max Match.

The detailed process description of GOOD is in Algorithm 1.

Algorithm 1 Guided Online Optimal Decoding (GOOD)

Require: Guiding model A, aligned guiding model Ait, guided model B, tokenizers TA, TAit , TB ,
initial input sequence S

Ensure: Generated token sequence OB

1: Initialize input sequences IA ← TA(S), IAit ← TAit(S), IB ← TB(S)
2: Initialize output sequence OB ← [ ]
3: while generation is not completed do ▷ Main loop
4: tA ← Decode(A, IA), tAit

← Decode(Ait, IAit
) ▷ Guiding models prediction

5: tB ← Decode(B, IB) ▷ Guided model prediction
6: Compare logits of tA and tAit

to check for alignment ▷ Comparison step
7: if alignment is needed then
8: Convert tAit

to string sAit
and re-encode to tB ← TB(sAit

) ▷ String conversion
9: end if

10: Append tB to OB : OB ← OB + tB ▷ Update output
11: Update IB ← IB + tB , IA ← IA + tA, IAit ← IAit + tAit ▷ Update input sequences
12: end while
13: return OB

4 EXPERIMENT

Tasks and datasets. We conducted four experiments to test the capabilities of GOOD: comprehen-
sive performance, harmless generation, enhancing aligned models, and weak-to-strong alignment.
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We use MT-Bench (Zheng et al. (2023)) to evaluate the comprehensive performance of GOOD. MT-
Bench is a multi-task benchmark designed to assess the ability of models across various domains,
including writing, humanities, STEM, extraction, roleplay, reasoning, math, and coding. To evaluate
the ability of the GOOD to generate harmless responses, we conducted experiments on the Helpful
and Harmless (HH) dataset (Ganguli et al., 2022). The HH dataset contains a series of sensitive
questions designed to test how models perform in complex and sensitive scenarios. When respond-
ing to these questions, models may generate harmful or inappropriate answers. In the experiment to
enhance the capabilities of already aligned models, we focused on improving code generation skills
and evaluated the performance on the HumanEval dataset (Chen et al., 2021). The HumanEval
dataset consists of 164 programming problems with corresponding unit tests, specifically designed
to evaluate the functional correctness of Python code generated by models. When comparing the
performance in weak-to-strong alignment, we also used MT-Bench.

Models. In our experiments and analysis, considering the flexibility of GOOD in transferring align-
ment related capabilities across different models, we evaluated combinations of various state-of-the-
art models. Specifically, we used the Llama series (Llama-2 (Touvron et al., 2023), Llama-3 (Dubey
et al., 2024), CodeLlama (Roziere et al., 2023)), the Gemma series (Gemma (Team et al., 2024a),
Gemma-2 (Team et al., 2024b)), and Qwen series (Qwen2 (Yang et al., 2024)) to assess the method’s
performance and generality.

4.1 COMPREHENSIVE EVALUATION

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 1 2 3 4 5 6 7 8 9

model
Gemma-2-9b-it→Llama-2-13b, Score=7.17
Gemma-2-2b-it→Llama-2-13b, Score=6.44
Gemma-7b-it→Llama-2-13b, Score=5.11
Gemma-2b-it→Llama-2-13b, Score=4.53
Llama-2-13b-chat, Score=6.65*
Llama-2-13b, Score=4.67
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(a) Gemma series → Llama-2-13b
Writing

Roleplay

Reasoning

Math

Coding
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STEM

Humanities

0 1 2 3 4 5 6 7 8 9

model
Gemma-2-9b-it→Llama-3-8B, Score=7.57
Gemma-2-2b-it→Llama-3-8B, Score=7.19
Gemma-7b-it→Llama-3-8B, Score=5.66
Gemma-2b-it→Llama-3-8B, Score=5.16
Llama-3-8B-Instruct, Score=7.75
Llama-3-8B, Score=5.53

(b) Gemma series → Llama-3-8b

Figure 2: Performance Comparison
of Model Alignments on MT-Bench.
Score marked with an * is from Chiang
et al. (2024).

On MT Bench, we tested the effectiveness of using
Gemma series models to guide Llama-2-13b and Llama-
3-8B. As shown in the Figure 2, the model’s perfor-
mance gradually increased with enhanced guidance. Ul-
timately, the guidance alignment of Gemma-2-9b-it to
Llama-2-13b surpassed the official alignment perfor-
mance, demonstrating a relative improvement of approx-
imately 8% (from 6.65 to 7.17). The guidance alignment
of Gemma-2-9b-it to Llama-3-8B achieved 98% (7.75
versus 7.57) of the official alignment performance. Sub-
sequent Analysis 5.1 indicated that the performance im-
provement does not come from better decoding perfor-
mance of the guided model, but mainly from accurately
identifying the positions that needed alignment.

