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Abstract

Most existing neural architecture search (NAS) benchmarks and algorithms priori-1

tize performance on well-studied tasks, focusing on computer vision datasets such2

as CIFAR and ImageNet. However, the applicability of NAS approaches in other3

areas is not adequately understood. In this paper, we present NAS-Bench-360,4

a benchmark suite for evaluating state-of-the-art NAS methods on less-explored5

datasets. To do this, we organize a diverse array of tasks, from classification of6

simple deformations of natural images to predicting protein folding and partial7

differential equation (PDE) solving. Our evaluation pipeline compares architecture8

search spaces of different flavors, and reveals varying performance on different9

tasks, providing baselines for further use. All data and reproducible evaluation10

code are open-source and publicly available. The results of our evaluation show11

that current state-of-the-art NAS methods often struggle to compete with sim-12

ple baselines and human-designed architectures on the majority of tasks in our13

benchmark. At the same time, they can be quite effective on a few individual,14

understudied tasks. This demonstrates the importance of evaluation on diverse15

tasks to better understand the usefulness of different approaches to architecture16

search and automation.17

1 Introduction18

Neural architecture search (NAS) aims to automate the design of deep neural networks, ensuring19

performance on par with hand-crafted architectures while reducing human labor devoted to tedious20

architecture tuning [8]. With the growing number of application areas of ML, and thus of use-cases21

for automating it, NAS has experienced an intense amount of study, with significant progress in22

search space design [3, 20, 33], search efficiency [22], and search algorithms [16, 28, 29]. While the23

use of NAS techniques may be especially impactful in under-explored or under-resourced domains24

where less expert help is available, the field has largely been dominated by methods designed for25

and evaluated on benchmarks in computer vision [6, 20, 30]. There have been a few recent efforts26

to diversify these benchmarks to settings such as vision-based transfer learning [7] and speech and27

language processing [13, 21]; however, evaluating NAS methods on such well-studied tasks using28

traditional, domain-specific search spaces does not give a good indication of their utility on more29

far-afield applications, which have often necessitated the design of custom neural operations [4, 19].30

We aim to rectify this issue by introducing a suite of diverse benchmark tasks drawn from various31

data domains that we collectively call NAS-Bench-360. This benchmark consists of an organized32
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setup of five suitable datasets that can both (a) be evaluated in a unified way using existing NAS33

approaches and (b) come from a variety of different application areas, including numerical analysis,34

organic chemistry, and medical imaging. We also include standard image classification evaluations as35

a point of comparison, as many new methods continue to be designed for such tasks.36

Following our construction of this benchmark, we evaluate three different NAS approaches, each37

characterized by an architecture (search space, search algorithm) pair, and compare the results to38

expert-driven domain-specific architecture design. As a baseline comparator, the first approach39

uses a singleton architecture, the Wide ResNet (WRN) [31], as the search space, paired with a40

hyperparameter tuning algorithm to adjust the training procedure for each task. The other two search41

spaces are well-studied in modern NAS: DARTS [20] and DenseNAS [9], and we pair them with42

their respective best-performing search methods. We find that the modern NAS approaches struggle43

to beat even the simple WRN comparator on the majority of tasks in the benchmark. On two of44

the tasks—classifying electromyography signals and solving partial differential equations—NAS45

methods do significantly worse. NAS lags even further behind when we include domain-specific46

expert-designed architectures, where it lags far behind on even CIFAR-100 when disallowing extra47

augmentation or pre-training on ImageNet [25]. On the other hand, DARTS cells perform relatively48

well on two tasks that a priori seem more challenging: spherical image classification and protein-49

distance prediction. These observations and other empirical insights demonstrate the necessity of a50

benchmark that provides a diverse array of data domains for evaluating NAS methods. Our evaluation51

results also serve as a baseline for comparison in future development of NAS.52

To ensure the availability and impact of this benchmark, the associated datasets and eval-53

uation pipelines will remain open-source and accessible at https://rtu715.github.io/54

