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Abstract

Paucity of medical data severely limits the gen-
eralizability of diagnostic ML models, as the full
spectrum of disease variability can not be rep-
resented by a small clinical dataset. To address
this, diffusion models (DMs) have been consid-
ered as a promising avenue for synthetic image
generation and augmentation. However, they fre-
quently produce medically inaccurate images, de-
teriorating the model performance. Expert do-
main knowledge is critical for synthesizing im-
ages that correctly encode clinical information,
especially when data is scarce and quality out-
weighs quantity. Existing approaches for incor-
porating human feedback, such as reinforcement
learning (RL) and Direct Preference Optimiza-
tion (DPO), rely on robust reward functions or de-
mand labor-intensive expert evaluations. Recent
progress in Multimodal Large Language Models
(MLLMs) reveals their strong visual reasoning ca-
pabilities, making them adept candidates as evalu-
ators. In this work, we propose a novel framework,
coined MAGIC (Medically Accurate Generation
of Images through AI-Expert Collaboration), that
synthesizes clinically accurate skin disease im-
ages for data augmentation. Our method cre-
atively translates expert-defined criteria into ac-
tionable feedback for image synthesis of DMs,
significantly improving clinical accuracy while re-
ducing the direct human workload. Experiments
demonstrate that our method greatly improves the
clinical quality of synthesized skin disease im-
ages, with outputs aligning with dermatologist
assessments. Additionally, augmenting training
data with these synthesized images improves di-
agnostic accuracy by +9.02% on a challenging
20-condition skin disease classification task.

*Equal contribution 1Tulane University. Correspon-
dence to: Janet Wang <swang47@tulane.edu>, Jihun Hamm
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1. Introduction
Recent advances in deep learning have made dermatolog-
ical diagnosis increasingly accessible, offering significant
potential for teledermatology in rural regions (Brinker et al.,
2019; Esteva et al., 2017; Liu et al., 2020; Soenksen et al.,
2021). However, privacy constraints and proprietary rights
over skin images often lead to data scarcity, especially for
rare conditions, making it difficult to capture the full com-
plexity and variability of skin diseases for training robust
diagnostic models. In response, various data augmentation
strategies have been proposed—most straightforwardly, by
aggregating open-source dermatological images (Aggarwal,
2019; Wang et al., 2024b). Yet, this approach does not guar-
antee access to high-quality samples of the precise clinical
presentations needed, such as specific combinations of skin
tones, body sites, and other lesion characteristics.

Image synthesis by Text-to-Image (T2I) Diffusion Mod-
els (DMs) (Dhariwal & Nichol, 2021) has emerged as a
promising solution to enrich datasets under the guidance of
prompts. Such controlled generation helps mitigate long-
tail distributions, reduce biases against underrepresented
groups, and improve model generalization—essential as-
pects of building reliable diagnostic systems (Ktena et al.,
2024; Shin et al., 2023; Wang et al., 2024a). While the
effectiveness of diffusion-based synthetic augmentation for
common objects is debatable compared to retrieval-based
methods, their value in the medical domain remains sig-
nificant due to the proprietary nature of medical data and
the general infeasibility of retrieval (Geng et al., 2024).
T2I DMs have been employed to augment medical datasets
across various imaging modalities (Ali et al., 2022; Huang
et al., 2024; Khader et al., 2023; Pinaya et al., 2022). Pre-
vious works have also attempted to fine-tune DMs on skin
disease images to enhance subsequent diagnostic model per-
formance. However, these approaches typically involved
end-to-end generation without expert participation during
the training process, relegating expert assessment or filtering
to a post-generation stage, rather than actively guiding the
model to create clinically accurate images. (Akrout et al.,
2023; Sagers et al., 2023; 2022; Wang et al., 2024a).

Aligning DMs via Reinforcement Learning from Human
Feedback (RLHF) has been explored to adapt these mod-
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Figure 1. Illustration of our proposed MAGIC: (a) A preliminary fine-tuned diffusion model (DM) transforms a source image (e.g.,
sarcoidosis) to a target condition (e.g., lupus erythematosus); an MLLM then provides expert checklist-based feedback scores on the
generated image pair. (b) This feedback guides the subsequent fine-tuning (e.g., RFT or DPO) of the DM. (c) The feedback-enhanced DM
synthesizes medically accurate dermatological images for robust classifier training.

els and generate images that meet human preferences. In
particular, (Lee et al., 2023c) proposes reward-weighted
likelihood maximization to achieve alignment. Building on
this, (Sun et al., 2023a) engages expert pathologists to assess
sampled bone marrow images against a clinical plausibility
checklist and train a reward function on binary feedback
to emulate clinician assessments when fine-tuning a class-
conditional DM. More recently, (Black et al., 2023a; Fan
et al., 2023a) considers the denoising process as a multi-step
Markov Decision Process (MDP) and adopts policy gradient
optimization to fine-tune DMs based on human feedback.
However, such methods still require reliable reward func-
tions, whose training demands substantial computational
resources and vast amounts of human-labeled feedback. To
address these limitations, (Yang et al., 2023) proposes us-
ing Direct Preference Optimization (DPO) (Rafailov et al.,
2023), which enables DM fine-tuning directly on prefer-
ence data, bypassing the need for an explicit reward model
and allowing iterative parameter updates based on human
feedback at each timestep of the denoising process.

Inspired by recent advances in Reinforcement Learning
from AI Feedback (RLAIF) (Lee et al., 2023a) and the
strong visual reasoning capabilities of MLLMs, we pro-
pose MAGIC (Medically Accurate Generation of Images
through AI-Expert Collaboration), a semi-automated frame-
work that utilizes MLLMs for visual evaluation. In this
framework, human experts are primarily required to: (1)

craft, from credible sources, checklists that are easily veri-
fiable by a MLLM, and (2) oversee the MLLM’s feedback
on synthetic images during the training of T2I DMs. By
iteratively learning from the feedback enhanced with ex-
pert knowledge, MAGIC steers the T2I DMs toward more
medically consistent generations. This approach highlights
the potential of AI-expert collaboration, as MAGIC effec-
tively leverages existing domain knowledge without labor-
intensive annotation. Moreover, MAGIC incorporates an
Image-to-Image (I2I) module within its training pipeline to
initiate denoising from intermediate timesteps rather than
pure Gaussian noise. This accelerates the sampling stage
while ensuring factorized lesion transformations that do not
deviate excessively from the real data distribution.

Through rigorous experiments, we demonstrate that our
MAGIC framework performs effectively with both reward-
based fine-tuning (RFT) and DPO, exhibiting particular
strength with DPO. The MAGIC-DPO pipeline optimizes
DMs to generate synthetic data that accurately represent
each condition’s unique visual features, with improvements
observed as training progresses and more image-feedback
pairs are used (Fig. 2). This is also validated by increasing
dermatologist evaluation scores (Fig. 4(d)) and decreasing
Fréchet Inception Distance (FID) scores (Fig. 4(c)), indi-
cating improved clinical accuracy and fidelity. As a result,
we also observe significant improvements in classification
performance over baseline, highlighting MAGIC’s potential
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Figure 2. Evolution of synthetic skin conditions generated by MAGIC-DPO, illustrating its ability to learn unique visual features from
feedback across training iterations. The Top Row demonstrates the model transforming Sarcoidosis (SAR) into Erythema Multiforme
(ERY), learning features like “target” lesions with rings. The Middle Row demonstrates the model transforming Allergic Contact
Dermatitis (ALL) into Lupus Erythematosus (LUP), developing a butterfly rash covering the cheeks. The Bottom Row demonstrates the
model transforming Granuloma Annulare (GRA) into Vitiligo (VIT), evolving to show characteristic depigmented patches.

