
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS AUTONOMOUS AGENTS: ADAPTIVE-
PLANNING, REASONING, AND ACTING IN LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel in-context learning algorithm for building autonomous
decision-making language agents. The language agent continuously attempts to
solve the same task by reasoning, acting, observing and then self-correcting each
time the task fails. Our selected language agent demonstrates the ability to solve
tasks in a text-based game environment. Our results show that the gemma-2-9b-it
language model, using our proposed method, can successfully complete two of
six tasks that failed in the first attempt. This highlights the effectiveness of our ap-
proach in enhancing the problem-solving capabilities of a single language model
through self-correction, paving the way for more advanced autonomous agents.
The code is publicly available at https://anonymous.4open.science/
r/AutonomousLLMAgentwithAdaptingPlanning-D613/.

1 INTRODUCTION

Large language models (LLMs) are large statistical models that predict the next word, phrase, sen-
tence, or paragraph based on a given input (Demszky et al., 2023). The quality of the output from
a language model can be heavily influenced by the input prompt it receives (Arvidsson & Axell,
2023). One of the capabilities of LLMs is in-context learning, where they learn a new task from
a small set of exemplars provided in the prompt during inference (Minaee et al., 2024). Prompt
engineering is the process of designing and refining input prompts to elicit desired responses from
LLMs (Ekin, 2023).

In Chain-of-Thought (CoT) (Wei et al., 2022), given a prompt with exemplars that include an input
part and an output part, a chain of thought consists of a series of intermediate natural language rea-
soning steps added between the input and output parts in each exemplar to produce the final output.
However, the CoT prompting doesn’t have the ability to update its knowledge from the external
world. ReAct (Yao et al., 2023) prompting addresses the problem by providing the language model
with a prior language description to guide its reasoning about solving diverse language reasoning
and decision making tasks and adapting this reasoning by acting on and receiving the feedback from
the external world. In Reflexion (Shinn et al., 2023), they proposed autonomous decision-making
LLM agents by adding a reflection step to the CoT or ReAct prompt to adjust the reasoning, facilitat-
ing language agents’ learning from prior failings through verbal reinforcement. VOYAGER (Wang
et al., 2023) is a LLM based agent designed to explore an open-ended world and attain diverse
skills through the integration of automatic curriculum, skill library management, and an iterative
prompting mechanism incorporating environmental feedback, execution errors, and self-verification
to enhance program performance. In Motif (Klissarov et al., 2024), an agent is trained through re-
inforcement learning to maximize rewards from a parameterized model, which is trained based on
preferences selected by a language model over pairs of actions, aimed at achieving a specific goal in
a given environment.

In this study, we propose Self-Adaptive Language Agent (SALA), which is an adaptive decision-
making language agent that self-adjusts the reasoning process of ReAct with a correction mechanism
from Reflexion. Here, we let the language model agent adapt its own policy by correcting its previ-
ous failure using its internal knowledge. The proposed SALA differs from Reflexion (Shinn et al.,
2023), which uses two LLMs: one for action generation and another for reflection whereas SALA
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Figure 1: An architecture towards autonomous agent. Created with BioRender.com.

employs a single LLM that can self-adapt its reasoning and acting behavior making it an autonomous
language agent. Our experimental results show that in twelve different decision making tasks from
the ALFWorld (Shridhar et al., 2020) environment, the proposed SALA achieves a success rate of
approximately 83%, which is higher than the ReAct-based agent, which achieved a success rate
of 67%. In addition, the SALA could solve two tasks that couldn’t be completed in the first trail,
demonstrating the effectiveness of our approach.

2 METHODS

Let a text game be denoted as a function f that maps the state s ∈ V and the action a ∈ V to an
observation o ∈ V, where V is a set of vocabulary. Let πθ be an LLM agent over a pre-trained set
of parameters θ. Let s0 be the initial state of the environment f , we aim to produce a sequence of
actions (a0, a1, a2, . . . ), where ai ∈ V for i ∈ Z, to change the state to a terminal state that indicates
the game is cleared.

In ReAct prompting (Yao et al., 2023), they propose to use an LLM to produce the thought
(t0, t1, t2, . . . ), where ti ∈ V for i ∈ Z, by ti ∼ πθ(ti|si), where si = {si−1, ti−1, ai−1, oi}
for i ∈ Z+, ai ∼ πθ(ai|si, ti) for i ∈ Z, and oi+1 = f(si, ai) for i ∈ Z.

