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ABSTRACT

In the realm of deep learning, the veracity and integrity of the training data are
pivotal for constructing reliable and transparent models. This study introduces
the concept of Trustworthy Dataset Proof (TDP), which tackles the significant
challenge of verifying the authenticity of training data as declared by trainers. Ex-
isting dataset provenance methods, which primarily aim at ownership verification
rather than trust enhancement, often face challenges with usability and integrity.
For instance, excessive operational demands and the inability to effectively verify
dataset authenticity hinder their practical application. To address these shortcom-
ings, we propose a novel technique termed Data Probe, which diverges from tradi-
tional watermarking by utilizing subtle variations in model output distributions to
confirm the presence of a specific and small subset of training data. This model-
agnostic approach improves usability by minimizing the intervention during the
training process and ensures dataset integrity via a mechanism that only permits
probe detection when the entire claimed dataset is utilized in training. Our study
conducts extensive evaluations to demonstrate the effectiveness of the proposed
data-drobe-based TDP framework, marking a significant step toward achieving
transparency and trustworthiness in the use of training data in deep learning.

1 INTRODUCTION

Against the backdrop of the rapid development of deep learning technologies, the reliability and
transparency of models are increasingly being scrutinized, and the authentic use of training data
is the cornerstone of building effective and trustworthy models (Shayne, 2024; Anomalo, 2024;
Aldoseri et al., 2023). However, the actual usage of training data is often based on the trainer’s
self-report, which is extremely difficult to verify in practice.

The authenticity and integrity of training data are significant security concerns in the field of deep
learning, as even minor tampering with the training data can lead to significant changes in model
behavior. For instance, numerous studies (Chen & Babar, 2024; Khaddaj et al., 2023; Mengara et al.,
2024; Saha et al., 2020) have shown that attackers can embed a small number of backdoor samples
in training data, which could be activated during the model’s deployment, posing security risks. On
the other hand, trainers may introduce illegal or non-compliant data to enhance the performance
of the model without informing the users, especially in competitions or commercial applications,
raising concerns regarding the transparency and fairness. For example, high-profile lawsuits have
been initiated against major tech companies like Google and StabilityAI, where plaintiffs argue that
their copyrighted or personal data were used without permission to train AI systems (Sabine, 2024).

In this paper, we define the problem of Trustworthy Dataset Proof (TDP) to formally describe this
challenging task of verifying the integrity of training datasets, and further explore possible solutions.
As illustrated in Fig. 1, unlike the widely studied concept of data provenance, which focuses on the
ownership verification of a personal dataset, the TDP problem seeks to verify the authentic use of a
trustworthy dataset by the trainer, thereby enhancing trust.

Challenges: Although existing dataset provenance techniques hold promise for addressing the TDP
problem, they still face several formidable challenges. ❶ Usability: these techniques often fail to
meet practical requirements, such as demanding that the trainer provide all details of the training
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Figure 1: The Overview of the Trustworthy Dataset Proof (TDP) Problem. Compared to the
widely studied data provenance techniques, the TDP presents significant differences in terms of
dataset utilization and verification scope, making it a more challenging and novel problem.

process (Choi et al., 2024; Jia et al., 2021), requiring the training of a dedicated classifier for each
verification request (Maini et al., 2021; Dziedzic et al., 2022), or utilizing a backdoor for watermark-
ing (Adi et al., 2018; Tang et al., 2023), which could potentially be exploited maliciously (Mengara
et al., 2024; Khaddaj et al., 2023). ❷ Integrity: existing technologies are inadequate to certify the
integral use of the training dataset claimed by the trainers. In contrast, they can only verify whether
the actual dataset used approximates the distribution of the claimed dataset (Maini et al., 2021;
Dziedzic et al., 2022; Choi et al., 2024; Jia et al., 2021), or whether it contains specific samples from
the claimed dataset (Adi et al., 2018; Tang et al., 2023).

Motivations: To address the challenges of utility, we propose a novel concept named Data Probe.
This technique, distinct from traditional watermarking, does not require a model to produce a pre-
determined output. Instead, it leverages subtle distinctions in model outputs distribution to validate
its existence. It is designed to be model-agnostic, thereby reducing constraints on the training pro-
cess. For further tackling the integrity challenges, we bind the integrity of the training dataset to
the data probe selection strategy. This ensures that successful probe implantation and detection are
contingent upon the use of the complete dataset for training, serving as a possible solution to TDP.

Contributions: The contributions of our study are concluded as follows:
• To the best of our knowledge, this is the first exploration of the challenging security problem

associated with verifying the comprehensive and authentic use of the training dataset.
• We formalize this issue as a Trustworthy Dataset Proof (TDP) problem, analyze the challenges

posed by existing technologies, and derive technical insights for potential solutions.
• We innovatively design a watermarking-like technique called Data Probe, which underpins a

TDP framework that is highly available and capable of verifying the integrity of training data.
• Extensive evaluations demonstrate the effectiveness of our proposed methods, validating our

approach in various experimental settings.

2 RELATED WORK

Existing research on the protection and traceability of training datasets primarily focuses on verify-
ing the ownership of datasets Although this objective differs from the goal discussed in this paper,
which is to verify the integrity of training datasets to enhance credibility, we review these studies to
better understand the existing challenges and potential technical motivations, with a more detailed
discussion to follow in the Sec. 4.

Dataset watermarking. It achieves ownership authentication by embedding backdoors into training
datasets (Adi et al., 2018). Specifically, the owner of a dataset can select and modify a small subset of
samples to serve as backdoor triggers, which can induce atypical outputs from the model. Once the
model is trained on this dataset, the backdoor is automatically implanted. Subsequently, the copy-
right holder of the dataset can verify whether a suspected model exhibits the expected anomalous
behavior by activating the trigger, thereby confirming the occurrence of the training. Building on
this, many studies focus on enhancing the stealth and harmlessness of these backdoors. For instance,
Tang et al. (2023) propose to construct a clean-label backdoor by applying adversarial perturbations
to samples, which embeds a specific backdoor pattern without altering the labels of the samples.

