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ABSTRACT

In the realm of deep learning, the veracity and integrity of the training data are
pivotal for constructing reliable and transparent models. This study introduces
the concept of Trustworthy Dataset Proof (TDP), which tackles the significant
challenge of verifying the authenticity of training data as declared by trainers. Ex-
isting dataset provenance methods, which primarily aim at ownership verification
rather than trust enhancement, often face challenges with usability and integrity.
For instance, excessive operational demands and the inability to effectively verify
dataset authenticity hinder their practical application. To address these shortcom-
ings, we propose a novel technique termed Data Probe, which diverges from tradi-
tional watermarking by utilizing subtle variations in model output distributions to
confirm the presence of a specific and small subset of training data. This model-
agnostic approach improves usability by minimizing the intervention during the
training process and ensures dataset integrity via a mechanism that only permits
probe detection when the entire claimed dataset is utilized in training. Our study
conducts extensive evaluations to demonstrate the effectiveness of the proposed
data-drobe-based TDP framework, marking a significant step toward achieving
transparency and trustworthiness in the use of training data in deep learning.

1 INTRODUCTION

Against the backdrop of the rapid development of deep learning technologies, the reliability and
transparency of models are increasingly being scrutinized, and the authentic use of training data
is the cornerstone of building effective and trustworthy models (Shayne, 2024; Anomalo, 2024;
Aldoseri et al., 2023). However, the actual usage of training data is often based on the trainer’s
self-report, which is extremely difficult to verify in practice.

The authenticity and integrity of training data are significant security concerns in the field of deep
learning, as even minor tampering with the training data can lead to significant changes in model
behavior. For instance, numerous studies (Chen & Babar, 2024; Khaddaj et al., 2023; Mengara et al.,
2024; Saha et al., 2020) have shown that attackers can embed a small number of backdoor samples
in training data, which could be activated during the model’s deployment, posing security risks. On
the other hand, trainers may introduce illegal or non-compliant data to enhance the performance
of the model without informing the users, especially in competitions or commercial applications,
raising concerns regarding the transparency and fairness. For example, high-profile lawsuits have
been initiated against major tech companies like Google and Stability Al, where plaintiffs argue that
their copyrighted or personal data were used without permission to train Al systems (Sabine, 2024).

In this paper, we define the problem of Trustworthy Dataset Proof (TDP) to formally describe this
challenging task of verifying the integrity of training datasets, and further explore possible solutions.
As illustrated in Fig. 1, unlike the widely studied concept of data provenance, which focuses on the
ownership verification of a personal dataset, the TDP problem seeks to verify the authentic use of a
trustworthy dataset by the trainer, thereby enhancing trust.

Challenges: Although existing dataset provenance techniques hold promise for addressing the TDP
problem, they still face several formidable challenges. @ Usability: these techniques often fail to
meet practical requirements, such as demanding that the trainer provide all details of the training
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Figure 1: The Overview of the Trustworthy Dataset Proof (TDP) Problem. Compared to the
widely studied data provenance techniques, the TDP presents significant differences in terms of
dataset utilization and verification scope, making it a more challenging and novel problem.
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process (Choi et al., 2024; Jia et al., 2021), requiring the training of a dedicated classifier for each
verification request (Maini et al., 2021; Dziedzic et al., 2022), or utilizing a backdoor for watermark-
ing (Adi et al., 2018; Tang et al., 2023), which could potentially be exploited maliciously (Mengara
et al., 2024; Khaddaj et al., 2023). @ Integrity: existing technologies are inadequate to certify the
integral use of the training dataset claimed by the trainers. In contrast, they can only verify whether
the actual dataset used approximates the distribution of the claimed dataset (Maini et al., 2021;
Dziedzic et al., 2022; Choi et al., 2024; Jia et al., 2021), or whether it contains specific samples from
the claimed dataset (Adi et al., 2018; Tang et al., 2023).

Motivations: To address the challenges of utility, we propose a novel concept named Data Probe.
This technique, distinct from traditional watermarking, does not require a model to produce a pre-
determined output. Instead, it leverages subtle distinctions in model outputs distribution to validate
its existence. It is designed to be model-agnostic, thereby reducing constraints on the training pro-
cess. For further tackling the integrity challenges, we bind the integrity of the training dataset to
the data probe selection strategy. This ensures that successful probe implantation and detection are
contingent upon the use of the complete dataset for training, serving as a possible solution to TDP.

Contributions: The contributions of our study are concluded as follows:

* To the best of our knowledge, this is the first exploration of the challenging security problem
associated with verifying the comprehensive and authentic use of the training dataset.

* We formalize this issue as a Trustworthy Dataset Proof (TDP) problem, analyze the challenges
posed by existing technologies, and derive technical insights for potential solutions.

* We innovatively design a watermarking-like technique called Data Probe, which underpins a
TDP framework that is highly available and capable of verifying the integrity of training data.

» Extensive evaluations demonstrate the effectiveness of our proposed methods, validating our
approach in various experimental settings.

2 RELATED WORK

Existing research on the protection and traceability of training datasets primarily focuses on verify-
ing the ownership of datasets Although this objective differs from the goal discussed in this paper,
which is to verify the integrity of training datasets to enhance credibility, we review these studies to
better understand the existing challenges and potential technical motivations, with a more detailed
discussion to follow in the Sec. 4.

Dataset watermarking. It achieves ownership authentication by embedding backdoors into training
datasets (Adi et al., 2018). Specifically, the owner of a dataset can select and modify a small subset of
samples to serve as backdoor triggers, which can induce atypical outputs from the model. Once the
model is trained on this dataset, the backdoor is automatically implanted. Subsequently, the copy-
right holder of the dataset can verify whether a suspected model exhibits the expected anomalous
behavior by activating the trigger, thereby confirming the occurrence of the training. Building on
this, many studies focus on enhancing the stealth and harmlessness of these backdoors. For instance,
Tang et al. (2023) propose to construct a clean-label backdoor by applying adversarial perturbations
to samples, which embeds a specific backdoor pattern without altering the labels of the samples.

Membership and Dataset Inference. Membership Inference (MI) (Shokri et al., 2017; Salem et al.,
2019; Yeom et al., 2018; Song & Mittal, 2021) is an attack targeting the privacy of training datasets,
but its technical approach can also be reversed for tracing training sets. MI exploits the phenomenon
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of overfitting in deep learning (Yeom et al., 2018), whereby a model better memorizes samples from
its training set, distinguishing them from non-training samples. For instance, Shokri et al.(Shokri
etal., 2017) proposed training numerous shadow classifiers to reveal such distinctions. Other studies
analyze various score metrics produced by the model when different samples are inputted, such
as confidence (Salem et al., 2019), loss (Yeom et al., 2018), and entropy (Song & Mittal, 2021).
To further enhance the stability of verification, Maini et al. (2021) proposed the Dataset-Inference
(DI) technique, which actually conducts MI at the distribution level and utilizes the characteristic
differences in the model’s responses to training and test samples.