4.2 HARMLESS GENERATION

The harmless generation test focuses on the safety of the
model when responding to sensitive questions, using the
same model configuration as the comprehensive evalua-
tion. We use gpt-4-turbo (Achiam et al., 2023) as the
evaluator, the prompt used for evaluation is shown in Ap-
pendix A. In the guiding alignment of Gemma-2-9b-it to Llama-2-13b, it achieved 94% (0.967
versus 0.956) of the officially aligned version. In the guiding alignment of Gemma-2-9b-it to Llama-
3-8B, it exceeded the official alignment performance, reaching 105% (from 0.873 to 0.941) of the
relative score. The harmless ratios for various model alignments are summarized in Table 1, demon-
strating the improvements achieved through the guiding alignment process.

Table 1: Harmless Ratio on HH Dataset, evaluated by gpt-4-turbo.

Model Harmless Ratio Model Harmless Ratio
Llama-2-13b 0.460 Llama-3-8B 0.450

Llama-2-13b-chat 0.967 Llama-3-8B-Instruct 0.873
Gemma-2b-it→ Llama-2-13b 0.853 Gemma-2b-it→ Llama-3-8B 0.867
Gemma-7b-it→ Llama-2-13b 0.859 Gemma-7b-it→ Llama-3-8B 0.863

Gemma-2-2b-it→ Llama-2-13b 0.912 Gemma-2-2b-it→ Llama-3-8B 0.872
Gemma-2-9b-it→ Llama-2-13b 0.956 Gemma-2-9b-it→ Llama-3-8B 0.941
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4.3 ENHANCE ALIGNED MODEL

The GOOD method can not only guides pre-trained models in alignment behaviors but also en-
hances the performance of already aligned models in specific tasks. This means that the GOOD can
work alongside existing model alignment methods to further enhancing the performance of aligned
models.

Our experiment is evaluated based on the HumanEval dataset. We used CodeLlama-7b-python and
Llama-2-7b as the guiding model pair in the GOOD method to enhance the code performance of
Llama-2-13b-chat (as the guided model), with Top Pori=0.8 and Top Pit=0. Consistent with Proxy-
Tuning (Liu et al., 2024a), we set Top P to 0.95, temperature to 0.1, and calculated the pass@1
score.

According to the definition provided in Lu et al. (2024), we consider that the way GOOD enhances
already aligned models can be regarded as a form of LLM Ensemble During Inference. Notably,
GOOD operates entirely at the string level, unaffected by differences between model vocabularies.
Therefore, we also compared it with the recently proposed GaC method (Yu et al., 2024), where we
performed an ensemble of CodeLlama-7b-python and Llama-2-13b-chat, with the same configura-
tion as the official setup.

The detailed performance results are shown in Table 2, where our method achieved a score of 32.3 on
HumanEval, which is similar to the Proxy-Tuning and higher than GaC’s score of 29.9. The prompt
used in our evaluation is shown in Appendix B. Since Meta did not provide the pass@1 score for
Llama-2-13b-chat on HumanEval, we conducted the evaluation using the same configuration and
achieved a score of 21.3. Compared to the original model, the guidance provided by GOOD resulted
in a 52% improvement. The Proxy-Tuning results were obtained by running the author-provided
code locally under the same settings.

Table 2: Pass@1 scores on HumanEval. This table compares the code performance gains achieved
by Llama-2-13b-chat under different methods. Score of CodeLlama-7b-python is from Roziere et al.
(2023).

Method HumanEval Pass@1
Llama-2-13b-chat 21.3

CodeLlama-7b-python 38.4
CodeLlama-7b-python + Llama-2-13b-chat (GaC) 29.9

CodeLlama-7b-python→ Llama-2-13b-chat (Proxy-Tuning) 32.1
CodeLlama-7b-python→ Llama-2-13b-chat 32.3

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
CodeLlama-7b-Python→Llama-2-13b-chat, Score=6.88
Llama-2-13b-chat, Score=6.65
CodeLlama-7b-Python, Score=1.37

Figure 3: Comprehensive performance
with code enhancement guidance, eval-
uated on MT-Bench. Use CodeLama-
7b-Python to guide Llama-2-13b-chat,
and utilized code block markers as the
start and end signals.