Membership and Dataset Inference. Membership Inference (MI) (Shokri et al., 2017; Salem et al.,
2019; Yeom et al., 2018; Song & Mittal, 2021) is an attack targeting the privacy of training datasets,
but its technical approach can also be reversed for tracing training sets. MI exploits the phenomenon
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of overfitting in deep learning (Yeom et al., 2018), whereby a model better memorizes samples from
its training set, distinguishing them from non-training samples. For instance, Shokri et al.(Shokri
et al., 2017) proposed training numerous shadow classifiers to reveal such distinctions. Other studies
analyze various score metrics produced by the model when different samples are inputted, such
as confidence (Salem et al., 2019), loss (Yeom et al., 2018), and entropy (Song & Mittal, 2021).
To further enhance the stability of verification, Maini et al. (2021) proposed the Dataset-Inference
(DI) technique, which actually conducts MI at the distribution level and utilizes the characteristic
differences in the model’s responses to training and test samples.

Proof of Training Data. Proof-of-Training-Data (PoTD) (Choi et al., 2024) is a protocol enabling
a model trainer to assure a verifier of the specific training data responsible for generating a set of
model weights, which can confirm both the quantity and type of data. The protocol mandates that
the model trainer meticulously document and provide comprehensive details throughout the training
process, referred to as a training transcript, including the dataset, training codes, hyperparameters,
and intermediate checkpoints. The goal of PoTD is similar to our work. However, it focuses on
ensuring a precise correspondence between the training processes and model parameters, but fails to
verify the presence of subtle manipulations in the training dataset, as stated in their work limitations.

3 FORMALIZE TDP

3.1 PROBLEM DEFINITION

In the Trustworthy Data Proof (TDP) problem, two key roles are identified: model trainer and
verifier. The trainer is capable of utilizing a publicly credible dataset D to train a modelM. On
the other hand, the verifier is tasked with providing a mechanism to verify whetherM was trained
using D in a reliable and trustworthy manner. We formally define two functions to implement TDP:

Figure 2: The con-
ceptual framework of
TDP.

Definition 1 (Trusted Training) T-Train(D) →M,C
Trusted Training is a training mechanism specified by verifier, denoted as
T-Train(). It could be further represented as T-Train = T∪O, where T
refers to general model training procedures, and O represents additional
operations required by the verifier. The trainer need to use T-Train() to
train models to meet the requirements for subsequent trustworthy verifica-
tion. Specifically, it performs T-Train(D) to obtain a trained modelM,
and at the same time, get a certificate C for the subsequent verification .

Definition 2 (Verification) Verify(D,M,C) → {0,1}
Verification is the process by which the verifier provide the proof, denoted
as Verify(). The trainer want to assert thatM is trained on D. He then
provides the verifier withM and C obtained through T-Train, as well as
the D to be validated. Verify() outputs 1 to indicate that it judges the
model is indeed trained on D, while 0 indicates it is not.

We justify the rationality of the above definitions: ❶ Generality: the ad-
ditional operations O and C can both be empty ∅. At this point, T-Train
and Verify describe the most basic process of solving the TDP problem
without any assumptions, making them universal. ❷ Necessity: accord-
ing to the consensus in the relevant research field (Shayne, 2024; Aldoseri et al., 2023; Choi et al.,
2024), due to the high-dimensional complexity of DL models and the non-convex optimization train-
ing process, it is difficult to directly verify the fact thatM is trained on the complete D throughM
alone. Therefore, the verifier should be allowed to intervene and restrict the training process to
enhance their ability during the verification process.

3.2 THREAT MODEL

In TDP, the verifier is generally served by trusted authorities to ensure the fairness and effectiveness
of the verification process, and to defend against potential acts that may subvert the verification.
Therefore, the verifier is defined as the defender. On the other hand, the trainer may maliciously
exploit the TDP mechanism for unjust benefits, thus the dishonest trainer is defined as the at-
tacker. In this section, we will analyze the goals and capabilities of each party separately.
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Defender’s Goals. The fundamental goal of the defender is to ensure the correctness of the verifi-
cation (G1), accompanied by several performance-related goals (G2, G3, G4):

G1. Fidelity. If the trainer indeed carries out T-Train(D) →M,C, then the defender, executing
Verify(D,M,C), must output 1 with high probability. In all other cases, output 0.

G2. Low-Invasiveness. In T-Train = T ∪ O, it is advisable to minimize O’s restrictions on T,
as excessive limitations can affect the trainer’s flexibility in defining their own models and
training processes, hindering the generalizability of the TDP mechanism.

G3. Harmlessness. Implementing TDP should not compromise the model’s performance signifi-
cantly. Specifically, the performance of the trained modelM = T-Train(D) should be close
to the performance ofMT = T(D), which is obtained using only the standard training process.

G4. Efficiency. The verification process should be computationally efficient.

Defender’s Capabilities. Based on practical scenarios, we make the following assumptions and
restrictions on the defender’s capabilities. In T-Train = T ∪O, we assume that the additional oper-
ations required by the verifier, the O, is model-agnostic. O will not modify the model architecture,
nor obtain specific procedures or hyperparameters of T. In Verify, we assume that the defender
only has black-box access to the modelM to be verified, and can only query the model’s prediction
probabilities, i.e., y =M(x), where x is the input sample, y ∈ Rd, and d is the number of classes.

Attacker’s Goals. The attacker is a dishonest model trainer, whose goal is to attempt to subvert the
defender’s fidelity goal (G1), formally defined as follows:

When the attacker use the modified dataset D∗ ≠ D in trusted training, they would obtain
T-Train(D∗) →M∗,C∗. But they purposely claim to the defender (verifier) that the model
M∗ is trained on D, attempting to make Verify(D,M∗,C∗) → 1.

It is important to emphasize that the attacker’s primary objective is to successfully complete the TDP.
By obtaining the proof that the model’s training set is a credible dataset D, the attacker can gain
the trust of users. As a result, the modelM∗ it publicly releases is more likely to be downloaded,
deployed, and used. On this basis, the attacker attempts to ‘hide’ the fact that it actually tampered
with the training dataset for training.

Attacker’s Capabilities. We assume that the attacker can only modify the dataset D but cannot
manipulate the verifier’s additional operations O in T-Train. The reasonableness of this assump-
tion is consistent with the discussion in problem definition (Sec. 3.1). The defender (verifier) needs
to intervene in the model training with certain operations O to facilitate verification. Once the at-
tacker can manipulate O, they can easily neutralize various verification mechanisms of the defender.
Therefore, we reasonably limit the capabilities of the attacker, requiring them to at least fully execute
T-Train. In other words, any modifications made by the attacker toM must go through T-Train.