Proof of Training Data. Proof-of-Training-Data (PoTD) (Choi et al., 2024) is a protocol enabling
a model trainer to assure a verifier of the specific training data responsible for generating a set of
model weights, which can confirm both the quantity and type of data. The protocol mandates that
the model trainer meticulously document and provide comprehensive details throughout the training
process, referred to as a training transcript, including the dataset, training codes, hyperparameters,
and intermediate checkpoints. The goal of PoTD is similar to our work. However, it focuses on
ensuring a precise correspondence between the training processes and model parameters, but fails to
verify the presence of subtle manipulations in the training dataset, as stated in their work limitations.

3 FORMALIZE TDP
3.1 PROBLEM DEFINITION

In the Trustworthy Data Proof (TDP) problem, two key roles are identified: model trainer and
verifier. The trainer is capable of utilizing a publicly credible dataset D to train a model M. On
the other hand, the verifier is tasked with providing a mechanism to verify whether M was trained
using D in a reliable and trustworthy manner. We formally define two functions to implement TDP:

Definition 1 (Trusted Training) T-Train(D) - M,C Model Y

Trusted Training is a training mechanism specified by verifier, denoted as Trainer

T-Train(). It could be further represented as T-Train = TuQ, where T “ ¢ Modify
refers to general model training procedures, and O represents additional E oY, Eg
operations required by the verifier. The trainer need to use T-Train() to D g D*
train models to meet the requirements for subsequent trustworthy verifica- *
tion. Specifically, it performs T-Train(D) to obtain a trained model M, [@ T-Train(D) ]
and at the same time, get a certificate C for the subsequent verification . Trusted Trammg
Definition 2 (Verification) Verify(D, M,C) - {0,1} fri?..ler,"i % @
Verification is the process by which the verifier provide the proof, denoted

as Verify (). The trainer want to assert that M is trained on D. He then
provides the verifier with M and C obtained through T-Train, as well as [@Verlfy(D M, )]
the D to be validated. NVerify() outputs 1 to indicate that it judges the
model is indeed trained on D, while 0 indicates it is not. Verifier O e

We justify the rationality of the above definitions: @ Generality: the ad- Figure 2: The con-
ditional operations O and C can both be empty @. At this point, T-Train ceptual framework of
and Verify describe the most basic process of solving the TDP problem pp.

without any assumptions, making them universal. @ Necessity: accord-

ing to the consensus in the relevant research field (Shayne, 2024; Aldoseri et al., 2023; Choi et al.,
2024), due to the high-dimensional complexity of DL models and the non-convex optimization train-
ing process, it is difficult to directly verify the fact that M is trained on the complete D through M
alone. Therefore, the verifier should be allowed to intervene and restrict the training process to
enhance their ability during the verification process.

3.2 THREAT MODEL

In TDP, the verifier is generally served by trusted authorities to ensure the fairness and effectiveness
of the verification process, and to defend against potential acts that may subvert the verification.
Therefore, the verifier is defined as the defender. On the other hand, the trainer may maliciously
exploit the TDP mechanism for unjust benefits, thus the dishonest trainer is defined as the at-
tacker. In this section, we will analyze the goals and capabilities of each party separately.
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Defender’s Goals. The fundamental goal of the defender is to ensure the correctness of the verifi-
cation (G1), accompanied by several performance-related goals (G2, G3, G4):

G1. Fidelity. If the trainer indeed carries out T-Train(D) — M, C, then the defender, executing
Verify(D, M,C), must output 1 with high probability. In all other cases, output O.

G2. Low-Invasiveness. In T-Train = T u Q, it is advisable to minimize Q’s restrictions on T,
as excessive limitations can affect the trainer’s flexibility in defining their own models and
training processes, hindering the generalizability of the TDP mechanism.

G3. Harmlessness. Implementing TDP should not compromise the model’s performance signifi-
cantly. Specifically, the performance of the trained model M = T-Train(D) should be close
to the performance of Mt = T (D), which is obtained using only the standard training process.

G4. Efficiency. The verification process should be computationally efficient.

Defender’s Capabilities. Based on practical scenarios, we make the following assumptions and
restrictions on the defender’s capabilities. In T-Train = T u @, we assume that the additional oper-
ations required by the verifier, the Q, is model-agnostic. O will not modify the model architecture,
nor obtain specific procedures or hyperparameters of T. In Verify, we assume that the defender
only has black-box access to the model M to be verified, and can only query the model’s prediction
probabilities, i.e., y = M(x), where z is the input sample, y € R?, and d is the number of classes.

Attacker’s Goals. The attacker is a dishonest model trainer, whose goal is to attempt to subvert the
defender’s fidelity goal (G1), formally defined as follows:

When the attacker use the modified dataset D* # D in trusted training, they would obtain
T-Train(D*) - M*,C*. But they purposely claim to the defender (verifier) that the model
M is trained on D, attempting to make Verify (D, M* ,C*) - 1.

It is important to emphasize that the attacker’s primary objective is to successfully complete the TDP.
By obtaining the proof that the model’s training set is a credible dataset D, the attacker can gain
the trust of users. As a result, the model M™ it publicly releases is more likely to be downloaded,
deployed, and used. On this basis, the attacker attempts to ‘hide’ the fact that it actually tampered
with the training dataset for training.

Attacker’s Capabilities. We assume that the attacker can only modify the dataset D but cannot
manipulate the verifier’s additional operations @ in T-Train. The reasonableness of this assump-
tion is consistent with the discussion in problem definition (Sec. 3.1). The defender (verifier) needs
to intervene in the model training with certain operations O to facilitate verification. Once the at-
tacker can manipulate O, they can easily neutralize various verification mechanisms of the defender.
Therefore, we reasonably limit the capabilities of the attacker, requiring them to at least fully execute
T-Train. In other words, any modifications made by the attacker to M must go through T-Train.

4 CHALLENGES AND MOTIVATIONS
4.1 CHALLENGES FOR CURRENT TECHNIQUES

Based on the formal definition of TDP in Sec. 3, we utilize representative existing dataset provenance
technologies, including Watermarking, MI/DI, and PoTD, to propose some hypothetical solutions
for TDP and analyze the challenges involved. Detailed definitions and analyses of each approach
are elaborated in the Appendix A, from which we conclude that the application of existing schemes
to TDP primarily confronts challenges in two aspects: integrity and usability.

Challenge 1: Intergrity. All existing schemes fail to ensure the integrity of the training dataset
D. Specifically, if an attacker claims to have used D for training but actually employs D*, current
schemes can only verify whether D* approximates the distribution of D (MI/DI, PoTD), or whether
D* contains several specific samples from D (Watermarking). However, none of these approaches
can confirm that D* # D.