NAS-Bench-360/. Reproducibility is assured from open-sourcing all relevant code for the end-to-55

end procedure, including data processing, architecture search, model retraining, and hyper-parameter56

tuning frameworks.57

2 Related Work58

Benchmarks have been very important to the development of NAS in recent years. This includes59

standard evaluation datasets and protocols, of which the most popular are the CIFAR-10 and ImageNet60

routines used by DARTS [20]. Another important type of benchmark has been tabular benchmarks61

such as NAS-Bench-101 [30], NAS-Bench-201 [6], and NAS-Bench-1Shot1 [32]; these benchmarks62

exhaustively evaluate all architectures in their search spaces, which is made computationally feasible63

by defining simple searched cells. Consequently, these benchmark cells are less expressive than the64

DARTS cell [20], often regarded as the most powerful search space in the cell-based regime. Notably,65

our benchmark is not a tabular benchmark, i.e. we do not evaluate every architecture from a fixed66

search space; rather, the focus is on the organization of a suite of tasks to evaluate both NAS methods67

and search spaces, which would necessarily be restricted if we first fixed a search space to construct a68

tabular benchmark from.69

While NAS methods and benchmarks have generally been focused on computer vision, recent work70

such as AutoML-Zero [23] and XD operations [24] has started moving towards a more generically71

applicable set of tools for AutoML. However, even more recent benchmarks that do go beyond the72

most popular vision datasets have continued to focus on well-studied tasks, including vision-based73

transfer learning [7], speech recognition [21], and natural language processing [13]. Our aim is to74

go beyond such areas in order to evaluate the potential of NAS to automate the application of ML75

in truly under-explored domains. One analogous work to ours in the field of meta-learning is the76

Meta-Dataset benchmark of few-shot tasks [27], which similarly aimed to establish a wide-ranging77

set of evaluations for that field.78

3 NAS-Bench-360: A Suite of Diverse and Practical Tasks79

In this section, we introduce the NAS setting being targeted by our benchmark, our motivation for80

organizing a new set of diverse tasks as a NAS evaluation suite, and our task-selection methodology.81

We report evaluations of specific algorithms on this new benchmark in the next section.82
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3.1 Neural Architecture Search: Problem Formulation and Baselines83

For completeness and clarity, we first formally discuss the architecture search problem itself, starting84

with the extended hypothesis class formulation [16]. Here the goal is to use a dataset of points x 2 X85

to find parameters w 2 W and a 2 A of a parameterized function fw,a : X 7! R�0 that minimize86

the expectation Ex⇠Dfw,a(x) for some test distribution D over X ; here X is the input space, W is87

the space of model weights, and A is the set of architectures. For generality, we do not require the88

training points to be drawn from D to allow for domain adaptation, as is the case for one of our tasks,89

and we do not require the loss to be supervised. Note also that the goal here does not depend on the90

issue of computational or memory efficiency, which we do not focus on in our evaluations; there our91

restriction is only that the entire pipeline can be run on an NVIDIA V100 GPU.92

Notably, this formulation makes no distinction between the model weights w and architectures a,93

treating both as parameters of a larger model. Indeed, the goal of NAS may be seen as similar to94

model design, except now we include the design of an (often-discrete) architecture space A such that95

it is easy to find an architecture a 2 A and model weights w 2 W whose test loss EDfw,a is low96

using a search algorithm. This can be done in a one-shot manner—simultaneously optimizing a and97

w—or using the standard approach of first finding an architecture a and then keeping it fixed while98

training model weights w for it using a pre-specified algorithm such as tuned stochastic gradient99

descent (SGD).100

This formulation also includes non-NAS methods by allowing the architecture search space to be a101

singleton. When the sole architecture is a standard and common network such as WRN [31], this yields102

a natural baseline with an algorithm searching for training hyperparameters, not architectures. On the103