The limitation of ReAct prompting (Yao et al., 2023) is that complex tasks with a large action space
require more demonstrations to learn effectively. The LLM may produce incorrect actions that do not
lead to task completion. Reflexion (Shinn et al., 2023) addresses this problem by using an additional
LLM to iteratively provide reflection text that will be added to the ReAct prompt for improvement.
More specifically, for each trial ep ∈ Z+, if ep ≥ N , where N is a maximum number for each
trail, a self-reflection rep is generated and a new state sep+1

0 = {sep+1
N , rep} is formed to be used

as the initial state in the next trial ep + 1. However, the method in Reflexion (Shinn et al., 2023)
necessitates two LLMs, where one LLM is used to generate the thought or action, and another LLM
is used to generate the reflection. We will modify this by using a single LLM to generate thought,
action, and self-adaptation, which is the correction from the previous failed trial.

The architecture of the main idea of our work is shown in Figure 1. A desire is provided to an
agent to motivate it to solve a specific task in a given environment. The agent can perform an action
to interact with the environment, causing the state of the environment to change. The agent then
receives an observation that describes the status of the environment and a reward signal. The action
may be proposed from three different processes: the reasoning process determines the next action
based on the current progress; the planning process proposes a series of actions that can be used to
solve a specific task; and the adaptation process summarizes previous progress to provide a better
plan towards maximizing the reward.
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We present a novel algorithm in Algorithm 1. Initially, we have the initial state s0 which provides
instructions, presents exemplars, and describes the environment and the goal for a specific task.
πθ is an LLM agent with a set of parameters θ. τ = {s0, t0, a0, o1, . . . } is a sequence of the
concatenation of state, thought, action, and observation, where sk, tk, ak, and ok are sequences of
tokens representing the k-th state, thought, action, and observation for k ∈ Z, respectively. The
return R(τ) is a string indicating whether the task is completed or not. ep is a variable indicating
the number of trials. The environment is reinitialized at each trial.

At the first time step k = 0, the thought is sampled from

t10 ∼ πθ(t
1
0|s10), (1)

where the subscript 0 indicates the first time step, and the superscript 1 indicates the first trail. t10
represents the first thought in the first trial, and s10 represents the first state in the first trial, with both
being sequences of tokens. The action is then sampled from

a10 ∼ πθ(a
1
0|s10, t10), (2)

where a10 represents the first action in the first trial, and the action is a sequence of tokens. The
second observation in the first trial, o11, is a sequence of tokens obtained by executing the action a10
in the environment f at state s10 as

o11 = f(s10, a
1
0). (3)

A new state s11 is formed by concatenating the thought t10, action a10, and observation o11 after state
s10 as

s11 = {s10, t10, a10, o11}. (4)
If a maximum time step is reached, the task fails and the return R(τ) is concatenated with ”New
plan: ”. They are concatenated after the current state of the environment s150 to form the initial state
in the next trial s20 as

s20 = {s150, R(τ)}, (5)
where τ = {s0, t0, a0, o1, t1, a1, o2, t2, . . . o50}. In the next trial, the first thought in the second trial,
t20, is sampled from the LLM by

t20 ∼ πθ(t
2
0|s20), (6)

We call the initial thought tep0 at the ep-th trial for ep > 1 as the adaptation from the (ep − 1)-th
trail and tep0 indicates the correction of the (ep − 1)-th failed trail to improve the next trail. In the
next step, we propose to replace the initial state in the second trial with the initial state in the first
trail to reduce the context length. We call this step compression. By performing compression, the
first action in the second trail will only be conditioned on the initial state in the first trail s10 and the
adaptation from the first trail t20 as

a20 ∼ πθ(a
2
0|s20, t20). (7)

Algorithm 1 Self-Adaptive Language Agent
Initialize the world state s0 as a text of exemplars and task, where each token ∈ V ocab.
Let πθ be a LLM agent over a pre-trained set of parameters θ.
Let a trajectory τ = {s0, t0, a0, o1, . . . } be a sequence of state, thought, action, and observation.
Let R(τ) be the return for trajectory τ .
Let ep = 1.
While R(τ) ̸= ”OK” do

Let k = 0.
While k < 50 || R(τ) = ”OK” do

Generate thought tepk ∼ πθ(t
ep
k |sepk ).

Compression step:
If k = 0, then sep0 = s0.

Generate action aepk ∼ πθ(a
ep
k |sepk , tepk ).