We also tested the comprehensive performance of the
models with code enhancement guidance on MT-Bench.
We used the default configuration of GOOD (Max Match)
and utilized code block markers as the start and end sig-
nals for enhanced guidance. A specific example is shown
in Appendix C: when code generation is detected, GOOD
automatically initiates code enhancement guidance and
exits the guidance when the current code generation ends,
restarting only when the next code block marker is en-
countered. As shown in Figure 3, experimental results
indicate that models with GOOD-enhanced guidance can
surpass both the original and guiding models in compre-
hensive performance, with the score increasing from 6.65
to 6.88.

Although our experiments only used a single pair of guiding models for enhancement, GOOD can
be easily extended to multiple pairs of guiding models with different functionalities. In this setup,
the guided model can be viewed as a central model, with each guiding model pair dynamically
determining whether to provide guidance. The guidance outputs are unified into a string format and
then mapped to the central model’s vocabulary, which avoids the vocabulary issues commonly faced
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by ensemble methods in inference. The central model can also enable and disable specific guiding
models using block delimiters, further expanding its flexibility.

4.4 WEAK-TO-STRONG ALIGNMENT

The concept of ”weak-to-strong alignment” proposed by OpenAI (Burns et al., 2023) suggests that
powerful pre-trained models already possess the capability to perform alignment-related tasks effec-
tively. In weak-to-strong alignment, it is not necessary for the weak model to teach the strong model
new skills; instead, a weak supervisor only needs to elicit knowledge that the strong model already
possesses. Our approach follows this idea, using a weak model to guide the behavior of the strong
model, but operating purely at the string level without requiring any fine-tuning of the strong model.
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(a) Gemma-2-2b-it → Gemma-2-9b
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Qwne-2-72b-it, Score=9.12*

(b) Qwne-2-7b-it → Qwne-2-72b

Figure 4: Weak-to-Strong performance
on MT-Bench. Score marked with an *
is from Chiang et al. (2024).

In our experiment, we tested the effectiveness of using
Gemma-2-2b-it to guide Gemma-2-9b and using Qwen2-
7B-Instruct to guide Qwen2-72B, with performance eval-
uations conducted on MT-Bench. As shown in Figure
4, GOOD achieves 94% of the performance of direct
fine-tuning alignment in the guidance of Gemma-2-2b-
it to Gemma-2-9b, and 92% of the performance in the
guidance of Qwen2-7B-Instruct to Qwen2-72B. The ex-
periments results indicate that the weak-to-strong align-
ment based on the GOOD method could simultaneously
surpass the performance of both the guiding and guided
models. This superiority proves that pre-trained models
themselves are fully capable of completing tasks effec-
tively but require appropriate guidance. The GOOD can
use a pair of guiding models to provide such guidance,
enabling the ”student” to outperform the ”teacher”.

The following analysis indicates that there is still room
for improvement in the GOOD method by performing
hyperparameter tuning, providing more accurate recogni-
tion, or offering stronger guidance, suggesting potential
hope for weak-to-strong guidance alignment to surpass
the performance of direct training of strong models.

5 ANALYSIS

5.1 WHERE DOES THE PERFORMANCE
ENHANCEMENT MAINLY COME FROM?

Where does the performance enhancement mainly come
from: the quantity of guided decoding or the accuracy in identifying positions that need alignment?
To illustrate why the guidance provided by GOOD can help the model achieve performance gains,
we evaluated the guided decoding ratio and MT Bench performance under different parameter con-
figurations, and compared them with random decoding.

In the weak-to-strong alignment experiment, we used the default Max Match configuration during
the alignment discrimination stage, which essentially sets both Top Pori and Top Pit to 0 in the
Top P-overlapping-based alignment discrimination method (the former being the Top P token of the
pre-trained version in the guidance model pair, and the latter being the Top P token of the aligned
version). Based on URIAL’s definition of token shift, we fixed Top Pit to 0 and adjusted the size of
Top Pori. By determining whether the highest probability token output by the aligned version of the
guidance model is within the Top P tokens output by its pre-trained version, we decide whether to
provide alignment guidance. Due to potential differences in vocabularies between the guiding model
and the guided model in GOOD, we count the number of guided decodings and original decodings
based on the character level in the final results, rather than calculating at the token level. As shown in
Figure 5, the scores of alignment guidance consistently range from 7.67 to 7.83 as the proportion of
guided decodings decreases from 0.30 to 0.23. The optimal parameters appear when the proportion
of guided decodings is slightly lower than the default configuration.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.30.30.3 0.29 0.280.28 0.25 0.23 0.2 0.16
Different Guided Decoding Ratio on Gemma-2-2b-it Gemma-2-9b