This disadvantage fundamentally stems from differences in the definition of the threat model , which
is also detailed in Fig. 1. In most of the aforementioned works, the party holding the data primarily
aims at ownership verification. Therefore, they are typically regarded as trustworthy or defenders,
with no incentive to actively alter their dataset. However, in TDP, the main goal of the data holder
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and user is to enhance trust, which might lead them to actively modify the dataset while still claiming
to use an authentic dataset to gain undue benefits. This disparity is the root of the vulnerabilities in
existing methods, rendering them unable to meet the fundamental goal of fidelity (G1) in TDP.

Challenge 2: Usability. Some existing techniques may exhibit deficiencies in usability within prac-
tical scenarios. For instance, the POTD scheme does not meet the defender’s goal: low-invasiveness
(G2), as it requires accessing all information from the model trainer during training. DI, to some
extent, fails to satisfy the efficiency goal (G4), since it may necessitate training a dedicated clas-
sifier for each verification request. The watermarking approach could potentially compromise the
defender’s goal of harmlessness (G3), as watermarks that utilize backdoors might be maliciously
exploited, thereby introducing inherent security risks.

4.2 MOTIVATIONS AND INSIGHTS

Tackling usability challenge. Among various approaches, we consider the concept of watermarking
to exhibit the highest usability. It imposes minimal constraints during the training phase and offers
the highest efficiency during verification, with only requiring black-box access to the model under
test. However, its shortcomings originate from the use of backdoors (Adi et al., 2018), typically
requiring the model to produce anomalous outputs when presented with specific trigger samples,
which often leads to degradation in model performance or security risks (Mengara et al., 2024)

We aim to relax assumptions regarding watermark capabilities to enhance usability while ensuring
sufficient capability to determine the occurrence of watermark. We also draw inspiration from MI,
noting that the membership of samples could be determined based on discrepancies in model output.
Consequently, we introduce a new concept: Data Probe, for conducting watermarking operations.
Its formal definition is as follows:

Definition 3 (Data Probe). Data probe is defined as a small subset of samples, X, within the train-
ing dataset D. Based on this, the training dataset can be divided into two parts: D = {X, U Xpp},
where Xy, refers to ‘non-probe’ samples. After training the model M on D, we expect a noticeable
difference in the output distribution of the model when inputting data from these two subsets, i.e.,

Pr(y[x,; M) # Pr(y[xnp; M)

Data probe can be considered as a weakened version of a backdoor, it only necessitates a discernible
difference in the output compared to that from non-probe inputs x,,,, such as a slight increase in
prediction confidence, but not a ‘directed’ output. From the perspective of MI, although x,, and x,,,
both belong to the training set, we expect X, to behave more like a ‘special member’ of the dataset.

Tackling intergrity challenge. Simple data probe selection and implanting strategies may still
fall into the dilemmas encountered by watermarking schemes. Hence, our insight is to bind the
integrity of the training dataset with the data probe selection strategy, ensuring that successful
probe implantation and detection can only occur when the dataset is used in its entirety for training.

5 IMPLEMENT TDP

Conceptual Overview. Our proposed data-probe-based TDP framework is illustrated in Fig. 3 and
formally described in Algorithm 1. Relevant functions are denoted with the subscript DP.

In T-Trainpp, a pseudo-random mechanism ProbeSelect is introduced to select the data probe
Xp. It needs to perform a keyed-hash on training dataset D based on a user-specific key k. Next,
operation Qpp is exerted on the selected probe to facilitate its ‘implantation’ into the model M
during training. Subsequently, the trainer can carry out the normal training process T and submit the
key k as a certificate C for verification.

In Verifyyp, the verifier first reproduces the pseudo-random process ProbeSelect based on C to
select data probe x, and non-probe X,, from D claimed by the trainer. He then calculates the
scores s, S, through a function ProbeScore to measure the difference in the output distribution of
these two groups of data in model M. If there is a noticeable difference between s, and s,,,, it is
considered that the data probe x,, has been detected, authenticating the genuine use of the training
dataset D.
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Figure 3: The Conceptual Overview of the Proposed TDP Framework based on Data Probe.

Verifypp satisfies the main objective of the defender: fidelity (G1). The principle lies in that, if
the trainer indeed use D for training M, the data probe x, selected and implanted in T-Traingp
will be completely consistent with the probe calculated in Verifyp,. Assuming that the data probe
can correctly perform the function defined in Definition 3, the verifier can reliably certify its claim.
Conversely, if the trainer makes any minor modifications to D, as shown in the lower part of Fig. 3,
the implanted data probe x,, will not correspond with x,,, thus failing the validation.

Probe Selection. The probe selection rule is based on pseudo-randomness, which utilizes the
uniqueness of hash functions (Rivest, 1992). Initially, it calculates a hash of the complete dataset D
to obtain a unique hash value. Subsequently, we use this hash value as a random seed to randomly
select a small subset of samples from the training dataset as data probe x,,, as described in Lines 3-4
of Algorithm 1. Clearly, D and x,, are bound together, and any minor modification of D will result
in changes to the hash value , which in turn leads to changes in the selection of data probe x,,.

However, simple hash calculations pose security risks. The same dataset will yield the same data
probe for all users, which could be easily exploited by attackers. Therefore, we introduce the user-
specific key k and replace the hash with keyed-hash, such that different users using the same trusted
dataset (such as CIFAR10 (Krizhevsky & Hinton, 2009)) will generate different data probes.

Probe Implantation. Reflecting on the Table 1: Data Probe Types and Principles. PS rep-
functionality of data probe described in resents the generic scoring process, calculating the
Definition 3, our goal is to elicit a special probe score s, and non-probe score s,;,. 1, and 1,
response from the trained model M to the denote the ground-truth labels. 1;, and lflp are targeted
data probe x,,. At the same time, we also labels defined in TP.
need to fully consider the usability of the
scheme. Opp does not need to change the ar-
Gbtain the hyperparameters in waining pro. T, TS ) POy )
- AP AP
cess T. Therefore, we have determined that AP PS(IM,xp, 1) PSIM, Xnp, Lnp) 8" < Sy,
Opp should only perform data-level opera- UP PS(M,xp,L,) PS(M, Xpp,1np) S <5
tions on data probe x;, without needing to TP PS(M,x,,10) PS(M, X 15) s >sTF)
change the normal training process T.

Type Sp Snp Expectation

PP o PP
Sp > Spp

Inspired by existing dataset provenance research, we have developed four different types of data
probe: Prominent Probe (PP), Absence Probe (AP), Untargeted Probe (UP), and Targeted Probe
(TP). We summarize the principles of various probes in Tab. 1 and detail their concepts and imple-
mentations in this section. The unique operations of different types of probes are marked by super-
scripts. Besides, the performance and characteristics of the four probes are compared in Sec. 6.2.

