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Abstract

The recent literature in text classification is bi-001
ased towards short text sequences (e.g., sen-002
tences or paragraphs). In real-world applica-003
tions, multi-page multi-paragraph documents004
are common and they cannot be efficiently en-005
coded by vanilla Transformer-based models.006
We compare different Transformer-based Long007
Document Classification (TrLDC) approaches008
that aim to mitigate the computational over-009
head of vanilla transformers to encode much010
longer text, namely sparse attention and hierar-011
chical encoding methods. We examine several012
aspects of sparse attention (e.g., size of local013
attention window, use of global attention) and014
hierarchical (e.g., document splitting strategy)015
transformers on four document classification016
datasets covering different domains. We ob-017
serve a clear benefit from being able to process018
longer text, and, based on our results, we derive019
practical advice of applying Transformer-based020
models on long document classification tasks.021

1 Introduction022

Natural language processing has been revolu-023

tionised by the large scale self-supervised pre-024

training of language encoders (Devlin et al., 2019;025

Liu et al., 2019), which are fine-tuned in order to026

solve a wide variety of downstream classification027

tasks. However, the recent literature in text classi-028

fication mostly focuses on short sequences, such029

as sentences or paragraphs (Sun et al., 2019; Ad-030

hikari et al., 2019; Mosbach et al., 2021), which031

are sometimes misleadingly named as documents.1032

The transition from short-to-long document clas-033

sification is non-trivial. One challenge is that034

BERT and most of its variants are pre-trained on035

sequences containing up-to 512 tokens, which is036

not a long document. A common practice is to037

truncate actually long documents to the first 512038

1For example, many biomedical datasets use ‘documents’
from the PubMed collection of biomedical literature, but these
documents actually consist of titles and abstracts.
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Figure 1: The effectiveness of Longformer, a long-
document Transformer, on the MIMIC-III development
set. There is a clear benefit from being able to process
longer text.

tokens, which allows the immediate application 039

of these pre-trained models (Adhikari et al., 2019; 040

Chalkidis et al., 2020). We believe that this is an 041

insufficient approach for long document classifica- 042

tion because truncating the text may omit important 043

information, leading to poor classification perfor- 044

mance (Figure 1). Another challenge comes from 045

the computational overhead of vanilla Transformer: 046

in the multi-head self-attention operation (Vaswani 047

et al., 2017), each token in a sequence of n tokens 048

attends to all other tokens. This results in a func- 049

tion that has O(n2) time and memory complexity, 050

which makes it challenging to efficiently process 051

long documents. 052

In response to the second challenge, long- 053

document Transformers have emerged to deal with 054

long sequences (Beltagy et al., 2020; Zaheer et al., 055

2020). However, they experiment and report re- 056

sults on non-ideal long document classification 057

datasets, i.e., documents on the IMDB dataset are 058

not really long – fewer than 15% of examples are 059

longer than 512 tokens; while the Hyperpartisan 060

dataset only has very few (645 in total) documents. 061

On datasets with longer documents, such as the 062

MIMIC-III dataset (Johnson et al., 2016) with an 063
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average length of 2,000 words, it has been shown064

that multiple variants of BERT perform worse than065

a CNN or RNN-based model (Chalkidis et al.,066

2020; Vu et al., 2020; Dong et al., 2021; Ji et al.,067

2021a; Gao et al., 2021; Pascual et al., 2021). We068

believe there is a need to understand the perfor-069

mance of Transformer-based models on classifying070

documents that are actually long.071

In this work, we aim to transfer the success of072

the pre-train–fine-tune paradigm to long document073

classification. Our main contributions are:074

• We compare different long document classifi-075

cation approaches based on transformer archi-076

tecture: namely, sparse attention, and hierar-077

chical methods. Our results show that process-078

ing more tokens can bring drastic improve-079

ments comparing to processing up-to 512 to-080

kens.081

• We conduct careful analyses to understand the082

impact of several design options on both the083

effectiveness and efficiency of different ap-084

proaches. Our results show that some design085

choices (e.g., size of local attention window in086

sparse attention method) can be adjusted to im-087

prove the efficiency without sacrificing the ef-088

fectiveness, whereas some choices (e.g., docu-089

ment splitting strategy in hierarchical method)090

vastly affect effectiveness.091

• Last but not least, our results show that, con-092

trary to previous claims, Transformer-based093

models can outperform former state-of-the-art094

CNN based models on MIMIC-III dataset .095

2 Problem Formulation and Datasets096

We divide the document classification model into097

two components: (1) a document encoder, which098

builds a vector representation of a given document;099

and, (2) a classifier that predicts a single or multi-100

ple labels given the encoded vector. In this work,101

we mainly focus on the first component: we use102

Transformer-based encoders to build a document103

representation, and then take the encoded docu-104

ment representation as the input to a classifier. For105

the second component, we use a TANH activated106

hidden layer, followed by the output layer. Output107

probabilities are obtained by applying a SIGMOID108

(multi-label) or SOFTMAX (multi-class) function109

to output logits.2110

2Long document classification datasets are usually anno-
tated using a large number of labels. Studies that have focused
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Figure 2: The distribution of document lengths. A log-
10 scale is used for the X axis.

We mainly conduct our experiments on the 111

MIMIC-III dataset (Johnson et al., 2016), where re- 112

searchers still fail to transfer “the Magic of BERT” 113

to medical code assignment tasks (Ji et al., 2021a; 114

Pascual et al., 2021). 115

MIMIC-III contains Intensive Care Unit (ICU) 116

discharge summaries, each of which is anno- 117

tated with multiple labels—diagnoses and pro- 118

cedures—using the ICD-9 (The International 119

Classification of Diseases, Ninth Revision) hi- 120

erarchy. Following Mullenbach et al. (2018), 121

we conduct experiments using the top 50 fre- 122

quent labels.3 123

To address the generalisation concern, we also 124

use three datasets from other domains: EC- 125

tHR (Chalkidis et al., 2022) sourced from legal 126

cases, Hyperpartisan (Kiesel et al., 2019) and 20 127

News (Joachims, 1997), both from news articles. 128

ECtHR contains legal cases from The European 129

Court of Human Rights’ public database. 130

The court hears allegations that a state has 131

breached human rights provisions of the Euro- 132

pean Convention of Human Rights, and each 133

case is mapped to one or more articles of the 134

convention that were allegedly violated.4 135

Hyperpartisan contains news articles which are 136

manually labelled as hyperpartisan (taking an 137

extreme left or right standpoint) or not.5 138

on the second component investigate methods of utilising label
hierarchy (Chalkidis et al., 2020; Vu et al., 2020), pre-training
label embeddings (Dong et al., 2021), to name but a few.