4 CHALLENGES AND MOTIVATIONS

4.1 CHALLENGES FOR CURRENT TECHNIQUES

Based on the formal definition of TDP in Sec. 3, we utilize representative existing dataset provenance
technologies, including Watermarking, MI/DI, and PoTD, to propose some hypothetical solutions
for TDP and analyze the challenges involved. Detailed definitions and analyses of each approach
are elaborated in the Appendix A, from which we conclude that the application of existing schemes
to TDP primarily confronts challenges in two aspects: integrity and usability.

Challenge 1: Intergrity. All existing schemes fail to ensure the integrity of the training dataset
D. Specifically, if an attacker claims to have used D for training but actually employs D∗, current
schemes can only verify whether D∗ approximates the distribution of D (MI/DI, PoTD), or whether
D∗ contains several specific samples from D (Watermarking). However, none of these approaches
can confirm that D∗ ≠ D.

This disadvantage fundamentally stems from differences in the definition of the threat model , which
is also detailed in Fig. 1. In most of the aforementioned works, the party holding the data primarily
aims at ownership verification. Therefore, they are typically regarded as trustworthy or defenders,
with no incentive to actively alter their dataset. However, in TDP, the main goal of the data holder
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and user is to enhance trust, which might lead them to actively modify the dataset while still claiming
to use an authentic dataset to gain undue benefits. This disparity is the root of the vulnerabilities in
existing methods, rendering them unable to meet the fundamental goal of fidelity (G1) in TDP.

Challenge 2: Usability. Some existing techniques may exhibit deficiencies in usability within prac-
tical scenarios. For instance, the PoTD scheme does not meet the defender’s goal: low-invasiveness
(G2), as it requires accessing all information from the model trainer during training. DI, to some
extent, fails to satisfy the efficiency goal (G4), since it may necessitate training a dedicated clas-
sifier for each verification request. The watermarking approach could potentially compromise the
defender’s goal of harmlessness (G3), as watermarks that utilize backdoors might be maliciously
exploited, thereby introducing inherent security risks.

4.2 MOTIVATIONS AND INSIGHTS

Tackling usability challenge. Among various approaches, we consider the concept of watermarking
to exhibit the highest usability. It imposes minimal constraints during the training phase and offers
the highest efficiency during verification, with only requiring black-box access to the model under
test. However, its shortcomings originate from the use of backdoors (Adi et al., 2018), typically
requiring the model to produce anomalous outputs when presented with specific trigger samples,
which often leads to degradation in model performance or security risks (Mengara et al., 2024)

We aim to relax assumptions regarding watermark capabilities to enhance usability while ensuring
sufficient capability to determine the occurrence of watermark. We also draw inspiration from MI,
noting that the membership of samples could be determined based on discrepancies in model output.
Consequently, we introduce a new concept: Data Probe, for conducting watermarking operations.
Its formal definition is as follows:

Definition 3 (Data Probe). Data probe is defined as a small subset of samples, xp, within the train-
ing dataset D. Based on this, the training dataset can be divided into two parts: D = {xp ∪ xnp},
where xnp refers to ‘non-probe’ samples. After training the modelM on D, we expect a noticeable
difference in the output distribution of the model when inputting data from these two subsets, i.e.,

Pr(y∣xp;M) ≠ Pr(y∣xnp;M)

Data probe can be considered as a weakened version of a backdoor, it only necessitates a discernible
difference in the output compared to that from non-probe inputs xnp, such as a slight increase in
prediction confidence, but not a ‘directed’ output. From the perspective of MI, although xp and xnp

both belong to the training set, we expect xp to behave more like a ‘special member’ of the dataset.

Tackling intergrity challenge. Simple data probe selection and implanting strategies may still
fall into the dilemmas encountered by watermarking schemes. Hence, our insight is to bind the
integrity of the training dataset with the data probe selection strategy, ensuring that successful
probe implantation and detection can only occur when the dataset is used in its entirety for training.

5 IMPLEMENT TDP

Conceptual Overview. Our proposed data-probe-based TDP framework is illustrated in Fig. 3 and
formally described in Algorithm 1. Relevant functions are denoted with the subscript DP.

In T-TrainDP, a pseudo-random mechanism ProbeSelect is introduced to select the data probe
xp. It needs to perform a keyed-hash on training dataset D based on a user-specific key k. Next,
operation ODP is exerted on the selected probe to facilitate its ‘implantation’ into the model M
during training. Subsequently, the trainer can carry out the normal training process T and submit the
key k as a certificate C for verification.

In VerifyDP, the verifier first reproduces the pseudo-random process ProbeSelect based on C to
select data probe xp and non-probe xnp from D claimed by the trainer. He then calculates the
scores sp, snp through a function ProbeScore to measure the difference in the output distribution of
these two groups of data in modelM. If there is a noticeable difference between sp and snp, it is
considered that the data probe xp has been detected, authenticating the genuine use of the training
dataset D.
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Figure 3: The Conceptual Overview of the Proposed TDP Framework based on Data Probe.

VerifyDP satisfies the main objective of the defender: fidelity (G1). The principle lies in that, if
the trainer indeed use D for training M, the data probe xp selected and implanted in T-TrainDP
will be completely consistent with the probe calculated in VerifyDP. Assuming that the data probe
can correctly perform the function defined in Definition 3, the verifier can reliably certify its claim.
Conversely, if the trainer makes any minor modifications to D, as shown in the lower part of Fig. 3,
the implanted data probe x∗p will not correspond with xp, thus failing the validation.

Probe Selection. The probe selection rule is based on pseudo-randomness, which utilizes the
uniqueness of hash functions (Rivest, 1992). Initially, it calculates a hash of the complete dataset D
to obtain a unique hash value. Subsequently, we use this hash value as a random seed to randomly
select a small subset of samples from the training dataset as data probe xp, as described in Lines 3-4
of Algorithm 1. Clearly, D and xp are bound together, and any minor modification of D will result
in changes to the hash value , which in turn leads to changes in the selection of data probe xp.

However, simple hash calculations pose security risks. The same dataset will yield the same data
probe for all users, which could be easily exploited by attackers. Therefore, we introduce the user-
specific key k and replace the hash with keyed-hash, such that different users using the same trusted
dataset (such as CIFAR10 (Krizhevsky & Hinton, 2009)) will generate different data probes.

Table 1: Data Probe Types and Principles. PS rep-
resents the generic scoring process, calculating the
probe score sp and non-probe score snp. lp and lnp
denote the ground-truth labels. ltp and ltnp are targeted
labels defined in TP.