3

4

5

6

7

8

9

M
T 

Be
nc

h 
Sc

or
e

Gemma-2-9b, MT-Bench Score 2.69
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Top_P_ori 0.7, MT-Bench Score 7.67
Top_P_ori 0.8, MT-Bench Score 7.23
Top_P_ori 0.9, MT-Bench Score 6.9

Figure 5: Performance of alignment guidance with varying guided decoding ratios. The guiding
decoding ratio is controlled by adjusting Top Pori.
Even with approximately a 23% reduction in guided decodings (from 0.3 to 0.23), the model’s
performance does not experience significant changes. Meanwhile, when random guided decoding at
a 0.3 ratio was provided, the model’s performance was significantly lower than that of GOOD-guided
decoding, even though the latter used a lower ratio of guided decodings in some configurations. This
indicates that the GOOD method does not rely on providing a high quantity of guided decodings to
enhance the pre-trained model’s performance; instead, accurate guidance is more critical.

5.2 TOKEN CHANGES IN GOOD-GUIDED DECODING

To understand the alignment behavior characteristics of models guided by GOOD, we compared the
token changes between models aligned using the GOOD method and those aligned directly through
fine-tuning. We used the model’s responses to the MT-Bench dataset as the source of statistical data,
specifically examining the token changes in Llama-3-8B-Instruct guiding Qwen2-7B and Qwen2-
7B-Instruct guiding Llama-3-8B, for comparison with the token changes observed in Llama-3-8B-
Instruct and Qwen2-7B-Instruct.
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20
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44

Llama-3-8B-Instruct  Qwen2-7B Llama-3-8B-Instruct

Qwen2-7B-Instruct

(a) Llama-3-8B-Instruct → Qwen2-7B

33 32

8

29

11 12

48

Qwen2-7B-Instruct  Llama-3-8B Llama-3-8B-Instruct

Qwen2-7B-Instruct

(b) Qwen2-7B-Instruct → Llama-3-8B

Figure 6: Comparison of token changes in guided decoding alignments. The figure illustrates the
token change overlap between guided and guiding models.

Specifically, we counted the top 100 most frequently changing tokens in each setting. Since GOOD
operates at the string level, the tokens defined here are not single tokens from the vocabulary of
either the guiding model or the guided model. Instead, they are parsed from strings as consecutive
guided decoding characters, separated by spaces, and can be mapped to the vocabulary of either the
guiding model or the guided model (essentially a hybrid token statistic).

The results show that in the guidance of Llama-3-8B-Instruct to Qwen2-7B, the token changes over-
lap 70% with Llama-3-8B-Instruct and 64% with Qwen2-7B-Instruct. In the guidance of Qwen2-
7B-Instruct to Llama-3-8B, the token changes overlap 59% with Qwen2-7B-Instruct and 56% with
Llama-3-8B-Instruct.
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This indicates that the alignment behavior of the guided model more closely resembles that of the
guiding model, with less similarity to its directly fine-tuned version. Furthermore, the high degree of
overlap in token changes between the guided alignment and the guiding model’s alignment indicates
that the GOOD alignment method closely follows the alignment behavior of the guiding model.

5.3 FURTHER: MORE ACCURATE IDENTIFICATION AS WELL AS STRONGER GUIDANCE.

Configuration1 Configuration2 Configuration3
Different Model Configurations
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1: Gemma-2-9b-it  Qwen2-72B, Score=8.12
2: Qwen2-7B-Instruct  Qwen2-72B, Score=8.38
3: Qwen2-7B-Instruct (discrimination) + Gemma-2-9b-it (guidance)  Qwen2-72B, Score=8.45

Figure 7: Alignment performance when
using more accurate identification as
well as stronger guidance.

Analysis 5.1 indicates that accurately identifying the po-
sitions that need alignment is crucial for the effectiveness
of the GOOD method, as GOOD-guided alignment con-
sistently outperforms random guidance at all guiding ra-
tios. In this analysis, we further demonstrate that pro-
viding more accurate guidance and stronger guidance can
both enhance alignment performance, and these two ben-
efits can coexist to jointly improve model performance.

On the basis of Experiment 4.4, we continued to measure
the effect of using Gemma-2-9b-it to guide Qwen2-72B,
as well as the alignment performance when combining
the recognition from Qwen2-7B-Instruct with the guid-
ance from Gemma-2-9b-it. Since Qwen2-7B-Instruct and
Qwen2-72B are from the same series and trained on the
same dataset, Qwen2-7B-Instruct can provide more ac-
curate recognition compared to Gemma-2-9b-it. Mean-
while, Gemma-2-9b-it has a higher score on MT-Bench,
indicating it can provide stronger guidance at the same decoding positions. As shown in Figure 7,
the experiment found that the configuration combining the recognition from Qwen2-7B-Instruct and
the guidance from Gemma-2-9b-it outperformed using Qwen2-7B-Instruct or Gemma-2-9b-it alone.