3Details about dataset split and labels can be found at
https://github.com/jamesmullenbach/caml-mimic

4https://huggingface.co/datasets/ecthr_cases
5https://pan.webis.de/semeval19/semeval19-web/; we use

the split provided by Beltagy et al. (2020).
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20 News contains newsgroups posts which are cat-139

egorised into 20 topics.6140

We note that documents in MIMIC-III and ECtHR141

are much longer than those in Hyperpartisan and142

20 News (Table 4 in Appendix and Figure 2).143

3 Approaches144

In the era of Transformer-based models, we iden-145

tify two representative approaches of processing146

long documents in the literature that either acts as147

an inexpensive drop-in replacement for the vanilla148

self-attention (i.e., sparse attention) or builds a task-149

specific architecture (i.e., hierarchical Transform-150

ers).151

3.1 Sparse-Attention Transformers152

Vanilla transformer relies on the multi-head self-153

attention mechanism, which scales poorly with the154

length of the input sequence, requiring quadratic155

computation time and memory to store all scores156

that are used to compute the gradients during157

back-propagation (Qiu et al., 2020). Several158

Transformer-based models (Kitaev et al., 2020; Tay159

et al., 2020; Choromanski et al., 2021) have been160

proposed exploring efficient alternatives that can161

be used to process long sequences.162

Longformer of Beltagy et al. (2020) consists163

of local (window-based) attention and global at-164

tention that reduces the computational complexity165

of the model and thus can be deployed to process166

up to 4096 tokens. Local attention is computed167

in-between a window of neighbour (consecutive)168

tokens. Global attention relies on the idea of global169

tokens that are able to attend and be attended by any170

other token in the sequence (Figure 7 in Appendix).171

BigBird of Zaheer et al. (2020) is another sparse-172

attention based Transformer that uses a combina-173

tion of a local, global and random attention, i.e.,174

all tokens also attend a number of random tokens175

on top of those in the same neighbourhood. Both176

models are warm-started from the public RoBERTa177

checkpoint and are further pre-trained on masked178

language modelling. They have been reported to179

outperform RoBERTa on a range of tasks that re-180

quire modelling long sequences.181

We choose Longformer (Beltagy et al., 2020) in182

this study and refer readers to Xiong et al. (2021)183

for a systematic comparison of recent proposed184

efficient attention variants.185

6http://qwone.com/~jason/20Newsgroups/
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Figure 3: A high-level illustration of hierarchical Trans-
formers. A shared pre-trained RoBERTa is used to en-
code each segment, and a two layer transformer blocks
is used to capture the interaction between different seg-
ments. Finally, contextual segment representations are
aggregated into a document representation.

3.2 Hierarchical Transformers 186

Instead of modifying multi-head self-attention 187

mechanism to efficiently model long sequences, 188

hierarchical Transformers build on top of vanilla 189

transformer architecture. 190

A document, D = {t0, t1, · · · , t|D|}, is first split 191

into segments, each of which should have less than 192

512 tokens. These segments can be independently 193

encoded using any pre-trained Transformer-based 194

encoders (e.g., RoBERTa in Figure 3). We sum 195

the contextual representation of the first token from 196

each segment up with segment position embed- 197

dings as the segment representation (i.e., ni in 198

Figure 3). Then the segment encoder—two trans- 199

former blocks (Zhang et al., 2019)—are used to 200

capture the interaction between segments and out- 201

put a list of contextual segment representations (i.e., 202

si in Figure 3), which are finally aggregated into 203

a document representation. By default, the aggre- 204

gator is the max-pooling operation unless other 205

specified.7 206

4 Experimental Setup 207

Backbone Models We mainly consider two mod- 208

els in our experiments: Longformer-base (Beltagy 209

et al., 2020), and RoBERTa-base (Liu et al., 2019) 210

which is used in hierarchical Transformers. 211

Evaluation metrics For the MIMIC-III (mul- 212

tilabel) dataset, we follow previous work (Mul- 213

lenbach et al., 2018; Cao et al., 2020) and use 214

micro-averaged AUC (Area Under the receiver 215

7Code is available at URL
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Figure 4: Task-adaptive pre-training (right side in each
plot) can improve the effectiveness (measured on the de-
velopment sets) of pre-trained models by a large margin
on MIMIC-III, but small on ECtHR. ∆: the difference
between mean values of compared experiments.

operating characteristic Curve), macro-averaged216

AUC, micro-averaged F1, macro-averaged F1 and217

Precision@5—the proportion of the ground truth218

labels in the top-5 predicted labels—as the metrics.219

We report micro and macro averaged F1 for the220

ECtHR (multilabel) dataset, and accuracy for both221

Hyperpartisan (binary) and 20 News (multiclass)222

datasets.223

5 Experiments224

We conduct a series of controlled experiments to225

understand the impact of design choices in differ-226

ent TrLDC models. Bringing these optimal choices227

all together, we compare TrLDC against the state228

of the art, as well as baselines that only process up-229

to 512 tokens. Finally, based on our investigation,230

we derive practical advice of applying transformer-231

based models to long document classification re-232

garding both effectiveness and efficiency.233

Task-adaptive pre-training is a promising first234

step. Domain-adaptive pre-training (DAPT) – the235

continued pre-training a language model on a large236

corpus of domain-specific text – is known to im-237

prove downstream task performance (Gururangan238

et al., 2020; Kær Jørgensen et al., 2021). How-239

ever, task-adaptive pre-training (TAPT) – contin-240

ues unsupervised pre-training on the task’s data –241

is comparatively less studied, mainly because most242

of the benchmarking corpora are small and thus the243

benefit of TAPT seems less obvious than DAPT.244

We believe document classification datasets, due245

Size Micro F1
Speed

Train Test

32 67.9 ± 0.3 9.9 (2.9x) 45.6 (2.8x)
64 68.1 ± 0.1 8.8 (2.6x) 41.4 (2.5x)
128 68.3 ± 0.3 7.4 (2.1x) 34.1 (2.1x)
256 68.4 ± 0.3 5.5 (1.6x) 25.4 (1.6x)
512 68.5 ± 0.3 3.5 (1.0x) 16.3 (1.0x)

Table 1: The impact of local attention window size in
Longformer on MIMIC-III development set. Speed is
measured using ‘processed samples per second’, and
numbers in parenthesis are the relative speedup.