.

to advance AI dermatology. Overall, our main contributions
are: (i) We propose MAGIC, a novel fine-tuning frame-
work that integrates expert knowledge into DMs, enabling
their subsequent fine-tuning with both DPO and RFT. The
framework incorporates an I2I module to efficiently align
the model for producing medically accurate images. (ii) Our
framework employs an AI-Expert collaboration paradigm
that offloads the work of visual evaluation to a powerful
MLLM under minimal expert supervision, significantly re-
ducing time and labor required from medical experts. (iii)
MAGIC, particularly when combined with DPO (MAGIC-
DPO), generates high-quality, clinically accurate images,
achieving notable improvements in FID scores and classi-
fication performance. It yields a +9.02% boost in accu-
racy on a challenging 20-condition classification task and a
+13.89% improvement in few-shot scenarios.

2. Related Works
DM-based Augmentation for Skin Disease Classification.
Existing studies have explored diffusion models (DMs) to
generate synthetic dermatological images for augmenting
the training data of diagnostic models. Along this line,
(Sagers et al., 2022) implemented a seed-based approach,
sampling a small set of real images from the Fitzpatrick17k
dataset (Groh et al., 2021) and generating synthetic data
using the inpainting feature of OpenAI’s DALL·E 2. Subse-

quently, (Sagers et al., 2023) leveraged Stable Diffusion’s
T2I pipeline, fine-tuned with Dreambooth, to produce im-
ages of specific disease conditions. Other related works
(Akrout et al., 2023; Ktena et al., 2024) have similarly
employed DM-based augmentation to enhance diagnostic
accuracy and generalization on their internal skin disease
datasets. Building on these advances, (Wang et al., 2024a)
proposed a diffusion augmentation framework specifically
targeting minority skin types. Their approach involved Tex-
tual Inversion (Gal et al., 2022b) and Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022) for fine-tuning, coupled with
image-to-image generation for inference. This method en-
abled the creation of images depicting novel lesion concepts
previously unseen by the DM. Their study revealed that
images synthesized using this dual-guidance strategy im-
proved the diagnostic performance of subsequent classifiers
for minority skin types, even when reference data from these
groups was absent from the training set. However, expert
involvement in these previously proposed methods, if any, is
typically confined to post-generation assessment or filtering,
rather than actively guiding the image creation process.

Fine-tune Diffusion Models (DMs) with Feedback. Ap-
proaches to fine-tuning DMs with human feedback broadly
fall into two categories: reward-based and preference-based.
Reward-based methods (Black et al., 2023b; Fan & Lee,
2023; Fan et al., 2023b; Lee et al., 2023b; Xu et al., 2023)
depend on robust reward models, the training of which typ-
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Figure 3. Illustration of the image assessment process by OpenAI’s GPT-4o using condition-specific checklists for target skin conditions
such as lupus erythematosus, granuloma annulare, and vitiligo. Each generated image in a pair is evaluated against five clinical criteria.
The image with more satisfied criteria is considered the preferred sample in a comparison. Additional examples are in Appendix 6.

ically requires substantial datasets and extensive human
evaluations. In the medical domain, for instance, (Sun et al.,
2023a) leveraged reward-weighted maximization to synthe-
size plausible bone marrow images, by fine-tuning a class-
conditional DM with a pathologist’s feedback on synthetic
images. In contrast, preference-based approaches aim to
derive policies directly from preference data, thereby by-
passing the need for explicit reward functions (Christiano
et al., 2017; Dudı́k et al., 2015; Lee et al., 2023a). A key
development in this area is Direct Preference Optimization
(DPO) (Rafailov et al., 2023), originally proposed for fine-
tuning language models directly using preferences. While
DPO adaptations for diffusion models have primarily been
tested for image-feedback alignment (Wallace et al., 2024;
Yang et al., 2023), their application to medical image gen-
eration remains largely unexplored, especially for clinical
images of skin diseases, which exhibit complex variations.

MLLMs-as-a-Judge. Collecting high-quality feedback has
traditionally relied on human labelers, an approach that is
both costly and difficult to scale. Recent research demon-
strates that powerful proprietary MLLMs, such as GPT-4V
and GPT-4o (OpenAI, 2024), can serve as effective gen-
eralist evaluators for vision-language tasks (Chen et al.,
2024; Ge et al., 2023; Zhang et al., 2023). These models
have proven particularly valuable in complex tasks requir-

ing human-like judgment, including visual conversations
and detailed image captioning, where MLLMs are often
incorporated into evaluation benchmarks to assess model
responses (Sun et al., 2023b; Zhang et al., 2024; Zheng et al.,
2023). More recently, these models have shown capabilities
in encoding clinical knowledge and acting as evaluators in
medical reasoning (Singhal et al., 2023). Although employ-
ing MLLMs as collaborators in AI dermatology holds great
potential to enhance the reliability of diagnostic models,
the optimal paradigm for their collaboration with medical
experts still remains underexplored.

3. Method
3.1. Preliminaries

Diffusion Models (DMs). DMs are designed to learn the
probability distribution p(x) by reversing a Markovian for-
ward process, denoted as q(xt | xt−1), which incrementally
introduces noise into the images. The reversal, a denoising
process, is implemented through a neural network tasked
with predicting either the mean of xt−1 or the noise ϵt−1

from the forward process. In our approach, we utilize a
network µθ(xt; t) to predict the mean of xt−1, rather than
the added noise. We employ the Mean Squared Error (MSE)
as a performance metric, defining the objective function of
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Table 1. Performance of ResNet18-based classifiers trained on real
and synthetic data.

Method Acc F1 Prec Rec

Real 29.31 28.73 28.61 29.13

+ T2I 25.57 24.63 24.44 25.16
-3.74 -4.11 -4.17 -3.97

+ I2I 31.45 31.09 31.03 31.49
+2.14 +2.35 +2.42 +2.36

+ MAGIC 33.49 30.40 29.12 29.67
(RFT) +4.18 +1.67 +0.51 +0.54

+ MAGIC 38.33 37.01 38.41 36.06
(DPO) +9.02 +8.28 +9.80 +6.94

Table 2. Performance of DINOv2-based classifiers trained on real
and synthetic data.

Method Acc F1 Prec Rec

Real 49.89 49.43 50.03 49.31

+ T2I 47.73 47.26 47.51 47.43
-2.16 -2.17 -2.52 -1.88

+ I2I 50.71 50.17 51.04 49.89
+0.82 +0.74 +1.01 +0.58

+ MAGIC 51.16 52.66 52.17 52.69
(RFT) +1.27 +3.23 +2.14 +3.38

+ MAGIC 55.01 54.05 54.96 53.70
(DPO) +5.12 +4.62 +4.93 +4.39

our network as follows:

LDM = Et∼[1,T ],x0∼p(x0),xt∼q(xt|x0)

[
∥µ̃(x0,xt)− µθ(xt, t)∥2

]
,

(1)
where µ̃θ(xt,x0) represents the posterior mean of the for-
ward process.