O Prominent Probe (PP). ‘Prominent’ means the model’s response to the data probe x, is more
significant compared to non-probe x,,,. In principle, we aim to make the model more overfit on the
X, providing more confident scores. Off can be implemented through the built-in data sampling
mechanism of the deep learning computation library, by assigning a higher weight to the x,,. The
X, is therefore more likely to be selected during the training , resulting in better fitting to the x,,.

A Absence Probe (AP). The principle of AP is exactly opposite to that of PP. To maximize the
insignificance, we consider an extreme case where the probe weight is 0, meaning the model has
never encountered x,, during training. Then the trained model M should provide less confident
scores for x,,. Q4 can be implemented in a similar manner to Of} by setting the probe weight to 0.
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® Untargeted Probe (UP). Untargeted Probe utilizes the concept of data poisoning (Adi et al.,
2018; Mengara et al., 2024), where Qps assigns random, incorrect labels to the probe x,. In this
case, we expect the model to be less confident in its predictions for the probe x,,. For instance, a
decrease is witnessed in the predicted probabilities for their ground truth classes.

@ Targeted Probe (TP). In contrast to UP, Targeted Probe is where Qff uniformly assigns a random
label, marked as [%, to the probe. In this case, we expect the trained model to be more confident in
predicting the x,, as class [*. Assuming the number of probe and non-probe are N, and N,,,,, we

construct two sets of labels: 1, = {I"}V» and 1}, , = {I*}» and obtain scores as stated in Tab. 1.

Probe Score Calculation. The detection of data probe relies on comparing the saliency scores of
probe s,, and non-probe s,,;,. In this section, we will demonstrate possible scoring methods. Inspired
by the techniques for assessing sample saliency adopted in the MI work, we propose the following
four possible methods: confidence-based, loss-based, entropy-based, and modified-entropy-based.

According to the aformentioned ProbeScore function protocol, the inputs include a model M, a set
of data x, and a set of labels 1. For the sake of brevity in expression, we describe the score calculation
method for individual samples = ~ x, without distinguishing between probe and non-probe, as they
actually use the same calculation method. Besides, we convert the corresponding label [ ~ 1 into the
index of the model’s output for convenience in expression, i.e., when [ indicates that = belongs to
class y, we use M(x), to represent the M’s prediction probability for = being in that class.

@ Confidence-based score (Conf) For a more significant sample during training, the model should
make predictions with higher confidence in it (Salem et al., 2019). we define the confidence-based

score as: ‘Conf (M, z) =max(M(x)) ‘ which will be directly return as the probe score.

® Loss-based score (Loss) For a more significant sample during training, the model should has a
lower prediction loss on it (Yeom et al., 2018). We mark the loss function, such as the cross-entropy,
as £, and we define the loss-based score as: ‘Loss(/\/l ,x,l) = L(M(z),1) ‘ The more significant
the sample z, the smaller the Loss. In order to make the return values of ProbeScore continuous,
where larger values represent more significance, we return -Loss as the probe score.

® Entropy-based score (Entr) For a more significant samples during training, the model’s predic-
tion on it should be close to the one-hot encoded label, i.e., its entropy will be close to 0 (Salem et al.,

2019). We define the entropy-based score as: ‘Entr(/\/l ,x) ==Y M(x);log (M(z);)
to Loss, we return —Entr as the probe score.

. Similar

® Modified-entropy-based score (Mentr) It is an enhanced version of Entr by considering the
ground-truth label ! (Song & Mittal, 2021). We define the modified-entropy-based score as:

Mentr(M,x,l) = (1 - M(z),)log (M(x)y) - ¥;zy M(z);ilog (M(7);) | Similar to Loss, we
return -Mentr as the probe score.

Probe Detection Metric. According to the definition of Data Probe, probe scores are expected to
differ in distribution from non-probe scores. Therefore, we aggregate the aforementioned sample-
level scores into distribution-level metrics for probe detection. The following two metrics are em-
ployed: @ Probe Saliency AUC (PSA). It is a new metric proposed in this work. It utilizes probe
scores to plot the ROC curve, further calculating the Area Under ROC curve (AUC) as the metric.
The greater the PSA exceeds 0.5, the more it indicates that probe scores are separable from non-
probe scores.® Statistical test p-value (pV). It has been widely adopted in previous works for mea-
suring distribution differences. A pV less than a certain level of significance, such as 0.1, indicates
a substantial difference in score distributions, signifying that the probe has been detected. We detail
the principles of these two metrics and their calculation methods for each probe in Appendix B.

6 EVALUATIONS

Overview. In the evaluations, we aim to investigate the following four research questions (RQs):
RQ1. Whether various types of data probes can effectively verify the integrity of the dataset ?
RQ2. How many probes need to be implanted during training to achieve the verification ?

RQ3. How do different probe score calculation strategies impact the effectiveness of detection ?
RQ4. How robust is the verification mechanism when attackers launch adaptive attacks ?
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Table 2: Comprehensive Probe Perfomance Evaluations. Best performance of PSA and pV un-
der each setting are hilighted as BLUE and RED. And the metric under probe-mismatch cases are
marked as GRAY. Scores are reported as % except for pV.

Ori. PP AP uP TP
acc | acc PSAT PSA* pV] pV*| acc PSAT PSA* pV] pV*| acc PSAT PSA* pV] pV*| acc PSAT PSA* pv| pv*
CIFAR-10
ResNet18 [85.22(85.19 56.15 50.58 10721 0.3585.08 52.14 49.97 0.01 0.4284.68 57.09 49.60 0.02 0.55[84.92 59.22 50.18 10712 047
MobileNet |84.55|84.12 55.95 49.60 10716 0.54|84.64 52.59 50.09 0.02 0.39[84.25 57.02 49.99 10~%* 037(84.43 57.17 50.16 10~" 048

)39(82.83 57.87 49.78 107° 0.59
).35|86.49 59.51 4981 1072 0.56

ShuffleNet [84.69(83.06 57.20 50.41 1043 0.50(82.57 52.66 49.67 003 0.41[86.77 59.96 4953 10~°
DenseNet |86.32(85.27 5558 50.11 10727 0.5186.18 52.60 49.42 0.08 0.55|83.04 57.63 4895 1073

SVHN

ResNet18 [92.03]91.86 51.28 4925 10711 0.65[91.88 50.68 50.84 029 0.28]92.10 53.38 51.04 027 024[92.15 53.85 5059 10~% 0.42
MobileNet|91.98(91.43 51.17 49.33 107% 0.64(91.67 50.74 5041 028 0.56|91.81 52.79 5048 026 0.29(91.91 52.83 5040 0.01 041
ShuffleNet [92.21[91.50 51.32 49.44 1074 0.7891.66 51.01 50.44 030 0.35|92.41 52.84 50.72 035 0