to their relatively large size, can benefit from 246

TAPT. On both MIMIC-III and ECtHR, we con- 247

tinue to pre-train Longformer and RoBERTa us- 248

ing the masked language modelling pre-training 249

objective (details about pre-training can be found 250

at Appendix 9.4). We find that task-adaptive pre- 251

trained models substantially improve performance 252

on MIMIC-III (Figure 4 (a) and (b)), but there are 253

smaller improvements on ECtHR (Figure 4 (c) and 254

(d)). We suspect this difference is because legal 255

cases (i.e., ECtHR) are publicly available and have 256

been covered in pre-training data used for training 257

Longformer and RoBERTa, whereas clinical notes 258

(i.e., MIMIC-III) are not (Dodge et al., 2021). See 259

Appendix 9.6 for a short analysis on this matter. 260

We also compare our TAPT-RoBERTa against 261

publicly available domain-specific RoBERTa, 262

trained from scratch on biomedical articles and clin- 263

ical notes. Results (Figure 8 in Appendix) show 264

that TAPT-RoBERTa outperforms domain-specific 265

base model, but underperforms the larger model. 266

5.1 Longformer 267

Small local attention windows are effective and 268

efficient. Beltagy et al. (2020) observe that many 269

tasks do not require reasoning over the entire con- 270

text. For example, they find that the distance be- 271

tween any two mentions in a coreference resolution 272

dataset (i.e., OntoNotes) is small, and it is possible 273

to achieve competitive performance by processing 274

small segments containing these mentions. 275

Inspired by this observation, we investigate the 276

impact of local context size on document classifi- 277

cation, regarding both effectiveness and efficiency. 278

We hypothesise that long document classification, 279

which is usually paired with a large label space, can 280

be performed by models that only attend over short 281

sequences instead of the entire document (Gao 282

4
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Figure 5: The effect of applying global attention on
more tokens, which are evenly chosen based on their
positions. In the baseline model (first column), only the
[CLS] token uses global attention.

et al., 2021). In this experiment, we vary the local283

attention window around each token.284

Table 1 shows that even using a small window285

size, the micro F1 score on MIMIC-III develop-286

ment set is still close to using a larger window size.287

We observe the same pattern on ECtHR and 20288

News (See Table 11 in the Appendix). A major ad-289

vantage of using smaller local attention windows is290

the faster computation for training and evaluation.291

Considering a small number of tokens for global292

attention improves the stability of the train-293

ing process. Longformer relies heavily on the294

[CLS] token, which is the only token with global295

attention—attending to all other tokens and all296

other tokens attending to it. We investigate whether297

allowing more tokens to use global attention can298

improve model performance, and if yes, how to299

choose which tokens to use global attention.300

Figure 5 shows that adding more tokens using301

global attention does not improve F1 score, while a302

small number of additional global attention tokens303

can make the training more stable.304

Equally distributing global tokens across the305

sequence is better than content-based attribu-306

tion. We consider two approaches to choose ad-307

ditional tokens that use global attention: position308

based or content based. In the position-based ap-309

proach, we distribute n additional tokens at equal310

distances. For example, if n = 4 and the sequence311

length is 4096, there are global attention on tokens312

at position 0, 1024, 2048 and 3072. In the content-313

based approach, we identify informative tokens,314

using TF-IDF (Term Frequency–Inverse Document315

Frequency) within each document, and we apply316

global attention on the top-K informative tokens,317

together with the [CLS] token. Results show that318

32
=0.6

64
=0.8

128
=0.5

256
=0.5

512
=0.5

Segment length

65.5

66.0

66.5

67.0

67.5

68.0

68.5

69.0

69.5

M
icr

o 
F1

MIMIC-III
Disjoint
Overlap

32
=0.1

64
=0.8

128
=0.4

256
=0.3

512
=-0.2

Segment length

78

79

80

81

82

83

M
icr

o 
F1

ECtHR
Disjoint
Overlap

Figure 6: The effect of varying the segment length and
whether allowing segments to overlap in the hierarchical
Transformers. ∆: improvement due to overlap.

the position based approach is more effective than 319

content based (see Table 13 in the Appendix). 320

5.2 Hierarchical Transformers 321

The optimal segment length is dataset depen- 322

dent. Ji et al. (2021a) and Gao et al. (2021) re- 323

ported negative results with a hierarchical Trans- 324

former with a segment length of 512 tokens on the 325

MIMIC-III dataset. Their methods involved split- 326

ting a document into equally sized segments, which 327

were processed using a shared BERT encoder. In- 328

stead of splitting the documents into such large 329

segments, we investigate the impact of segment 330

length and preventing context fragmentation. 331

Figure 6 (left side in each violin plot) shows 332

that there is no optimal segment length across 333

both MIMIC-III and ECtHR. Small segment length 334

works well on MIMIC-III, and using segment 335

length greater than 128 starts to decrease the per- 336

formance. In contrast, the ECtHR dataset benefits 337

from a model with larger segment lengths. The 338

optimal performing segment length on 20 News 339

and Hyperpartisan are 256 and 128, respectively 340

(See Table 14 in the Appendix). 341
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Splitting documents into overlapping seg-342

ments can alleviate the context fragmentation343

problem. Splitting a long document into smaller344

segments may result in the problem of context frag-345

mentation, where a model lacks the information it346

needs to make a prediction (Dai et al., 2019; Ding347

et al., 2021). Although, the hierarchical model uses348

a second-order transformer to fuse and contextu-349

alise information across segments, we investigate350

a simple way to alleviate context fragmentation by351

allowing segments to overlap when we split a doc-352

ument into segments. That it, except for the first353

segment, the first 1
4n tokens in each segment are354

taken from the previous segment, where n is the355

segment length. Figure 6 (right side in each vio-356

lin plot) show that this simple strategy can easily357

improve the effectiveness of the model.358

Splitting based on document structure.359

Chalkidis et al. (2022) argue that we should follow360

the structure of a document when splitting it into361

segments (Tang et al., 2015; Yang et al., 2016).362

They propose a hierarchical Transformer for363

the ECtHR dataset that splits a document at the364

paragraph level, reading up to 64 paragraphs of365

128 token each (8192 tokens in total).366

We investigate whether splitting based on doc-367

ument structure is better than splitting a long doc-368

ument into segments of same length. Similar to369

their model, we consider each paragraph as a seg-370

ment and all segments are then truncated or padded371

to the same segment length. We follow Chalkidis372

et al. (2022) and use segment length (l) of 128 on373

ECtHR, and tune l ∈{32, 64, 128} on MIMIC-III.8374

Results show that splitting by the paragraph-375

level document structure does not improve per-376

formance on the ECtHR dataset. On MIMIC-III,377

splitting based on document structure substantially378

underperforms evenly splitting the document (Fig-379

ure 9 in the Appendix) .380

5.3 Label-wise Attention Network381

Recall from Section 3 that our models form a sin-382

gle document vector which is used for the final383

prediction. That is, in Longformer, we use the384

hidden states of the [CLS] token; in hierarchical385

models, we use the max pooling operation to ag-386

gregate a list of contextual segment representations387

into a document vector. The Label-Wise Atten-388

8Note that since we need to pad short segments, therefore,
a larger maximum sequence length is required to preserve the
same information as in evenly splitting.