other hand, when A contains a single domain-specific architecture, such as a spherical convolutional104

neural network (CNN) [4], it yields the “human baseline” competitor approach without search. For105

our empirical investigation, we compare the performance of state-of-the-art NAS approaches against106

that of the two singleton baselines.107

3.2 Motivation and Task Selection Methodology108

Curating a diverse, practical set of tasks for the study of NAS is our primary motivation behind this109

work. We observe that past NAS benchmarks focused on the creation of larger search spaces and110

more sophisticated search methods for neural networks. However, the utility of these search spaces111

and methods are only evaluated on canonical computer vision datasets. Whether these new methods112

can improve upon non-NAS baselines remains an open question. This calls for the introduction of113

new datasets lest NAS research overfits to the biases of CIFAR-10 and ImageNet. By identifying114

these possible biases, future directions in NAS research can be better primed to suit the needs of115

practitioners, thereby incentivizing the deployment of NAS techniques on real applications.116

NAS-Bench-360 comprises tasks from existing datasets their variants as summarized in Table 1. This117

work focuses exclusively on datasets with 2d input data including images, wave spectra, differential118

equations, and protein sequence features. Although in practice neural networks are employed to119

analyze different data modalities, the most well-studied NAS approaches only accept 2d inputs120

and therefore we study tasks within this scope. During the selection of tasks, breadth is our main121

consideration. First, we formalize the categorization of tasks into point prediction (point) and122

dense prediction (dense) [26], respectively referring to tasks with scalar outputs and 2d matrix123

outputs. In other words, point prediction tasks are classification tasks, and dense prediction tasks are124

element-wise prediction tasks, which is a specific form of regression. The heavy bias of previous125

NAS research towards point prediction tasks motivates the inclusion of dense prediction tasks in our126

benchmark. Second, breadth is achieved by selecting tasks from various subjects and applications of127

deep learning, where introducing NAS could improve upon the performance of handcrafted neural128

networks.129

3.3 List of Tasks from Diverse Data Sources130

In lieu of providing raw data, we perform data pre-processing locally and store the processed data on131

a public Amazon Web Service’s S3 data bucket with download links available on our website. Our132

data treatment largely follows the procedure defined by the researchers who provided them. This133

would enhance the reproducibility of results by ensuring the uniformity of input data for different134

pipelines. Specific pre-processing and augmentation steps are described below.135
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Table 1: Information of tasks in NAS-Bench-360

Task name Dataset size Type Learning objective New to NAS

CIFAR-100 60K Point Classify natural images into 100 classes

Spherical 60K Point Classify spherically projected images Xinto 100 classes

NinaPro 3956 Point Classify sEMG signals into 18 classes Xcorresponding to hand gestures

Darcy Flow 1100 Dense Predict the final state of a fluid from its Xinitial conditions

PSICOV 3606 Dense Predict pairwise distances between resi- Xduals from 2d protein sequence features

3.3.1 CIFAR-100: Standard Image Classification136

As a starting point of comparison to existing benchmarks, we include the CIFAR-100 task [14], which137

contains RGB images from natural settings to be classified into 100 fine-grained categories. CIFAR-138

100 is preferred over CIFAR-10 because it is more challenging and suffers less from over-fitting in139

previous research.140

Data pre-processing: while the 10,000 testing images are kept aside only for evaluating architec-141

tures, the 50,000 training images are randomly partitioned into 40,000 for architecture search and142