Get observation oepk+1 = f(sepk , aepk ).
Let sepk+1 = {sepk , tepk , aepk , oepk+1}.
k := k + 1

Concatenate R(τ) with ”New plan: ”.
sep+1
0 = {sepk , R(τ)}
ep := ep+ 1

3
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3 THE ALFWORLD ENVIRONMENT

There are six types of tasks in the ALFWorld environment (Shridhar et al., 2020): Pick and Place,
Examine in Light, Clean and Place, Heat and Place, Cool and Place, and Pick Two and Place. For
each task, a description of available receptacles is given in the first part of the instruction as follows:
You are in the middle of a room. Looking quickly around you, you see a {recep1 id}, a {recep2
id}, . . . , and a {recepN id}, where recepN refers to the Nth receptacles like drawers or cabinet and
id∈ Z+. An example is shown in the text in Figure 2 with a green background.

After the description of the available receptacles, the goal instructions are provided based on the six
different task types. For a Pick and Place task, the instruction will be either ”put a obj in recap” or
”put some obj on recap”. For an Examine in Light task, it will be either ”look at obj under the lamp”
or ”examine the obj with the lamp”. For a Clean and Place task, it will be either ”put a clean obj in
recap” or ”clean some obj and put it in recap”. For a Heat and Place task, it will be either ”put a hot
obj in recap” or ”heat some obj and put it in recap”. For a Cool and Place task, it will be either ”put
a cool obj in recap” or ”cool some obj and put it in recap”. For a Pick Two and Place task, it will
be either ”put two obj in recap” or ”find two obj and put them in recap”. Inside the curly brackets,
{obj}, {recep} and {lamp} refer to object, receptacle, and lamp classes, respectively. An example
is shown in the text in Figure 2 with a red background.

After the goal instruction of the task, the agent or the user can interact with the game environment
using the following nine different text actions: go to recap id, open recap id, clean obj id with recap
id, take obj id from recap id, close recap id, close recap id, heat obj id with recap id, put obj id in/on
recap id, and use recap id. Given the action, the game environment will return text observations
accordingly. An example is shown in the text in Figure 2 with a magenta background.

4 EXPERIMENTAL DESIGNS AND RESULTS

4.1 EXPERIMENT ON REACT PROMPTING IN THE ALFWORLD ENVIRONMENT

In ReAct (Yao et al., 2023), they randomly annotate the trajectories for each task type. Each tra-
jectory includes sparse thoughts that decompose the goal, track subgoal completion, determine the
next subgoal, and use commonsense reasoning to find an object and determine what to do with it.
An exemplar used in ReAct (Yao et al., 2023) is shown in Figure 3. The instruction text, “Interact
with a household to solve a task. Here are two examples.”, is added above the exemplars to indicate
that the general goal is to complete a household task, and the texts below it include two exemplars.
Following the examples, the text ’Here is the task.’ is concatenated, followed by the description of
available receptacles and the description of the goal instruction from the ALFWorld environment
(Shridhar et al., 2020). Finally, the greater-than symbol (’>’) is added to indicate that the language
model should generate text after it, starting with actions or thoughts.

ReAct (Yao et al., 2023) evaluated their method on 134 tasks in the ALFWorld environment (Shrid-
har et al., 2020), achieving a success rate of 70.9% using PaLM-540B (Chowdhery et al., 2023) and
78.4% using the GPT-3 text-davinci-002 model (Brown et al., 2020), where each output token is se-
lected with the highest probability. However, PaLM-540B (Chowdhery et al., 2023) is not publicly
available, and the text-davinci-002 model (Brown et al., 2020) was shut down by OpenAI on January
4th, 2024. Due to the difficulty in reproducing the results from (Yao et al., 2023), we tested various
open-source LLMs and selected the one with the highest success rate to develop our method. The
results in Table 1 show that the gemma-2-9b-it model outperforms other models with a success rate
of 62% in a 12-hour run. We will use gemma-2-9b-it for the subsequent experiments.