This suggests that, based on the current method, we can continue to enhance GOOD’s performance
by further improving alignment recognition approach and strengthening alignment guidance. Exper-
iment 4.4 has already shown that the guidance provided by the current GOOD method can surpass
both the guiding and guided models and recover up to 94% of the performance of direct fine-tuning
alignment. Based on these facts, we believe that further improvements on GOOD or similar methods
are likely to have the potential to achieve stronger performance through weak-to-strong guidance,
surpassing direct fine-tuning alignment, without the need for modifying the model parameters.

Moreover, the separability of recognition and guidance demonstrated in this analysis indicates that
even in strong-to-weak guidance scenarios, it is possible to use a smaller, more energy-efficient
model for precise discrimination, while only invoking the stronger guidance model for inference on
a small number of tokens. This could lead to a more balanced multi-model inference system in terms
of both energy consumption and performance.

6 CONCLUSION

In this paper, we proposed GOOD, a novel alignment method that enhances pre-trained models
without accessing the model parameters and vocabularies. GOOD identifies the positions that need
to be aligned in real time during the guided model’s response generation, and introduces the output
of the guiding model at that position as a substitute for the decoding results of the guided model. By
proposing the GOOD method, we addressed some key limitations of existing non-tuning alignment
methods, including reliance on pre-designed contexts and constraints from model vocabularies, and
expanded the exploration of weak-to-strong alignment. Experiments show that GOOD can achieve
performance comparable to or even surpassing that of direct fine-tuning in terms of comprehensive
capability and safety. Even in weak-to-strong alignment scenarios, it can achieve performance close
to the directly fine-tuned version, outperforming both the guiding and guided models. GOOD can
also be applied to enhance already aligned models. Our analysis indicates that the performance
improvement primarily come from accurately identifying alignment related positions, and this can be
further enhanced by providing more accurate and stronger guidance, suggesting a potential direction
for non-tuning alignment to approach or even surpass direct alignment.
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A PROMPTS FOR HARMLESS RESPONSES EVALUATION

The prompt we used for harmless responses evaluation, using gpt-4-turbo (Achiam et al., 2023) as
the evaluator and request the results to be returned in JSON format.

System Prompt:

Help the user assess the harmfulness of a conversation. Answer in JSON format,
including only True or False, like this:
{’harmful’: True}
Note: DO NOT provide any other output or description besides this JSON content.

User Prompt:

‘‘‘conversation

Human: (question)

Assistant: (answer)

‘‘‘

Is this answer harmful?

B PROMPTS FOR CODE GENERATION

Below is the prompt we used for code generation. To facilitate the extraction of model-generated
code, we require the code to be enclosed in code block markers and have a fixed prefix for the
response.

Continue to generate code based on this prefix:

[INST] ‘‘‘python
(code)
‘‘‘
Please complete the given code. [/INST]
Sure! Here is the completed code:
‘‘‘python

C EXAMPLE OF CODE ENHANCEMENT

The Figure 8 shows a model response with code augmentation. Code block markers are used as
the start and end signs for code augmentation. The blue area in the figure represents the scope
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of code augmentation, while the red area indicates the guided position. In this example, we use
CodeLlama-7b-Python to guide Llama-2-13b-chat.

>>> User:
```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """

```

Please complete the given code.

(a) User prompt.

>>> Assistant:
Sure! Here's the completed code:
```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.

    Args:
        numbers (List[float]): List of floats
        threshold (float): Threshold for closeness

    Returns:
        bool: True if there are close elements, False otherwise

    Example:
        >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
        False
        >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
        True
    """

    for i in range(len(numbers) - 1):
        for j in range(i + 1, len(numbers)):
            if abs(numbers(i) - numbers(j)) < threshold:
                return True
    return False
```
Here's how the function works:

1. We iterate over the list of numbers twice: once from the beginning to the end, and
once from the end to the beginning.
2. In each iteration, we check if the current number is closer than the threshold to the
previous number or the next number. If it is, we return `True`.
3. If we reach the end of the list without finding any close numbers, we return `False`.

(b) Model’s response.

Figure 8: Model responses with code enhancement.

D COMPUTATIONAL COST AND OPTIMIZATION POTENTIAL OF GOOD

We conducted tests based on the current implementation of GOOD and analyzed the theoretical
optimal performance of the method.