).7 ) (

219175 53.56 5023 1073 0.50

DenseNet [92.45[91.89 51.40 4932 1072 0.67[92.37 51.21 50.72 026 0.29[92.00 53.29 50.58 0.19 5(92.03 53.44 5046 1073 042

CIFAR-100

ResNet18 [64.62(63.57 69.20 50.06 1079 0.66|63.83 58.07 4929 10710 0.48|63.95 71.28 49.65 10727 0.62]64.39 79.83 50.67 1072 0.40
MobileNet [62.45(61.17 69.36 50.72 10729 0.40|61.68 56.75 49.03 1077 0.64[62.30 63.42 4889 1071 0.63(62.35 69.04 50.09 10738 051
ShuffleNet [60.22|59.40 70.13 5033 10799 0.51|59.86 57.39 50.02 10™% 0.53[60.30 63.27 49.49 10™12 0.69[60.48 71.14 50.66 10~*® 031
DenseNet |64.42|63.44 69.21 5040 107292 0.57(64.39 57.67 49.81 10710 0.65|64.33 68.12 49.27 10™2 0.66 |64.61 77.56 50.64 10783 0.42

Tiny-ImageNet-200

0.30 10729 0.41(5335 49.82 50.61 044 0.38]53.18 49.94 4921 0.63 0.68
044 107% 0.46(50.83 5020 50.56 0.41 0.42(51.00 49.87 49.68 059 0.63
031 1072 0.51(50.04 49.58 50.20 045 0.55|49.81 49.38 50.15 0.61 0.50
0.00 10720 055(55.72 49.58 50.02 040 0.51|55.59 50.05 49.63 052 0.64

ResNet18 [53.00(51.03 76.26 50.17 1075% 0.47|51.83 62.89 5
MobileNet |51.06|49.41 75.38 49.47 1077 0.62(50.12 57.35 5
ShuffleNet |50.11|47.85 76.02 49.85 10™78 0444847 57.99 5
DenseNet |55.26/53.16 74.63 50.02 10755 0.45|53.86 60.51 5

6.1 SETUP

Datasets: Four datasets are adopted: CIFAR-10 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al.,
2011), CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny-ImageNet-200 (Le & Yang, 2015).

Models: We employed various architectures: ResNetl18 (He et al., 2016), MobileNet (Howard
et al., 2017), ShuffleNet (Zhang et al., 2018), and DenseNet (Huang et al., 2017). These models
were chosen to ensure a broad evaluation of performance across different architectural dynamics.

Metrics: We utilized two metrics: PSA and p-value(pV), which have been introduced in Sec. 5, for
probe detection and effectiveness evaluation. The significance threshold for pV is set to 0.1.

For further specifics, such as hyperparameters, please refer to the Appendix C.

6.2 EVALUATION RESULTS

Comprehensive performance comparison (RQ1). We comprehensively evaluated the perfor-
mance of various architectures when trained on different datasets using the four types of data probes
proposed for TDP. The results are displayed in the Tab. 2. All experiments were repeated five times,
and the mean values were recorded. We tested the accuracy of models trained directly without any
probes as a baseline for comparison, denoted as "Ori.". For each type of probe, in addition to train-
ing accuracy, we recorded two metrics when the declared dataset matched the actual training dataset:
PSA and p-value (pV). Additionally, we tested metrics for mismatched declared and training models
as a contrast (PSA* and pV*). In each experimental group, we selected 1% of the training set to
serve as probes. All probe scores were calculated using Mentr.

Through extensive experimental comparisons, we summarize the following results: @ The implan-
tation of data probes has almost no impact on the performance of the original model. As shown
by the accuracy metrics in Tab. 2, the performance of models with data probes deviates minimally
from the original performance, with the majority of variations within an acceptable range (<+1%).
This meets the defender’s goal of harmlessness (G3). ® Data probes generally achieve the task
of verifying dataset completeness. Specifically, for the PSA metric, we expect it to approach 0.5
when probes do not match, and significantly exceed 0.5 when they do match. For the pV, values
below 0.1 indicate that probes have been detected with high confidence, while in cases of mismatch,
we expect the p-value to be as high as possible. It can be seen that most probes meet the afore-
mentioned requirements across various training sets and models, successfully implementing TDP.
Additionally, we observed that among the four types of probes, PP exhibits high significance in the
p-value metric, while TP demonstrates a clear advantage in the PSA metric.
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Figure 4: Evaluations of the Impact of Probe Implant Quantity We use a gray dashed line to
mark two critical reference values: PSA = 0.5 and pV = 0.1. In PSA, lighter-colored dashed lines
are non-probe scores. Here we present the results of PP, with the complete results shown in Fig. 7.

Impact of probe quantity (RQ2). We assessed how the performance metrics of TDP vary with an
increase in the number of probes, ranging from 0.1% to 2% of the training set, as shown in Fig. 4.
We trained various models on the CIFAR-10 dataset. All experiments were repeated five times, and
the mean values as well as the standard deviation were recorded and displayed. The probe scores
were also calculated using Mentr. From the evaluation results, we can conclude that selecting
approximately 1% of the training set samples is sufficient to reliably implement TDP. As the
number of implanted samples increases, the performance of the model may experience a negligible
decline, while the metrics of PSA and p-value tend to stabilize. We believe that using about 1% of
the training data as probes effectively achieves TDP, representing an appropriate trade-off between
model verifiability and performance.

Impact of probe score calculation methods (RQ3).
We analyzed the viability of various possible probe " [ 5”8 R R
score calculation methods introduced in Sec. 5, as dis- s s7.81 ss.ce [N 0043 104 100
played in Fig. 5. We trained ShuffleNet on CIFAR-10
using various default settings for different probes and ™" i T
calculated the probe scores using four different meth-  ven 62 5096 57.00 [ 0031 10 10

ods. All experiments were repeated five times, and the
mean values were reported. From the experimental re-
sults, we found that Mentr exhibits the best gener- Figure 5: Evaluations of Various Probe
alizability and detection effectiveness. It effectively Score Calculation Methods.

detected data probes when applied across all four probe schemes. Additionally, we discovered that
Conf and Entr are completely inapplicable to TP, as TP relies on inducing samples to point towards
a specific label, whereas the calculations for Conf and Entr are independent of the label.

p-value

Robustness to adaptive attackers (RQ4). We evaluate a worst-case security scenario in which the
attacker knows the key k used in the probe selection process and the specific type of probe employed.
Specifically, the attacker can replicate the probe x,, corresponding to D after training the model M*
using D*, and attempt to illegitimately pass the verification for D by embedding the probe into the
model. We therefore designed four probe forging attacks for each probe, with the underlying princi-
ples detailed in Appendix D, denoted with the prefix F for "Forged". Evaluations adopt ShuffleNet
on CIFAR-10. We trained 10 different models randomly and designated 10 different target probes
for each model, resulting in a total of 100 experimental groups per attack. We recorded the mean
and standard deviation of various metrics before and after the attack. Additionally, we set the PSA
threshold at 0.51 and the p-value at 0.1, and documented the Attack Success Rate (ASR).