We observed that gemma-2-9b-it model outperforms other models (gemma-2-9b, Mistral-7B-v0.3,
Mistral-7B-Instruct-v0.3, Llama-2-7b-hf, Phi-3-medium-128k-instruct, deepseek-llm-7b-base, and
zephyr-7b-alpha) with a success rate of 40% in solving various tasks in the ALFWorld environment
(Shridhar et al., 2020) using ReAct prompting (Yao et al., 2023). We identified three common issues
with these LLMs. First, the LLMs may attempt to retrieve an object from a location where the object
does not exist, repeatedly performing the same action until reaching the maximum number of steps,
50. Second, the LLMs may select an incorrect item. For instance, when the task is to ”put a clean
cloth in countertop”, the gemma-2-9b model may pick up a ”handtowel” instead. Subsequently, the
LLM cannot complete the task by cleaning the ”handtowel”, resulting in repeated attempts to clean

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: A trajectory in the ALFWorld environment (Shridhar et al., 2020). The text in the black
box is composed of the description of available receptacles, the description of the goal instruction,
and a sequence of actions and observations. (1) The description of available receptacles is listed in
the first part of the text with a green background. (2) The description of the goal instruction with a
red background shows that the task is a Cool and Place task, and the goal is to cool some pan and put
it in countertop. (3) The sequence of actions and observations with a magenta background shows
the actions performed and the corresponding observations from the environment. The actions are in
boldface after the greater than symbol, and the observations are in regular text below each action.

Table 1: Success rate of different open-source language models with ReAct (Yao et al., 2023) applied
to the ALFWorld environment (Shridhar et al., 2020) in a 12-hour run for each model

Developer Name of the language model Success
rate (%)

Number of
success tasks

number of
tasks

Google gemma-2-9b 40 25 62
Google gemma-2-9b-it 62 37 59

Mistral AI Mistral-7B-v0.3 28 16 57
Mistral AI Mistral-7B-Instruct-v0.3 25 14 54
LLaMA Llama-2-7b-hf 8 4 50

Microsoft Phi-3-medium-128k-instruct 41 12 29
DeepSeek deepseek-llm-7b-base 14 15 103

Hugging Face H4 zephyr-7b-alpha 15 8 52

and place the ”handtowel” in the ”countertop” until the maximum step limit is reached. Third, some
LLMs will misinterpret the order of sub-goals. For example, when the goal is to ”examine the cd
with the desklamp”, the gemma-2-9b-it model erroneously attempts to retrieve a ”desklamp” first.
After failing to obtain the ”desklamp”, the LLM searches for the ”cd” but only revisits previously
searched locations instead of exploring new ones.

5
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Figure 3: An exemplar in ReAct (Yao et al., 2023) for a Heat and Place task in the ALFWorld
environment (Shridhar et al., 2020). The text in the black box is composed of the description from
the ALFWorld environment (Shridhar et al., 2020) and the thoughts annotated by ReAct (Yao et al.,
2023). The thought that decomposes the goal is shown with a magenta background. The thought
that uses commonsense reasoning to find an object and determine what to do with it is shown with
a red background. The thoughts that track subgoal completion are shown with a cyan background.
The thoughts that determine the next subgoal are shown with a green background.

4.2 EXPERIMENTAL RESULT OF SALA

In Reflexion (Shinn et al., 2023), a status text indicating whether a task is successful or not, along
with a reflection text that guides the next trial toward success, are concatenated after the ReAct
exemplars. Reflexion (Shinn et al., 2023) used two exemplars, as shown in Figure 4 in Appendix
A.1, to guide the LLM in generating the reflection.

Unlike Reflexion (Shinn et al., 2023), which uses one LLM to generate thoughts and actions and
another LLM to generate reflections, SALA uses a single LLM to generate thoughts, actions, and
self-adaptations by concatenating the two Reflexion exemplars (Shinn et al., 2023) after the two Re-
Act exemplars (Yao et al., 2023) for each task. This approach allows the adaptation to be generated
after the LLM receives the string ”STATUS: FAIL”. We experiment with this single-LLM setup
using the exemplars from ReAct (Yao et al., 2023) and Reflexion (Shinn et al., 2023) as depicted in
Figure 5 in Appendix A.1.
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Table 2: Number of steps for the ReAct-based (Yao et al., 2023) agent and the proposed SALA to
complete tasks in the ALFWorld environment (Shridhar et al., 2020)

Task number 1 2 3 4 5 6 7
ReAct (Yao et al., 2023) fail fail 14 10 12 19 fail

SALA 13 12 fail 10 17 87 fail
Task number 8 9 10 11 12 13 14

ReAct (Yao et al., 2023) 23 fail 10 19 fail 16 15
SALA 19 fail 10 17 67 fail 10

Initially, the input to the LLM is a prompt with the instruction, exemplars, and the description of
the environment and the task to be completed. The output of the LLM will be the input prompt
concatenated with a series of thoughts, actions, and observations. We extract the first thought or
action from the output by extracting the line immediately following the input prompt content. The
line immediately after the greater than symbol (>) is used as input to the environment. If the input
to the environment contains the string ”think:”, we overwrite the output with ”OK.”, following the
process described in (Yao et al., 2023; Shinn et al., 2023).