10,000 for validation. On all of the 50,000 training images, we apply standard CIFAR augmentations143

including random crops and horizontal flipping, and finally normalize them using a pre-calculated144

mean and standard deviation of this set. On the 10,000 testing images, we only apply normalization145

with the same constants.146

3.3.2 Spherical: Classifying Spherically Projected CIFAR-100 Images147

To test NAS methods applied to natural-image-like data, we consider the task of classifying spherical148

projections of the CIFAR-100 images, which we call the Spherical task. In addition to scientific149

interest, spherical image data is also present in a variety of applications, such as omnidirectional150

vision in robotics and weather modeling in meteorology, as sensors usually produce distorted image151

signals in real-life settings. To create a spherical variant of CIFAR, we project the planar signals of152

the CIFAR images to the northern hemisphere and add a random rotation to produce spherical signals153

for each individual channel following the procedure specified in [4]. The resulting images are 60*60154

pixels with RGB channels.155

Data pre-processing: with the same split ratios CIFAR-100, the generated spherical image data is156

directly used for training and evaluation without data augmentation and pre-processing.157

3.3.3 NinaPro: Classifying Electromyography Signals158

Our final classification task, NinaPro, moves away from the image domain to classify hand gestures159

indicated by electromyography signals. For this, we use a subset of the NinaPro DB5 dataset [2]160

in which two thalmic Myo armbands collect EMG signals from 10 test individuals who hold 18161

different hand gestures to be classified. These armbands leverage data from muscle movement, which162

is collected using electrodes in the form of wave signals. Each wave signal is then sampled using a163

wavelength and frequency prescribed in [5] to produce 2d signals.164

Data pre-processing: Containing less than 4,000 samples, the data is comprised of single-channel165

signals with an irregular shape of 16*52 pixels. This task also differs from CIFAR for its class166

imbalance, as over 65% of all gestures are the neutral position. We split the data using the same ratio167

as CIFAR, resulting in 2638 samples for training, and 659 samples for validation and testing each.168

No additional pre-processing is performed.169
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3.3.4 Darcy Flow: Solving Partial Differential Equations (PDEs)170

Our first regression task, Darcy Flow, focuses on learning a map from the initial conditions of a PDE171

to the solution at a later timestep. This application aims to replaced traditional solvers with learned172

neural networks, which can output a result in a single forward pass. The input is a 2d grid specifying173

the initial conditions of a fluid and the output is a 2d grid specifying the fluid state at a later time,174

with the ground truth being the result computed by a traditional solver.175

Data pre-processing: we use scripts provided by [19] to generate the PDEs and their solutions,176

for a total of 900 data points for training, 100 for validation, and 100 for testing. All input data177

is normalized with constants calculated on the training set before fed into the neural network and178

de-normalized following an encode-decode scheme. The solutions, or labels, for the training set are179

also encoded and decoded this way. The test labels are not processed. We report the mean square180

error (MSE or `2).181

3.3.5 PSICOV: Protein Distance Prediction182

Our final task, PSICOV, studies the use of neural networks in the protein folding prediction pipeline,183

which has recently received significant attention to the success of methods like AlphaFold [12]. While184

the dataset and method they use are too large-scale for our purposes, we consider a smaller set of185

protein structures to tackle the specific problem of inter-residual distance predictions outlined in [1].186

2d large-scale features are extracted from protein sequences, resulting in input feature maps with a187

massive number of channels. Correspondingly, the labels are pairwise-distance matrices with the188

same spatial dimension.189

Data pre-processing: we adopt the chosen subset of DeepCov proteins in [1], consisting of 3,456190

proteins each with 128*128 feature maps across 57 channels. 100 proteins from this set are used for191

validation and the rest for training. Test data for final evaluation is gathered from another set of 150192

proteins, PSICOV. Since these produce feature maps that are larger (512*512), we run the prediction193

network over all of its non-overlapping 128*128 patches. The evaluation metric is mean absolute194

error (MAE or `1) computed on distances below 8 Å, referred to as MAE8.195

3.4 Ethics and Responsible Use196

Within our array of tasks, the only dataset containing human-derived data is NinaPro. Our chosen197

subset of NinaPro contains only muscle movement data from 10 healthy individuals, without any198

exposure of personal information from clinical data. The original experiments to acquire NinaPro199

data are approved by the ethics commission of the state of Valais, Switzerland [2]. For other datasets,200

we have listed the data licenses in the appendix for responsible usages of data. While we do not201

view the specific datasets we use in this benchmark as potential candidates for misuse, the broader202

goal of applying NAS to new domains comes with inherent risks that may require mitigation on an203

application-by-application basis.204

4 Using NAS-Bench-360 to Study Architecture Search Methods205

Having detailed our construction of NAS-Bench-360, we now demonstrate its usefulness on (a)206

comparing and evaluating state-of-the-art architecture search methods on powerful search spaces and207

