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ABSTRACT

In this paper, we aim to build an adversarially robust zero-shot image classifier.
We ground our work on CLIP, a vision-language pre-trained encoder model that
can perform zero-shot classification by matching an image with text prompts “a
photo of <class-name>”. Purification is the path we choose since it does not re-
quire adversarial training on specific attack types and thus can cope with any fore-
seen attacks. We then formulate purification risk as the KL divergence between the
joint distributions of the purification process of denoising the adversarial samples
and the attack process of adding perturbations to benign samples, through bidirec-
tional Stochastic Differential Equations (SDEs). The final derived results inspire
us to explore purification in the multi-modal latent space of CLIP. We propose two
variants for our CLIPure approach: CLIPure-Diff which models the likelihood of
images’ latent vectors with the DiffusionPrior module in DaLLE-2 (modeling the
generation process of CLIP’s latent vectors), and CLIPure-Cos which models the
likelihood with the cosine similarity between the embeddings of an image and “a
photo of a.”. As far as we know, CLIPure is the first purification method in multi-
modal latent space and CLIPure-Cos is the first purification method that is not
based on generative models, which substantially improves defense efficiency. We
conducted extensive experiments on CIFAR-10, ImageNet, and 13 datasets that
previous CLIP-based defense methods used for evaluating zero-shot classification
robustness. Results show that CLIPure boosts the SOTA robustness by a large
margin, e.g., from 71.7% to 91.1% on CIFAR10, from 59.6% to 72.6% on Ima-
geNet, and 108% relative improvements of average robustness on the 13 datasets
over previous SOTA.

1 INTRODUCTION

Image classifiers are usually trained in a supervised manner with training data and evaluated on the
corresponding test data until recently several vision-language models have emerged as zero-shot
classifiers (Li et al., 2023; Radford et al., 2021; Li et al., 2022). Among them, CLIP (Radford et al.,
2021) is an example that is popular, effective, and efficient. CLIP performs zero-shot classification
by forming text prompts “a photo of <class-name>” of all the candidate categories, and selecting
the class with the highest similarity with the image embedding. Despite its efficacy, when facing
adversarial attacks, its classification accuracy can drop to zero, similarly vulnerable to other neural
classifiers.

Existing methods to enhance adversarial robustness follow two primary paths: adversarial training
and purification. Adversarial Training (AT) (Madry et al., 2017; Rebuffi et al., 2021; Wang et al.,
2023) incorporates adversarial examples into model training to boost robustness. It often achieves
SOTA performance in defending against the same attacks while failing to defend against unseen at-
tacks (Chen et al., 2023). FARE (Schlarmann et al., 2024) and TeCoA (Mao et al., 2022) are two AT
approaches integrated with CLIP, which enhance CLIP’s zero-shot classification robustness while
harming clean accuracy significantly and do not generalize to other types of attacks. Adversarial
purification (Song et al., 2017; De Bortoli et al., 2021) seeks to eliminate adversarial perturbations
by optimizing samples to align them with the distribution of benign samples. Instead of adversarial
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samples, this approach often requires a generative
model that can model the probability of benign sam-
ples. It can handle unforeseen attacks but often per-
forms worse than AT methods on seen attacks and
has lower inference efficiency. In this paper, we aim
to produce an adversarially robust zero-shot classi-
fier, so we opt for integrating purification with CLIP.
To explore a better purification method, we formal-
ize the purification risk and theoretically analyze
what may affect purification performance. Con-
cretely, inspired by Song et al. (2020) that models
the diffusion process with bidirectional Stochastic
Differential Equations (SDEs) (Anderson (1982)),
we model the process of adversarial attack (i.e.,
adding perturbations to benign examples) with a
forward SDE and purification (i.e., denoising ad-
versarial examples) with a reverse SDE. Within
this framework, we evaluate the risk of purification
methods by measuring the KL divergence between
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Figure 1: Adversarial robustness of two
CLIPure versions versus adversarially
trained CLIP models, evaluated against
AutoAttack with ℓ∞ = 4/255 across 13
zero-shot classification datasets.

the joint distributions of the purification and attack steps. After some derivation, we find that purifi-
cation risk is related to 1) the negative KL divergence of the probability distributions of adversarial
and benign examples (i.e., −KL(p(xadv)||p(xben))), and 2) the ℓ2 norm of the gradients of adversar-
ial samples’ probability distribution regarding xadv (i.e.,∇ log p(xadv)). This indicates that purifica-
tion risk can be affected by: 1) the differences between p(xadv) and p(xben); 2) the smoothness of
p(xadv) and possibly its dimension.

To the best of our knowledge, existing adversarial purification methods are all conducted in pixel
space. Given the above factors that can affect purification risk, it is natural to ask: are there purifica-
tion approaches better than in pixel space? As we know, pixel space is high-dimensional and sparse
while latent embedding space is denser and smoother. Moreover, multi-modal latent representations
are theoretically proven to have better quality than uni-modal (Huang et al., 2021). CLIP, as a vision-
language-aligned encoder model, has shown the superiority of its multi-modal embeddings on many
tasks (Radford et al., 2021). Accordingly, we propose to conduct purification in CLIP’s latent space
for adversarially robust zero-shot classification.

Our method - CLIPure has two variants that model the likelihood of images’ latent vectors with
CLIP differently: 1) CLIPure-Diff: a generative version that employs the DiffusionPrior module
of DaLLE-2 (Ramesh et al., 2022) to model the likelihood of an image embedding with a diffu-
sion model; 2) CLIPure-Cos: a discriminative version that models the likelihood with the cosine
similarity between the image embedding and text embedding of a blank template “a photo of a .”.
Compared to likelihood modeling in pixel space and uni-modal latent space, we find that both our
methods have several orders of magnitude larger KL divergence between the distributions of adver-
sarial and benign samples than the former, and significantly higher than the latter (shown in Figure
2). Remarkably, CLIPure-Cos becomes the first purification method that does not rely on generative
models and thus boosts defense efficiency by two or three orders of magnitude (See Table 3).

Since CLIP aligns image and text embeddings by their cosine similarities (Radford et al., 2021),
vector lengths are not important to reflect the vector relationship in CLIP’s latent space. Hence,
during likelihood maximization in CLIPure, we normalize the latent vectors to unit vectors to di-
minish the effect of vector length. This is critical to our approach, as our experiments indicate that
the purification process could be obstructed by vector magnitude and ultimately fail.

We compare the robustness of CLIPure and SOTA methods against the strongest adaptive attacks
- AutoAttack(Croce & Hein, 2020) with different ℓ2 or ℓ∞ bounds on various image classifica-
tion tasks, including the popular CIFAR10, ImageNet, and 13 other datasets (e.g., CIFAR100,
ImagetNet-R) that evaluate zero-shot classification robustness in FARE (Schlarmann et al., 2024)
and TeCoA (Mao et al., 2022). Note that CLIPure always conducts zero-shot classification and
defense without the need for any dataset-specific training while the baselines can be any methods
that are current SOTA. We are delighted to see that CLIPure boosts the SOTA robustness on all the
datasets by a large margin, e.g., from 71.7% to 91.1% on CIFAR10 when ℓ∞ = 8/255, from 59.6%
to 72.6% on ImageNet when ℓ∞ = 4/255. CLIPure achieves 45.9% and 108% relative improve-
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ments over previous SOTA - FARE(Schlarmann et al., 2024) regarding average robustness across
the 13 zero-shot test datasets facing AutoAttack with ℓ∞ = 2/255 and 4/255, depicted in Figure 1.
Our work shows that purification in multi-modal latent space is promising for zero-shot adversarial
robustness, shedding light on future research including but not limited to image classification.

2 RELATED WORK

Zero-Shot Image Classification. Unlike traditional models that are limited to predefined categories,
vision-language models (VLMs) are trained on open-vocabulary data and align the embeddings
of images and their captions into a common semantic space. This enables them to perform as
zero-shot classifiers by matching the semantics of images to textual categories, offering superior
generality and flexibility. CLIP (Radford et al., 2021), trained on extensive internet image-text pairs,
achieves advanced results in zero-shot classification tasks. Additionally, other VLMs including
Stable Diffusion (Rombach et al., 2022), Imagen (Saharia et al., 2022), and DaLLE-2 (Ramesh
et al., 2022) also possess zero-shot classification capabilities (Li et al., 2023; Clark & Jaini, 2024;
Radford et al., 2021).

Adversarial Purification in Pixel Space. A prevalent paradigm of adversarial purification aims to
maximize the log-likelihood of samples to remove perturbations in pixel space. Since purification
has no assumption of the attack type, enabling it to defend against unseen attacks using pre-trained
generative models such as PixelCNN (Song et al., 2017), GANs (Samangouei, 2018), VAEs (Li & Ji,
2020), Energy-based models (Hill et al., 2020; Yoon et al., 2021), and Diffusion Models (Nie et al.,
2022; Ho et al., 2020; Chen et al., 2023). Owing to the capability of diffusion models, diffusion-
based adversarial purification achieves state-of-the-art robustness among these techniques.