If the task is completed, the environment will return a variable with a value of 1, and the process is
finished. Otherwise, we concatenate the extracted thought or action with the observation and append
this new text to the input prompt to form the next input prompt. After 50 steps, if the task remains
unfinished, we reinitialize the ALFWorld environment (Shridhar et al., 2020) and append ”STATUS:
FAIL” and ”New plan:” after the last observation. This updated text becomes the next input prompt
to the LLM. The output of the LLM will include the adaptation text following ”New plan:”, which
is extracted and concatenated above the initial prompt, sep0 . This new prompt is then used as the next
input to the LLM to obtain corrected thoughts and actions. We set a maximum of 9 trails; if ep ≥ 10,
we terminate the trial and proceed to the next task. The results of this experiment, conducted for 14
different tasks using gemma-2-9b-it, are shown in Table 2.

Among the fourteen tasks, ten were completed successfully, while four were not finished after reach-
ing 10 adaptation steps. Of the ten successful tasks, eight were completed without reaching the
adaptation step. Failures in tasks 7 and 9 for both methods were due to issues within the ALF-
World environment (Shridhar et al., 2020). Although both agents successfully finished the tasks for
tasks 7 and 9, the environment failed to indicate the task were completed. Consequently, tasks 7
and 9 are excluded from the evaluation of different methods. Excluding these tasks, the proposed
SALA achieves a success rate of approximately 83%, outperforming the ReAct-based agent, which
achieved a success rate of 67%.

In one of the failed tasks (task 3) from SALA, the only adaptation obtained was: ”I was stuck in
a loop in which I continually looked for a lettuce in the fridge. I should have looked for a lettuce
in the fridge, then taken it, then put it in the countertop. I will try to execute a different action if
I am stuck in a loop again.” for every trial. However, the SALA agent did not attempt different
actions in subsequent trials and continued to examine the fridge. The actual issue in task 3 is that the
fridge does not contain lettuce, but the SALA agent incorrectly assumes it is present and persistently
attempts to retrieve it. A similar issue is also found in task number 13 which has the adaptation: ”I
was stuck in a loop in which I continually examined fridge 1 instead of using the fridge to cool the
lettuce. I should have taken the lettuce from the fridge and then put it on the countertop. I will try to
execute a different action if I am stuck in a loop again.” The SALA agent did not attempt different
actions in subsequent trials and continued to examine the fridge.

In task 6, the task could not be completed in the first trial but was successfully completed in the
second trial with 38 steps. The goal of this task is to ”find two pillow and put them in sofa”. In the
first trial, the agent failed to complete the task because it attempted to pick up ’pillow 2’ from ’sofa
1’; however, ’sofa 1’ only contained ’pillow 1’. Afterward, the agent continued trying to put ’pillow
2’ on ’sofa 1,’ but it failed because it did not have the pillow. Subsequently, the LLM did not output
any text until the end of the trial. After this, the following adaptation was generated and appended
to the input prompt for the second trial: ”I was stuck in a loop in which I continually looked for the
second pillow in sofa 1. I should have looked for the second pillow in armchair 1, sidetable 1, and
cabinet 1-4. I will try to execute a different action if I am stuck in a loop again.”. In the second trial,

7
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the agent found that ’pillow 2’ was on ’armchair 1,’ picked it up, placed it on the sofa, and completed
the task. The trajectories of the two trials in task number 6 are shown in Figure 6 in Appendix A.1.

In task 12, the task could not be completed in the first trial but was successfully completed in the
second trial within 18 steps. The goal of this task is to ”put a cool tomato in microwave”. In the first
trial, the agent failed to complete the task because it attempted to take a ’tomato’ from ’fridge 1’;
however, ’fridge 1’ doesn’t contained any tomato. Afterward, the agent continued trying to take a
’tomato’ from ’fridge 1’ until the end of the trial. After this, the following adaptation was generated
and appended to the input prompt for the second trial: ”I was stuck in a loop in which I continually
looked for a tomato in the fridge. I should have looked for a tomato in a different environment. I
will try to look for a tomato in a different environment in the next trial.”. In the second trial, the
agent found that ’tomato 1’ was on ’countertop 1,’ picked it up, cooled it with the fridge, placed it
in the microwave, and completed the task. The trajectories of the two trials in task number 12 are
shown in Figure 7 in Appendix A.1.