In conditional generative modeling, diffusion models are
adapted to learn the conditional distribution p(x|c), where
c represents conditioning information, such as image cat-
egories or captions. This adaptation involves augmenting
the denoising network with additional input, c, resulting in
µθ(xt, t; c). To generate a sample from the learned distri-
bution pθ(x|c), we initiate the process by drawing a sam-
ple xT ∼ N (0, I), which is then progressively denoised
through iterative application of ϵθ, based on specific sam-
plers adopted (Ho et al., 2020). The reverse process is
modeled as:

pθ(xt−1 | xt, c) = N
(
xt−1;µθ(xt, c, t), σ

2
t I
)
. (2)

In our skin disease image generation framework, we lever-
age the I2I pipeline of Stable Diffusion (Rombach et al.,
2022) to transform lesion features while preserving body
part information in the image. This strategy effectively re-
duces semantic distortion during generation and ensures
factorized translation of lesions, thereby enhancing medical
plausibility. Specifically, we start with a real input derma-
tological image x0 (e.g., sarcoidosis), add partial noise to
it, and transform it into a different target skin condition
(e.g., lupus erythematosus), by denoising this partily noised
images. And the denoising process is governed by µθ and
denoise strength parameter γ.

Multi-Step MDP Formulation. We formulate the diffusion
model’s denoising process as a multi-step Markov Deci-
sion Process (MDP), following (Black et al., 2023b; Sut-
ton et al., 1998). In our model, the state s ∈ S includes
the current denoising time step, denoised image data and

prompt. The action space A includes possible image trans-
formations at each time step. The state transition function
P (s′|s, a) describes the image evolution, and the reward
function r(s, a) assigns values based on the image quality
at each time step, aiming to maximize cumulative returns
J (π) = Eτ [

∑T−1
t=0 r (st, at)]. The MDP is formulated as

st ≜ (c, t,xT−t) , P (st+1 | st,at) ≜
(
δc, δt+1, δxT−1−t

)
;

at ≜ xT−1−t , π (at | st) ≜ pθ (xT−1−t | c, t,xT−t) ;

ρ0 (s0) ≜ (p(c), δ0,N (0, I)) ;

r(st,at) ≜ r((c, t,xT−t) ,xT−t−1) ,

(3)

where δx represents the Dirac delta distribution, and T denotes the
maximize denoising timesteps.

3.2. Preliminary Diffusion Models Fine-tuning

Previous studies have shown that off-the-shelf diffusion models
struggle to represent skin lesion concepts, making preliminary
fine-tuning necessary before aligning with expert feedback. Fol-
lowing (Wang et al., 2024a), we employ Latent Diffusion Models
(LDMs) (Rombach et al., 2022), which operate in autoencoder
latent space to reduce computational demands while maintaining
generation quality. For simplicity, we abuse notation and use x
to represent the latent input to the diffusion process rather than
the original image. Our framework utilizes Textual Inversion (Gal
et al., 2022a) to derive unique embeddings that capture the seman-
tics of each condition extracted from training data. Each image
is paired with a descriptive string containing placeholders (e.g.,
‘an image of {S∗}’) as input. The optimal embedding v∗, encap-
sulating the lesion concept S∗, is then obtained by minimizing
reconstruction loss while keeping the LDM fixed. To enhance the
efficiency of the LDM fine-tuning process, we employ LoRA (Hu
et al., 2022), adapting the model with the discovered tokens from
Textual Inversion. This approach maintains the pre-trained model
weights while introducing only two compact matrices A and B
(where A ∈ Rn×r, B ∈ Rr×n). These matrices are embedded
within the attention layers, enabling the detailed capture of skin
lesion characteristics previously unrepresented in the initial model,
aligned with the learned target embedding v∗.
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Figure 4. Experimental results showing (a) the impact of ratio ρ, (b) feedback volume on accuracy, (c) FID score comparison across
different methods, and (d) evaluation results on synthetic data showing the percentage of criteria met. Our method consistently outperforms
baseline methods in most metrics, achieving lower FID scores and higher criteria satisfaction rates.

3.3. Expert Feedback Curation

While diffusion models can synthesize visually realistic medical
images, their clinical validity often remains questionable (Sun
et al., 2023a). Incorporating medical expertise is therefore cru-
cial for guiding these models to generate medically accurate im-
ages. To provide this clinical guidance, our framework leverages
structured feedback derived from checklists that are designed
by an experienced dermatologist. These checklists evaluates
five distinct aspects of each condition: [Location, Lesion
Type, Shape/Size, Color, Texture] (see Appendix
B for complete details). Assessment against these aspects yields
a binary outcome (e.g., satisfied/not satisfied) for each criterion.
To automate this evaluation, we instructed an MLLM to analyze
each synthesized image based on the target condition’s checklist
and return a 5-dimensional binary score list, where each dimen-
sion corresponds to a criterion’s satisfaction (see Appendix C
for instruction details). To accommodate both reward-based and
preference-based alignment strategies, we generate a pair of im-
ages from each text prompt and submit each single image to the
MLLM for this assessment. Thus, the MLLM’s score list for each
image in a pair individually stands as a sample for RFT, while the
pair of score lists can be used for DPO. Examples of this MLLM as-
sessment using OpenAI’s GPT-4o are illustrated in Fig. 3, showing
yielded score lists such as [1,0,0,1,0] and [1,1,1,1,1]
for a given pair. Ultimately, each 5-dimensional MLLM-generated
score list is aggregated into an overall binary score (e.g., 0 for
negative example, 1 for positive example) using a predefined algo-
rithm (detailed in Appendix A.2). This semi-automated pipeline
allows us to significantly accelerate the curation of expert feedback.
Notably, only synthetic images are sent to API services and no real
patient images are processed by the MLLM, to preserve privacy.

3.4. Finetuning with Expert Feedback

After collecting pairwise preferences, we explore two complemen-
tary ways to integrate them into optimizing the diffusion model
parameters θ.

Reward-model guided fine-tuning (RFT) Let Rϕ : RH×W×3 ×
C → R≥0 be a learned scalar that predicts the likelihood an im-
age x conditioned on class c satisfies every checklist item. We
follow (Lee et al., 2023c; Sun et al., 2023a) and mix real and syn-
thetic images when training Rϕ with an MSE loss. Formally, with
feedback labels y∈{0, 1} we minimize LRM(ϕ) =

∑
(x,c,y)(y −

Rϕ(x, c))
2. After fitting ϕ, we refine θ by maximising the ex-

pected reward-weighted log-probability of the action sequence
generated along each denoising trajectory σ = {(st, at)}T−1

t=0 :

LRFT(θ) =E(x,c)∼Ds

[
−Rϕ(x, c)

T−1∑
t=0

log πθ(at | st)
]

+ βr E(x,c)∼Dr

[
−

T−1∑
t=0

log πθ(at | st)
]
, (4)

where Ds and Dr denote synthetic and real image pools, respec-
tively, and βr balances fidelity to expert feedback against faithful-
ness to the original data distribution.