(b) discovering new insights on their performance on under-explored domains. In this section, we208

first specify the different NAS algorithms and baselines we compare, followed by the experimental209

and reproducibility setup we follow. Finally, we report our main comparisons and analyze the results.210

4.1 Baselines and Search Procedures211

From the discussion in Section 3, the two non-NAS baseline methods we consider—applying a tuned212

WRN to all tasks and using a fixed, domain-specific architecture—can be viewed via the NAS setup213

as having a singleton architecture search space. As for NAS algorithms themselves, we focus on214

two well-known paradigms for search: cell-based NAS (using DARTS [20]) and macro NAS (using215

DenseNAS [9]). We detail these four approaches below.216

5



Wide ResNet with Hyperparameter Tuning The residual network (ResNet) and its derivative217

architectures are canonical for classic computer vision, and we investigate their ability to generalize to218

our selection of tasks. A more powerful adaptation of ResNet, the Wide ResNet [31] is chosen as the219

backbone architecture. For automated training, we wrap the training procedure with a hyperparameter220

tuning algorithm, ASHA [15], an asynchonous version of Hyperband [18]. Given a range for each221

hyperparameter, either discrete or continuous, ASHA uniformly samples configurations and uses222

brackets of elimination: at each round, each configuration is trained for some epochs, before the223

algorithm selects the best-performing portion based on validation metrics. Since we use the Wide224

ResNet backbone for all tasks, our tuning budget is fixed and uniform.225

Expert-Designed Networks We also include expert-driven design of architectures in specific226

domains as a more rigorous comparator for NAS methods on our tasks. Frequently this includes227

not only hand-designed topologies and operation patterns but custom neural operations themselves,228

which are often crucial for success on domains beyond computer vision. Below we briefly summarize229

the architectures chosen for each task.230

• CIFAR-100: While this task is very heavily studied and one can achieve very high accuracies231

using optimization tricks and transfer from ImageNet, we restrict our selection to existing232

results that use only the simple (standard) data augmentation we allow for the evaluation233

phase. Here the best result found is using DenseNet-BC [10].234

• Spherical: This task is often regarded as a canonical example where a specific neural235

operation, specifically spherical convolutions, are the “right” operation to substitute for236

the convolution due to data-specific properties. Our result is from a wide variation of the237

spherical CNN in [4], with a max width of 256 channels from 64.238

• NinaPro: As the original paper studying NinaPro used fairly weak networks that achieve a239

much higher error, here we simply report the performance of our tuned WRN baseline.240

• Darcy Flow: Here we report the performance of a four-layer network that replaces convolu-241

tions with Fourier Neural Operators (FNOs) [19], which were specially designed solving242

partial differential equations. Note that our reproduced result attains slightly better MSE243

than the numbers reported by the authors.244

• PSICOV: We report the reproduced performance of the ResNet-256 network used by the245

PDNET, a deeper, narrow, and dilated version of the standard ResNet used for ImageNet;246

note our reproduction attains much better MAE8 than the authors report [1].247

Cell-based Search Using DARTS The first state-of-the-art NAS paradigm within our consideration248

is cell-based NAS. Cell-based methods first search for a genotype, which is a cell containing neural249

operations such as convolution and pooling. During evaluation, a neural network is constructed by250

replicating the searched cell and stacking them together. The most popular search space for this251

approach is the one used by the DARTS space [20], consisting of assigning one of eight operations to252

six edges in two types of cells: “normal” cells preserve the shape of the input representation while253