CLIP-based Defense. While CLIP achieves impressive accuracy in zero-shot classification, it re-
mains vulnerable to imperceptible perturbations (Fort, 2021; Mao et al., 2022). Adversarially train-
ing the CLIP model on ImageNet / Tiny-ImageNet (Schlarmann et al., 2024; Mao et al., 2022; Wang
et al., 2024) enhances its robustness but undermines its zero-shot capabilities and struggles against
unseen attacks. Choi et al. (2025) suggests smoothing techniques for certification. Li et al. (2024a)
advocates using robust prompts for image classification, but the defensive effectiveness is limited.
Additionally, other research focuses on the out-of-distribution (OOD) robustness of the CLIP model
(Tu et al., 2024; Galindo & Faria), which is orthogonal to our adversarial defense objectives.

3 PRELIMINARY: CLIP AS A ZERO-SHOT CLASSIFIER

In this section, we introduce how CLIP is trained and how CLIP acts as a zero-shot classifier. CLIP
(Contrastive Language Image Pre-training) (Radford et al., 2021), consists of an image encoder Enci

and a text encoder Enct. It is trained on 400 million image-text pairs from the internet, aiming to
align image embeddings with their corresponding text captions through contrastive learning:

LCLIP = − 1

2N

N∑
n=1

[
log

exp(cos(zi
n, z

t
n)/τ)∑N

m=1 exp(cos(z
i
n, z

t
m)/τ)

+ log
exp(cos(zi

n, z
t
n)/τ)∑N

m=1 exp(cos(z
i
m, zt

n)/τ)

]
, (1)

where N represents the number of image-caption pairs, zi
n = Enci(imagen) and zt

n = Enct(textn)
are the embeddings of the n-th image and text respectively, τ is a temperature parameter, and cos(·, ·)
denotes the cosine similarity function.

This alignment enables CLIP to perform zero-shot classification by matching image embeddings
with text embeddings of a template “a photo of a <class-name>”, where <class-name>” iterates
all the possible classes of a dataset. Without loss of generality, given an image, let zi denote its
CLIP-encoded image embedding, and zt

c be the text embedding of a possible class description, i.e.,
zt
c = Enct(“a photo of a class c”). The predicted class ŷ is determined by:

ŷ = argmax
c

cos(zi, zt
c). (2)

For enhanced classification stability, as in Radford et al. (2021), we use 80 templates of diverse
descriptions in combination with class names, such as “a good photo of <class-name>”. In our
experiments, each class c’s embedding, zt

c in Eq. 2 is the average text embedding of c paired with
all the templates.
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4 CLIPURE: ADVERSARIAL PURIFICATION IN LATENT SPACE VIA CLIP

In this section, we outline the methodology of our CLIPure, focusing on adversarial purification
within CLIP’s latent space. We first define purification risk through a Stochastic Differential Equa-
tion (SDE) perspective and derive its lower bound in Section 4.1. Section 4.2 introduces the rationale
for CLIPure to potentially achieve a smaller purification risk and two variants of modeling sample
likelihood. In Section 4.3, we propose normalizing latent vectors to diminish the effect of vector
length during purification to align with CLIP’s latent space modeled using cosine similarity.

4.1 ADVERSARIAL PURIFICATION RISK

Considering that adversarial attacks progressively add perturbations to an image while purification
gradually removing noise to restore the original image, we formulate both the attack and purification
processes through the lens of Stochastic Differential Equations (SDEs). This framework allows us
to propose a measure of purification risk based on the divergence between the attack and purification
processes, providing insights into what affects purification effectiveness.

We formulate the attack process as a transformation from the benign distribution pben(x) to an
adversarial example distribution padv(x) by an attack algorithm. Note that for simplicity we use p(x)
to represent pben(x) in this paper. Take untargeted PGD-attack (Madry et al., 2017) for instance, the
adversarial attack behavior on a benign sample x0 can be described as:

dx = αsign(∇xL(θ;xt, ytrue))dt+ σdwt, x0 ∼ p(x), s.t., ∥xT − x0∥ρ ≤ ϵ, (3)

where α represents the attack step size, p(x) denotes the distribution of benign samples,
L(θ;xt, ytrue) denotes the loss of xt classified by the model with parameters θ as the ground truth
category ytrue at attack step t (where t ∈ [0, T ]), dwt denotes the Wiener process (Brownian mo-
tion). The constant σ serves as a scaling factor for the noise component and the adversarial example
xT is bounded by ϵ in ℓρ norm.

The corresponding reverse-time SDE (Anderson, 1982) of Eq. 3 describes the process from the
adversarial example distribution padv to the purified sample distribution ppure, and is expressed as:

dx = [αsign(∇xL(θ;xt, ytrue︸ ︷︷ ︸
classifier guidance

))− σ2∇ log p(xt︸ ︷︷ ︸
purification

)]dt+ σdw̃t, xT ∼ padv(x), (4)

where log p(xt) represents the log-likelihood of xt concerning the distribution of clean samples,
analogous to the score function described in Score SDE (Song et al., 2020), dw̃t represents the
reverse-time Wiener process. A detailed discussion on the form of the reverse-time SDE can be
found in Appendix A.

Note that in the reverse-time SDE, t progresses from T to 0, implying that dt is negative. Accord-
ing to Eq. 4, the reverse SDE aims to increase the sample’s log-likelihood while simultaneously
decreasing the loss of classifying x to ytrue. In Eq. 4, the purification term is related to the common
objective of adversarial purification xpure = argmaxx log p(x). The classifier guidance term has
been employed to enhance purification (Zhang et al., 2024), and their objective aligns well with Eq.
4. We will incorporate this guidance term with CLIPure in Appendix D.5 and see its impact.

Then, we define the joint distribution of the attack process described by the forward SDE in Eq. 3
as P0:T = p(x0 = xben,x1, ...,xT = xadv) ∈ R(T+1)×d, where each xt ∈ Rd. For the pu-
rification process defined by the reverse-time SDE in Eq. 4, we denote the joint distribution as
Q0:T = p(x0 = xpure,x1, ...,xT = xadv). Here, xben, xadv, and xpure denotes the benign sample,
adversarial example, and purified sample respectively. We define the purification risk R(Q) by the
KL divergence between the reverse SDE (corresponding to the purification process) and the joint
distribution of forward SDE (representing the attack process):

R(Q) := KL(Q0:T ∥P0:T ) = KL(Q0,T ∥P0,T ) + EQ0,T
[KL(Q1:T−1|0,T ∥P1:T−1|0,T )]

≥ KL(Q0,T ∥P0,T ).
(5)

Then, we focus solely on the purified example, i.e., KL(Q0,T ∥P0,T ) rather than the entire purifi-
cation trajectory. The forward SDE in Eq. 3 describes the transformation from p(xben) to p(xadv),
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Algorithm 1 CLIPure: Adversarial Purification in Latent Space via CLIP

Required: An off-the-shelf CLIP model including an image encoder Enci and a text encoder Enct,
textual embedding z̄t of the blank templates (without class names, e.g., ’a photo of a.’), purification
step N , step size η, and a DiffusionPrior model ϵθ from DaLLE-2 (for generative version).
Input: Latent embedding of input example zi

Output: label y
for i = 1 to N , do

step1: Obtain latent embedding in polar coordinates
direction u = zi/∥zi∥22, magnitude r = zi/u

step2: Compute log-likelihood
CLIPure-Diff via DiffusionPrior ϵθ

sample ϵ ∼ N (0,1)
log p(zi) = −∥ϵθ(zi

t, t, z̄
t)− ϵ∥22

CLIPure-Cos via CLIP

log p(zi) = cos(zi, z̄t)

step3: Update latent variable
u← u+ η ∂ log p(zi)

∂zi · ∂z
i

∂u , zi ← r · u
step4: Classification based on purified embedding

predict label y across candidate categories according to Eq. 2
end for
return predicted label y

enabling us to obtain the conditional probability p(xadv|xben). Simultaneously, the reverse SDE in
Eq. 4 supports the transformation from p(xadv) back to p(xpure), helping us to quantify p(xpure|xadv).
Then we can derive that:

R(Q) ≥ KL(Q0,T ∥P0,T ) = KL(p(xpure,xadv)∥p(xben,xadv))

= Exadv [KL(p(xpure|xadv)∥p(xadv|xben))]−KL(p(xadv)∥p(xben))

=
1

2
Exadv

[
∇ log p(xadv)

T∇ log p(xadv)σ
2∆t

]
−KL(p(xadv)∥p(xben)),

(6)

where ∆t denotes a small time interval for attack and purification, related to the perturbation mag-
nitude. A detailed proof of the result is provided in Appendix B.