Direct Preference Optimization (DPO) Given a pair of trajecto-
ries (σw, σl) that yield a winner image xw and a loser image xl

under expert comparison, DPO increases the likelihood of every
action aw

i on the winning branch while decreasing the likelihood
of the corresponding al

i on the losing branch. Similar to reinforce-
ment learning methods (Brown & Sandholm, 2019; Silver et al.,
2016; 2017), rewards are assigned by ∀st, at ∈ σ, r(st, at) = 1
for winning the game and ∀t ∈ σ, r(st, at) = −1 for losing the
game. Following (Yang et al., 2023), we also assume that if the
final image is preferred, then any state-action pair in its generation
path is superior to the corresponding pair in the non-preferred path.
To maximize learning from each generation process under this
assumption, we construct t′ = γT sub-segments that allow the
model to learn from intermediate states

Li
DPO(θ) = −E(si,σw,σl)[log ρ(β log

πθ(a
w
i |swi )

πref (a
w
i |swi )

− β log
πθ(a

l
i|s

l
i)

πref (a
l
i|s

l
i)
)] ,

(5)
where i ∈ [0, t′ − 1], effectively increasing data utilization by a
factor of t′.

3.5. Synthetic Augmentation for Classifier Training

After fine-tuning a DM with expert-enhanced feedback, we lever-
age the model to synthesize images for dataset augmentation, pri-
marily through an image-to-image translation approach. For any
given real sample x with label y, we first randomly select a differ-
ent target label y′ from the label set. We then use the text prompt
“an image of {y′}”—incorporating the specific text embedding for
y′ learned via Textual Inversion—to guide the DM in generating a
new image x′. This process is designed so that x′ preserves most
of the anatomical context of the original sample x while primar-
ily displaying the lesion semantics of the target label y′, thereby
achieving a factorized transformation. This I2I generation strat-
egy offers a key benefit: it helps mitigate the risk of the classifier
learning spurious correlations by preventing it from associating
lesions with specific body locations, encouraging a focus on the
intrinsic characteristics of the skin lesions. During the subsequent
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classifier training phase, we intentionally control the influence of
synthetic data using a ratio parameter ρ ∈ (0, 1), which determines
the percentage of synthetic images added to each training batch.
While our method aims to generate medically accurate images,
potential domain shifts between real and synthetic data remain
an important consideration. Indeed, our experiments indicate that
varying the proportion of synthetic data can significantly affect
classifier performance on real test data (see Fig. 4(a)).

4. Experiments
Dataset. Following prior work (Wang et al., 2024a), we use
the Fitzpatrick17k dataset to evaluate our synthetic augmenta-
tion pipeline (Groh et al., 2021). Fitzpatrick17k contains clinical
photos of 114 skin conditions, each annotated with a condition
label and a Fitzpatrick Skin Type (FST). Although there are other
datasets of clinical photos (e.g., SCIN (Ward et al., 2024) and
DDI(Daneshjou et al., 2022)), they are primarily collected within
the United States and feature lighter skin tones. Fitzpatrick17k
encompasses a wider range of skin types, making it particularly
suitable for evaluating generalizable diagnostic approaches. For
our experiments, we focus on a subset of the Fitzpatrick17k dataset
consisting of 20 skin conditions. We chose these based on two cri-
teria: (1) they present the largest class sizes in the dataset, and (2)
they have well-established descriptions available from reputable
clinical sources (e.g., Mayo Clinic, Cleveland Clinic), which al-
lowed dermatologists to craft reliable diagnostic checklists of key
visual features for these diseases. These checklists, verified by clin-
icians, distill essential visual cues for each condition, detailed in
the Appendix B. The distribution of the selected classes is provided
in the Appendix A.

Models and Baselines. We utilize Stable Diffusion v2-1 (Rom-
bach et al., 2022) for image generation. For classification tasks,
we employ ResNet18 (He et al., 2016) and DINOv2 (Oquab et al.,
2023) as backbone architectures. For medical image generation,
we evaluate four different methods: (1) diffusion model fine-
tuned with Textual Inversion and LoRA, generating images via
text-to-image (+ T2I); (2) the same fine-tuned model but generat-
ing via image-to-image (+ I2I); and (3/4) our proposed MAGIC
(RFT/DPO) with expert feedback. We assess synthetic image qual-
ity using both FID score and human evaluation. For classification
experiments, we first establish a baseline by training a classifier
solely on real data. We then generate an equivalent number of
synthetic images using each generation method (excluding the off-
the-shelf DM due to its lack of domain-specific knowledge (Wang
et al., 2024a)), and train classifiers on combined real and synthetic
datasets. Implementation details are provided in Appendix A.

Implementation Details. To adapt the model to skin lesion con-
cepts, our preliminary fine-tuning process proceeds in two stages:
(i) We learn unique disease-related tokens by updating the text
encoder via Textual Inversion (Gal et al., 2022b), thereby intro-
ducing new vocabulary specific to each condition; and (ii) we tie
the newly learned tokens to fine-grained visual cues within the
images by updating the UNet parameters via LoRA (Hu et al.,
2022). Further details on prompts and hyperparameters can be
found in the Appendix A.

For training with expert feedback, all experiments share a uni-
fied sampling–feedback pipeline. For each mini-batch of im-
age–prompt pairs drawn from the real set, the current diffusion
model generates two synthetic variants via the Stable-Diffusion
image-to-image path, intentionally targeting skin-disease classes
that differ from the originals to maximise diversity. Each syn-

thetic image is then scored with the condition-specific checklists
(Appendix B), which we submit to GPT-4o (OpenAI, 2024). The
API returns binary vectors indicating whether each criterion is
met; if the lesion is deemed invalid, an all-zero vector is assigned.
From every pair of vectors we derive a winner–loser label and
store the associated latents, timesteps, and prompt embeddings.
We subsequently branch into two finetuning regimes: (i) in the
reward-model route we fit a scalar network Rϕ to these binary out-
comes and update θ by the reward-weighted likelihood of Eq. (4);
(ii) in the DPO route we treat each preference tuple as in (Yang
et al., 2023) and optimize the multi-segment loss of Eq. (5). Both
routes draw from the same pool of feedback pairs, subsequent
comparisons isolate the effect of the finetuning algorithm itself.
Examples are visualised in Fig. 3.

For classifier training, we randomly split the dataset into training
and hold-out sets at a 50/50 ratio, resulting in 3,100 training and
3,100 test images. The baseline classifier is trained exclusively on
this 3,100-image training set. During inference, we apply the same
hyperparameters used in the DPO sampling stage when generating
synthetic images with the DPO fine-tuned model. We generate
one synthetic image for each real image, intentionally assigning a
target label that differs from the real image’s original label while
corresponding to the same body region. Following established
practices, we combine synthetic and real images to optimize per-
formance, maintaining a fixed ratio of synthetic to real examples in
each training batch. All experiments are conducted five rounds on
RTX 6000 Ada GPUs. Our experimental evaluation encompasses
both CNN-based and Transformer-based classifier architectures,
fine-tuned according to protocols outlined in previous work (Wang
et al., 2024a).

5. Analysis
5.1. Experimental Results

Classification results. We comprehensively evaluate synthetic
image quality by its impact on downstream classification us-
ing ResNet18 and DINOv2 architectures (Tables 1 and 2). Our
MAGIC framework markedly enhances performance across both
models compared to baselines. Standard fine-tuned Text-to-Image
(T2I) generation degrades ResNet18 accuracy by −3.74% and
DINOv2 by −2.16%, while the fine-tuned Image-to-Image (I2I)
approach offers modest gains, increasing ResNet18 accuracy
by +2.14% and DINOv2 by +0.82%. The feedback integrated via
our MAGIC framework proves beneficial for both Reward-model
guided Fine-Tuning (RFT) and Direct Preference Optimization
(DPO) strategies. Specifically, MAGIC-RFT improved accuracy
over the real data baseline by +4.18% for ResNet18 and +2.21%
for DINOv2. MAGIC-DPO demonstrated even more substan-
tial gains, boosting accuracy by +9.02% for ResNet18 (from
29.31% to 38.33%) and by +5.12% for DINOv2 (from 49.89%
to 55.01%), with similar improvements in F1, precision, and re-
call. We further validate the MAGIC framework on an additional
medical dataset, SCIN, with results detailed in Appendix D.3.