“reduction” cells downsample it. Note that for the dense tasks we do not use the reduction cell so as254

to not introduce a bottleneck.255

Finally, to adhere to standard ML practices we do not adapt the standard DARTS pipeline, which256

uses test performance to select from multiple random seeds. This, in addition to not using other257

evaluation-time enhancements such—specifically auxiliary towers and the cutout data augmentation—258

leads to lower performance on CIFAR-100 than is reported in the literature. As this search space has259

been heavily studied since its introduction, we use as a search routine a recent approach—GAEA260

PC-DARTS—that achieves some of the best-known results on CIFAR-10 and ImageNet for this261

benchmark [16].262

Macro NAS Using DenseNAS The second NAS paradigm we consider is macro NAS. Instead of263

building from a fixed cell, macro NAS requires the specification of a super network with different264

inter-connected network blocks. These blocks and connections are then pruned during the search265

phase to construct the output neural net for evaluation. For this benchmark, we also choose a recent266

search space in this NAS paradigm, DenseNAS [9], which similarly to the DARTS space has near267

state-of-the-art results on ImageNet.268
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Table 2: Comparing NAS methods with baseline and expert-designed methods on NAS-Bench-360.
All automated results (WRN, DenseNAS, and GAEA PC-DARTS) are averages of three random
seeds. See Appendix for standard deviations.

Search space Search method CIFAR-100 Spherical NinaPro Darcy Flow PSICOV
(0-1 err.) (0-1 err.) (0-1 err.) MSE MAE8

WRN baseline ASHA 24.89 88.45 6.88 0.041 5.71
expert design⇤ hand-tuning 17.17 64.42 6.88 0.0096 3.50

DenseNAS-R1 DenseNAS 27.44 72.99 10.17 0.10 3.84
DARTS Cell GAEA PC-DARTS 24.19 52.90 11.43 0.056 2.80
⇤ Chosen according to best-effort literature search and implementation; c.f. Section 4.1.

DenseNAS searches for architectures with densely-connected, customizable routing blocks to emulate269

DenseNet [10]. In our experiments, we use the ResNet-based search space, DenseNAS-R1, with all of270

WRN’s neural operations for better comparison with the baseline backbone. For point tasks and dense271

tasks, we adapt two super networks from the one used for ImageNet as inputs to the search algorithm.272

The super network for dense tasks maintains the same spatial dimensions without downsampling to273

avoid bottlenecks, and we use a lower learning rate for evaluating architectures on dense tasks to274

prevent divergence. Other training and evaluation procedures are identical to those in the original275

paper and uniform across all tasks.276

4.2 Experimental Setup277

Our main experiments consist of 3 evaluation trials for every combination of method and task, fixing278

one random seed for each trial. We present these results in Table 2 and discuss the specific procedure,279

reproducibility, and extension experiments in the following subsections.280

Using validation data For best practices in NAS, we argue for the separation of the final testing281

set and the validation set, which is specifically for selecting neural architectures and hyperparameters.282

After this process, we combine training and validation data to perform retraining and evaluation on283

the test set. This result is reported as final and is not used in any way to further optimize the model.284

Hyperparameter tuning In experiments with hyperparameter tuning, we consistently use the285

same hyperparameter ranges and fix the tuning budget, in terms of the number of configurations and286

maximum training epochs, across all tasks. The tuning budget is selected to be 2.5 to 3 times the287

backbone training time. This is to eliminate inductive biases for specific tasks. Details on the tuning288

procedure are in the appendix.289

Software and hardware We adopt the free, open-source software Determined1 for experiment290

management, hyperparameter tuning, AWS cloud deployment with docker containers. All experi-291

ments are performed on a single p3.2xlarge instance with one Nvidia V100 GPU. The computation292

cost in GPU hours of individual experiments using this setup can be found in the appendix.293