The result in Eq. 6 highlights that the lower bound of the purification risk is influenced by two
factors: 1) the smoothness of the log-likelihood function at adversarial examples and possibly the
sample dimension, as indicated by the ℓ2 norm of ∇ log p(xadv), 2) the differences between the
likelihood of clean and adversarial samples in the benign example space.

4.2 ADVERSARIAL PURIFICATION IN CLIP’S LATENT SPACE

In this section, we further explore how to achieve a smaller purification risk R(Q). Considering
Exadv

[
∇ log p(xadv)

T∇ log p(xadv)σ
2∆t

]
within R(Q) in Eq. 6, standard pixel space purification

may lead to higher purification risks due to its sparsity and possibly peaked gradient distribution
in high dimensionality. Thus, we are curious to investigate purification in latent space where the
distribution of sample densities is more uniform and smoother.

KL(p(xadv)∥p(xben)) in Eq. 6 implies representations that excel at detecting out-of-distribution ad-
versarial examples are likely to carry a lower risk of purification errors. Huang et al. (2021) suggest
that multi-modal latent spaces offer superior quality compared to uni-modal counterparts. Inspired
by this observation, CLIP’s well-aligned multi-modal latent space, where image embeddings are
guided by the semantics of finer-grained words in an open vocabulary, may provide a foundation for
purification with a lower risk.

To validate the efficacy of different spaces in modeling sample likelihood for adversarial purifica-
tion, we focus on the term KL(p(xadv)∥p(xben)) in the lower bound of the purification risk R(Q).
As illustrated in Figure 2, we extract 512 samples from ImageNet (Deng et al., 2009) and gener-
ate adversarial examples by AutoAttack (Croce & Hein, 2020) on the CLIP (Radford et al., 2021)
classifier. We explore four types of likelihood modeling approaches:
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(a) Pixel Space

log p(z)

KL = 9.2x10 5

clean
adv

(b) Vision Latent Space
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clean
adv

(c) Multi-modal(Diff)

log p(z)

KL = 3.0x10 4

clean
adv

(d) Multi-modal(Cos)

Figure 2: Negative log-likelihood estimated by diffusion models on (a) pixel space via EDM, (b)
uni-modal latent space via VQVAE, (c) multi-modal latent space via DiffusionPrior, and (d) multi-
modal latent space via CLIP (using cosine similarity for log-likelihood estimation). KL represents
the value of KL(p(xadv)∥p(xben)) discussed in Section 4.2 indicating the difference between clean
and adversarial example distribution.

In Pixel Space: Sample likelihood of the joint distribution of image pixels is estimated by a gener-
ative model (we use an advanced diffusion model - EDM(Karras et al., 2022)). Figure 2a indicates
that even EDM struggles to distinguish between clean and adversarial sample distributions at the
pixel level. We use the Evidence Lower Bound (ELBO) to estimate log-likelihood, expressed as
log pθ(x) ≥ −Eϵ,t[∥ϵθ(xt, t) − ϵ∥22] + C, where ϵ ∼ N (0, I), and C is typically negligible (Ho
et al., 2020; Song et al., 2020).

In Vision Latent Space: The likelihood of the joint distribution of an image embedding in a uni-
modal space is estimated with the VQVAE component of the Stable Diffusion (SD) model (Rombach
et al., 2022). Note that although SD is multi-modal, its VQVAE component is trained solely on
image data and keeps frozen while training the other parameters, making it a vision-only generative
model of latent vectors. Compared to Figure 2a, Figure 2b demonstrates improved capability in
distinguishing clean and adversarial sample distributions.

In Vision-Language Latent Space: For CLIP’s latent space, we present two approaches to estimate
the log-likelihood of image embeddings, i.e., log p(zi):

(1) Diffusion-based Likelihood Estimation (named CLIPure-Diff and detailed in Algorithm 1): The
DiffusionPrior module in DaLLE-2 (based on CLIP) (Ramesh et al., 2022) models the generative
process of image embeddings conditioned on text embeddings. Employing DiffusionPrior, we esti-
mate the log-likelihood log pθ(z

i) by conditioning on a blank template “a photo of a .”:

log pθ(z
i) ≈ log pθ(z

i|z̄t) = −Eϵ,t[|ϵθ(zi
t, t, z̄

t)− ϵ|22] + C, (7)

where ϵθ(z
i, t,zt) is the UNet (Ronneberger et al., 2015) in DiffusionPrior (Ramesh et al., 2022),

parameterized by θ, with the noised image embedding zi
t at timestep t under the condition of text

embedding zt, and C is a constant typically considered negligible (Ho et al., 2020).

(2) Cosine Similarity-based Likelihood Estimation (named CLIPure-Cos and detailed in Algo-
rithm 1): We estimate log pθ(z

i) by computing the cosine similarity between image embedding zi

and the blank template’s text embedding:
log pθ(z

i) ≈ cos(zi, z̄t). (8)
Note that by modeling likelihood without using generative models, the defense efficiency can be
significantly boosted. The inference time of CLIPure-Cos is only 1.14 times of the vanilla CLIP for
zero-shot classification, shown in Table 3.

Figure 2c and Figure 2d show that CLIPure-Diff and CLIPure-Cos have several orders larger magni-
tude KL divergence between clean and adversarial samples than modeling likelihood in pixel space.
Modeling likelihood in uni-modal latent space also leads to larger KL divergence than pixel space
but is smaller than multi-modal space. It indicates that purification in CLIP’s latent space is promis-
ing to have lower purification risk and enhance adversarial robustness.

4.3 ADVERSARIAL PURIFICATION BASED ON NORMALIZED UNIT VECTORS

Typically, purification in pixel space is conducted through gradient ascent on the sample x by using
the derivative of the log-likelihood log p(x): x ← x+ α∇ log p(x), where α denotes the step size

6
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Table 1: Comparison of performance against AutoAttack under ℓ∞ (ϵ = 8/255) and ℓ2 (ϵ = 0.5)
threat model on CIFAR-10 dataset, showcasing various defense methods including adversarial train-
ing and purification mechanisms. We highlight defenses that operate in pixel or latent space (“de-
fense space”), and indicates the modal information used in defense strategies with “V” for Vision
and “V-L” for Vision-Language multimodal representations. We use underlining to highlight the
best robustness for baselines, and bold font to denote the state-of-the-art (SOTA) across all methods.

Method Defense
Space

Latent
Modality

Clean
Acc (%)

Robust Acc (%)
ℓ∞ = 8/255 ℓ2 = 0.5

w/o
Defense

WRN-28-10 (Zagoruyko, 2016) - V 94.8 0.0 0.0
StableDiffusion (Li et al., 2023) - V 87.8 0.0 38.8
CLIP (Radford et al., 2021) - V-L 95.2 0.0 0.0

Adv.
Train

AT-DDPM-ℓ2 (Rebuffi et al., 2021) Pixel V 93.2 49.4 81.1
AT-DDPM-ℓ∞ (Rebuffi et al., 2021) Pixel V 88.8 63.3 64.7
AT-EDM-ℓ2 (Wang et al., 2023) Pixel V 95.9 53.3 84.8
AT-EDM-ℓ∞ (Wang et al., 2023) Pixel V 93.4 70.9 69.7

Other TETRA (Blau et al., 2023) Pixel Vision 88.2 72.0 75.9
RDC (Chen et al., 2023) Pixel Vision 89.9 75.7 82.0

Purify

LM - StableDiffusion Latent V 37.9 6.9 8.6
DiffPure (Nie et al., 2022) Pixel V 90.1 71.3 80.6
LM - EDM (Chen et al., 2023) Pixel V 87.9 71.7 75.0
Our CLIPure - Diff Latent V-L 95.2 88.0 91.3
Our CLIPure - Cos Latent V-L 95.6 91.1 91.9

for updates. However, given that the cosine similarities between vectors in CLIP’s latent space are
the criterion for alignment where vector lengths do not take effect, it is inappropriate to directly
apply the typical purification update manner to this space. Thus, we normalize the image vectors
to unit vectors to diminish the effect of vector length. Specifically, we first normalize the vector
zi = Enci(x), obtained from the CLIP model image encoder for an input sample x (potentially an
adversarial sample), to a unit vector u = zi/∥zi∥22. Then we calculate the sample’s log-likelihood
log p(zi) and compute the gradient gu by the chain rule:

gu =
∂ log p(zi)

∂u
=

∂ log p(zi)

∂zi
· ∂z

i

∂u
. (9)

This gradient gu is then used to update the direction zi for adversarial purification, detailed in
Algorithm 1. Note that CLIPure is based on the original CLIP and does not need any extra training.