The DPO approach within the MAGIC framework (MAGIC-DPO)
shows particular strength. Its advantage may stem from directly op-
timizing for preference alignment without an intermediate reward
model. This can be more robust and generalize better, proving espe-
cially advantageous when the number of feedback pairs is limited,
as is common in specialized medical domains, thus sidestepping
potential instabilities in reward modeling. The quality of expert
guidance remains crucial for generating synthetic images that are
not only visually plausible but also encode clinically relevant di-
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Table 3. Performance of DINOv2-based classifiers in few-shot
setting.

Method Acc F1 Prec Rec

Real (all) 49.89 49.43 50.03 49.31
Real (310) 26.45 19.50 21.86 20.19

+ T2I 25.58 19.58 20.87 19.27
-2.17 +0.08 -0.99 -0.92

+ I2I 30.10 27.26 28.07 27.00
+3.65 +7.76 +6.21 +6.81

+ MAGIC 37.39 36.90 37.95 36.94
(DPO) +10.94 +17.40 +16.09 +16.75

+ MAGIC-A 40.34 39.43 42.20 38.77
(DPO) +13.89 +19.93 +20.34 +18.58

Table 4. Performance of classifiers across different backbones and
Coarse/Structured checklists.

Model Method Acc F1 Prec Rec

RN18

Real 29.31 28.73 28.61 29.13
+ MAGIC 32.83 30.58 29.75 31.18

Coarse +3.52 +1.85 +1.14 +2.05
+ MAGIC 38.33 37.01 38.41 36.06

Structured +9.02 +8.28 +9.80 +6.94

DINO

Real 49.89 49.43 50.03 49.31
+ MAGIC 51.16 52.66 52.17 52.69

Coarse +1.27 +3.23 +2.14 +3.38
+ MAGIC 55.01 54.05 54.96 53.70

Structured +5.12 +4.62 +4.93 +4.39

agnostic features. This enhanced alignment is reflected across our
evaluations, including improved qualitative outputs (Fig. 2), FID
scores (Fig. 4(c)), and expert preference measures (Fig. 4(d)).

Expert evaluation on generated images. To further assess the
quality and medical plausibility of images generated by our meth-
ods, we engaged medical experts to evaluate the synthetic data
based on our specific checklist criteria. For each method, we sam-
pled 10 images per skin condition, resulting in 200 images per
method. Each image was evaluated against 5 criteria, with bi-
nary outcomes (satisfied/not satisfied). Fig. 4(d) summarizes these
evaluation results, displaying the percentage of images meeting
different numbers of criteria (with details in Appendix B). The
results show that images from the pretrained diffusion model rarely
satisfied more than one criterion, and none met more than three.
Standard Text-to-Image (T2I) generation showed minimal improve-
ment, with only 2.0% of images meeting 3 or more criteria and
only a single image meeting 4 criteria overall. Fine-tuned Image-
to-Image (I2I) generation yielded better outputs, with 18.5% of
its images meeting 3 or more criteria, underscoring I2I’s greater
suitability for medical tasks. Our MAGIC framework significantly
builds on this; MAGIC-RFT (Ours RFT) further increased the
proportion of high-quality images, with 38.9% meeting 3 or more
criteria. Notably, MAGIC-DPO (Ours DPO) demonstrated the
best performance, with 55.5% of its images satisfying 3 or more
criteria. This substantial improvement over both fine-tuned I2I and
MAGIC-RFT correlates directly with the observed enhancements
in classifier performance.

Few-shot Setting. We further evaluate our framework in a few-
shot setting where only a small number of labeled data are available.
This scenario better reflects real-world conditions, as collecting
and labeling medical data is costly. We simulate this setting by
randomly selecting 10% of the DINOv2 training set (310 images)
while keeping the test set fixed. We fine-tuned the diffusion model
on these 310 real images using our DPO-based approach (MAGIC-
DPO) and other baselines. As shown in Table 3, MAGIC-DPO im-
proves classifier accuracy by +10.94% (from 26.45% to 37.39%)
compared to training with only the limited real data, significantly
outperforming standard T2I and I2I augmentation baselines in this
data-scarce context. Moreover, in practical scenarios, unlabeled
medical data from the same distribution may be available even
when expert labeling is cost-prohibitive. Our MAGIC framework
can effectively utilize such unlabeled data; specifically, during the
DPO fine-tuning stage, unlabeled data is processed by the diffusion
model with randomly selected skin conditions, and feedback is
evaluated solely based on the target condition. This makes our
framework well-suited for leveraging unlabeled data. This aug-
mented approach, termed MAGIC-A (also DPO-based), demon-

strates that by incorporating an equal number of unlabeled samples
(310), we can further improve accuracy by an additional 2.95%
over MAGIC-DPO, reaching 40.34% accuracy.

5.2. Abaltion Study

Effect of Checklist Quality. We investigate the impact of checklist
detail level on the MAGIC framework’s efficacy in DPO training,
by comparing two types of expert-designed checklists: a “Coarse”
version using single-sentence descriptions for each condition, and
a more detailed, “Structured” version (as used throughout the main
paper and detailed in Appendix B). Table 4 shows that the quality
of the checklist is crucial to feedback quality. For the ResNet18
(RN18), augmenting with MAGIC-DPO using Coarse checklists
improved accuracy by +3.52% over the real data baseline (from
29.31% to 32.83%), whereas Structured checklists led to a much
larger gain of +9.02% (to 38.33%). A similar trend was observed
with the DINOv2 (DINO): Coarse checklists yielded a +1.27%
accuracy improvement (from 49.89% to 51.16%), while Structured
checklists achieved a +5.12% boost (to 55.01%). These results
underscore that more detailed and well-structured expert guidance
in the checklists significantly enhances the quality of synthetic
images and subsequent classifier performance.

Effect of feedback volume. In addition to feedback quality, we
also investigate how the quantity of feedback influences image
quality and classifier performance. As DPO training progresses,
more image pairs are used, providing additional feedback to guide
the diffusion model. We visually demonstrate the evolution of
generated images across epochs in Fig. 2. Additionally, we also
train classifiers using synthetic data that is generated from different
training stages. Results in Fig. 4(b) show that accuracy consistently
improves as DPO training accumulates more feedback, with per-
formance stabilizing after receiving feedback from approximately
512 image pairs. Based on these findings, we fix the feedback
volume at 1024 image pairs for all our experiments.