Reproducibility The following measures in our experimental pipeline are taken to ensure the294

reproducibility of our results:295

1. We perform most data pre-processing steps beforehand and store the processed data in the296

cloud for download. A data splitting scheme, once randomly selected, is then fixed for all297

experiments on that task, i.e. the same training, validation, and testing sets fed into the298

dataloader are always the same.299

2. Experimentation code is always executed in a fixed docker container using a pre-built docker300

image on Docker Hub. This guarantees a uniform execution environment and saves users301

from the manual labor of configuring dependencies.302

1GitHub repository: https://github.com/determined-ai/determined
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Figure 1: Comparison of the same
CIFAR-100 image before and after the
spherical transformation.

Figure 2: Distribution of random architectures and
hyperparameters’ performance on NinaPro and Darcy
Flow.

Table 3: Experiment runtimes of NAS-Bench-360 (GPU hours)

Task GAEA PC-DARTS DenseNAS WRN

CIFAR-100 33 2 8

Spherical CIFAR-100 39 2.5 8.5

NinaPro 2 0.5 1

Darcy Flow 15 0.5 2

PSICOV 59.5 23 61

3. Via the specification of a random seed, Determined controls several important sources of303

randomness during code execution, including hyperparameter sampling and training data304

shuffling.305

4. During training, we always validate on the full validation set, not on a mini-batch, to avoid306

stochasticity in the results.307

4.3 Comparing NAS Approaches Using NAS-Bench-360308

Generalization of NAS to other domains Our experiments demonstrate that state-of-the-art NAS309

approaches in classic vision are unable to outperform human-designed neural networks on 3 out310

of 5 tasks in NAS-Bench-360. They do especially poorly on the Darcy Flow task and fall short311

of matching both non-NAS comparators by a large margin. Perhaps most surprisingly, neither the312

DARTS space nor DenseNAS, both very recent search spaces with strong results on ImageNet313

(and CIFAR-10 for the former) are able to outperform the reported performance of a fairly basic314

architecture (DenseNet) on CIFAR-100; this is especially interesting as DenseNAS was built around315

this architecture. Overall, our results suggest that modern NAS, despite its promise to automate deep316

learning, is not yet well-equipped to handle its various domains of applications studied in this paper.317

These empirical results also serve as new baselines for comparison in future research to extend NAS318

approaches to generalize to new areas.319

Computational cost In some time-sensitive applications of NAS, both efficiency and perfor-320

mance are criteria for NAS method selection. Our choice of methods exemplifies a tradeoff321

between these two factors. As a more computationally heavy method, GAEA PC-DARTS322

beats the more lightweight DenseNAS on most of the tasks except for NinaPro, where they323

achieve similar accuracies. On certain tasks, such as NinaPro and PSICOV, DenseNAS would324

be the more cost-effective option than GAEA PC-DARTS to have decent performance on par325

with handcrafted neural architectures. Note that the computation cost of the WRN baseline can326

vary due to randomness inherent in ASHA’s asynchrony. We report all experiment runtimes in Table 3.327

328

CIFAR-100 vs. Spherical The Spherical task can be directly compared to CIFAR-100 to assess329

how well NAS methods could handle image distortions. With the same setup across tasks, both330
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Table 4: `1 error of supernet and searched architectures (discretized) on grid tasks

DARTS DenseNAS

Task Supernet Discretized Supernet Discretized

Darcy Flow 0.031± 0.001 0.057± 0.012 0.041± 0.002 0.10± 0.010
PSICOV 3.87± 0.12 2.80± 0.057 7.96± 0.20 3.84± 0.15

the DARTS space and DenseNAS have reasonably good numbers on CIFAR-100, but their results331

significantly deteriorate on the spherical variant. Both obtain much worse error when the images332

are spherically projected, but a much larger gap emerges between the two methods, with DenseNAS333

performing quite badly. On the other hand, the searched DARTS Cell not only performs 20-36% better334

than the other convolutional approaches but even beats our best-effort adaptation of the spherical335