tion Network (LWAN) (Mullenbach et al., 2018; 389

Xiao et al., 2019; Chalkidis et al., 2020) is an al- 390

ternative that allows the model to learn distinct 391

document representations for each label. Given a 392

sequence of hidden representations (e.g., contex- 393

tual token representations in Longformer or contex- 394

tual segment representations in hierarchical models: 395

S = [s0, s1, · · · , sm]), LWAN can allow each la- 396

bel to learn to attend to different positions via: 397

aℓ = SoftMax(S⊤uℓ) (1) 398

vℓ =
m∑
i=1

aℓ,isi (2) 399

ŷℓ = σ(β⊤
ℓ vℓ) (3) 400

where uℓ and βℓ are vector parameters for label ℓ. 401

Results show that adding a LWAN improves per- 402

formance on MIMIC-III (Micro F1 score of 1.1 403

with Longformer; 1.8 with hierarchical models), 404

where on average each document is assigned 6 la- 405

bels out of 50 available labels (classes). There is 406

a smaller improvement on ECtHR (0.4 with Long- 407

former; 0.1 with hierarchical models), where the 408

average number of labels per document is 1.5 out 409

of 10 labels (classes) in total (Table 16 in the Ap- 410

pendix). 411

5.4 Comparison with State of the art 412

We compare TrLDC models against recently pub- 413

lished results on MIMIC-III, as well as baseline 414

models that process up to 512 tokens. In addition 415

to the common practice of truncating long docu- 416

ments (i.e., using the first 512 tokens), we consider 417

two alternatives that either randomly choose 512 418

tokens from the document as input or take as input 419

the most informative 512 tokens, identified using 420

TF-IDF scores. 421

Results in Table 2 and 3 show that there is a 422

clear benefit from being able to process longer text. 423

Both the Longformer and hierarchical Transform- 424

ers outperform baselines that process up to 512 425

tokens with a large margin on MIMIC-III and EC- 426

tHR, whereas relatively small improvements on 20 427

News and Hyperpartisan. It is also worthy noting 428

that, among these baselines, there is no single best 429

strategy to choose which 512 tokens to process. Us- 430

ing the first 512 tokens works well on MIMIC-III 431

and Hyperpartisan datasets, but it performs much 432

worse than 512 random tokens on ECtHR. 433

Finally, Longformer, which can process up to 434

4096 tokens, achieves competitive results with the 435

6



Macro AUC Micro AUC Macro F1 Micro F1 P@5

CAML (Mullenbach et al., 2018) C 88.4 91.6 57.6 63.3 61.8
PubMedBERT (Ji et al., 2021a) T 88.6 90.8 63.3 68.1 64.4
GatedCNN-NCI (Ji et al., 2021b) C 91.5 93.8 62.9 68.6 65.3
LAAT (Vu et al., 2020) R 92.5 94.6 66.6 71.5 67.5
MSMN (Yuan et al., 2022) R 92.8 94.7 68.3 72.5 68.0

Baselines processing up to 512 tokens

First T 83.0 ± 0.1 86.0 ± 0.1 47.0 ± 0.4 56.1 ± 0.2 55.4 ± 0.2

Random T 82.5 ± 0.2 85.4 ± 0.1 42.7 ± 0.4 51.1 ± 0.2 52.3 ± 0.2

Informative T 82.7 ± 0.1 85.8 ± 0.1 46.4 ± 0.5 55.2 ± 0.3 54.8 ± 0.2

Long document models

Longformer (4096 + LWAN) T 90.0 ± 0.1 92.6 ± 0.2 60.7 ± 0.6 68.2 ± 0.2 64.8 ± 0.2

Hierarchical (4096 + LWAN) T 91.1 ± 0.1 93.6 ± 0.0 62.9 ± 0.1 69.5 ± 0.1 65.7 ± 0.2

Hierarchical (4096 + LWAN + L*) T 91.7 ± 0.1 94.1 ± 0.0 65.2 ± 0.2 71.0 ± 0.1 66.2 ± 0.1

Hierarchical (8192 + LWAN) T 91.4 ± 0.0 93.7 ± 0.1 63.8 ± 0.3 70.1 ± 0.1 65.9 ± 0.1

Hierarchical (8192 + LWAN + L*) T 91.9 ± 0.2 94.1 ± 0.2 65.5 ± 0.7 71.1 ± 0.4 66.4 ± 0.3

Table 2: Comparison of TrLDC against state-of-the-art on the MIMIC-III test set. C: CNN-based models; R:
RNN-based models; and T: Transformer-based models. Models marked with an asterisk (*) is domain-specific
RoBERTa-Large (Lewis et al., 2020), whereas Longformer and other RoBERTa models are task-adaptive pre-trained
base versions.

.
ECtHR 20 News Hyper

First (512) 73.5 ± 0.2 86.1 ± 0.3 92.9 ± 3.2

Random (512) 79.0 ± 0.6 85.3 ± 0.4 88.9 ± 2.5

Informative (512) 72.4 ± 0.2 86.2 ± 0.3 91.7 ± 3.2

Longformer (4096) 81.0 ± 0.5 86.3 ± 0.5 97.9 ± 0.7

Hierarchical (4096) 81.1 ± 0.2 86.3 ± 0.2 95.4 ± 1.3

Table 3: Comparison of TrLDC against baselines pro-
cessing up to 512 tokens. We report Micro F1 on EC-
tHR, Accuracy on 20 News and Hyperpartisan datasets.