The complete training results are displayed in Table 3: Evaluations of the Robustness to Adap-
Tab. 3. We found that all probe schemes, ex- tive Probe Forging Attacks. Metrics before and
cept for PP, exhibit a certain degree of ro- after attack are shown in GRAY and [BOX].

bustness. This indicates that in most cases, it PSA v

. . . ; P

is challenging for attackers to easily deceive Attacks  Acc score_ASR __score_ASR
the Verlﬁpatlon mechan1§m through forged pp  BA0E04 S0IELT o 028%035
probes WlthOllF ‘compromising model perfo.r- 84.0505| [545+1.6 © o%+107 ©'%
mance. Additionally, we observed certain pap 026203 S0.72LT - 0452027 .,
changes in metrics after the attacks, revealing [82.3+0.5] [5T4xL7] "7 (020021 =7
potential security risks. Therefore, keeping the Fup 520203 S0TELT oo 0492027 0
user’s key k hidden from the users, such as by [83.0+0.4] ‘51'211'?‘ [0.49+0.28]
implementing it through a server API, might FTp  o3:020.3 50815 o0 ‘8;%);(2“ 10%

(82.7+0.5] [51.4+1.5]

be a solution to enhance robustness.
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Original Watermark Dataset Inference Data Probe (Ours)
Description Sample Trigger Verify  Trigger Verify  Trigger Verify  Trigger HASH HASH
Score Result Score Result Score Result Score (train) (test)
Automobile 99.82 | PASSED 84.24 | PASSED 99.82 BLOCKED 98.06
Deer Deer 1.000 Deer 2.3x10 Deer 0.85 Deer

Figure 6: Case Studies for Comparison with Existing Techniques. The scores for each validation
are presented in GRAY, with watermarking representing the predicted probabilities, and DI and Data
Probe indicating the p-values. HASH(train) shows the hash value computed on the tampered dataset
during probe implantation, which differs from the HASH(test) obtained on the declared untampered
dataset (CIFAR-10) during testing. More results are exhibited in Fig. 8 in the Appendix.

7 CASE STUDY

We conducted several case studies to validate the efficacy of the proposed Data-Probe-based TDP
(DP) when genuine modifications occur within datasets. PP is adopted for evaluations. Meanwhile,
we conducted comparative analyses with existing technologies, selecting two representative ap-
proaches: Watermarking (Tang et al., 2023) (WM) and Dataset Inference (Maini et al., 2021) (DI).
Although they are not originally designed for the TDP mission, we adapted them using the hypo-
thetical schemes proposed in Appendix A, utilizing their official open-source implementations. We
employed CIFAR-10 and ResNet18 to test the verification results when an attacker claims to have
trained on CIFAR-10, while subtly modifying it in training, which is expected to fail verification.

Simulated modification. We simulated Table 4: Case Study of Simulated Modifications.
two typical scenarios of dataset tampering: Success rate (%) is shown in with socres in
introducing additional data and embedding GRAY, consistent with Fig. 6.

backdoors. For the former, we randomly se- . Extra Data Backdoor Usability Eva.

lected a small proportion of samples, from "¢ ©r&"|0.01% 0.10% 1% |0.01% 0.10% 1%|Sec. Risk Time

0.01% to 1%, and duplicated them. For w1100 oo o 35.60%  8.8s

the latter, we chose a small subset of sam- pr OO O [0 [©O| O 0 O 58min
o7 | 107 w07 07| o 10

D &/235). adhering t0 he common con. 20w 120 100 00 U 85 00 5 o

figurations used in backdoor attacks. For

each setup, we conducted 20 repeated experiments and recorded the success rates (success is de-
fined as block from verification, unless the trainer did not modify the dataset). Additionally, we
evaluated the usability metrics for each approach, namely the runtime and security risks. Regarding
security risks, DI was not assessed because it does not alter the training process. For WM we tested
the prediction accuracy of the backdoor samples it used. For DP, we evaluated the prediction accu-
racy of the data probe. The comparative results from Tab. 4 demonstrate that only the Data-Probe
approach successfully denied verification requests from attackers while exhibiting the lowest
time expenditure and minimal security risks.

Practical modification. We employed a representative and effective backdoor attack named
Witches’ Brew (Geiping et al., 2021). This attack alters 1% of the samples so that the trained model
incorrectly classifies a targeted image, known as the trigger, as the wrong category. For instance, an
automobile would be recognized as a deer. The results are displayed in Fig. 6, and the conclusions
are consistent with those from the simulated experiments.

8 CONCLUSION

In this study, we highlight the importance of the Trustworthy Dataset Proof (TDP) in enhancing the
veracity and integrity of training data for deep learning models. By introducing the novel Data Probe
technique, this research successfully addresses the limitations of existing dataset provenance meth-
ods, which often falter in usability and integrity. The Data Probe, by leveraging subtle variations
in model output distributions to verify the inclusion of specific training subsets, offers a model-
agnostic and minimally invasive approach to dataset verification. Our extensive evaluations validate
the effectiveness of our Data-Probe-based TDP framework, significantly advancing the pursuit of
transparency and trustworthiness in training data usage.

10
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A CHALLENGES FOR CURRENT TECHNIQUES

In this section, based on the formal definition of TDP in Sec. 3, we combine existing dataset trace-
ability or copyright authentication technologies to propose some hypothetical solutions for TDP, and
analyze the challenges involved.

Case 1: Watermarking

If we assume using watermarking technology (Adi et al., 2018; Tang et al., 2023) to achieve TDP,
then the verifier can validate the occurrence of training behaviors based on two steps: watermark
embedding and watermark detection. We use the subscript WM to represent the relevant functions of
watermarking-based TDP.

In T-Trainyy, the trainer is required to embed watermarks into the model through training, and this
operation can be denoted as Qyy. Oyy allows the trainer to select some data samples from D as
triggers x; according to certain rules, which can make the trained model produce a specific pattern
of output P. We represent this characteristic as: P = M(x;). Then the trainer sets C < x; and
submits it along with the trained model M to the verifier.

In the verification, the verifier could make the judgement:
Verify(D,M,C)yw < L(P=M(C)ACeD).