Type sp snp Expectation

PP PS(M,xp, lp) PS(M,xnp, lnp) sPPp > sPPnp
AP PS(M,xp, lp) PS(M,xnp, lnp) sAPp < sAPnp
UP PS(M,xp, lp) PS(M,xnp, lnp) sUPp < sUPnp
TP PS(M,xp, l

t
p) PS(M,xnp, l

t
np) sTPp > sTPnp

Probe Implantation. Reflecting on the
functionality of data probe described in
Definition 3, our goal is to elicit a special
response from the trained model M to the
data probe xp. At the same time, we also
need to fully consider the usability of the
scheme. ODP does not need to change the ar-
chitecture of modelM, nor does it need to
obtain the hyperparameters in training pro-
cess T. Therefore, we have determined that
ODP should only perform data-level opera-
tions on data probe xp, without needing to
change the normal training process T.

Inspired by existing dataset provenance research, we have developed four different types of data
probe: Prominent Probe (PP), Absence Probe (AP), Untargeted Probe (UP), and Targeted Probe
(TP). We summarize the principles of various probes in Tab. 1 and detail their concepts and imple-
mentations in this section. The unique operations of different types of probes are marked by super-
scripts. Besides, the performance and characteristics of the four probes are compared in Sec. 6.2.

❶ Prominent Probe (PP). ‘Prominent’ means the model’s response to the data probe xp is more
significant compared to non-probe xnp. In principle, we aim to make the model more overfit on the
xp, providing more confident scores. OPP

DP can be implemented through the built-in data sampling
mechanism of the deep learning computation library, by assigning a higher weight to the xp. The
xp is therefore more likely to be selected during the training , resulting in better fitting to the xp.

❷ Absence Probe (AP). The principle of AP is exactly opposite to that of PP. To maximize the
insignificance, we consider an extreme case where the probe weight is 0, meaning the model has
never encountered xp during training. Then the trained model M should provide less confident
scores for xp. OAP

DP can be implemented in a similar manner to OPP
DP by setting the probe weight to 0.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

❸ Untargeted Probe (UP). Untargeted Probe utilizes the concept of data poisoning (Adi et al.,
2018; Mengara et al., 2024), where OUP

DP assigns random, incorrect labels to the probe xp. In this
case, we expect the model to be less confident in its predictions for the probe xp. For instance, a
decrease is witnessed in the predicted probabilities for their ground truth classes.

❹ Targeted Probe (TP). In contrast to UP, Targeted Probe is where OTP
DP uniformly assigns a random

label, marked as lt, to the probe. In this case, we expect the trained model to be more confident in
predicting the xp as class lt. Assuming the number of probe and non-probe are Np and Nnp, we
construct two sets of labels: ltp = {lt}Np and ltnp = {lt}Nnp and obtain scores as stated in Tab. 1.

Probe Score Calculation. The detection of data probe relies on comparing the saliency scores of
probe sp and non-probe snp. In this section, we will demonstrate possible scoring methods. Inspired
by the techniques for assessing sample saliency adopted in the MI work, we propose the following
four possible methods: confidence-based, loss-based, entropy-based, and modified-entropy-based.

According to the aformentioned ProbeScore function protocol, the inputs include a modelM, a set
of data x, and a set of labels l. For the sake of brevity in expression, we describe the score calculation
method for individual samples x ∼ x, without distinguishing between probe and non-probe, as they
actually use the same calculation method. Besides, we convert the corresponding label l ∼ l into the
index of the model’s output for convenience in expression, i.e., when l indicates that x belongs to
class y, we useM(x)y to represent theM’s prediction probability for x being in that class.

❶ Confidence-based score (Conf) For a more significant sample during training, the model should
make predictions with higher confidence in it (Salem et al., 2019). we define the confidence-based
score as: Conf(M,x) =max(M(x)) which will be directly return as the probe score.

❷ Loss-based score (Loss) For a more significant sample during training, the model should has a
lower prediction loss on it (Yeom et al., 2018). We mark the loss function, such as the cross-entropy,
as L, and we define the loss-based score as: Loss(M,x,l) = L(M(x), l) . The more significant
the sample x, the smaller the Loss. In order to make the return values of ProbeScore continuous,
where larger values represent more significance, we return -Loss as the probe score.

❸ Entropy-based score (Entr) For a more significant samples during training, the model’s predic-
tion on it should be close to the one-hot encoded label, i.e., its entropy will be close to 0 (Salem et al.,
2019). We define the entropy-based score as: Entr(M,x) = −∑iM(x)i log (M(x)i) . Similar
to Loss, we return -Entr as the probe score.

❹ Modified-entropy-based score (Mentr) It is an enhanced version of Entr by considering the
ground-truth label l (Song & Mittal, 2021). We define the modified-entropy-based score as:
Mentr(M,x,l) = −(1 −M(x)y)log (M(x)y) −∑i≠yM(x)i log (M(x)i) . Similar to Loss, we
return -Mentr as the probe score.

Probe Detection Metric. According to the definition of Data Probe, probe scores are expected to
differ in distribution from non-probe scores. Therefore, we aggregate the aforementioned sample-
level scores into distribution-level metrics for probe detection. The following two metrics are em-
ployed: ❶ Probe Saliency AUC (PSA). It is a new metric proposed in this work. It utilizes probe
scores to plot the ROC curve, further calculating the Area Under ROC curve (AUC) as the metric.
The greater the PSA exceeds 0.5, the more it indicates that probe scores are separable from non-
probe scores.❷ Statistical test p-value (pV). It has been widely adopted in previous works for mea-
suring distribution differences. A pV less than a certain level of significance, such as 0.1, indicates
a substantial difference in score distributions, signifying that the probe has been detected. We detail
the principles of these two metrics and their calculation methods for each probe in Appendix B.

6 EVALUATIONS

Overview. In the evaluations, we aim to investigate the following four research questions (RQs):
RQ1. Whether various types of data probes can effectively verify the integrity of the dataset ?
RQ2. How many probes need to be implanted during training to achieve the verification ?
RQ3. How do different probe score calculation strategies impact the effectiveness of detection ?
RQ4. How robust is the verification mechanism when attackers launch adaptive attacks ?
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Table 2: Comprehensive Probe Perfomance Evaluations. Best performance of PSA and pV un-
der each setting are hilighted as BLUE and RED. And the metric under probe-mismatch cases are
marked as GRAY. Scores are reported as % except for pV.