.

best performing CNN-based model (Ji et al., 2021b)436

on MIMIC-III. By processing longer text and us-437

ing the RoBERTa-Large model, the hierarchical438

models further improve the performance, leading439

to comparable results of RNN-based models (Vu440

et al., 2020; Yuan et al., 2022). We hypothesise441

that further improvements can be observed when442

TrLDC models are enhanced with better hierarchy-443

aware classifier as in Vu et al. (2020) or code syn-444

onyms are used for training as in Yuan et al. (2022).445

6 Practical Advice446

We compile several questions that practitioners may447

ask regarding long document classification and pro-448

vide answers based on our results:449

Q1 When should I start to consider using long 450

document classification models? 451

A We suggest using TrLDC models if you work 452

with datasets consisting of long documents (e.g., 453

2K tokens on average). We notice that on 20 News 454

dataset, the gap between baselines that process 512 455

tokens and long document models is negligible.9 456

Q2 Which model should I choose? Longformer 457

or hierarchical Transformers? 458

A We suggest Longformer as the starting point 459

if you do not plan on extensively tuning hyperpa- 460

rameters. We find the default config of Longformer 461

is robust, although it is possible to set a moderate 462

size (64-128) of local attention window to improve 463

efficiency without sacrificing effectiveness, and a 464

small number of additional global attention tokens 465

to make the training more stable. On the other hand, 466

hierarchical Transformers may benefit from care- 467

ful hyperparameter tuning (e.g., document splitting 468

strategy, using LWAN). We suggest splitting a doc- 469

ument into small non-structure-derived segments 470

9Although Hyperpartisan is a widely used benchmark for
long document models, we do not recommend drawing practi-
cal conclusions based on our results because we observe high
variance when we run experiments using different GPUs or
CUDA versions. We attribute this may to the small size (65)
of its test set and the subjectivity of the task.
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(e.g., 128 tokens) which overlap as a starting point471

when employing hierarchical Transformers.472

We also note that the publicly available Long-473

former models can process sequences up-to 4096474

tokens, whereas hierarchical Transformers can be475

easily extended to process much longer sequence.476

7 Related Work477

Long document classification Document length478

was not a point of controversy in the pre-neural era479

of NLP, where documents are encoded with Bag-480

of-Word representations, e.g., TF-IDF scores. The481

issue arised with the introduction of deep neural482

networks. Tang et al. (2015) use CNN and BiL-483

STM based hierarchical networks in a bottom-up484

fashion, i.e., first encode sentences into vectors,485

then combine those vectors in a single document486

vector. Similarly, Yang et al. (2016) incorporate487

the attention mechanism when constructing the sen-488

tence and document representation. Hierarchical489

variants of BERT have also been explored for docu-490

ment classification (Mulyar et al., 2019; Chalkidis491

et al., 2022), abstractive summarization (Zhang492

et al., 2019), semantic matching (Yang et al., 2020).493

Both Zhang et al., and Yang et al. also propose494

specialised pre-training tasks to explicitly capture495

sentence relations within a document. A very re-496

cent work by Park et al. (2022) shows that TrLDC497

do not perform consistently well across datasets498

that consist of 700 tokens on average.499

Methods of modifying transformer architecture500

for long documents can be categorised into two501

approaches: recurrent Transformers and sparse502

attention Transformers. The recurrent approach503

processes segments moving from left-to-right (Dai504

et al., 2019). To capture bidirectional context,505

Ding et al. (2021) propose a retrospective mecha-506

nism in which segments from a document are fed507

twice as input. Sparse attention Transformers have508

been explored to reduce the complexity of self-509

attention, via using dilated sliding window (Child510

et al., 2019), and locality-sensitive hashing atten-511

tion (Kitaev et al., 2020). Recently, the combi-512

nation of local (window) and global attention are513

proposed by Beltagy et al. (2020) and Zaheer et al.514

(2020), which we have detailed in Section 3.515

ICD Coding The task of assigning most rele-516

vant ICD codes to a document, e.g., radiology re-517

port (Pestian et al., 2007), death certificate (Koop-518

man et al., 2015) or discharge summary (Johnson519

et al., 2016), as a whole, has a long history of520

development (Farkas and Szarvas, 2008). Most 521

existing methods simplified this task as a text 522

classification problem and built classifiers using 523

CNNs (Karimi et al., 2017) or LSTMs (Xie et al., 524

2018). Since the number of unique ICD codes is 525

very large, methods are proposed to exploit relation 526

between codes based on label co-occurrence (Dong 527

et al., 2021), label count (Du et al., 2019), knowl- 528

edge graph (Xie et al., 2019; Cao et al., 2020; Lu 529

et al., 2020), code’s textual descriptions (Mullen- 530

bach et al., 2018; Rios and Kavuluru, 2018). More 531

recently, Ji et al. (2021a); Gao et al. (2021) inves- 532

tigate various methods of applying BERT on ICD 533

coding. Different from our work, they mainly focus 534

on comparing domain-specific BERT models that 535

are pre-trained on various types of corpora. Ji et al. 536

show that PubMedBERT—pre-trained from scratch 537

on PubMed abstracts—outperforms other variants 538

pre-trained on clinical notes or health-related posts; 539

Gao et al. show that BlueBERT—pre-trained on 540

PubMed and clinical notes—performs best. How- 541

ever, both report that Transformers-based models 542

perform worse than CNN-based ones. 543

8 Conclusions 544

Transformers have previously been criticised for 545

being incapable of long document classification. In 546

this paper, we carefully study the role of different 547

components of Transformer-based long document 548

classification models. By conducting experiments 549

on MIMIC-III and other three datasets (i.e., ECtHR, 550

20 News and Hyperpartisan), we observe clear im- 551

provements in performance when a model is able 552

to process more text. Firstly, Longformer, a sparse 553

attention model, which can process up to 4096 to- 554

kens, achieves competitive results with CNN-based 555

models on MIMIC-III; its performance is relatively 556

robust; a moderate size of local attention window 557

(e.g., 128) and a small number (e.g., 16) of evenly 558

chosen tokens with global attention can improve 559

the efficiency and stability without sacrificing its 560

effectiveness. Secondly, hierarchical Transform- 561

ers outperform all CNN-based models by a large 562

margin; the key design choice is how to split a 563

document into segments which can be encoded by 564

pre-trained models; although the best performing 565

segment length is dataset dependent, we find split- 566

ting a document into small overlapping segments 567

(e.g., 128 tokens) is an effective strategy. Taken 568

together, these experiments rebut the criticisms of 569

Transformers for long document classification. 570
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9 Appendix782

9.1 Limitations783

Long document classification datasets are usually784

annotated using a large number of labels. For ex-785

ample, the complete MIMIC-III dataset contains786

8, 692 unique labels. As we mentioned in Section787

2, we focus on building document representation788

and leave the challenge of learning with a large789

target label set for future work. Therefore, in this790

paper, we follow previous work (Mullenbach et al.,791

2018; Chalkidis et al., 2022) and consider a subset792

of frequent labels in MIMIC-III and ECtHR.793

9.2 Dataset statistics794

Table 4 shows the descriptive statistics of four795

datasets we use.796

Train Dev Test

MIMIC-III
Documents 8,066 1,573 1,729

Unique labels 50 50 50
Avg. tokens 2,260 2,693 2,737

ECtHR
Documents 8,866 973 986

Unique labels 10 10 10
Avg. tokens 2,140 2,345 2,532

Hyperpartisan
Documents 516 64 65

Unique labels 2 2 2
Avg. tokens 741 707 845

20 News
Documents 10,183 1,131 7,532

Unique labels 20 20 20
Avg. tokens 613 627 551

Table 4: Statistics of the datasets. The number of tokens
is calculated using RoBERTa tokenizer.