We also attempted adversarial purification by directly optimizing vectors instead of the normalized
version. We experimented extensively with various steps, parameters, and momentum-based meth-
ods, but found it challenging to achieve robustness over 10% on ImageNet, indicating that it is
difficult to find an effective purification path with vector lengths taking effect.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. Following the RobustBench (Croce & Hein, 2020) settings, we assess robustness on
CIFAR-10 and ImageNet. To compare against CLIP-based zero-shot classifiers with adversarial
training (Schlarmann et al., 2024; Mao et al., 2022), we conduct additional tests across 13 image
classification datasets (detailed in Appendix C.1). In line with Schlarmann et al. (2024), we ran-
domly sampled 1000 examples from the test set for our evaluations.

Baselines. We evaluate the performance of pixel space purification strategies employing genera-
tive models, including Purify-EBM (Hill et al., 2020) and ADP (Yoon et al., 2021) based on Energy-
Based Models; DiffPure based on Score SDE (Nie et al., 2022) and DiffPure-DaLLE2.Decoder
based on Decoder of DaLLE2 (Ramesh et al., 2022); GDMP based on DDPM (Ho et al., 2020);
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Table 2: Performance comparison of defense methods on ImageNet against AutoAttack with ℓ∞
threat model (ϵ = 4/255). Indicates whether the methods use ImageNet training set for training as
zero-shot. “V” stands for Vision, and “V-L” for Vision-Language multimodal representations.

Method Defense
Space

Latent
Modality

Zero
-Shot

Clean
Acc (%)

Robust
Acc (%)

w/o
Defense

WideResNet-50 (Zagoruyko, 2016) - V ✗ 76.5 0.0
CLIP (Radford et al., 2021) - V-L ✓ 74.9 0.0

Adv.
Train

FARE (Schlarmann et al., 2024) Latent V-L ✗ 70.4 33.3
TeCoA (Mao et al., 2022) Latent V-L ✗ 75.2 44.3
AT-ConvNeXt-L (Singh et al., 2024) Pixel V ✗ 77.0 57.7
AT-Swin-L (Liu et al., 2024) Pixel V ✗ 78.9 59.6

Others MixedNUTS (Bai et al., 2024) Pixel V ✗ 81.5 58.6
MeanSparse (Amini et al., 2024) Pixel V ✗ 78.0 59.6

Purify

LM - DaLLE2.Decoder Pixel V-L ✓ 36.9 9.2
DiffPure - DaLLE2.Decoder Pixel V-L ✓ 31.2 9.0
LM - EDM (Chen et al., 2023) Pixel V ✗ 69.7 18.7
DiffPure (Nie et al., 2022) Pixel V ✗ 71.2 44.4
Our CLIPure - Diff Latent V-L ✓ 73.1 65.0
Our CLIPure - Cos Latent V-L ✓ 76.3 72.6

and likelihood maximization approaches such as LM-EDM (Chen et al., 2023) based on the EDM
model (Karras et al., 2022) and LM-DaLLE2.Decoder which adapts LM to the Decoder of DaLLE-
2. Furthermore, we perform an ablation study adapting LM to the latent diffusion model to achieve
latent space purification using the Stable Diffusion Model (Rombach et al., 2022), denoted as LM-
StableDiffusion. Furthermore, we also compare with the state-of-the-art adversarial training meth-
ods such as AT-ConvNeXt-L (Singh et al., 2024) and AT-Swin-L (Liu et al., 2024), along with in-
novative training approaches such as MixedNUTS (Bai et al., 2024) and MeanSquare (Amini et al.,
2024), and methods that utilize DDPM and EDM to generate adversarial samples for training dataset
expansion: AT-DDPM (Rebuffi et al., 2021) and AT-EDM (Wang et al., 2023). Moreover, we also
consider adversarial training strategies fine-tuned on ImageNet based on the CLIP model through
TeCoA (Mao et al., 2022) and FARE (Schlarmann et al., 2024). Additionally, we also evaluate the
performance of classifiers without defense strategies, including CLIP, WideResNet (WRN), and
Stable Diffusion.

Adversarial Attack. Following the setup used by FARE (Schlarmann et al., 2024), we employ
AutoAttack’s (Croce & Hein, 2020) strongest white-box APGD for both targeted and untargeted
attacks across 100 iterations, focusing on an ℓ∞ threat model (typically ϵ = 4/255 or ϵ = 8/255)
as well as ℓ2 threat model (typically ϵ = 0.5) for evaluation. We leverage adaptive attack with
full access to the model parameters and inference strategies, including the purification mechanism
to expose the model’s vulnerabilities thoroughly. It means attackers can compute gradients against

the entire CLIPure process according to the chain rule: ∂L
∂x = ∂L

∂zi
pure
· ∂z

i
pure

∂zi · ∂z
i

∂x .

Moreover, as some baseline purification methods are non-differentiable, we also compare our
method under the BPDA (short for Backward Pass Differentiable Approximation) with EOT (Ex-
pectation Over Transformation)=20 setting (Hill et al., 2020) to ensure robust comparisons across a
broad range of baselines, where EOT helps mitigate inaccuracies introduced by randomness. Addi-
tionally, we consider latent-based attack (Rombach et al., 2022) that targets the CLIPure’s latent
space, ensuring a comprehensive evaluation of CLIPure’s defense strategies. Due to space con-
straints, we represent the performance under BPDA+EOT and latent-based attack methods in the
Table 6 and Table 7 in Appendix D.2.

5.2 MAIN RESULTS

In this section, we compare CLIPure-Diff and CLIPure-Cos with SOTA methods and examine the
model robustness from various perspectives.
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Figure 3: Cosine similarity between word and image embeddings of (a) clean and (b) adversarial
examples in Figure 7 across different ranks. Blue dots denote 10,000 words sampled from Word2Vec
vocabulary (Church, 2017), and red dots denote words from the 1,000 ImageNet categories.

Discussion of CLIPure-Diff and CLIPure-Cos. We compare the performance of CLIPure-Diff
and CLIPure-Cos against AutoAttack across CIFAR-10, ImageNet, and 13 datasets in Tables 1, 2,
and 5 respectively, as well as defense against BPDA+EOT and latent-based attack in Table 6 and 7
in Appendix D. Results indicate that both models have achieved new SOTA performance on all the
datasets and CLIPure-Cos uniformly outperforms CLIPure-Diff in clean accuracy and robustness.
It is probably because the DiffusionPrior component used in CLIPure-Diff models the generation
process by adding noise to the original image embeddings encoded by CLIP without diminishing the
effect of vector magnitude. Specifically, the noise is added as zi

t =
√
ᾱzi

0+
√
1− ᾱϵ, ϵ ∼ N (0, I).

We expect that the performance will be boosted if the generation process also eliminates the effect of
vector length. In contrast, CLIPure-Cos has no such issue and it models the likelihood with cosine
similarities that are consistent with CLIP.

Comparisons with Purification in Pixel Space. Compared to the SOTA purification methods ,
DiffPure (Nie et al., 2022) and LM-EDM (Chen et al., 2023) (the likelihood maximization approach
based on the advanced diffusion model EDM (Karras et al., 2022)), our CLIPure achieves better
adversarial robustness (shown in Table 1 and 2) as well as superior inference efficiency (shown
in Table 3). Table 1 shows that on CIFAR10 under the ℓ∞ and ℓ2 threat models, our CLIPure-
Cos showed improvements of 27.1% and 22.5% over LM-EDM and improvements of 27.8% and
14.0% over DiffPure. On the ImageNet dataset, shown in Table 2, CLIPure-Cos achieves a relative
increment of 288.2% over LM-EDM and 63.5% over DiffPure. Additionally, the inference efficiency
of our CLIPure is multiple orders of magnitude higher than DiffPure and LM-EDM (see Table 3).

Moreover, in Table 2, we also compared the pixel space purification based on the Decoder com-
ponent of DaLLE-2 (Ramesh et al., 2022) (LM-DaLLE2.Decoder) that models that generation of
an image based on the latent vector output by DiffusionPrior component. Results show that the
LM-DaLLE2.Decoder mainly suffers from a drop in clean accuracy, possibly because the diffusion
architecture it employs, ADM (Dhariwal & Nichol, 2021), is slightly inferior to EDM in terms of
generation quality.

Comparisons with Purification in Uni-modal Latent Space. We evaluate latent space purification
using Stable Diffusion (Rombach et al., 2022) (i.e., LM-StableDiffusion) on the CIFAR-10 dataset,
with results detailed in Table 1. As discussed in Section 4.2, Stable Diffusion (SD) models an
uni-modal image latent space through its VQVAE (Rombach et al., 2022). Direct comparisons
are challenging due to SD and CLIP utilizing different training data and fundamentally distinct
backbones (diffusion model versus discriminative model). As noted in Li et al. (2023), SD, as
an generative model, is designed for generation rather than classification tasks, so its zero-shot
classification performance is not good enough, which limits its potential for robustness.