However, Verify,, cannot meet the defender’s primary goal: fidelity (G1), and we provide the
simplest counterexample. The attacker can slightly manipulate the remaining data D_ = D \ x;
except for the triggers. It is noted that the current dataset D* = {D_ ux;} # D. Then the attacker
execute T-Train(D*)yy - M*,C*. Here the C* = C = x; because the x; remains unchanged.
Since the watermark embedding mainly relies on x;, which means that the attacker can achieve
P = M*(x;). Therefore, it is obvious that attackers can easily claim that the M* are trained on D
and verified by Verify (D, M*,C* ) = 1.

Case 2: Membership or Dataset Inference

Membership Inference (MI) (Shokri et al., 2017; Salem et al., 2019) and Dataset Inference
(DI) (Maini et al., 2021; Dziedzic et al., 2022) share similar approaches, both do not intervene dur-
ing model training but directly analyze model outputs during the testing phase. We use the subscript
MI and DI to represent the relevant functions of MI-based and DI-based TDP.

In training stage, T-Trainy; = T-Trainp; = T because Qy; = Qp; = @. During the verification, for
the Verifyy;, the verifier may traverse all the data in D to determine if they belong to the training
set. For the Verify,,, the verifier could directly use the DI techniques to infer if D is the training
set.

Nevertheless, both of them cannot satisfy the defender’s primary goal: fidelity (G1) in principle.
Verifyy; evidently struggles to capture samples outside the claimed training set D because of the
lack of information. On the other hand, DI can only ascertain the approximate data distribution of
the training set. When the distributions of the training sets are similar, despite being unequal or
even mutually exclusive, DI is highly likely to erroneously judge them as equivalent. In addition,
Dl is slightly disadvantaged in terms of efficiency (G4) because it needs to train a classifier for each
verification request.

Case 3: Proof of Training Data

Assume we adopt the Proof of Training Data (PoTD) (Choi et al., 2024) to implement TDP, and
denote the relevant functions with the subscript PT.

The T-Trainpr requires the model trainer to record and provide all details during the training pro-
cess, known as a training transcript t, including training codes, various hyperparameters, and inter-
mediate checkpoints. Then the trainer sets C < t and submits it to the verifier.

At the verification stage, the brute force solution of PoTD, that is, the verifier completely executing
t to reproduce M, can achieve the ideal TDP. However, this method is not acceptable in terms of
computational cost, thus PoTD adopts some approximate verification methods to improve efficiency.

Verifypr still cannot meet the main goal of the defender: fidelity (G1). As described in PoTD (Choi
et al., 2024), this approximation for efficiency leads to the fact that "verifier will fails to catch spoofs
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D if D only differs in a few data points." Furthermore, it has significant limitations in achieving
defender’s low-invasive goal (G2). Because T-Trainpr actually obtains white-box permission from
the model trainer, an assumption that is sometimes impractical given that the training processes for
many current models are considered commercial secrets.

B PROBE DETECTION METRIC

B.1 PROBE SALIENCY AUC (PSA)

This metric utilizes probe scores to plot the ROC curve, further calculating the Area Under ROC
curve (AUC) as the metric. We analyze this metric in detail from its priciple.

Assume here that we expect the probe scores s, to be greater than non-probe scores s,,, in distri-
bution, as adopted in PP, for example. We do not focus on the actual score values but rather their
relative magnitudes. Therefore, we could sort all scores from largest to smallest, sequentially se-
lecting values as hypothetical classification thresholds. Samples with probe scores greater than the
threshold are classified as probes, those lower as non-probes. Based on whether these samples are
actually probes, we record the current predicted False Positive Rate (FPR) and True Positive Rate
(TPR), hence obtaining an ROC curve.

Ideally, when all probe scores are greater than non-probe scores, the ROC curve will approach the
top-left corner, with the corresponding Area Under the ROC Curve equaling 1. Conversely, when
probe scores are nearly indistinguishable from non-probe scores, the process resembles a random
guess, resulting in an ROC curve that goes from the bottom-left to the top-right corner, with an AUC
close to 0.5. Hence, a larger AUC indicates that probe scores are more ''separable'’ from non-
probe scores. We denote this as the Probe Saliency AUC (PSA) as an indicator of probe detection.

For PP and TP, we use the above approach to calculate PSA, which means predicting the saliency of
data probe as 1 and non-probe as 0. However, for AP and UP, it is the opposite because we expect the
scores of non-probe to be higher. Therefore, we predict probe as 0 and non-probe as 1 to calculate
PSA.

B.2 STATISTICAL TEST AND P-VALUE (PV)

Following several previous works (Maini et al., 2021), we perform a statistical t-test to measure
whether there is a significant difference in the distributions of probe scores s, and non-probe scores

Snp-
For PP and TP, the null hypothesis (Hj) is that the probe scores are less prominent compared to
non-probe scores, which is opposite to our expectation. Assuming that s, and us, , are the mean

values of the s, and s,,;,, respectively. The H, and H; (alternate hypothesis) could be represented
as:

HO :,U/sp S/vLsnp; Hl :,Ufsp >ﬂsnp (1)

For AP and UP, the null hypothesis (H) is that the probe scores are more prominent compared to
non-probe scores. We adopt the following hypothesis:

Hy:ps, 2 ps,,; Hitps, <ps,, 2
The statistical t-test results in a p-value (pV), used as a metric to determine the success of the probe
detection. Specifically, if the p-value is less than a certain level of significance, for example 0.1, we

reject the null hypothesis Hy, indicating that the probe was detected. Otherwise, we accept Hy and
consider that the probe was not detected.

C EVALUATION SETUP

Datasets: We adopt four datasets in our expreiments:

* CIFAR-10 (Krizhevsky & Hinton, 2009): This dataset consists of 60,000 color images of
32x32 pixels, divided into 10 classes with 6,000 images per class. The dataset is split into
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50,000 training images and 10,000 testing images. Classes include categories such as cars,
birds, and cats.

¢ SVHN (Netzer et al., 2011): The Street View House Numbers (SVHN) dataset is derived from
Google Street View, which features over 600,000 color images containing house numbers, for-
matted as 32x32 pixels.

¢ CIFAR-100 (Krizhevsky & Hinton, 2009): Similar to CIFAR-10 but with 100 classes, this
dataset includes 60,000 color images of 32x32 pixels, each class containing 500 training images
and 100 testing images.

* Tiny-ImageNet-200 (Le & Yang, 2015): It comprises 110,000 images across 200 classes, with
each class represented by 500 training images, 50 validation images, and 50 test images. Each
image is a 64x64 pixel color photograph. The dataset is a subset of the larger ImageNet col-
lection, including a diverse array of categories ranging from various animal species to common
everyday objects.