9.3 An illustration of sparse attention797

Figure 7 shows a comparison of three types of atten-798

tion operations. Longformer uses the combination799

of local attention and global attention.800

9.4 Details of task-adaptive pre-training801

Hyperparameters and training time for task-802

adaptive pre-training can be found in Table 5.803

9.5 Details of classification experiments804

Preprocessing We mainly follow Mullenbach805

et al. (2018) to preprocess the MIMIC-III dataset.806

t0 t1 t2 t4 t5 t6t3
Vanilla self-

attention

t0 t1 t2 t4 t5 t6t3
Local

attention

t0 t1 t2 t4 t5 t6t3
Global

attention

Figure 7: A comparison of three types of attention op-
erations. The example sequence contains 7 tokens; we
set local attention window size as 2, and only the first
token using global attention. Note that these curves are
bi-directional that tokens can attend to each other.

Longformer RoBERTa

Max sequence 4096 128
Batch size 8 128

Learning rate 5e-5 5e-5
Training epochs 6 15

Training time ≈ 130 ≈ 40
(GPU-hours)

Table 5: Hyperparameters and training time (measured
on MIMIC-III dataset) for task-adaptive pre-training
Longformer and RoBERTa. Batch size = batch size per
GPU × num. GPUs × gradient accumulation steps.

That is, we lowercase the text, remove all punctua- 807

tion marks and tokenize text by white spaces. The 808

only change we make is that we normalise numeric 809

(e.g., convert ‘2021‘ to ‘0000‘) instead of deleting 810

numeric-only tokens in Mullenbach et al. (2018). 811

We did not apply additional preprocessing to EC- 812

tHR and 20 News. We follow Beltagy et al. (2020) 813

to preprocess the Hyperpartisan dataset.10 814

Training We fine-tune the multilabel classifica- 815

tion model using a binary cross entropy loss. That 816

is, given an training example whose ground truth 817

and predicted probability for the i-th label are yi 818

(0 or 1) and ŷi, we calculate its loss, over the C 819

unique classification labels, as: 820

L =
C∑
i=1

−yi log(ŷi)− (1− yi) log(1− ŷi). 821

For the multiclass and binary classification tasks, 822

we fine-tune using the cross entropy loss, where ŷg 823

is the predicted probability for the gold label: 824

L = − log(ŷg), 825

10https://github.com/allenai/longformer
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We use the same effective batch size (16), learn-826

ing rate (2e-5), maximum number of training827

epochs (30) with early stop patience (5) in all ex-828

periments. We also follow Longformer (Beltagy829

et al., 2020) and set the maximum sequence length830

as 4096 in most of the experiments unless other831

specified. We fine-tune all classification models on832

Quadro RTX 6000 (24 GB GPU memory) or Tesla833

V100 (32 GB GPU memory). If one batch of data834

is too large to fit into the GPU memory, we use835

gradient accumulation so that the effective batch836

sizes (batch size per GPU × gradient accumulation837

steps) are still the same.838

We repeat all experiments five times with dif-839

ferent random seeds. The model which is most840

effective on the development set, measured using841

the micro F1 score (multilabel) or accuracy (multi-842

class and binary), is used for the final evaluation.843

9.6 A comparison between clinical notes and844

legal cases845

Although we usually use the term domain to indi-846

cate that texts talk about a narrow set of related847

concepts (e.g., clinical concepts or legal concepts),848

text can vary along different dimensions (Ramponi849

and Plank, 2020).850

In addition to the statistics difference between851

MIMIC-III and ECtHR, which we show in Table 4,852

there is another difference worthy considering: clin-853

ical notes are private as they contain protected854

health information. Even those clinical notes after855

de-identification are usually not publicly available856

(e.g., downloadable using web crawler). In contrast,857

legal cases have generally been allowed and encour-858

aged to share with the public, and thus become a859

large portion of crawled pre-training data (Dodge860

et al., 2021). Dodge et al. find that legal docu-861

ments, especially U.S. case law, are a significant862

part of the C4 corpus, a cleansed version of Com-863

monCrawl used to pre-train RoBERTa models. The864

ECtHR proceedings are also publicly available via865

HUDOC, the court’s database.866

We suspect task-adaptive pre-training is more867

useful on MIMIC-III than on ECtHR (Figure 4)868

may relate to this difference. Therefore, we evalu-869

ate the vanilla RoBERTa on MIMIC-III and ECtHR870

regarding tokenization and language modelling. A871

comparison of the fragmentation ratio using the872

tokenizer and perplexity using the language model873

can be found in Table 6.874

MIMIC-III ECtHR

Fragmentation ratio 1.233 1.118
Perplexity 1.351 1.079

Table 6: Evaluating vanilla RoBERTa on MIMIC-III
and ECtHR. Lower fragmentation ratio and perplexity
indicate that the test data have a higher similarity with
the RoBERTa pre-training data.

9.7 A comparison between TAPT and public 875

available RoBERTa by (Lewis et al., 2020) 876

We compare our TAPT-RoBERTa against publicly 877

available domain-specific RoBERTa (Lewis et al., 878

2020), which are trained from scratch on biomedi- 879

cal articles and clinical notes, in hierarchical mod- 880

els. In these experiments, we split long documents 881

into overlapping segments of 64 tokens. Results in 882

Figure 8 show that TAPT-RoBERTa outperforms 883

domain-specific base model, but underperforms the 884

larger model. 885

9.8 Results on ECtHR test set 886

Results in Table 7 show that our results are higher 887

than the ones reported in (Chalkidis et al., 2022). 888

Chalkidis et al. compare different BERT variants 889

including domain-specific models, whereas we use 890

task-adaptive pre-trained models. Regarding hier- 891

archical method, we split a document into overlap- 892

ping segments, each of which has 512 tokens. We 893

use the default setting for Longformer as in Beltagy 894

et al. (2020). 895

4096 6144
Maximum sequence length

67.5

68.0

68.5

69.0

69.5

70.0

M
ic

ro
F1

TAPT
Base
Large

67.5

68.0

68.5

69.0

69.5

70.0

M
ic

ro
F1

TAPT
Base
Large

Figure 8: A comparison of task-adaptive pre-trained
RoBERTa against public available domain-specific
RoBERTa. Both Base and Large RoBERTa models are
trained from scratch on biomedical articles and clinical
notes (Lewis et al., 2020).
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Macro F1 Micro F1

RoBERTa 68.9 77.3
CaseLaw-BERT 70.3 78.8

BigBird 70.9 78.8
DeBERTa 71.0 78.8

Longformer 71.7 79.4
BERT 73.4 79.7

Legal-BERT 74.7 80.4

Longformer (4096) 76.0 ± 1.4 80.7 ± 0.3

Hierarchical (4096) 76.6 ± 0.7 81.0 ± 0.3

Table 7: Comparison of our results against the results
reported in (Chalkidis et al., 2022) on the ECtHR test
set. Results are sorted by Micro F1.