Ori. PP AP UP TP
acc acc PSA↑ PSA∗ pV↓ pV∗ acc PSA↑ PSA∗ pV↓ pV∗ acc PSA↑ PSA∗ pV↓ pV∗ acc PSA↑ PSA∗ pV↓ pV∗

CIFAR-10

ResNet18 85.22 85.19 56.15 50.58 10−21 0.35 85.08 52.14 49.97 0.01 0.42 84.68 57.09 49.60 0.02 0.55 84.92 59.22 50.18 10−12 0.47
MobileNet 84.55 84.12 55.95 49.60 10−16 0.54 84.64 52.59 50.09 0.02 0.39 84.25 57.02 49.99 10−4 0.37 84.43 57.17 50.16 10−7 0.48
ShuffleNet 84.69 83.06 57.20 50.41 10−43 0.50 82.57 52.66 49.67 0.03 0.41 86.77 59.96 49.53 10−5 0.39 82.83 57.87 49.78 10−9 0.59
DenseNet 86.32 85.27 55.58 50.11 10−27 0.51 86.18 52.60 49.42 0.08 0.55 83.04 57.63 48.95 10−3 0.35 86.49 59.51 49.81 10−9 0.56

SVHN

ResNet18 92.03 91.86 51.28 49.25 10−11 0.65 91.88 50.68 50.84 0.29 0.28 92.10 53.38 51.04 0.27 0.24 92.15 53.85 50.59 10−4 0.42
MobileNet 91.98 91.43 51.17 49.33 10−6 0.64 91.67 50.74 50.41 0.28 0.56 91.81 52.79 50.48 0.26 0.29 91.91 52.83 50.40 0.01 0.41
ShuffleNet 92.21 91.50 51.32 49.44 10−4 0.78 91.66 51.01 50.44 0.30 0.35 92.41 52.84 50.72 0.35 0.21 91.75 53.56 50.23 10−3 0.50
DenseNet 92.45 91.89 51.40 49.32 10−3 0.67 92.37 51.21 50.72 0.26 0.29 92.00 53.29 50.58 0.19 0.25 92.03 53.44 50.46 10−3 0.42

CIFAR-100

ResNet18 64.62 63.57 69.20 50.06 10−99 0.66 63.83 58.07 49.29 10−10 0.48 63.95 71.28 49.65 10−27 0.62 64.39 79.83 50.67 10−92 0.40
MobileNet 62.45 61.17 69.36 50.72 10−99 0.40 61.68 56.75 49.03 10−7 0.64 62.30 63.42 48.89 10−11 0.63 62.35 69.04 50.09 10−38 0.51
ShuffleNet 60.22 59.40 70.13 50.33 10−99 0.51 59.86 57.39 50.02 10−8 0.53 60.30 63.27 49.49 10−12 0.69 60.48 71.14 50.66 10−48 0.31
DenseNet 64.42 63.44 69.21 50.40 10−99 0.57 64.39 57.67 49.81 10−10 0.65 64.33 68.12 49.27 10−12 0.66 64.61 77.56 50.64 10−83 0.42

Tiny-ImageNet-200

ResNet18 53.00 51.03 76.26 50.17 10−54 0.47 51.83 62.89 50.30 10−29 0.41 53.35 49.82 50.61 0.44 0.38 53.18 49.94 49.21 0.63 0.68
MobileNet 51.06 49.41 75.38 49.47 10−75 0.62 50.12 57.35 50.44 10−6 0.46 50.83 50.20 50.56 0.41 0.42 51.00 49.87 49.68 0.59 0.63
ShuffleNet 50.11 47.85 76.02 49.85 10−78 0.44 48.47 57.99 50.31 10−9 0.51 50.04 49.58 50.20 0.45 0.55 49.81 49.38 50.15 0.61 0.50
DenseNet 55.26 53.16 74.63 50.02 10−55 0.45 53.86 60.51 50.00 10−20 0.55 55.72 49.58 50.02 0.40 0.51 55.59 50.05 49.63 0.52 0.64

6.1 SETUP

Datasets: Four datasets are adopted: CIFAR-10 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al.,
2011), CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny-ImageNet-200 (Le & Yang, 2015).

Models: We employed various architectures: ResNet18 (He et al., 2016), MobileNet (Howard
et al., 2017), ShuffleNet (Zhang et al., 2018), and DenseNet (Huang et al., 2017). These models
were chosen to ensure a broad evaluation of performance across different architectural dynamics.

Metrics: We utilized two metrics: PSA and p-value(pV), which have been introduced in Sec. 5, for
probe detection and effectiveness evaluation. The significance threshold for pV is set to 0.1.

For further specifics, such as hyperparameters, please refer to the Appendix C.

6.2 EVALUATION RESULTS

Comprehensive performance comparison (RQ1). We comprehensively evaluated the perfor-
mance of various architectures when trained on different datasets using the four types of data probes
proposed for TDP. The results are displayed in the Tab. 2. All experiments were repeated five times,
and the mean values were recorded. We tested the accuracy of models trained directly without any
probes as a baseline for comparison, denoted as "Ori.". For each type of probe, in addition to train-
ing accuracy, we recorded two metrics when the declared dataset matched the actual training dataset:
PSA and p-value (pV). Additionally, we tested metrics for mismatched declared and training models
as a contrast (PSA∗ and pV∗). In each experimental group, we selected 1% of the training set to
serve as probes. All probe scores were calculated using Mentr.

Through extensive experimental comparisons, we summarize the following results: ❶ The implan-
tation of data probes has almost no impact on the performance of the original model. As shown
by the accuracy metrics in Tab. 2, the performance of models with data probes deviates minimally
from the original performance, with the majority of variations within an acceptable range (<±1%).
This meets the defender’s goal of harmlessness (G3). ❷ Data probes generally achieve the task
of verifying dataset completeness. Specifically, for the PSA metric, we expect it to approach 0.5
when probes do not match, and significantly exceed 0.5 when they do match. For the pV, values
below 0.1 indicate that probes have been detected with high confidence, while in cases of mismatch,
we expect the p-value to be as high as possible. It can be seen that most probes meet the afore-
mentioned requirements across various training sets and models, successfully implementing TDP.
Additionally, we observed that among the four types of probes, PP exhibits high significance in the
p-value metric, while TP demonstrates a clear advantage in the PSA metric.

8
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Figure 4: Evaluations of the Impact of Probe Implant Quantity We use a gray dashed line to
mark two critical reference values: PSA = 0.5 and pV = 0.1. In PSA, lighter-colored dashed lines
are non-probe scores. Here we present the results of PP, with the complete results shown in Fig. 7.