D.1 CURRENT PERFORMANCE

We evaluated the alignment of Gemma2-2b-it → Gemma2-27b and Gemma2-2b-it → Qwen2-72.
The detailed test configurations are as follows:

• Due to varying GPU memory requirements for different configurations, the speed measure-
ments for Gemma2-2b-it → Gemma2-27b and Gemma2-27b-it were conducted on L40s
(48GB × 8), while the speed measurements for Gemma2-2b-it→ Qwen2-72 and Qwen2-
72-Instruct were performed on A100 (80GB × 8).

• For Gemma2-27b-it and Qwen2-72-Instruct, generation was conducted using the Hugging-
face Transformers library.

• The test question set was sourced from MT-Bench, covering multiple question categories.
• Model inference utilized caching, and all models involved were deployed using model

parallelism.
• We examined the decoding speed under various configurations as a function of generation

length and confirmed that the number of tokens already generated had no significant impact
on model inference speed.

The test results show that the average decoding speed for Gemma2-2b-it → Gemma2-27b is 1.27
times that of Gemma2-27b-it, and the average decoding speed for Gemma2-2b-it → Qwen2-72 is
1.15 times that of Qwen2-72-Instruct.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D.2 OPTIMIZATION POTENTIAL

It is worth noting that the current implementation of GOOD still holds significant potential for
performance improvement. In the current implementation, for each token’s decoding, the Guiding
model pair is first inferred, and based on its judgment, it is determined whether the Guided model
needs to be inferred (if alignment is deemed unnecessary, the Guided model’s inference is skipped).
The estimated time complexity formula for the current implementation is given below (taking the
inference speed of the original model as the baseline value of 1):

T (GOOD)

T (Vanilla)
= (2 · α · β · 1) + (1− Ω) + γ

The formula and symbol definitions are as follows:

• (2 · α · β · 1): Decoding time of the Guiding model pair (the Guiding model participates in
each decoding step).

• (1− Ω): Decoding time of the Guided model.

• γ: Additional time overhead caused by switching between the Guiding model pair and the
Guided model for inference.

• α: The ratio of the parameter size of a single Guiding model to that of the Guided model.

• β: The inference speed of the Guiding model relative to the Guided model at the same
parameter size.

• Ω: The average substitution ratio of decoding by the Guiding model pair.

For example, in Gemma2-2b-it→ Gemma2-27b:

• β = 1,

• α = 0.074,

• Ω = 0.3,

• γ is estimated as 0.422.

This estimation indicates that the current implementation of GOOD can further improve its speed
and achieve better inference performance than Vanilla Decoding by addressing the following direc-
tions:

• Since the two Guiding models can execute in parallel, the decoding time of the Guiding
model pair could potentially be reduced from 2 · α · β · 1 to α · β · 1.

• Since communication between the Guiding models involves only string exchanges with
minimal overhead, the Guiding model pair and the Guided model can be deployed sepa-
rately to reduce the overhead of switching models, potentially significantly decreasing γ.

• Since the Guiding models already perform predictions before the Guided model’s infer-
ence, the Guiding models can be viewed as Speculative Inference SSMs, with the Guided
model acting as the Verifier. According to estimates from SpecInfer (Miao et al., 2024), the
decoding performance of the Guided model can potentially improve by 1.3–2.4× without
additional overhead.

Thus, under the most ideal implementation, the GOOD decoding performance could be optimized
to:

(α · β · 1) + (1− Ω) · 0.42

For Gemma2-2b-it→ Gemma2-27b, this value equals 0.368.

Although the current implementation is far from achieving this theoretical performance, we believe
that GOOD can be further improved to achieve inference performance superior to Vanilla Decoding.
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D.3 COMPARISON OF DECODING PERFORMANCE: GOOD, PROXY-TUNING, AND VANILLA
DECODING

We conducted an evaluation comparing the decoding performance of three methods: GOOD
(Gemma-2-9b-it→ Gemma-2-27b), Proxy-Tuning (Gemma-2-9b-it→ Gemma-2-27b), and Vanilla
(Gemma-2-27b-it). The first question from MT-Bench was used as the prompt, with the maximum
generation length set to 512. The experiments were performed on L40s (48GB × 8).

As shown in Figure 9, the decoding speeds of GOOD and Vanilla are unaffected by generation
length, whereas Proxy-Tuning’s decoding speed slows down as the generation length increases
(which might be due to specific implementation details—in theory, Proxy-Tuning could also main-
tain a decoding speed independent of generation length).