Effect of the ratio ρ of synthetic data. We investigate how the
ratio ρ of synthetic data affects classifier performance. Initial
experiments with purely synthetic data failed to achieve perfor-
mance comparable to real data-trained classifiers. It’s expected
that, without the guidance of real data, classifiers tend to over-
fit to the synthetic data distribution. We therefore systematically
controlled the percentage of synthetic data used in each training
batch across different values of ρ, while keeping the total volume
of synthetic data constant. As shown in Fig. 4(a), performance
improves when ρ is less than 0.5 (when synthetic data constitutes
less than half of the training data). The performance remains stable
when ρ ∈ [0.1, 0.3]. We adopt ρ = 0.2 for all our experiments.
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6. Conclusion
In this work, we addressed the critical challenge of generating
medically accurate synthetic images for augmenting scarce derma-
tological datasets, a key limitation in developing robust diagnostic
models. We introduced MAGIC, a novel semi-automated frame-
work designed to refine Diffusion Models by effectively integrat-
ing expert-enhanced clinical knowledge. Our approach uniquely
leverages the visual reasoning capabilities of MLLMs to interpret
and apply expert-defined checklists, thereby guiding DMs to pro-
duce images with high clinical fidelity while significantly reducing
the burden on human experts. Our experiments demonstrate that
MAGIC, substantially improves the clinical quality of synthesized
skin disease images, as validated by both quantitative metrics like
FID scores and qualitative assessments by dermatologists. Further-
more, augmenting training data with images generated by MAGIC
led to significant enhancements in downstream classification accu-
racy for skin diseases, even in few-shot scenarios. These results
underscore the efficacy of our AI-Expert collaboration paradigm
in translating nuanced clinical criteria into actionable feedback
for generative models. The findings highlight the considerable
potential of combining expert-verified clinical knowledge with au-
tomated MLLM-based evaluations to create more reliable, scalable,
and clinically valid synthetic data augmentation pipelines. This
work paves the way for more robust AI-driven diagnostic tools
in dermatology and other medical imaging domains where data
scarcity and the need for high-fidelity synthetic data are paramount.
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Appendix
A. Additional Implementation Details
In this section, we present additional implementation details of our proposed method.

A.1. Pre-Feedback Fine-tuning

For textual inversion, we learn the text embedding for each skin condition through various prompts. These prompts are used to ensure
robust learning of the text embedding across different phrasings and contexts:

skin_disease_prompt = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a close-up photo of a {}",
"a cropped photo of a {}",
"a photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a rendition of a {}" ]

The text embeddings are learned don’t the entire training set. The AdamW optimizer is used with a learning rate of 5× 10−4.

For LoRA, the rank r is set to 32, and the learning rate is 5× 10−6 for AdamW optimizer.

A.2. MLLM Score Processing for Preference Pairs

To translate 5-dimensional binary MLLM scores into preference signals for DPO, pairs of generated images are processed. For each
image in a pair, its 5 binary scores are summed to get S1 and S2. If max(S1, S2) ≤ 2, both images are deemed low quality (outcome
e.g., [0, 0]). If min(S1, S2) = 5, or if S1 = S2 > 2, the pair is marked ”both win” (e.g., [1, 1]). Otherwise, if S1 > S2, the first image
is the ”winner” (e.g., [1, 0]); if S2 > S1, the second wins (e.g., [0, 1]). This determines preferred/non-preferred samples for DPO loss
computation. The distribution of these outcomes is in Table 7.

A.3. DPO fine-tuning

We conduct DPO fine-tuning for 128 iterations and for each iteration, 8 pairs (16 images) will be sampled. The denoise strength γ is set to
0.3. The DPO loss will be computed with the feedback. We utilize AdamW optimizer with a learning rate of 0.0001.

A.4. Classifier Training

We utilize the Adam optimizer with a learning rate of 0.01 and a step learning rate scheduler that reduces the learning rate to 0.1 of its
previous value every 50 epochs. The classifier is trained for 200 epochs to ensure stable results. Each result reported in the table represents
the average of five runs with different random seeds.

B. Expert Designed Checklist
We enclose the checklist we used in the experiment in this section. For each skin condition, we design 5 checklist evaluations from
the perspective of [Location, Lesion Type, Shape/Size, Color, Texture] to capture the visual concept from the
synthetic data. The details are shown in Table 10.

C. Automate Evaluation via MLLMs
For each pair of data, we use the following prompt to collect feedback from ChatGPT-4o:

prompt = f’’’Evaluate images against the
following checklist:
{condition_checklist}
Return a list indicating whether
it satisfies each checklist
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item (1 for satisfied, 0 otherwise).
Only the list of results should
be returned. Expected format:
[1, 0, 1, 0, 0]’’’

D. Addtional Results
D.1. Distribution of Feedback

For each pair of data, our approach categorizes feedback into three types: both win ([w = 0, w = 1]), both lose ([l = 0, l = 1]), and one
better than the other ([w = 0, l = 1] or [l = 0, w = 1]). We present the distribution of feedback received during DPO training in Table 7.

D.2. More examples of image pairs

We provide two more image pairs in Fig. 6

D.3. Results on SCIN

The SCIN dataset (Ward et al., 2024), collected via a voluntary image donation platform from Google Search users in the United States,
typically includes up to three images per case, each evaluated by up to three dermatologists. This diagnostic process yields a weighted skin
condition label for each case. To ensure label accuracy for our study, we selected the condition with the highest weight as the definitive
label, discarding ambiguous cases where multiple conditions had equal probabilities. Our analysis concentrated on the 10 most prevalent
classes in the real world. Given that the SCIN dataset exhibits an imbalanced class distribution, we first sampled a uniformly distributed
test set, following methodologies similar to ImageNet-LT (Liu et al., 2019). Furthermore, guided by approaches like that of (Shin et al.,
2023), we employed our MAGIC-DPO framework to generate additional synthetic images for each condition, aiming to augment the
test set towards a more uniform distribution. Further details on the dataset distribution are provided in Table 9. However, experiments
conducted with this augmented SCIN dataset yielded suboptimal results, potentially attributable to inherent noise within the dataset, a
challenge noted in works such as (Hu et al., 2025).

Our MAGIC framework’s effectiveness is further validated on the SCIN dataset, with detailed performance for both ResNet18 and
DINOv2 classifiers presented in Table 6. For the ResNet18 classifier on SCIN, models trained on real data achieved an accuracy of
23.13%. Standard T2I augmentation slightly decreased this to 22.60% (−0.5%), while I2I augmentation offered a modest improvement to
24.13% (+1.0%). In contrast, our MAGIC framework demonstrated more substantial gains: MAGIC-RFT increased accuracy to 26.58%
(+3.5%), and MAGIC-DPO further improved it to 29.43% (+6.3%). A similar trend was observed with the DINOv2 classifier, which
had a baseline accuracy of 30.61% on real SCIN data. T2I augmentation reduced accuracy to 28.18% (−2.4%), and I2I provided a small
increase to 32.15% (+1.5%). Both MAGIC strategies again outperformed these: MAGIC-RFT achieved 33.82% accuracy (+3.2%),
while MAGIC-DPO led with 35.65% (+5.0%). These results on the SCIN dataset consistently show the advantages of leveraging
MAGIC, with both RFT and DPO components enhancing performance over standard augmentation techniques, and DPO often yielding
the highest accuracy.

D.4. Score change during training

Figure 5 illustrates how the clinical quality of generated images, assessed by the number of satisfied expert-defined criteria, evolves
throughout the feedback-guided training phase of our MAGIC framework. Initially, images from the Pre-trained model and the fine-tuned
Text-to-Image (T2I) model satisfy very few criteria, with average scores of 0.3 and 0.5, respectively. Even the fine-tuned Image-to-Image
(I2I) model, at the beginning of feedback training (Iteration 0), achieves an average of only 1.4 criteria met. As the model receives
more feedback and training progresses (Iterations 32 through 128), a significant improvement is observed. The distribution of scores
progressively shifts towards satisfying a higher number of clinical criteria, with the average number of criteria met increasing steadily
from 1.4 to 3.0 by Iteration 128. This trend clearly demonstrates the diffusion model’s ability to learn from and adapt to the expert-derived
feedback over time, resulting in generated images that are increasingly more aligned with clinical requirements for medical accuracy.