Comparisons with CLIP-based Baselines. Figure 1 and Table 5 show the zero-shot adversarial
robustness on 13 datasets, compared to CLIP-based baselines enhanced with adversarial training,
i.e., FARE (Schlarmann et al., 2024) and TeCoA (Mao et al., 2022), CLIPure-Diff and CLIPure-Cos
surpass their best-reported average robustness by significant margins, 39.4% and 45.9% when ℓ∞ =
2/255, 95.4% and 108% when the attacks are stronger with ℓ∞ = 4/255. FARE and TeCoA often
have much lower clean accuracy than vanilla CLIP due to their adversarial training on ImageNet,
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Table 3: Comparison of different methods in terms of average inference time over 100 samples
on CIFAR10. “Relative Time” expresses each method’s inference time as a multiple of the CLIP
model’s time for classification. Dis. denotes purification with a discriminative model, and Gen.
denotes that with a generative model.

Method CLIPure-Cos CLIPure-Diff DiffPure LM-EDM CLIP

Gen. or Dis. Dis. Gen. Gen. Gen. Dis.
Inference Time (s) 4.1 x 10−4 0.01 2.22 0.25 3.6 x 10−4

Relative Time 1.14x 27.78x 6166.67x 694.44x 1x

which harms zero-shot performance on other datasets. Additionally, Table 2 shows that even on
ImageNet against the attacks they have been trained with, CLIPure still outperforms them by a
huge margin (65% and 72.6% versus 33.3% and 44.3%). The robustness of CLIPure against unseen
attacks is much better than their performance on seen attacks, showing that we are on the right path
of leveraging the power of pre-trained vision-language models.

More Experiments and Analysis. Due to space constraints, in the Appendix, we include a detailed
case study, showcasing the visualization of image embeddings during the purification process using
a diffusion model in Figure 7 in Appendix D.3. Figure 11a in Appendix D.5 illustrates the effects
of combining our approach with adversarial training and pixel space purification methods, while
Figure 11b displays the outcomes of integrating classifier guidance. Additionally, we employ T-
SNE to visualize the distribution of image and text embeddings in CLIP’s latent space in Figure 12a
and analyze the impact of step size on performance in Figure 12b.

5.3 ANALYSIS ON SEMANTICALLY SIMILAR WORDS

In Figure 3, we take advantage of the text modality of the CLIP model to understand the seman-
tics of clean and adversarial examples by matching them with closely related words. We selected
words from ImageNet’s categories and supplemented this with an additional 10,000 randomly drawn
words from natural language vocabulary for a comprehensive list. We observe that the meanings of
the category words ranking high are relatively similar. For clean samples, the distribution of cosine
similarity across ranks is relatively stable, whereas the adversarial samples exhibit abnormally high
cosine similarity for adversarial categories at top ranks. This abnormal phenomenon (more infor-
mation in Figure 10) in adversarial samples could potentially inspire adversarial detection and more
robust adversarial defense methods.

5.4 INFERENCE EFFICIENCY

We evaluate the inference efficiency of our CLIPure and baseline models by measuring the infer-
ence time of an averaged over 100 examples from the CIFAR-10 dataset on a single 4090 GPU.
The results are displayed in Table 3. Traditional purification methods typically leverage a generative
model like diffusion and significantly involve complex inference procedures. Such complexity lim-
its their applicability in efficiency-sensitive tasks, such as autonomous driving. Our CLIPure-Cos
innovatively uses a discriminative approach for adversarial sample purification, achieving inference
times comparable to those of discriminative models. It also demonstrates robust performance under
actual adversarial attacks and does not require additional training, thus offering superior advantages
in terms of efficient and robust inference.

6 CONCLUSION

We develop CLIPure, a novel adversarial purification method that operates within the CLIP model’s
latent space to enhance adversarial robustness on zero-shot classification without additional training.
CLIPure consists of two variants: CLIPure-Diff and CLIPure-Cos, both achieving state-of-the-art
performance across diverse datasets including CIFAR-10 and ImageNet. CLIPure-Cos, notably,
does not rely on generative models, significantly enhancing defense efficiency. Our findings reveal
that purification in a multi-modal latent space holds substantial promise for adversarially robust zero-
shot classification, pointing the way for future research that extends beyond image classification.
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Figure 4: Comparison of the Schrödinger Bridge (Schrödinger, 1932) framework with our adversar-
ial attack and purification process

A DISCUSSION OF THE REVERSE-TIME SDE

Motivated by the Schrödinger Bridge theory (Schrödinger, 1932; Tang et al., 2024) which models
the transition between two arbitrary distributions, we utilize this theoretical framework to model the
transformation between benign and adversarial sample distributions.

Within the Schrödinger Bridge framework, the forward Stochastic Differential Equation (SDE) de-
scribes a pre-defined transition from a data distribution pdata to a prior distribution pprior, noted as a
reference density pref ∈PT+1, the space of joint distributions on R(T+1)×d, where T represents the
timesteps and d denotes the data dimension. Consequently, we have pref;0 = pdata and pref;T = pprior.
Both pdata and pprior are defined over the data space Rd. The optimal solution π∗, starting from pprior
and transferring to pdata, is termed the Schrödinger Bridge, described by the reverse SDE.

Specifically, the forward SDE is expressed as:

dx = [f(xt, t) + g2(t)∇ logΨ(xt, t)]dt+ g(t)dwt, x0 ∼ pdata, (10)

where f(xt, t) is the drift function and g(t) is the diffusion term. wt is the standard Wiener process,
and Ψ and Ψ̃ are time-varying energy potentials constrained by the following Partial Differential
Equations (PDEs):

∂Ψ

∂t
= −∇xΨ

T f − 1

2
Tr(g2∇2

xΨ)

∂Ψ̃

∂t
= −∇xΨ̃

T f − 1

2
Tr(g2∇2

xΨ̃),

(11)

such that Ψ(x, 0)Ψ̃(x, 0) = pdata,Ψ(x, T )Ψ̃(x, T ) = pprior.

Similarly, we define the mutual transformation between clean and adversarial sample distributions
using coupled SDEs. The forward SDE describes the transformation process from benign to adver-
sarial example distributions corresponding to an attacker’s process. For an untargeted PGD attack,
this is represented as:

dx = αsign(∇xL(θ;xt, ytrue))dt+ σdwt, x0 ∼ pben, (12)

where α represents the attack step size, L(θ;xt, ytrue) denotes the loss when the adversarial example
xt is classified by the model with parameters θ as the ground truth category ytrue at attack step t
(where t ∈ [0, T ]), dwt denotes the Wiener process (Brownian motion) to express more general
cases, and σ is a constant. The adversarial example xT is bound by ϵ in lp norm, i.e., ∥xT −x0∥p ≤
ϵ.
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According to Eq. 12, we obtain formulation of the drift function and diffusion term is

f(xt, t) = αsign(∇xL(θ;xt, ytrue))

g(t) = σ
(13)

According to (Anderson, 1982; Song et al., 2020), the corresponding reverse-time SDE is:

dx = [f(xt, t)− g2(t)∇x log p(x)]dt+ σdw̃t. (14)

Thus, we can derive the corresponding reverse SDE of Eq. 12 as

dx = [αsign(∇xL(θ;xt, ytrue))− σ2∇ log p(xt)]dt+ σdw̃t, xT ∼ padv, (15)

where log p(x) is the log-likelihood of the marginal distribution of benign samples, also known as
the score function in Score SDE (Song et al., 2020). dw̃t denotes the reverse-time Wiener process
as time flows from t = T to t = 0.

Note that the coupled SDEs described in Eq. 12 and Eq. 15 are special cases of Eq. 11 when
∇ logΨ(xt, t) = 0 and ∇ log Ψ̃(xt, t) = ∇ log p(xt).

Without loss of generality, other adversarial attack methods can typically be described using the
forward SDE. Therefore, our proposed approach of modeling adversarial attacks and purification
processes using coupled SDEs is universally applicable.

B DETAILED PROOF OF PURIFICATION RISK FUNCTION

We first define the joint distribution of the attack process described by the forward SDE in Eq. 3
as PT+1, which spans R(T+1)×d. Thus we have P0 = pben and PT = padv. For the purification
process, we designate the joint distribution as QT+1, also defined over R(T+1)×d, with Q0 = padv
and QT = ppure. T represents the timestep, pben, padv and ppure denote the distribution of benign,
adversarial, and purified samples.