Impact of probe quantity (RQ2). We assessed how the performance metrics of TDP vary with an
increase in the number of probes, ranging from 0.1% to 2% of the training set, as shown in Fig. 4.
We trained various models on the CIFAR-10 dataset. All experiments were repeated five times, and
the mean values as well as the standard deviation were recorded and displayed. The probe scores
were also calculated using Mentr. From the evaluation results, we can conclude that selecting
approximately 1% of the training set samples is sufficient to reliably implement TDP. As the
number of implanted samples increases, the performance of the model may experience a negligible
decline, while the metrics of PSA and p-value tend to stabilize. We believe that using about 1% of
the training data as probes effectively achieves TDP, representing an appropriate trade-off between
model verifiability and performance.

Figure 5: Evaluations of Various Probe
Score Calculation Methods.

Impact of probe score calculation methods (RQ3).
We analyzed the viability of various possible probe
score calculation methods introduced in Sec. 5, as dis-
played in Fig. 5. We trained ShuffleNet on CIFAR-10
using various default settings for different probes and
calculated the probe scores using four different meth-
ods. All experiments were repeated five times, and the
mean values were reported. From the experimental re-
sults, we found that Mentr exhibits the best gener-
alizability and detection effectiveness. It effectively
detected data probes when applied across all four probe schemes. Additionally, we discovered that
Conf and Entr are completely inapplicable to TP, as TP relies on inducing samples to point towards
a specific label, whereas the calculations for Conf and Entr are independent of the label.

Robustness to adaptive attackers (RQ4). We evaluate a worst-case security scenario in which the
attacker knows the key k used in the probe selection process and the specific type of probe employed.
Specifically, the attacker can replicate the probe xp corresponding toD after training the modelM∗

using D∗, and attempt to illegitimately pass the verification for D by embedding the probe into the
model. We therefore designed four probe forging attacks for each probe, with the underlying princi-
ples detailed in Appendix D, denoted with the prefix F for "Forged". Evaluations adopt ShuffleNet
on CIFAR-10. We trained 10 different models randomly and designated 10 different target probes
for each model, resulting in a total of 100 experimental groups per attack. We recorded the mean
and standard deviation of various metrics before and after the attack. Additionally, we set the PSA
threshold at 0.51 and the p-value at 0.1, and documented the Attack Success Rate (ASR).

Table 3: Evaluations of the Robustness to Adap-
tive Probe Forging Attacks. Metrics before and
after attack are shown in GRAY and BOX .

Attacks Acc
PSA pV

score ASR score ASR

FPP
84.0±0.4
84.0±0.5

50.1±1.7
54.5±1.6 62%

0.28±0.25
10−6 ± 10−5

67%

FAP
83.6±0.3
82.3±0.5

50.7±1.7
51.4±1.7 14%

0.45±0.27
0.20±0.21 32%

FUP
83.6±0.3
83.0±0.4

50.7±1.7
51.2±1.7 5%

0.49±0.27
0.49±0.28 0%

FTP
83.6±0.3
82.7±0.5

50.8±1.5
51.4±1.5 9%

0.37±0.26
0.27±0.22 10%

The complete training results are displayed in
Tab. 3. We found that all probe schemes, ex-
cept for PP, exhibit a certain degree of ro-
bustness. This indicates that in most cases, it
is challenging for attackers to easily deceive
the verification mechanism through forged
probes without compromising model perfor-
mance. Additionally, we observed certain
changes in metrics after the attacks, revealing
potential security risks. Therefore, keeping the
user’s key k hidden from the users, such as by
implementing it through a server API, might
be a solution to enhance robustness.

9
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Figure 6: Case Studies for Comparison with Existing Techniques. The scores for each validation
are presented in GRAY, with watermarking representing the predicted probabilities, and DI and Data
Probe indicating the p-values. HASH(train) shows the hash value computed on the tampered dataset
during probe implantation, which differs from the HASH(test) obtained on the declared untampered
dataset (CIFAR-10) during testing. More results are exhibited in Fig. 8 in the Appendix.

7 CASE STUDY

We conducted several case studies to validate the efficacy of the proposed Data-Probe-based TDP
(DP) when genuine modifications occur within datasets. PP is adopted for evaluations. Meanwhile,
we conducted comparative analyses with existing technologies, selecting two representative ap-
proaches: Watermarking (Tang et al., 2023) (WM) and Dataset Inference (Maini et al., 2021) (DI).
Although they are not originally designed for the TDP mission, we adapted them using the hypo-
thetical schemes proposed in Appendix A, utilizing their official open-source implementations. We
employed CIFAR-10 and ResNet18 to test the verification results when an attacker claims to have
trained on CIFAR-10, while subtly modifying it in training, which is expected to fail verification.

Table 4: Case Study of Simulated Modifications.
Success rate (%) is shown in BOX with socres in
GRAY, consistent with Fig. 6.

Method Origin
Extra Data Backdoor Usability Eva.

0.01% 0.10% 1% 0.01% 0.10% 1% Sec. Risk Time

WM 100
1.0

0
1.0

0
1.0

0
0.99

0
0.99

0
0.99

5
0.97

35.60% 8.8s

DI 100
10−7

0
10−7

0
10−7

0
10−7

0
10−7

0
10−7

0
10−7

- 58min

DP(Ours) 100
10−6

100
0.53

100
0.58

100
0.46

95
0.54

100
0.50

95
0.46

97.20% 6.5s

Simulated modification. We simulated
two typical scenarios of dataset tampering:
introducing additional data and embedding
backdoors. For the former, we randomly se-
lected a small proportion of samples, from
0.01% to 1%, and duplicated them. For
the latter, we chose a small subset of sam-
ples and applied minimal noise (bounded by
l∞ = 8/255), adhering to the common con-
figurations used in backdoor attacks. For
each setup, we conducted 20 repeated experiments and recorded the success rates (success is de-
fined as block from verification, unless the trainer did not modify the dataset). Additionally, we
evaluated the usability metrics for each approach, namely the runtime and security risks. Regarding
security risks, DI was not assessed because it does not alter the training process. For WM we tested
the prediction accuracy of the backdoor samples it used. For DP, we evaluated the prediction accu-
racy of the data probe. The comparative results from Tab. 4 demonstrate that only the Data-Probe
approach successfully denied verification requests from attackers while exhibiting the lowest
time expenditure and minimal security risks.