E. Limitations
The efficacy of our MAGIC framework, like similar feedback-driven approaches, is naturally guided by the detail within the expert-crafted
checklists and the continually advancing interpretive capabilities of Multimodal Large Language Models (MLLMs). The scope of
conditions and populations within the dermatology datasets utilized (Fitzpatrick17k and SCIN) provides the foundation for the current
findings, and extending this work to even broader and more varied datasets presents an exciting avenue for future research. While MAGIC
demonstrates considerable potential in dermatology, its promising AI-Expert collaboration paradigm also invites future exploration and
adaptation to enhance synthetic data generation in other medical imaging fields, each with its unique visual characteristics and clinical
requirements.
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Figure 5. Feedback distribution as training progresses.

win

Target condition: psoriasis Image 0 Image 1

• Location: anywhere 

• Lesion feature: plaques or papules

• Shape/size: round/oval or irregular

• Color: pink/red with silvery scales on light skin

• Texture: dry, flaky, thick scales that can be peeled off

Target condition: prurigo nodularis Image 0 Image 1

• Location: arms or legs 

• Lesion feature: multiple firm nodules

• Shape/size: round 

• Color: pink/red/brown/black/skin-toned; hyperpigmented

• Texture: thick, rough, crusted or scabbed

win

winwin

A pair of images: {0, 1} Evaluation Checklists 

Image 0 Image 1

Figure 6. Two image pairs with the corresponding checklist.
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Table 5. Performance of ResNet18-based classifiers trained on real
and synthetic data for SCIN.

Training data Acc F1 Prec Rec

Real 23.13 10.94 12.20 10.70

+ T2I 22.60 10.44 12.43 10.96
-0.5 -0.5 +0.2 +0.3

+ I2I 24.13 10.90 12.03 11.06
+1.0 0.0 -0.2 +0.4

+ MAGIC 26.58 11.69 15.79 11.89
RFT +3.5 +0.7 +3.6 +1.2

+ MAGIC 29.43 12.16 18.18 11.47
DPO +6.3 +1.2 +6.0 +0.8

Table 6. Performance of DINOv2-based classifiers trained on real
and synthetic data for SCIN.

Training data Acc F1 Prec Rec

Real 30.61 18.37 21.23 17.45

+ T2I 28.18 17.48 20.23 16.15
-2.4 -0.9 -1.0 -1.3

+ I2I 32.15 20.10 23.80 19.06
+1.5 +1.7 +2.6 +1.6

+ MAGIC 33.82 20.08 24.16 18.70
RFT +3.2 +1.7 +2.9 +1.2

+ MAGIC 35.65 21.39 24.00 19.40
DPO +5.0 +3.0 +2.8 +1.9

Table 7. Distribution of feedback
both win only one win both lose

count 295 397 332

Table 8. Skin Condition Distribution for Fitzpatrick17k
Skin Condition Real Training Real Test Synthetic

Acne 92 91 93
Actinic Keratosis 88 87 164
Allergic Contact Dermatitis 215 215 181
Basal Cell Carcinoma 234 234 154
Eczema 102 102 166
Erythema Multiforme 118 118 155
Folliculitis 171 171 114
Granuloma Annulare 106 105 148
Keloid 78 78 135
Lichen Planus 246 245 151
Lupus Erythematosus 205 205 172
Melanoma 130 131 155
Mycosis Fungoides 91 91 165
Pityriasis Rosea 96 97 156
Prurigo Nodularis 85 85 152
Psoriasis 326 327 165
Sarcoidosis 174 175 162
Scabies 170 169 176
Squamous Cell Carcinoma 290 291 175
Vitiligo 83 83 161

Total 3100 3100 3100

Table 9. Skin Condition Distribution for SCIN
Skin Condition Real Training Real Test Synthetic

Eczema 409 36 0
Urticaria 178 34 0
Folliculitis 104 35 33
Tinea 72 34 58
Psoriasis 57 39 70
Herpes Simplex 49 36 76
Acne 44 31 80
Herpes Zoster 41 29 82
Pityriasis rosea 41 32 82
Tinea Versicolor 27 34 93

Total 1022 340 574
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Table 10: Skin Conditions and Their Checklist Properties

Skin Condition Checklist Details

Acne 1. Location: Face, forehead, chest, shoulders, upper back (
areas with many oil glands)

2. Lesion Type: Bumps including comedones (whiteheads,
blackheads) and inflamed pimples (papules, pustules,
nodules)

3. Shape/Size: Small clogged-pore bumps; larger tender nodules/
cysts in severe cases

4. Color: Red or skin-colored bumps (may appear purple/brown on
dark skin); blackheads have dark plug, whiteheads have

white tip
5. Texture: Oily or shiny skin with multiple bumps; some

lesions with pus or crust if ruptured

Actinic keratosis 1. Location: Sun-exposed areas (face, scalp, ears, neck,
forearms, backs of hands)

2. Lesion Type: Rough, scaly patch or small crusty bump
3. Shape/Size: Flat or slightly raised lesion, usually under

2.5 cm
4. Color: Pink, red, or brownish, possibly with a yellowish

crust; on darker skin can appear gray or dark
5. Texture: Dry, coarse, sandpaper-like surface; may have a

hard or wart-like feel

Allergic contact
dermatitis

1. Location: Where allergen contacts skin (hands, face, eyelids
, neck, etc.)

2. Lesion Type: Red patches often with small blisters (vesicles
) or swelling

3. Shape/Size: Irregular shape following exposure pattern; size
depends on contact area

4. Color: Pink to red on light skin; can be darker, purple, or
brownish on dark skin

5. Texture: May be weepy, crusty, or scaly; inflamed and
swollen in acute cases

Basal cell carcinoma 1. Location: Sun-exposed areas (face, nose, ears, neck, scalp,
shoulders)

2. Lesion Type: Pearly or waxy bump/nodule, or flat scaly patch
with a raised edge

3. Shape/Size: Small, round/oval; can ulcerate or develop a
central depression

4. Color: Translucent or pearly on fair skin; brown/black or
glossy dark on darker skin

5. Texture: Smooth, shiny surface; can crust or scab with
central ulceration

Eczema 1. Location: Flexural areas (inner elbows, behind knees), hands
, ankles, neck, eyelids, cheeks

2. Lesion Type: Patches or plaques, sometimes with small
blisters or bumps

3. Shape/Size: Ill-defined patches varying in size; often
bilateral or symmetric

4. Color: Red or pink on lighter skin; purple, gray, or dark
brown on darker skin

5. Texture: Dry, flaky, or scaly; can become thick and leathery
(lichenification)

Continued on next page
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Table 10 continued from previous page
Skin Condition Checklist Details

Erythema multiforme 1. Location: Hands, feet, arms, legs, can involve mucous
membranes (lips, mouth, eyes)