For GOOD, the decoding speed exhibits two distinct regions: one where the guided model decoding
is skipped (denoted as Region A) and another where skipping does not occur (denoted as Region B).
Region A demonstrates significantly faster decoding compared to Vanilla decoding. When Specu-
lative Inference is incorporated, Region B can also be accelerated, bringing its average performance
closer to or even surpassing Vanilla decoding. This suggests that further improvements to GOOD
are very likely to achieve overall performance superior to Vanilla decoding, not only in terms of
speed but also with lower computational costs.
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Figure 9: Comparison of Decoding Performance

E APPLICATION SCENARIOS AND VALUE OF GOOD

E.1 REDUCING REPETITIVE FINE-TUNING

GOOD enables fine-tuning conducted on one LLM to be transferred to another LLM, thereby avoid-
ing unnecessary repetitive fine-tuning and reducing the number of model variants caused by different
fine-tuning processes. Even if these models differ only slightly, their redundant storage can lead to
significant waste of storage resources.

E.2 STUDYING THE IMPACT OF FINE-TUNING

GOOD can be used to analyze the sources of performance gains from fine-tuning. For example, it
can help determine whether the performance improvement stems from changes in linguistic habits
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or from deeper learning. If it is the former, simply transferring these linguistic habits to other models
may achieve similar performance gains. If it is the latter, the gains from such a transfer should be
significantly lower than direct fine-tuning (note that this comparison should use equally accurate
alignment discrimination).

E.3 LLM EDGE-CLOUD COLLABORATION

Since GOOD involves only string-level information exchange between the guiding model pair and
the guided model, it enables low-cost collaboration between edge models and cloud models during
decoding. Our analysis in Section 5.2 shows that GOOD-guided alignment retains the alignment
characteristics of the guiding models. This means that in LLM edge-cloud collaboration supported
by GOOD, it is possible to perform customized fine-tuning of edge models without exposing user-
private conversational data. This allows the collaborative output to incorporate both user-specific
customization and the powerful capabilities of cloud models.

In this scenario, cloud models can use not only pretrained models but also aligned models. We
conducted a series of tests demonstrating that in GOOD-supported edge-cloud collaboration, overall
performance improves as the cloud model’s performance enhances, even without updating the user’s
edge model (Table 3):

Table 3: Performance of GOOD with aligned models as guided models.

Model MT-Bench Score
Gemma2-2b-it 7.60

Llama3-8b-Instruct 7.75
Gemma2-2b-it→Llama3-8b-Instruct 7.33

Qwen2-7b-Instruct 8.02
Gemma2-2b-it→Qwen2-7b-Instruct 7.80

Gemma2-9b-it 8.34
Gemma2-2b-it→Gemma2-9b-it 8.44

This characteristic means that GOOD can extend the lifespan of customized models by preserving
the unique features of various local fine-tunings while keeping their performance up-to-date, rather
than allowing them to quickly fall behind newer models and require frequent updates.

E.4 GOOD AS FURTHER VALIDATION OF THE SUPERFICIAL ALIGNMENT HYPOTHESIS

The Superficial Alignment Hypothesis suggests that most of a model’s knowledge and capabilities
are acquired during pretraining, with alignment primarily teaching the model which sub-distribution
of responses to utilize in user interactions. By transferring alignment-related tokens from one model
to another without any fine-tuning, GOOD only incurs minimal performance loss. This supports
the Superficial Alignment Hypothesis to some extent, indicating that alignment in models likely
changes linguistic habits rather than learning new knowledge or capabilities.

F IS THERE A MINIMUM SIZE OF THE GUIDING MODEL?

We evaluated the performance of Qwen2.5-0.5b-Instruct guiding Qwen2-7b and Qwen2-72b, with
the results shown in Table 4.
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Table 4: Performance of GOOD with Qwen2.5-0.5b-Instruct guiding Qwen2-7b and Qwen2-72b.

Model MT-Bench Score
Qwen2.5-0.5b-Instruct 5.01
Qwen2-7b 6.65
Qwen2.5-0.5b-Instruct→ Qwen2-7b 6.27
Qwen2-72b 7.63
Qwen2.5-0.5b-Instruct→ Qwen2-72b 7.21

Although Qwen2.5-0.5b-Instruct can benefit from the enhancement of pretrained models when guid-
ing Qwen2-7b and Qwen2-72b, its weaker performance compared to the guided pretrained models
leads to an overall performance degradation (falling below the pretrained models’ original scores).
This result indicates that, at the very least, an aligned guiding model weaker than the guided pre-
trained model should not be used for guidance.

We further evaluated the effectiveness of using Qwen2.5-0.5b-Instruct to guide Gemma2-9b, whose
MT-Bench score is lower than that of the guiding model. The results are shown in Table 5.

Table 5: Performance of Qwen2.5-0.5b-Instruct guiding Gemma2-9b.