9.9 A comparison between Longformer and896

Hierarchical model897

Table 8 shows a comparison between Longformer898

and Hierarchical models regarding the number of899

parameters and their GPU consumption. We use900

batch size of 2 in these experiments, and measure901

the impact of attention window size and segment902

length on the memory footprint.903

Longformer Hierarchical
Size (148.6M) (139.0M)

Maximum sequence length: 1024

64 4.8G 3.6G
128 5.0G 3.8G
256 5.5G 4.1G
512 6.6G 4.7G

Maximum sequence length: 4096

64 11.8G 7.8G
128 12.8G 8.4G
256 14.9G 9.6G
512 19.4G 12.2G

Table 8: A comparison between Longformer and Hier-
archical models. The number of parameters are listed
in the table header. Size refers to the local attention
window size in Longformer and the segment length in
hierarchical method, respectively.

9.10 A comparison between evenly splitting904

and splitting based on document905

structure906

Figure 9 shows that splitting by the paragraph level907

document structure does not improve performance908

MIMIC-III ECtHR
60

65

70

75

80

M
icr

o 
F1

68.5

81.2

62.9

80.1

65.4

80.5

66.0

81.3

Evenly (4096)
Structured (4096)
Structured (6144)
Structured (8192)

Figure 9: A comparison between evenly splitting and
splitting based on document structure.

on the ECtHR dataset. On MIMIC-III, splitting 909

based on document structure substantially under- 910

performs evenly splitting the document. 911
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9.11 Detailed results on the development sets912

For the sake of brevity, we use only micro F1 score913

in most of our illustrations, and we detail results of914

other metrics in this section.915
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AUC F1

Max sequence length Macro Micro Macro Micro P@5

512 81.4 ± 0.1 85.1 ± 0.2 39.2 ± 0.9 52.2 ± 0.3 53.3 ± 0.3

1024 83.6 ± 0.2 87.3 ± 0.3 43.2 ± 0.6 56.3 ± 0.5 56.5 ± 0.2

2048 86.5 ± 0.2 89.8 ± 0.1 48.2 ± 1.1 60.5 ± 0.4 59.4 ± 0.3

4096 88.4 ± 0.1 91.5 ± 0.1 53.1 ± 0.5 64.0 ± 0.3 62.0 ± 0.4

Table 9: Detailed results of Figure 1: the effectiveness of Longformer on the MIMIC-III development set.

AUC F1

Macro Micro Macro Micro P@5

Longformer on MIMIC-III

Vanilla 88.4 ± 0.1 91.5 ± 0.1 53.1 ± 0.5 64.0 ± 0.3 62.0 ± 0.4

TAPT 90.3 ± 0.2 92.7 ± 0.1 60.8 ± 0.4 68.5 ± 0.3 64.8 ± 0.3

RoBERTa on MIMIC-III

Vanilla 81.6 ± 0.2 85.0 ± 0.3 43.2 ± 1.7 53.9 ± 0.4 54.0 ± 0.2

TAPT 82.3 ± 0.4 85.5 ± 0.3 48.8 ± 0.4 56.7 ± 0.2 55.3 ± 0.2

Longformer on ECtHR

Vanilla — — 77.4 ± 2.3 81.3 ± 0.3 —
TAPT — — 78.5 ± 2.2 82.1 ± 0.6 —

RoBERTa on ECtHR

Vanilla — — 72.2 ± 1.5 74.8 ± 0.4 —
TAPT — — 72.7 ± 0.7 75.1 ± 0.4 —

Table 10: Detailed results of Figure 4: the impact of task-adaptive pre-training. Note that we use maximum sequence
length 512 for RoBERTa and 4096 for Longformer in these experiments.

15



AUC F1

Size Macro Micro Macro Micro P@5 Accuracy

MIMIC-III

32 89.8 ± 0.1 92.3 ± 0.1 59.6 ± 0.6 67.9 ± 0.3 64.2 ± 0.3 —
64 90.0 ± 0.1 92.5 ± 0.1 60.3 ± 0.3 68.1 ± 0.1 64.5 ± 0.1 —

128 90.1 ± 0.1 92.6 ± 0.1 60.5 ± 0.7 68.3 ± 0.3 64.7 ± 0.3 —
256 90.2 ± 0.0 92.6 ± 0.1 60.7 ± 0.6 68.4 ± 0.3 64.6 ± 0.2 —
512 90.3 ± 0.2 92.7 ± 0.1 60.8 ± 0.4 68.5 ± 0.3 64.8 ± 0.3 —

ECtHR

32 — — 78.2 ± 1.2 81.2 ± 0.3 — —
64 — — 78.6 ± 1.7 81.4 ± 0.1 — —

128 — — 79.9 ± 1.6 82.1 ± 0.5 — —
256 — — 78.5 ± 2.1 81.8 ± 0.4 — —
512 — — 78.5 ± 2.2 82.1 ± 0.6 — —

Hyperpartisan

32 — — – – — 83.9 ± 0.7

64 — — – – — 83.3 ± 1.9

128 — — – – — 83.9 ± 0.7

256 — — – – — 88.0 ± 0.7

512 — — – – — 85.9 ± 2.2

20 News

32 — — – – — 92.8 ± 0.6

64 — — – – — 94.0 ± 0.5

128 — — – – — 93.8 ± 0.3

256 — — – – — 93.5 ± 0.1

512 — — – – — 94.0 ± 0.1

Table 11: The impact of local attention window size in Longformer, measured on the development sets.