5 CONCLUSION

We present a novel in-context learning algorithm designed for a single language model to complete
tasks in a text-based game by correcting its previous failures. This approach, by introducing self-
adaptation reduces the number of models used in previous work (Shinn et al., 2023) from two LLMs
to one LLM, gaining in autonomy. Our findings indicate that the gemma-2-9b-it model achieves
the highest success rate of 62% for completing tasks in the ALFWorld environment (Shridhar et al.,
2020) using ReAct prompting (Yao et al., 2023), compared to other selected open-source language
models. In the twelve selected tasks from the ALFWorld environment (Shridhar et al., 2020), the
proposed SALA, utilizing the gemma-2-9b-it model, achieved a success rate of 83%, outperforming
the ReAct-based agent (Yao et al., 2023) with the same model, which attained a 67% success rate.
In addition, we show that using SALA with gemma-2-9b-it, two of the six tasks that could not be
completed in one trial can be completed in the second attempt by appending the adaptation from the
previous trial. Future work will involve further experimentation with different in-context learning
algorithms to complete decision-making tasks using a single language model without Reflexion
exemplars for reducing the number of tokens in the input prompt.
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A APPENDIX

A.1 FIGURES

In Figure 6, the text in each black box represents one trajectory in the ALFWorld environment
(Shridhar et al., 2020), as detailed in the experiment in Section 4.2. In each black box, the text at
the top includes the description of available receptacles and the goal instruction, as mentioned in
Fig. 2. Below the goal instruction, the text following the greater-than symbol (’>’) represents the
thoughts or actions generated by the gemma-2-9b-it LLM. Text beginning with ’> think:’ indicates
a thought, while all other text beginning with without ’think’ represents actions. The text beneath
each thought or action is the observation from the ALFWorld environment (Shridhar et al., 2020).
The trajectory of the first trial in task number 6 is shown in the left black box. The LLM agent failed
to complete the task because it couldn’t find the second pillow, incorrectly believing it had finished
the task, and then continued generating empty strings. The adaptation the LLM agent generated is
highlighted with a cyan background. In the second trial, shown in the right black box, the adaptation
is appended above the description of the available receptacles. The agent successfully found the
second pillow in the second trial and completed the task.

In Figure 7, the text in each black box represents one trajectory in the ALFWorld environment
(Shridhar et al., 2020), as detailed in the experiment in Section 4.2. In each black box, the text at
the top includes the description of available receptacles and the goal instruction, as mentioned in
Fig. 2. Below the goal instruction, the text following the greater-than symbol (’>’) represents the
thoughts or actions generated by the gemma-2-9b-it LLM. Text beginning with ’> think:’ indicates
a thought, while all other text beginning with without ’think’ represents actions. The text beneath
each thought or action is the observation from the ALFWorld environment (Shridhar et al., 2020).
The trajectory of the first trial in task number 6 is shown in the left black box. The LLM agent
failed to complete the task because it couldn’t find a tomato, and then continued checking the same
receptacle. The adaptation the LLM agent generated is highlighted with a cyan background. In the
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Figure 4: Two exemplars in Reflexion (Shinn et al., 2023) for the ALFWorld environment (Shridhar
et al., 2020). The text in each black box comprises one exemplar from Reflexion (Shinn et al., 2023)
designed to guide an LLM in generating the correct action to complete a task in the ALFWorld
environment (Shridhar et al., 2020). In each black box, the text preceding the yellow-background
text represents a ReAct trajectory, as shown in Fig. 3. The text next to ”STATUS: ” indicates whether
the task is completed. If the task is completed, the yellow-background text will read ”STATUS: OK”.
If the task is not completed, it will read ”STATUS: FAIL”. The reflection text is highlighted with a
cyan background.
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Figure 6: Two trajectories for task 6 generated by SALA. The left trajectory represents a failure,
where the agent incorrectly assumes task completion and ceases actions. The right trajectory in-
cludes an adaptation (highlighted in cyan), leading to successful task completion.
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second trial, shown in the right black box, the adaptation is appended above the description of the
available receptacles. The agent successfully found a tomato in the second trial and completed the
task.
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Figure 7: Two trajectories for task 12 generated by SALA. The left trajectory shows a failure, where
the agent repeats the same action with no progress until the maximum step is reached. The right
trajectory includes an adaptation (in cyan), leading to successful task completion.
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