Model MT-Bench Score
Qwen2.5-0.5b-Instruct 5.01
Gemma2-9b 2.69
Qwen2.5-0.5b-Instruct→ Gemma2-9b 5.37

Additionally, we examined the performance of Qwen2.5-0.5b-Instruct providing guidance under the
most accurate alignment discrimination (AD). In this context, ”most accurate alignment discrimina-
tion” refers to comparing the aligned version of the guided model with the unaligned guided model
itself (e.g., Gemma-2-9b-it and Gemma-2-9b) to determine whether alignment is needed. If align-
ment is required, the guiding model’s output is used at the corresponding position. The results are
shown in Table 6.

Table 6: Performance of Qwen2.5-0.5b-Instruct guiding under most accurate alignment discrimina-
tion (AD).

Model MT-Bench Score
Qwen2.5-0.5b-Instruct 5.01
Gemma-2-9b 2.69
Qwen2.5-0.5b-Instruct→ Gemma-2-9b (with AD) 6.70
Qwen2-7b 6.65
Qwen2.5-0.5b-Instruct→ Qwen2-7b (with AD) 7.19

These results suggest that, as long as the alignment discrimination is sufficiently accurate, even a
0.5b-parameter model can provide meaningful guidance for alignment.

G IMPORTANCE OF ALIGNMENT DISCRIMINATION AND TOKEN
SUBSTITUTION

In this section, we investigated the individual importance of alignment discrimination and token sub-
stitution. These results highlight that both the accuracy of alignment discrimination and the quality
of the guiding model are crucial for achieving optimal performance. Even with the most accurate
alignment discrimination, the quality of the guiding model plays a significant role in determining
the final outcomes.
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Importance of Alignment Discrimination: More Accurate Identification Leads to Better Ef-
fectiveness. The results in Table 7 highlight the importance of accurate alignment discrimination.
In rows labeled with AD, the most accurate alignment discrimination was used. This means com-
paring the aligned version of the guided model with the unaligned version (e.g., Gemma-2-9b-it
vs. Gemma-2-9b) to determine whether alignment is needed. If alignment is required, the guiding
model’s output is used at that position.

Table 7: Performance comparison with and without AD.

Model MT-Bench Score
Gemma-2-2b-it→ Gemma-2-9b (with AD) 8.13
Gemma-2-2b-it→ Gemma-2-9b 7.81
Gemma-2-2b-it→ Qwen2-7b (with AD) 8.09
Gemma-2-2b-it→ Qwen2-7b 7.35

Importance of Token Substitution: Stronger Guidance Yields Better Results. The results in
Table 8 demonstrate that stronger guidance improves performance, even under the same alignment
discrimination conditions.

Table 8: Performance comparison with different guiding models for token substitution.

Model MT-Bench Score
Gemma-2-9b-it→ Qwen2-72B 8.12
Qwen2-7B-Instruct→ Qwen2-72B 8.38
Qwen2-7B-Instruct (discrimination) + Gemma-2-9b-it (guidance)→ Qwen2-72B 8.45

Even with the Most Accurate Alignment Discrimination, the Quality of the Guiding Model Af-
fects Final Performance. Table 9 shows that even with the most accurate alignment discrimination,
the quality of the guiding model significantly impacts the final outcomes.

Table 9: Impact of guiding model quality with the most accurate alignment discrimination.

Model MT-Bench Score
Gemma-2-2b-it 7.60
Qwen2.5-0.5b-Instruct 5.01
Gemma-2-2b-it→ Gemma-2-9b (with AD) 8.13
Qwen2.5-0.5b-Instruct→ Gemma-2-9b (with AD) 6.70
Gemma-2-2b-it→ Qwen2-7b (with AD) 8.03
Qwen2.5-0.5b-Instruct→ Qwen2-7b (with AD) 7.19

H MORE COMPARISON WITH BASELINE METHODS

Table 10 compares the performance of GOOD with baseline methods across various benchmarks,
including MT-Bench, AlpacaEval, and Harmless.

Table 10: More Comparison of GOOD with baseline methods.

Method Model MT-Bench AlpacaEval Harmless
Vanilla (Baseline) Gemma2-2b-it 7.60 35.65 0.96
Vanilla (Baseline) Gemma2-9b-it 8.34 34.53 0.97
GOOD Gemma2-2b-it→ Gemma2-9b 7.81 32.05 0.95
Proxy-Tuning Gemma2-2b-it→ Gemma2-9b 3.81 9.94 0.90
GaC Gemma2-2b-it + Gemma2-9b 5.52 10.12 0.88
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