Practical modification. We employed a representative and effective backdoor attack named
Witches’ Brew (Geiping et al., 2021). This attack alters 1% of the samples so that the trained model
incorrectly classifies a targeted image, known as the trigger, as the wrong category. For instance, an
automobile would be recognized as a deer. The results are displayed in Fig. 6, and the conclusions
are consistent with those from the simulated experiments.

8 CONCLUSION

In this study, we highlight the importance of the Trustworthy Dataset Proof (TDP) in enhancing the
veracity and integrity of training data for deep learning models. By introducing the novel Data Probe
technique, this research successfully addresses the limitations of existing dataset provenance meth-
ods, which often falter in usability and integrity. The Data Probe, by leveraging subtle variations
in model output distributions to verify the inclusion of specific training subsets, offers a model-
agnostic and minimally invasive approach to dataset verification. Our extensive evaluations validate
the effectiveness of our Data-Probe-based TDP framework, significantly advancing the pursuit of
transparency and trustworthiness in training data usage.

10
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A CHALLENGES FOR CURRENT TECHNIQUES

In this section, based on the formal definition of TDP in Sec. 3, we combine existing dataset trace-
ability or copyright authentication technologies to propose some hypothetical solutions for TDP, and
analyze the challenges involved.

Case 1: Watermarking

If we assume using watermarking technology (Adi et al., 2018; Tang et al., 2023) to achieve TDP,
then the verifier can validate the occurrence of training behaviors based on two steps: watermark
embedding and watermark detection. We use the subscript WM to represent the relevant functions of
watermarking-based TDP.

In T-TrainWM, the trainer is required to embed watermarks into the model through training, and this
operation can be denoted as OWM. OWM allows the trainer to select some data samples from D as
triggers xt according to certain rules, which can make the trained model produce a specific pattern
of output P. We represent this characteristic as: P = M(xt). Then the trainer sets C ← xt and
submits it along with the trained modelM to the verifier.

In the verification, the verifier could make the judgement:

Verify(D,M,C)WM ← 1 (P =M(C) ∧C ∈D) .
However, VerifyWM cannot meet the defender’s primary goal: fidelity (G1), and we provide the
simplest counterexample. The attacker can slightly manipulate the remaining data D− = D ∖ xt

except for the triggers. It is noted that the current dataset D∗ = {D− ∪ xt} ≠ D. Then the attacker
execute T-Train(D∗)WM → M∗,C∗. Here the C∗ = C = xt because the xt remains unchanged.
Since the watermark embedding mainly relies on xt, which means that the attacker can achieve
P =M∗(xt). Therefore, it is obvious that attackers can easily claim that theM∗ are trained on D
and verified by Verify(D,M∗,C∗)WM = 1.

Case 2: Membership or Dataset Inference

Membership Inference (MI) (Shokri et al., 2017; Salem et al., 2019) and Dataset Inference
(DI) (Maini et al., 2021; Dziedzic et al., 2022) share similar approaches, both do not intervene dur-
ing model training but directly analyze model outputs during the testing phase. We use the subscript
MI and DI to represent the relevant functions of MI-based and DI-based TDP.

In training stage, T-TrainMI = T-TrainDI = T because OMI = ODI = ∅. During the verification, for
the VerifyMI, the verifier may traverse all the data in D to determine if they belong to the training
set. For the VerifyDI, the verifier could directly use the DI techniques to infer if D is the training
set.

Nevertheless, both of them cannot satisfy the defender’s primary goal: fidelity (G1) in principle.
VerifyMI evidently struggles to capture samples outside the claimed training set D because of the
lack of information. On the other hand, DI can only ascertain the approximate data distribution of
the training set. When the distributions of the training sets are similar, despite being unequal or
even mutually exclusive, DI is highly likely to erroneously judge them as equivalent. In addition,
DI is slightly disadvantaged in terms of efficiency (G4) because it needs to train a classifier for each
verification request.

Case 3: Proof of Training Data

Assume we adopt the Proof of Training Data (PoTD) (Choi et al., 2024) to implement TDP, and
denote the relevant functions with the subscript PT.

The T-TrainPT requires the model trainer to record and provide all details during the training pro-
cess, known as a training transcript t, including training codes, various hyperparameters, and inter-
mediate checkpoints. Then the trainer sets C ← t and submits it to the verifier.

At the verification stage, the brute force solution of PoTD, that is, the verifier completely executing
t to reproduceM, can achieve the ideal TDP. However, this method is not acceptable in terms of
computational cost, thus PoTD adopts some approximate verification methods to improve efficiency.

VerifyPT still cannot meet the main goal of the defender: fidelity (G1). As described in PoTD (Choi
et al., 2024), this approximation for efficiency leads to the fact that "verifier will fails to catch spoofs
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D if D only differs in a few data points." Furthermore, it has significant limitations in achieving
defender’s low-invasive goal (G2). Because T-TrainPT actually obtains white-box permission from
the model trainer, an assumption that is sometimes impractical given that the training processes for
many current models are considered commercial secrets.

B PROBE DETECTION METRIC

B.1 PROBE SALIENCY AUC (PSA)

This metric utilizes probe scores to plot the ROC curve, further calculating the Area Under ROC
curve (AUC) as the metric. We analyze this metric in detail from its priciple.

Assume here that we expect the probe scores sp to be greater than non-probe scores snp in distri-
bution, as adopted in PP, for example. We do not focus on the actual score values but rather their
relative magnitudes. Therefore, we could sort all scores from largest to smallest, sequentially se-
lecting values as hypothetical classification thresholds. Samples with probe scores greater than the
threshold are classified as probes, those lower as non-probes. Based on whether these samples are
actually probes, we record the current predicted False Positive Rate (FPR) and True Positive Rate
(TPR), hence obtaining an ROC curve.

Ideally, when all probe scores are greater than non-probe scores, the ROC curve will approach the
top-left corner, with the corresponding Area Under the ROC Curve equaling 1. Conversely, when
probe scores are nearly indistinguishable from non-probe scores, the process resembles a random
guess, resulting in an ROC curve that goes from the bottom-left to the top-right corner, with an AUC
close to 0.5. Hence, a larger AUC indicates that probe scores are more "separable" from non-
probe scores. We denote this as the Probe Saliency AUC (PSA) as an indicator of probe detection.

For PP and TP, we use the above approach to calculate PSA, which means predicting the saliency of
data probe as 1 and non-probe as 0. However, for AP and UP, it is the opposite because we expect the
scores of non-probe to be higher. Therefore, we predict probe as 0 and non-probe as 1 to calculate
PSA.