According to the results of Léonard (2014), we have

KL(Q0:T |P0:T ) = KL(Q0,T |P0,T ) + EQ0,T
[KL(Q1:T−1|0,T |P1:T−1|0,T )]. (16)

Since we focus on the differences between the purified and benign examples rather than the entire
purification path, we concentrate on KL(Q0,T ∥P0,T ). Thus, we continue to derive:

KL(Q0,T ∥P0,T )

= KL(p(xadv,xpure)|pattack(xben,xadv))

=

∫ ∫
p(xadv)p(xpure|xadv) log

p(xadv)p(xpure|xadv)

p(xben)p(xadv|xben)
dxpure dxadv

=

∫
p(xadv)

(∫
p(xpure|xadv) log

p(xpure|xadv)

p(xadv|xben)
dxpure

)
dxadv −

∫
p(xadv) log

p(xadv)

p(xben)
dxadv

= Exadv [KL(p(xpure|xadv)∥p(xadv|xben))]−KL(p(xadv)∥p(xben)),
(17)

where p(xadv|xben) represents the conditional probability transitioning from xben to xadv as de-
scribed by the forward SDE, and q(xpure|xadv) represents the conditional probability transitioning
from xadv to xpure as described by the reverse SDE. This formulation underscores the effectiveness
of the purification process by measuring how well the adversarial transformations are reversed.

Given that the perturbations added by attackers are typically imperceptible, over a small time interval
∆t, the solution of the forward SDE described by Eq. 3 approximates a normal distribution:

p(xadv|xben) ∼ N (xben + α sign(∇xL)∆t, σ2∆t). (18)

Similarly, the reverse SDE process described by Eq. 4 approximates a normal distribution:

p(xpure|xadv) ∼ N (xadv − (α sign(∇xadvL(θ;xadv, ytrue)))− σ2∇ log p(xadv))∆t, σ2∆t). (19)
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Figure 5: Illustration of the process of CLIPure including the purification in latent space and zero-
shot classification, detailed in Algorithm 1.

The KL divergence formula for two normal distributions is:

KL(N (µ0,Σ0) ∥ N (µ1,Σ1)) =
1

2

(
tr(Σ−1

1 Σ0) + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0)− k + log
detΣ1

detΣ0

)
.

(20)
When Σ0 = Σ1 = σ2∆t, the KL divergence reduced as

KL(N (µ0,Σ0) ∥ N (µ1,Σ1)) =
1

2σ2∆t
∥µ1 − µ0∥2. (21)

Thus we have
Exadv [KL(p(xpure|xadv)∥p(xadv|x))]

= Exadv

[
∇ log p(xben)

T∇ log p(xben)σ
2∆t

]
.

(22)

Thus we have proved the result in Eq. 6 that

KL(Q0,T |P0,T ) = KL(p(xadv,xpure)|p(x,xadv))

= Exadv [KL(q(xpure|xadv)∥p(xadv|xben))]−KL(p(xadv)∥p(x))

=
1

2
Exadv

[
∇ log p(xadv)

T∇ log p(xadv)σ
2∆t

]
−KL(p(xadv)∥p(xben)).

(23)

C MORE EXPERIMENTAL SETTINGS

C.1 DATASETS FOR ZERO-SHOT PERFORMANCE

In order to evaluate the zero-shot performance of our CLIPure and adversarially trained CLIP model
including FARE (Schlarmann et al., 2024) and TeCoA (Mao et al., 2022), we follow the settings
and evaluation metrics used by FARE and outlined in the CLIP-benchmark1. We evaluate the clean
accuracy and adversarial robustness across 13 datasets against an ℓ∞ threat model with ϵ = 4/255
and ϵ = 2/255. The datasets for zero-shot performance evaluation include CalTech101 (Griffin
et al., 2007), StanfordCars (Krause et al., 2013), CIFAR10, CIFAR100 (Krizhevsky et al., 2009),
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGVC Aricrafts (Maji et al., 2013),
Flowers (Nilsback & Zisserman, 2008), ImageNet-R (Hendrycks et al., 2021), ImageNet-S (Wang
et al., 2019), PCAM (Veeling et al., 2018), OxfordPets (Parkhi et al., 2012), and STL10 (Coates
et al., 2011).

C.2 PURIFICATION SETTINGS

For the blank template used in purification, we employ 80 diverse description templates combined
with class names, such as “a good photo of <class-name>” to enhance stability, following zero-shot

1Available at https://github.com/LAION-AI/CLIP_benchmark/
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classification strategies. Consistently, each class c’s text embedding, zt
c, as referred to in Eq. 2, is

computed as the average text embedding combined with all templates.

For CLIPure-Diff, we use the off-the-shelf DiffusionPrior model from DaLLE 2 (Ramesh et al.,
2022). During purification, following Chen et al. (2023), we estimate the log-likelihood at a single
timestep and then perform a one-step purification. We conduct a total of 10 purification steps on
image embeddings obtained from CLIP’s image encoder, with a step size of 30, focusing on gradient
ascent updates directly on the vector direction of image embeddings. Experiments indicate that
timesteps in the range of 900 to 1000 yield better defense outcomes, hence we select this range
for timestep selection. Regarding CLIPure-Cos, we utilize the off-the-shelf CLIP model, similarly
conducting 10 purification steps, each with a step size of 30.

C.3 EXPERIMENTAL SETTING OF BASELINES

For the CIFAR-10 dataset results shown in Table 1, we use the off-the-shelf Stable Diffusion model
as provided by Li et al. (2023), employing it as a zero-shot classifier. Our LM-StableDiffusion
method adapts this model to a likelihood maximization approach. Other methods were applied
directly according to the model in the original papers for CIFAR-10 without additional training.

For the ImageNet dataset experiments detailed in Table 2, FARE and TeCoA involve testing check-
points that were adversarially trained on the ImageNet dataset specifically for an ℓ∞ threat model
with ϵ = 4/255. The LM-DaLLE2.Decoder method utilizes the Decoder module from the ViT-L-14
model of DaLLE2 provided by OpenAI, adapted to the likelihood maximization method. DiffPure-
DaLLE2.Decoder adapts the same Decoder module to the DiffPure purification method. Other meth-
ods use models as provided and trained in the original papers.

Regarding the zero-shot performance across 13 datasets shown in Table 5, we opt for the adversar-
ially trained models of TeCoA and FARE with an ℓ∞ threat model at ϵ = 4/255, as they exhibited
superior performance compared to those trained with ϵ = 2/255.

In the results presented in Table 6 and Table 7, we conduct an adversarial evaluation using models
as specified in the literature without any additional fine-tuning.

D MORE EXPERIMENTAL RESULTS

D.1 CLIPURE BASED ON MORE CLIP MODELS

In addition to the ViT-L-14 version of the CLIP model, we tested other versions of CLIP (Radford
et al., 2021) as well as EVA2-CLIP (Sun et al., 2023), CLIPA (Li et al., 2024b), and CoCa (Yu
et al.) models to explore the impact of backbone model and its scale. As shown in Table 4 and
Figure 6, we can observe several key points: 1) Larger models generally exhibit stronger capabilities
(i.e., clean accuracy), which in turn enhances the robustness of CLIPure. Notably, the CLIPure-
Cos utilizing the ViT-H-14 version of CLIPA as a backbone achieved the best performance, with
robustness reaching 79.3% on ImageNet—a truly remarkable achievement. 2) CLIPure-Cos, when
based on more advanced models such as CLIPA, tend to outperform models of comparable size in
both accuracy and robustness. 3) ViT-based CLIPure-Cos models show better results than those
based on ResNet.

D.2 ADVERSARIAL ROBUSTNESS AGAINST OTHER ATTACKS

BPDA with EOT To compare our approach with purification methods that do not support gradient
propagation, we conducted evaluations using the BPDA (Backward Pass Differentiable Approxima-
tion) (Athalye et al., 2018) attack method, augmented with EOT=20 (Expectation over Transforma-
tion) to mitigate potential variability due to randomness. As depicted in Table 6, our CLIPure-Cos
model significantly outperforms traditional pixel-space purification methods based on generative
models such as EBM (Hill et al., 2020), DDPM (Chen et al., 2023), and Score SDE (Nie et al.,
2022), despite being a discriminative model. Notably, our CLIPure demonstrates higher robust ac-
curacy compared to the AutoAttack method under BPDA+EOT-20 attack. This is attributed to the
fact that adaptive white-box attacks are precisely engineered to target the model, leading to a higher
attack success rate.
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Table 4: Performance of CLIPure-Cos based on various versions of CLIP (Radford et al., 2021),
EVA2-CLIP (Sun et al., 2023), CLIPA (Li et al., 2024b), and CoCa (Yu et al.) under the ℓ∞ threat
model (ϵ = 4/255) on the ImageNet dataset. ”Param” denotes the number of parameters. The prefix
”RN” refers to ResNet-based (He et al., 2016) methods, while ”ViT” indicates Vision Transformer-
based (Alexey, 2020) approaches.