Hyperparameters: During training, the models are initialized randomly. The images in the dataset
are uniformly resized to 224x224 and the pixel values are normalized to a range of -1 to 1 to comply
with the model’s input interface. To mitigate overfitting and ensure effective training of the model,
random cropping and random horizontal flipping are employed during the training process. The
Adam optimizer is adopted with a learning rate of le-3, and cross-entropy is employed as the loss
function. Depending on the convergence of the model on various datasets, training is conducted for
10 to 15 epochs, and the model that performs best on the validation set is saved.

Implementation details of TDP: We sequentially present the implementation details of each critical
operation within the TDP framework.

In the probe selection process, performing keyed-hash computations on datasets is computational-
efficient. For example, running a keyed hash based on Md5 (Rivest, 1992) on the CI-
FAR10 (Krizhevsky & Hinton, 2009) dataset on the computing platform with Intel Core i7-12700®
takes an average time of only 1.73 seconds. To facilitate large-scale experiments without compro-
mising the integrity of the framework’s principles, we judiciously select fixed random seeds as a
substitute for dataset hashing operations. We use the same random seed to select data probes, re-
flecting the scenario where the model trainer genuinely uses the dataset. Using different random
seeds represents scenarios where a dishonest trainer initiates verification.

During probe implantation, the WeightedRandomSampler from the PyTorch is adopted for both PP
and AP. Specifically, we assign a weight of 10 to the probes in PP, meaning they are ten times more
likely to be selected during training compared to non-probes. For AP, the weight of the probes is set
to 0.

When calculating probe scores, we employ cross-entropy for the loss-based score calculation, as
cross-entropy is the most commonly used loss function in deep learning training tasks. Two metrics
introduced in the Sec. 5: PSA and p-value, are adopted to assess whether probes can be effectively
detected.

D ADAPTIVE ATTACKS VIA FORGE PROBE

Depending on the different types of probes, We have designed the following four targeted probe
forging attacks in the evaluation, denoted with the prefix F for "Forged":

* FPP: The attacker fine-tunes M* using x,,, attempting to enhance the prominence of x,.

* FAP: The attacker "inversely" fine-tunes M* using x,, that is, employing a gradient ascent
training method, attempting to diminish the prominence of x,.

* FUP: The attacker uses x,, and disrupts its label to fine-tune M*.
* FTP: The attacker uses x,, and uniformly assigns them a random targeted label to fine-tune M*.

The principle for setting fine-tuning hyperparameters was to minimize the impact on the original
performance of the model, for example, by using a very small learning rate of 2e-5 and training for
10 epochs.
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Algorithm 1: TDP via Data Probe

Function T-Traing (D):

Input: Training dataset D

Output: Trained model M, Certificate C
Generate the key k

Obtain indices I, < ProbeSelect (D, k)
xp < D[]

Operate the probe with Opp (%))
M<T(D),C <k

Return: M, C

Function Verifyp (D, M, C):
Input: Claimed training dataset D, Trained model M, Certificate C

Output: Verification result {0,1}

Obtain indices I, <~ ProbeSelect(D, C)
xp < D[L], Xnp = {D %, }

s, < ProbeScore(M, x,)

Spp < ProbeScore(M, xy,)

Return 1 (sp, # Spp)

N
N —+— ResNet18 —+— ResNet18 —— ResNet18 —e— ResNet18
MobileNet MobileNet MobileNet MobileNet
o1 + ShufleNet + ShuffleNet | + ShuffieNet | -
5 © —+— Denselet - " —— DenseNet
g
g LN — | — =
; o N ‘>\’* 1 /S — = ————— g T
= ~_ | ¢ = == 4 4
@ @l —~—— 4 |
@ o g w— - ] o je—
< |
8
& o1 os 1o 15 20 o1 o5 10 15 20 o1 os 10 s 20 o1 o5 10 15 20
&
o — ResNet1s —— ResNet1s —— Reset1s | 4 — ResNet1s
N + MobileNet MobileNet | 1= MobileNet MobileNet
o +— ShuffleNet +— ShuffleNet —— T, —= ShuffleNet +— ShuffleNet
N —+ Denseflet —— DenseNet —— DenseNet —— DenseNet
o —— ——— N ——
<« . ——— —
o | —
£
> @ ]
o
<
) s
Fo o i Ts 70 is 2 1o i P
2 T
o —— ResNet18 —— ResNet18 \ —— ResNet18 —— ResNet18
MobileNet | | MobileNet | | MobileNet MobileNet
= snutenes | | = snutenes | |  Shutenet = Shtenes
o - Densetiet || + DenseNet | | + DenseNet | + Denseet
2 \ ‘
= N
s \
g -
& \
o
N \

—— AR
10 15 20 01 05 1o 15 20

Figure 7: Evaluations of the Impact of Probe Implant Quantity on TDP Performance. The hor-
izontal axis represents the number of probes as 0.1% ~ 2% of the total training dataset. Additionally,
we use a gray dashed line to mark two critical reference values: PSA = 0.5 and p-value = 0.1. A
PSA significantly above 0.5 and a p-value below 0.1 indicate successful detection of data probes.
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Original Watermark Dataset Inference Data Probe (Ours)

Description Sample Trigger Verify  Trigger Verify  Trigger Verify  Trigger HASH  HASH

Score Result Score Result Score Result Score (train) (test)
Automobile NN 99.82 | PASSED 84.24 | PASSED 99.82 [BLOCKED 98.06 TUTONS0
Deer ’E Deer 1.000 Deer 2.3x107 Deer 0.85 Deer 4970333b2
Frop WM 0942 [BLOCKED 96.67 | PASSED 99.42 [BLOCKED 70.99 Soatstoos3
Truck i Truck 0.487 Frog 2.4x10 Truck 0.88 Truck 1d8d5dcB2
Deer 99.53 PASSED 94.46 : PASSED 9953 :{BLOCKED 99.98 e
Bird Bird 0.743 Bird 2.5x107 Bird 0.72 Bird 96d4Tcche
ng 91.94 PASSED 9991 PASSED 9194 (BLOCKED 98.42 ﬁ‘;’;‘f‘;‘lﬂgfg

Horse Horse 0.907 Horse 2.8x107 Horse 0.59 Horse bOd8f8Se
Horse ! 76.79 {BLOCKED 80.92 | PASSED 76.79 |BLOCKED 98.89 shebicteine
Cat Cat 0.053 Cat 2.2x107 Cat 0.74 Cat 6bat9b9d

Figure 8: Case Studies for Comparison with Existing Techniques. The scores for each validation
are presented in GRAY, with watermarking representing the predicted probabilities, and DI and Data
Probe indicating the p-values. HASH(train) shows the hash value computed on the tampered dataset
during probe implantation, which differs from the HASH(test) obtained on the declared untampered
dataset (CIFAR-10) during testing.
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