AUC F1

# tokens Macro Micro Macro Micro P@5

MIMIC-III

1 90.1 ± 0.2 92.6 ± 0.1 60.5 ± 0.9 68.2 ± 0.3 64.7 ± 0.3

8 90.0 ± 0.1 92.5 ± 0.1 60.5 ± 0.7 68.2 ± 0.3 64.6 ± 0.2

16 90.0 ± 0.2 92.5 ± 0.1 60.0 ± 0.2 68.1 ± 0.2 64.3 ± 0.3

32 90.0 ± 0.2 92.4 ± 0.1 60.1 ± 0.5 67.9 ± 0.1 64.4 ± 0.2

64 89.9 ± 0.2 92.4 ± 0.1 59.9 ± 1.0 67.9 ± 0.4 64.4 ± 0.3

ECtHR

1 — — 78.5 ± 1.8 80.8 ± 0.4 —
8 — — 77.2 ± 2.0 80.8 ± 0.4 —

16 — — 77.7 ± 0.4 80.7 ± 0.3 —
32 — — 78.2 ± 1.4 80.6 ± 0.4 —
64 — — 77.7 ± 2.3 80.7 ± 0.5 —

Table 12: Detailed results of Figure 5: the effect of applying global attention on more tokens, which are evenly
chosen based on their positions.
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AUC F1

# tokens Macro Micro Macro Micro P@5

MIMIC-III

1 90.1 ± 0.2 92.6 ± 0.1 60.5 ± 0.9 68.2 ± 0.3 64.7 ± 0.3

8 89.7 ± 0.2 92.0 ± 0.1 61.0 ± 1.3 66.9 ± 0.4 64.0 ± 0.4

16 89.4 ± 0.2 91.9 ± 0.1 60.1 ± 1.2 66.5 ± 0.3 63.9 ± 0.5

32 89.4 ± 0.4 91.9 ± 0.2 60.3 ± 1.6 66.4 ± 0.6 63.7 ± 0.7

64 89.1 ± 0.4 91.7 ± 0.2 59.4 ± 2.0 66.2 ± 0.7 63.4 ± 0.7

ECtHR

1 — — 78.5 ± 1.8 80.8 ± 0.4 —
8 — — 79.2 ± 0.3 80.9 ± 0.2 —

16 — — 77.6 ± 1.2 80.4 ± 0.4 —
32 — — 77.1 ± 0.7 80.0 ± 0.2 —
64 — — 76.6 ± 1.1 79.9 ± 0.5 —

Table 13: The effect of applying global attention on more informative tokens, which are identified based on TF-IDF.
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AUC F1

Size Macro Micro Macro Micro P@5 Accuracy

Disjoint segments on MIMIC-III

64 89.4 ± 0.1 92.0 ± 0.1 60.8 ± 1.1 67.9 ± 0.3 63.5 ± 0.3 —
128 89.5 ± 0.1 92.1 ± 0.1 61.2 ± 0.6 68.0 ± 0.3 63.5 ± 0.3 —
256 89.6 ± 0.1 92.1 ± 0.1 61.0 ± 0.4 67.6 ± 0.2 63.6 ± 0.2 —
512 89.2 ± 0.2 91.8 ± 0.2 59.4 ± 0.5 66.7 ± 0.3 63.4 ± 0.4 —

Overlapping segments on MIMIC-III

64 89.7 ± 0.1 92.3 ± 0.1 62.3 ± 0.2 68.7 ± 0.1 64.1 ± 0.1 —
128 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2 —
256 89.5 ± 0.1 92.1 ± 0.1 61.4 ± 0.3 68.1 ± 0.2 63.8 ± 0.1 —
512 89.4 ± 0.1 92.0 ± 0.0 60.3 ± 0.3 67.2 ± 0.2 63.6 ± 0.3 —

Disjoint segments on ECtHR

64 — — 76.6 ± 1.2 79.7 ± 0.2 — —
128 — — 77.6 ± 2.3 80.8 ± 0.4 — —
256 — — 77.7 ± 1.4 81.2 ± 0.4 — —
512 — — 78.3 ± 1.3 81.7 ± 0.3 — —

Overlapping segments on ECtHR

64 — — 76.9 ± 1.7 80.5 ± 0.5 — —
128 — — 77.5 ± 1.7 81.2 ± 0.5 — —
256 — — 78.1 ± 1.4 81.5 ± 0.2 — —
512 — — 78.4 ± 1.5 81.4 ± 0.4 — —

Disjoint segments on Hyperpartisan

64 — — — — — 88.8 ± 1.8

128 — — — — — 89.1 ± 1.4

256 — — — — — 87.8 ± 1.8

512 — — — — — 86.2 ± 1.8

Overlapping segments on Hyperpartisan

64 — — — — — 87.5 ± 1.4

128 — — — — — 88.4 ± 1.2

256 — — — — — 88.1 ± 2.1

512 — — — — — 88.4 ± 0.8

Disjoint segments on 20 News

64 — — — — — 93.3 ± 0.2

128 — — — — — 93.5 ± 0.3

256 — — — — — 94.4 ± 0.4

512 — — — — — 94.0 ± 0.3

Overlapping segments on 20 News

64 — — — — — 93.8 ± 0.4

128 — — — — — 93.4 ± 0.3

256 — — — — — 94.5 ± 0.2

512 — — — — — 93.9 ± 0.3

Table 14: The effect of varying the segment length and whether allowing segments to overlap in the hierarchical
transformers.
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AUC F1

Macro Micro Macro Micro P@5

MIMIC-III

E (4096) 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2

S (4096) 87.2 ± 0.2 90.1 ± 0.2 55.2 ± 0.4 62.9 ± 0.2 59.9 ± 0.2

S (6144) 88.2 ± 0.2 91.0 ± 0.2 57.8 ± 0.3 65.4 ± 0.3 61.7 ± 0.3

S (8192) 88.5 ± 0.3 91.2 ± 0.2 58.8 ± 0.2 66.0 ± 0.4 62.4 ± 0.1

ECtHR

E (4096) — — 77.5 ± 1.7 81.2 ± 0.5 —
S (4096) — — 75.3 ± 1.3 80.1 ± 0.4 —
S (6144) — — 77.1 ± 1.8 80.5 ± 0.5 —
S (8192) — — 77.7 ± 1.9 81.3 ± 0.5 —

Table 15: Detailed results of Figure 9: a comparison between evenly splitting and splitting based on document
structure. E: evenly splitting; S: splitting based on document structure.

AUC F1

Macro Micro Macro Micro P@5

MIMIC-III

Longformer 90.0 ± 0.2 92.5 ± 0.1 60.0 ± 0.2 68.1 ± 0.2 64.3 ± 0.3

+ LWAN 90.5 ± 0.2 92.9 ± 0.2 62.2 ± 0.7 69.2 ± 0.3 65.1 ± 0.1

Hierarchical 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2

+ LWAN 91.4 ± 0.1 93.7 ± 0.1 64.2 ± 0.4 70.3 ± 0.1 65.3 ± 0.1

ECtHR

Longformer — — 77.7 ± 0.4 80.7 ± 0.3 —
+ LWAN — — 79.5 ± 0.8 81.1 ± 0.3 —

Hierarchical — — 77.5 ± 1.7 81.2 ± 0.5 —
+ LWAN — — 79.7 ± 0.9 81.3 ± 0.3 —

Table 16: The effect of label-wise attention network.
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