Model Version Param (M) w/o Defense CLIPure
Acc (%) Rob (%) Acc (%) Rob (%)

CLIP
(Radford et al., 2021)

RN50 102 59.7 0.0 60.0 52.9
RN101 119 61.6 0.0 61.9 55.5

RN50x64 623 72.0 0.0 72.3 69.5
ViT-B-16 149 68.1 0.0 68.2 63.0
ViT-B-32 151 62.0 0.0 62.0 58.1
ViT-L-14 427 74.9 0.0 76.3 72.6
ViT-H-14 986 77.2 0.0 77.4 74.4

ViT-bigG-14 2539 80.4 0.0 80.4 77.6
EVA2-CLIP

(Sun et al., 2023)
ViT-B-16 149 74.6 0.0 74.7 71.7
ViT-L-14 427 81.0 0.0 80.7 78.7

CLIPA
(Li et al., 2024b)

ViT-L-14 414 79.0 0.0 79.0 77.2
ViT-H-14 968 81.8 0.0 81.5 79.3

CoCa
(Yu et al.) ViT-B-32 253 64.2 0.0 63.8 59.8
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Figure 6: Relationship between model scale and performance as detailed in Table 4. The size of each
bubble represents the number of parameters, which is also indicated alongside each bubble. These
figures illustrate the clean and robust accuracy of CLIPure-Cos for (Left) various versions of CLIP
and (Right) different backbone models. The left figure presents CLIPure-Cos based on ResNet-
based models (including RN50, RN101, RN50x64, marked in red) and ViT-based models (ViT-B-
16, ViT-B-32, ViT-L-14, ViT-H-14, and ViT-bigG-14, marked in blue). The right figure depicts
CLIPure-Cos based on CLIP (including ViT-B-16, ViT-L-14, ViT-H-14, ViT-bigG-14, marked in
blue), EVA2-CLIP (including ViT-B-16 and ViT-L-14, marked in green), CLIPA (including ViT-L-
14 and ViT-H-14, marked in red), and CoCa (ViT-B-32, marked in yellow). The blue dashed line
represents the point where robust accuracy equals clean accuracy, serving as the upper bound of
robustness, since successful defense against adversarial attacks hinges on accurate classification.

Latent-based Attack Shukla & Banerjee (2023) introduced a latent-based attack method, utilizing
generative models such as GANs (Goodfellow et al., 2014) to modify the latent space representations
and generate adversarial samples. We applied this approach to the CIFAR-10 dataset’s test set, and
the results, displayed in Table 7, reveal that unbounded attacks achieve a higher success rate than
bounded attacks. Despite these aggressive attacks, our CLIPure method retains an advantage over
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Table 5: Zero-shot performance on 13 datasets against AutoAttack under ℓ∞ threat model with
ϵ = 2/255 and ϵ = 4/255. FARE (Schlarmann et al., 2024) and TeCoA (Mao et al., 2022) are
trained on ℓ∞ threat model with ϵ = 4/255 for its generally better performance than ϵ = 4/255. Un-
derlined results indicate the best robustness among baselines, while bold text denotes state-of-the-art
(SOTA) performance across all methods. The term increase represents the percentage improvement
in robustness compared to the best baseline method.
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CLIP 83.3 77.9 95.2 71.1 55.2 62.6 31.8 79.2 87.9 59.6 52.0 93.2 99.3 73.1
TeCoA 78.4 37.9 79.6 50.3 38.0 22.5 11.8 38.4 74.3 54.2 50.0 76.1 93.4 54.2
FARE 84.7 63.8 77.7 56.5 43.8 18.3 22.0 58.1 80.2 56.7 50.0 87.1 96.0 61.1

CLIPure-Diff 79.9 75.5 94.9 63.8 55.2 58.2 29.3 75.0 87.5 55.9 56.8 90.4 98.4 70.8
CLIPure-Cos 82.9 78.6 95.6 73.0 55.4 63.3 33.2 79.3 87.7 58.3 52.0 92.5 99.6 73.2

ℓ ∞
=

2/
25
5 CLIP 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TeCoA 69.7 17.9 59.7 33.7 26.5 8.0 5.0 24.1 59.2 43.0 48.8 68.0 86.7 42.3
FARE 76.7 30.0 57.3 36.5 28.3 12.8 8.2 31.6 61.6 41.6 48.4 72.4 89.6 45.9

CLIPure-Diff 75.1 65.9 92.5 52.6 45.9 41.5 20.8 65.8 86.5 49.8 51.4 86.2 97.9 64.0 ↑39.4%
CLIPure-Cos 80.8 73.9 93.0 65.0 50.7 49.1 28.2 75.3 85.4 54.3 49.1 91.2 99.5 68.8 ↑45.9%

ℓ ∞
=

4/
25
5 CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TeCoA 60.9 8.4 37.1 21.5 16.4 6.6 2.1 12.4 41.9 34.2 44.0 55.2 74.3 31.9
FARE 64.1 12.7 34.6 20.2 17.3 11.1 2.6 12.5 40.6 30.9 48.3 50.7 74.4 32.4

CLIPure-Diff 74.1 66.3 90.6 51.6 45.2 42.9 18.8 65.8 83.8 48.8 52.0 85.7 97.2 63.3 ↑95.4%
CLIPure-Cos 80.1 72.2 91.1 59.1 50.1 48.4 26.1 74.8 84.6 52.4 48.9 91.0 99.4 67.4 ↑108.0%

Table 6: Performance comparison of defense methods on CIFAR-10 against BPDA with EOT-20 un-
der ℓ∞ (ϵ = 8/255) norm bound. We use underlining to highlight the best robustness for baselines,
and bold font to denote the state-of-the-art (SOTA) across all methods.

Method Clean
Acc (%)

Robust
Acc (%)

FARE (Schlarmann et al., 2024) 77.7 8.5
TeCoA (Mao et al., 2022) 79.6 10.0
Purify - EBM (Hill et al., 2020) 84.1 54.9
LM - EDM (Chen et al., 2023) 83.2 69.7
ADP (Yoon et al., 2021) 86.1 70.0
RDC (Chen et al., 2023) 89.9 75.7
GDMP (Wang et al., 2022) 93.5 76.2
DiffPure (Nie et al., 2022) 90.1 81.4
Our CLIPure - Diff 95.2 94.6
Our CLIPure - Cos 95.6 93.5

baseline approaches. This is attributed to CLIPure leveraging the inherently rich and well-trained
latent space of the CLIP model, which was trained on diverse and sufficient datasets, allowing it to
effectively defend against unseen attacks without the need for additional training.
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Table 7: Performance comparison of defense methods on CIFAR-10 against unbounded latent-based
attack (Shukla & Banerjee, 2023) using a generative adversarial network (GAN) (Goodfellow et al.,
2014).

Method Clean
Acc (%)

Robust
Acc (%)

ResNet-18 80.2 12.4
FARE (Schlarmann et al., 2024) 77.7 61.7
TeCoA (Mao et al., 2022) 79.6 63.7
Our CLIPure - Diff 95.2 69.2
Our CLIPure - Cos 95.6 70.8

Figure 7: Purification process of our CLIPure model for an image of a ’valley’ adversarially per-
turbed to be classified as ’stupa’. Using the DaLLE2 Decoder (Ramesh et al., 2022), we visualize
the stages of image embedding purification. The text below each picture annotates the classification
results corresponding to each timestep in the purification process.

D.3 CASE STUDY

To visualize the purification path of CLIPure, we employ the Decoder of DaLLE2 (Ramesh et al.,
2022), which models the generation process from image embeddings to images through a diffusion
model. As shown in Figure 7, starting from an adversarial example initially classified as a ’stupa,’
CLIPure modifies the semantic properties of the image embedding. By the second step, the image
is purified to ’mountain,’ closely aligning with the semantics of the original image, which also
contains mountainous features. Subsequently, after multiple purification steps, the image embedding
is accurately classified as the ’valley’ category.

In Figure 10, we analyze the distribution of cosine similarity between the embeddings of clean
images and adversarial examples with words to understand the semantics of image embeddings.
In Figure 3, we also highlight the specific top-ranked categories for the benign and adversarial
examples. We observe that the cosine similarity distribution for words close to the clean image
is stable and resembles the prior distribution shown in Figure 9a. In contrast, the distribution of
cosine similarity for the adversarial examples shows anomalies, with the top-ranked adversarial
labels displaying abnormally high cosine similarities. This could potentially offer new insights into
adversarial sample detection and defense strategies.