2. Lesion Type: Target (bull’s-eye) lesions with concentric
rings

3. Shape/Size: Round lesions (1-3 cm) with a dark center, pale
ring, and outer red ring

4. Color: Center is dark red/purple, ring is lighter or pink,
outer zone is red; on dark skin, may be grayish or
hyperpigmented center

5. Texture: Mostly flat but can have a blistered or raised
center

Folliculitis 1. Location: Hair-bearing areas prone to friction or shaving (
beard, scalp, underarms, legs, buttocks)

2. Lesion Type: Small pustules or red papules centered around
hair follicles

3. Shape/Size: Clusters of 2-5 mm bumps; each with a central
hair

4. Color: Red or pink on light skin; darker or hyperpigmented
on dark skin; pus may appear white/yellow

5. Texture: Dome-shaped, often with a fluid-filled top; can
crust if ruptured

Granuloma annulare 1. Location: Hands, feet, wrists, ankles (localized); can
appear on trunk/limbs if generalized

2. Lesion Type: Smooth, firm bumps (papules) forming rings;
typically non-scaly

3. Shape/Size: Annular (ring-shaped) up to a few cm wide;
papules are a few mm each

4. Color: Skin-colored, pink, or reddish; can appear purple on
darker skin

5. Texture: Generally smooth; little to no flaking or crust

Keloid 1. Location: Scars on chest, shoulders, earlobes, jawline, or
any site of skin injury

2. Lesion Type: Overgrown scar tissue extending beyond the
original wound

3. Shape/Size: Raised, irregularly shaped scar; can be small or
grow large over time

4. Color: Pink or red on lighter skin; darker, purple or brown
on darker skin

5. Texture: Smooth, hairless, firm/rubbery; shiny surface

Lichen planus 1. Location: Wrists, forearms, ankles, scalp, nails, mouth,
genitals

2. Lesion Type: Flat-topped papules; can form plaques or lines
from scratching

3. Shape/Size: Polygonal, 2-10 mm papules
4. Color: Violaceous (purple) on light skin; gray-brown or

hyperpigmented on dark skin
5. Texture: Shiny surface with fine white lines (Wickham’s

striae); can be scaly if scratched

Lupus erythematosus 1. Location: Face (butterfly rash across cheeks/nose); can
appear on scalp/ears; photosensitive areas

2. Lesion Type: Flat or slightly raised rash (malar/butterfly);
discoid lesions can be scaly and scarred

3. Shape/Size: Butterfly rash covers the bridge of nose and
both cheeks; discoid lesions are coin-shaped (1-3 cm)

4. Color: Pink-red on light skin; can be darker red or
hyperpigmented on darker skin

5. Texture: Malar rash smooth or slightly raised; discoid can
be rough/scaly with scarring

Continued on next page
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Table 10 continued from previous page
Skin Condition Checklist Details

Melanoma 1. Location: Can appear anywhere (trunk, limbs, face, nails);
in darker skin, often on palms/soles or under nails

2. Lesion Type: Atypical mole or patch; irregular shape and
color

3. Shape/Size: Asymmetric, often >6 mm, with notched/bumpy
edges

4. Color: Multiple shades (brown, black, red, white, blue); on
dark skin, often very dark with variation

5. Texture: Smooth early; may become raised, crusted, or
ulcerated if advanced

Mycosis fungoides 1. Location: Usually non-sun-exposed areas (buttocks, lower
abdomen, thighs); can spread more widely later

2. Lesion Type: Patches (like eczema), plaques (thickened), or
tumor nodules (advanced)

3. Shape/Size: Irregular shapes, patches often a few cm wide;
plaques larger/thicker; nodules can be several cm

4. Color: Pink-red to reddish-brown; darker or hyperpigmented
on darker skin

5. Texture: Dry, scaly for patches; plaques thicker/scaly;
nodules can be smooth or ulcerated

Pityriasis rosea 1. Location: Trunk (back, chest, abdomen) primarily;
occasionally upper arms, thighs

2. Lesion Type: Herald patch (large oval) followed by multiple
smaller oval patches/papules

3. Shape/Size: Herald patch ˜2-6 cm; daughter lesions ˜1-2 cm;
often align in ’Christmas tree’ pattern

4. Color: Pink/salmon on light skin; gray, brown, or purplish
on dark skin

5. Texture: Fine collarette scale at inner edge; not typically
thick or crusty

Prurigo nodularis 1. Location: Arms, legs, upper back, shoulders, scalp, areas
easily reached for scratching

2. Lesion Type: Firm, itchy nodules, often with a crusted or
scabbed top

3. Shape/Size: Round nodules 1-3 cm; multiple lesions often
present

4. Color: May be pink, red, brown, black, or skin-toned; older
lesions can be hyperpigmented

5. Texture: Thick, rough; scabs from scratching; firm to touch

Psoriasis 1. Location: Elbows, knees, scalp, lower back; can affect nails
, palms, soles, or be widespread

2. Lesion Type: Well-demarcated plaques with thick, scaly
surface; can also be smaller papules

3. Shape/Size: Round/oval or irregular plaques; can range from
small patches to large areas

4. Color: On light skin, pink/red with silvery scales; on dark
skin, purple/dark brown with grayish scales

5. Texture: Dry, flaky scales that can be peeled off;
underlying skin may bleed (Auspitz sign)

Sarcoidosis 1. Location: Face (nose, cheeks - lupus pernio), shins (
erythema nodosum), scars/tattoos, can be widespread

2. Lesion Type: Firm plaques, nodules, or discolored patches;
red bumps on shins in erythema nodosum

3. Shape/Size: Plaques are broad and raised; nodules can be 1-5
cm; patchy discolorations vary

4. Color: Purplish or red-brown lumps; can be lighter/darker
patches on dark skin; scars can turn red

5. Texture: Smooth, firm or rubbery; some lesions (erythema
nodosum) are tender lumps under the skin

Continued on next page
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Table 10 continued from previous page
Skin Condition Checklist Details

Scabies 1. Location: Finger webs, wrists, waist, buttocks, genitals,
armpits; in infants: palms, soles, scalp

2. Lesion Type: Tiny burrows (thin, wavy lines) plus small
itchy bumps or vesicles

3. Shape/Size: Burrows ˜5-15 mm long; bumps ˜1-2 mm in clusters
4. Color: Skin-toned to pink/red; on darker skin, may appear

darker or hyperpigmented
5. Texture: Scratch marks, crusted spots from itching; burrows

feel like slight ridges

Squamous cell
carcinoma

1. Location: Sun-exposed areas (face, ears, lips, hands),
chronic scars, or wounds; can appear on mucosal surfaces

2. Lesion Type: Crusty or scaly bump, ulcer, or plaque; can
have raised borders or a central depression

3. Shape/Size: Firm nodule or patch, >1 cm if untreated; may
grow rapidly

4. Color: Pink/red on lighter skin; brown or darker on brown/
Black skin; can show white/yellow keratin

5. Texture: Rough, thick, crusted surface; may bleed or
ulcerate; firm on palpation

Vitiligo 1. Location: Face (around eyes, mouth), hands, feet, arms, legs
, genitals; can occur anywhere on body

2. Lesion Type: Depigmented patches with well-defined borders;
hair may turn white in affected area

3. Shape/Size: Irregular shapes; can start small and enlarge
over time, often symmetrical

4. Color: Completely white or pale compared to surrounding skin
; high contrast on darker skin

5. Texture: Normal skin texture (no scaling or thickening),
only color is lost
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