CNN approach to this task [4], in which we expanded the size of that network. This is surprising336

because spherical convolutions were designed specifically for such data. We believe these results337

indicate that the spherical dataset may be a useful but simple way for distinguishing NAS approaches338

when they are overfitting to standard computer vision domains; Figure 1 provides an example of the339

distortion.340

WRN as a baseline Viewing the WRN baseline as a singleton architecture search space, we341

compare this baseline to more sophisticated NAS search spaces. On our set of new tasks, NAS does342

not perform better than Wide ResNet with hyperparameter tuning on CIFAR-100, NinaPro, and343

Darcy Flow but excels on the rest. Hyperparameter optimization can boost the backbone performance344

considerably to rival the performance of NAS methods. Most non-Bayesian hyperparameter tuning345

algorithms, such as random search [17], population-based training [11], and Hyperband [18], are346

also straightforward to apply with any neural network backbone. Therefore, we argue for the use of347

hyperparameter-tuned backbones to assess the effectiveness of NAS approaches and encourage their348

inclusion in NAS benchmarks.349

4.4 In-Depth Studies Using NAS-Bench-360350

Supernet performance on grid tasks During architecture search, our NAS methods on the DARTS351

and DenseNAS search spaces train the supernets to find optimal neural operations on the validation352

set. Surprisingly, the validation error of the supernet is sometimes lower than that of the final searched,353

discretized neural network. Therefore, we evaluate the supernet of DARTS and DenseNAS on the354

testing set, and we compare its performance with that of the final neural network in Table 4. The355

supernet outperforms the final network on Darcy Flow for both methods, but the reverse is true for356

the PSICOV task and all point tasks. The supernet is not in the search space and so we report the357

discretized result; nevertheless, this fact suggests that performance on a task like Darcy Flow might358

benefit from a better search space.359

Evaluating random architectures and hyperparameters The power of an architecture or hyper-360

parameter space can also be characterized by the performance of its random elements. We assess both361

the average and variance of the results. To do this, we randomly sample 8 network architectures each362

from the search spaces of DARTS and DenseNAS, and we test their performance on the NinaPro363

and Darcy Flow tasks, one for classification and the other for regression. For comparison, we also364

randomly sample 8 hyperparameter configurations to train the backbone Wide-ResNet in Figure 2.365

While rather successful on NinaPro, the random architectures have a high average error and vary in366

performance on the Darcy Flow task. Random hyperparameters are more unstable on NinaPro, but its367

median performance is better than NAS.368

Utility of hyperparameter tuning The final experiment examines whether hyperparameter tuning369

improves the performance of WRN on various tasks. During hyperparameter search, we compare the370

validation metrics of training using default hyperparameters and using tuned ones from ASHA to371

select final hyperparameters for retraining. Despite the small tuning budget allocated to ASHA, tuned372

hyperparameters could outperform the default setting on all tasks except for CIFAR-100. Our results373

suggest that wide ResNet’s standard set of hyperparameters are only optimized for conventional image374

classification. On other tasks, hyperparameter optimization is helpful for boosting performance.375
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5 Conclusion376

NAS-Bench-360 is a benchmarking suite with a novel, diverse set of tasks. The tasks are derived from377

various fields of academic research, leading to different potential applications. Our selection of NAS378

approaches achieves state-of-the-art performances on most tasks, which points to new possibilities379

of incorporating NAS into new research domains. All datasets and reproducible experiment code380

are open-sourced, and we welcome researchers to use these tasks and further iterate on them with381

new NAS methods. Finally, a possible extension to generalize this set of tasks is datasets with 1d or382

3d inputs, such as audio. We hope our work can encourage the NAS community to move towards383

tackling more diverse problems in the real world.384
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