Additionally, we illustrate the purification path using T-SNE. As depicted in Figure 8, an image
sampled from CIFAR-10 originally categorized as ’airplane’ was adversarially manipulated to re-
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T-SNE Visualization of the Purification Process
truck
airplane
purification process

Figure 8: Purification process of the adversarial example attacked from ground truth label ’airplane’
to adversarial label ’truck’ and purified by our CLIPure-Diff visualized by T-SNE. The image is
randomly sampled from the CIFAR-10 dataset.
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Figure 9: (a)Cosine similarity between words and the image embeddings of a noisy example to
illustrate the prior probability of the words. (b) Highlights the top-ranked words within the 1,000
ImageNet categories, emphasizing the most semantically similar words to the noisy image.

semble a ’truck,’ making it an outlier. Through our CLIPure method, the image is purified towards
a high-density area and ultimately reclassified accurately as the ’airplane’ category.

D.4 ANALYSIS FROM TEXTUAL PERSPECTIVE

In this section, we provide additional analysis from a textual perspective as a supplement to the anal-
ysis shown in Figure 3. Our vocabulary includes the 1,000 categories from ImageNet and 10,000
words randomly sampled from Word2Vec (Church, 2017). Figure 9a displays the distribution of
cosine similarities between the word embeddings and an image embedding generated from pure
noise, across various ranks. We aim to use these similarities to represent the prior probabilities
of the words. The results indicate that most samples cluster around a cosine similarity of approx-
imately 0.15, with only a few extreme values either much higher or lower, suggesting a normal
distribution pattern. This indicates that a majority of the samples have moderate prior probabilities,
contrasting with the long-tail distribution often observed in textual data. In Figure 9b, we highlight
the top-ranked words in the vocabulary that are closest to the noisy image embedding. Words like
“television”, which appear frequently in image data, rank high, aligning with our expectations.

D.5 COMBINING CLIPURE WITH OTHER STRATEGIES

In this section, we conduct experiments that combine orthogonal strategies, including adversarial
training (Schlarmann et al., 2024) and pixel space purification (Chen et al., 2023), as well as incor-
porating classifier confidence guidance. We carry out evaluations using a sample of 256 images from
the ImageNet test set. The experimental setup in this section is aligned with the same configuration
as presented in Table 2, detailed in Section 5.1.
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Figure 10: Cosine similarity between words and the image embedding of (a) clean sample and (b)
adversarial example of the case shown in Figure 7 to illustrate the top-ranked words.

Combination with Adversarial Training (CLIPure+AT). Orthogonal adversarial training (AT)
methods like FARE (Schlarmann et al., 2024) has fintuned CLIP on ImageNet. We combine CLIPure
and FARE by purifying image embedding in FARE’s latent space and classification via FARE. The
experimental results, depicted in Fig. 11a, indicate that the CLIPure-Diff+AT method enhances ad-
versarial robustness in CLIPure-Diff. This improvement could be attributed to FARE providing
more accurate likelihood estimates, as it is specifically trained on adversarial examples. When com-
bined with CLIPure-Cos, the outcomes were comparable, likely because the inherent robustness of
CLIPure-Cos is already high, leaving limited scope for further enhancement.

Combination with Pixel Space Purification (CLIPure+LM). Purification in latent space and pixel
space occurs at different stages of processing. Pixel space purification acts directly on the input
samples, while latent space purification operates on the latent vectors encoded from the input picture.
By combining both methods, we first purify the input samples in pixel space, then pass the purified
samples through an encoder to obtain latent vectors, which are further purified in latent space. We
mark this combination as CLIPure+LM. For the Likelihood Maximization (LM) method, we chose
LM-EDM (Chen et al., 2023) due to its strong performance across pixel space purification methods.

Experimental results, as shown in Fig. 11a, indicate that combining with LM leads to a decrease
in both clean accuracy and robustness. This decline may be associated with the challenges of in-
formation loss inherent to pixel space purification. Since LM operates directly on the pixels of the
image, it is highly sensitive to the degree of purification. However, the adversarial perturbation
varies across samples, potentially leading to over-purification thus a decrease in performance. In
contrast, purification in latent space with polar coordinates simply involves changing vector direc-
tions—altering semantics without reducing semantic information. Thus, it avoids the problem of
semantic information loss.

Combination with Classifier Guidance. In Eq. 4, we note that the reverse-time SDE associated
with the attack method includes not only a likelihood maximization purification term but also a
classifier guidance term, represented as ∇xL(θ;xt, ytrue). This approach aligns with the classifier
confidence guidance proposed by Zhang et al. (2024). We incorporate this classifier guidance term
in two versions of CLIPure (CLIPure-Diff and CLIPure-Cos) as described in Algorithm 1. Since the
ground truth label ytrue is unknown, we employ the predicted label by the CLIP model as a proxy for
ytrue. To address potential inaccuracies in early estimations, classifier guidance was only applied in
the final 5 steps of the 10-step purification process.

We evaluate the performance varied with the weight of the guidance term, as depicted in Fig. 11b.
It shows that a guidance weight of 10−4 led to the largest improvement in robustness: CLIPure-
Diff achieved a robustness of 67.2% (an increase of +2.2% over scenarios without guidance), and
CLIPure-Cos attained a robustness of 73.1% (an improvement of +0.5% over no guidance).

D.6 T-SNE VISUALIZATION

In Figure 12a, we display the distribution of image embeddings zi for both benign samples and
adversarial examples from a subset of 30 samples on the CIFAR-10 dataset, after dimensionality
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Figure 11: (a) Accuracy and robustness against AutoAttack with ℓ∞ = 4/255 on ImageNet of
CLIPure, CLIPure combined with Adversarial Training (AT), and CLIPure combined with pixel
space Likelihood Maximization (LM). (b) Performance on ImageNet against AutoAttack with ℓ∞ =
4/255 incorporating with classifier confidence guidance.
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Figure 12: (a) Visualization of image and text embeddings reduced via PCA and plotted in polar
coordinates using t-SNE. zi and zt represent the image and text embeddings obtained through CLIP,
respectively. Since vector direction signifies semantics, we depict the samples in polar coordinates to
emphasize directional properties. (b) Impact of step size during a 10-step purification process using
CLIPure-Cos on 1000 ImageNet samples against AutoAttack with ℓ∞ threat model (ϵ = 4/255).

reduction using t-SNE. The figure also includes embeddings for 10 category-associated texts (e.g.,
“a photo of a dog.”) zt, as well as the text embedding for a blank template “a photo of a .”.

We observe distinct clustering of text vectors, clean image embeddings, and adversarial image em-
beddings in the space. The blank template, which is used for purification, is positioned at the cen-
ter of the category text clusters, representing a general textual representation. This arrangement
demonstrates that clean and adversarial sample distributions occupy distinct regions in the embed-
ding space, providing a foundational basis for the effectiveness of adversarial sample purification.

D.7 HYPERPARAMETERS

D.7.1 IMPACT OF STEP SIZE

We conducted experiments to assess the impact of different step sizes on the effectiveness of purifi-
cation. Figure 12b shows how the clean accuracy and robustness against AutoAttack (ℓ∞ = 4/255)
of our CLIPure-Cos method vary with changes in step size. These experiments were carried out on
1,000 samples from the ImageNet test set with 10-step purification. The results indicate that the
performance of the method is relatively stable across different step sizes, consistently demonstrating
strong effectiveness.
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Figure 13: Clean accuracy (marked as ”Acc”) and robust accuracy (marked as ”Rob”) across differ-
ent (Left) purification steps and (Right) attack budgets. ”Diff” indicates CLIPure-Diff while ”Cos”
represents CLIPure-Cos.

Limited to the computational complexity of CLIPure-Diff, we opt not to conduct a parameter search
for this model. Instead, we directly apply the optimal parameters found for CLIPure-Cos.

D.7.2 IMPACT OF PURIFICATION STEP

As illustrated in Figure 13 (Left), we assess the performance of various purification steps in CLIPure-
Cos and CLIPure-Diff. The results indicate that insufficient purification while maintaining accept-
able clean accuracy, results in low robustness. As the number of purification steps increases, robust-
ness gradually improves. Continuing to increase the purification steps stabilizes both accuracy and
robustness, demonstrating a balance between the two metrics as the process evolves.

D.8 PERFORMANCE ACROSS ATTACK BUDGET

To further explore the adversarial defense capabilities of CLIPure, we evaluate the robustness of
CLIPure-Diff and CLIPure-Cos against various attack budgets, following the settings used in Ta-
ble 2. As shown in Figure 13 (Right), CLIPure-Diff demonstrates superior clean accuracy (at ϵ=0);
however, its robustness decreases as the intensity of the attacks increases. In contrast, CLIPure-Cos
exhibits a stronger ability to withstand adversarial perturbations.
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