B.2 STATISTICAL TEST AND P-VALUE (PV)

Following several previous works (Maini et al., 2021), we perform a statistical t-test to measure
whether there is a significant difference in the distributions of probe scores sp and non-probe scores
snp.

For PP and TP, the null hypothesis (H0) is that the probe scores are less prominent compared to
non-probe scores, which is opposite to our expectation. Assuming that µsp and µsnp are the mean
values of the sp and snp, respectively. The H0 and H1 (alternate hypothesis) could be represented
as:

H0 ∶ µsp ≤ µsnp ; H1 ∶ µsp > µsnp (1)

For AP and UP, the null hypothesis (H0) is that the probe scores are more prominent compared to
non-probe scores. We adopt the following hypothesis:

H0 ∶ µsp ≥ µsnp ; H1 ∶ µsp < µsnp (2)

The statistical t-test results in a p-value (pV), used as a metric to determine the success of the probe
detection. Specifically, if the p-value is less than a certain level of significance, for example 0.1, we
reject the null hypothesis H0, indicating that the probe was detected. Otherwise, we accept H0 and
consider that the probe was not detected.

C EVALUATION SETUP

Datasets: We adopt four datasets in our expreiments:

• CIFAR-10 (Krizhevsky & Hinton, 2009): This dataset consists of 60,000 color images of
32x32 pixels, divided into 10 classes with 6,000 images per class. The dataset is split into

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

50,000 training images and 10,000 testing images. Classes include categories such as cars,
birds, and cats.

• SVHN (Netzer et al., 2011): The Street View House Numbers (SVHN) dataset is derived from
Google Street View, which features over 600,000 color images containing house numbers, for-
matted as 32x32 pixels.

• CIFAR-100 (Krizhevsky & Hinton, 2009): Similar to CIFAR-10 but with 100 classes, this
dataset includes 60,000 color images of 32x32 pixels, each class containing 500 training images
and 100 testing images.

• Tiny-ImageNet-200 (Le & Yang, 2015): It comprises 110,000 images across 200 classes, with
each class represented by 500 training images, 50 validation images, and 50 test images. Each
image is a 64x64 pixel color photograph. The dataset is a subset of the larger ImageNet col-
lection, including a diverse array of categories ranging from various animal species to common
everyday objects.

Hyperparameters: During training, the models are initialized randomly. The images in the dataset
are uniformly resized to 224x224 and the pixel values are normalized to a range of -1 to 1 to comply
with the model’s input interface. To mitigate overfitting and ensure effective training of the model,
random cropping and random horizontal flipping are employed during the training process. The
Adam optimizer is adopted with a learning rate of 1e-3, and cross-entropy is employed as the loss
function. Depending on the convergence of the model on various datasets, training is conducted for
10 to 15 epochs, and the model that performs best on the validation set is saved.

Implementation details of TDP: We sequentially present the implementation details of each critical
operation within the TDP framework.

In the probe selection process, performing keyed-hash computations on datasets is computational-
efficient. For example, running a keyed hash based on Md5 (Rivest, 1992) on the CI-
FAR10 (Krizhevsky & Hinton, 2009) dataset on the computing platform with Intel Core i7-12700®

takes an average time of only 1.73 seconds. To facilitate large-scale experiments without compro-
mising the integrity of the framework’s principles, we judiciously select fixed random seeds as a
substitute for dataset hashing operations. We use the same random seed to select data probes, re-
flecting the scenario where the model trainer genuinely uses the dataset. Using different random
seeds represents scenarios where a dishonest trainer initiates verification.

During probe implantation, the WeightedRandomSampler from the PyTorch is adopted for both PP
and AP. Specifically, we assign a weight of 10 to the probes in PP, meaning they are ten times more
likely to be selected during training compared to non-probes. For AP, the weight of the probes is set
to 0.

When calculating probe scores, we employ cross-entropy for the loss-based score calculation, as
cross-entropy is the most commonly used loss function in deep learning training tasks. Two metrics
introduced in the Sec. 5: PSA and p-value, are adopted to assess whether probes can be effectively
detected.

D ADAPTIVE ATTACKS VIA FORGE PROBE

Depending on the different types of probes, We have designed the following four targeted probe
forging attacks in the evaluation, denoted with the prefix F for "Forged":

• FPP: The attacker fine-tunesM∗ using xp, attempting to enhance the prominence of xp.
• FAP: The attacker "inversely" fine-tunes M∗ using xp, that is, employing a gradient ascent

training method, attempting to diminish the prominence of xp.
• FUP: The attacker uses xp and disrupts its label to fine-tuneM∗.
• FTP: The attacker uses xp and uniformly assigns them a random targeted label to fine-tuneM∗.

The principle for setting fine-tuning hyperparameters was to minimize the impact on the original
performance of the model, for example, by using a very small learning rate of 2e-5 and training for
10 epochs.
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Algorithm 1: TDP via Data Probe

1 Function T-TrainDP(D):
Input: Training dataset D
Output: Trained modelM, Certificate C

2 Generate the key k

3 Obtain indices Ip ← ProbeSelect(D, k)

4 xp ← D[Ip]
5 Operate the probe with ODP(xp)
6 M ← T (D), C ← k

7 Return:M, C
8 Function VerifyDP(D,M, C):

Input: Claimed training dataset D, Trained modelM, Certificate C
Output: Verification result {0,1}

9 Obtain indices Ip ← ProbeSelect(D, C)
10 xp ← D[Ip] , xnp = {D ∖ xp}
11 sp ← ProbeScore(M, xp)

12 snp ← ProbeScore(M, xnp)

13 Return 1 (sp ≠ snp)

Figure 7: Evaluations of the Impact of Probe Implant Quantity on TDP Performance. The hor-
izontal axis represents the number of probes as 0.1% ∼ 2% of the total training dataset. Additionally,
we use a gray dashed line to mark two critical reference values: PSA = 0.5 and p-value = 0.1. A
PSA significantly above 0.5 and a p-value below 0.1 indicate successful detection of data probes.
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Figure 8: Case Studies for Comparison with Existing Techniques. The scores for each validation
are presented in GRAY, with watermarking representing the predicted probabilities, and DI and Data
Probe indicating the p-values. HASH(train) shows the hash value computed on the tampered dataset
during probe implantation, which differs from the HASH(test) obtained on the declared untampered
dataset (CIFAR-10) during testing.
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