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Abstract— Historically, feature-based approaches have been
used extensively for camera-based robot perception tasks such
as localization, mapping, tracking, and others. Several of these
approaches also combine other sensors (inertial sensing, for
example) to perform combined state estimation. Our work
rethinks this approach; we present a representation learning
mechanism that identifies visual features that best correspond
to robot motion as estimated by an external signal. Specifically,
we utilize the robot’s transformations through an external signal
(inertial sensing, for example) and give attention to image space
that is most consistent with the external signal. We use a
pairwise consistency metric as a representation to keep the
visual features consistent through a sequence with the robot’s
relative pose transformations. This approach enables us to
incorporate information from the robot’s perspective instead of
solely relying on the image attributes. We evaluate our approach
on real-world datasets such as KITTI & EuRoC and compare
the refined features with existing feature descriptors. We also
evaluate our method using our real robot experiment. We notice
an average of 49% reduction in the image search space without
compromising the trajectory estimation accuracy. Our method
reduces the execution time of visual odometry by 4.3% and also
reduces reprojection errors. We demonstrate the need to select
only the most important features and show the competitiveness
using various feature detection baselines.

I. INTRODUCTION

Crucial robotics applications including search and rescue,
agricultural robotics, industrial automation, and self-driving
cars heavily rely on the robot’s ability to localize itself in
complex environments. Visual sensors such as monocular,
stereo, and depth cameras are popular sensing modalities
for perception. Prior works have utilized an understanding
of sensor physics to detect features in the sensor readings
for use in robot perception. An example is the use of
image features for visual odometry and mapping. However,
a challenge with this methodology is identifying errors from
the sensor or environmental factors that affect the perception.
This work develops a representation learning framework that
selects sensor features (image features, for example) that
best correspond with robot motion as sensed through another
Sensor.

Feature-based methods like RANSAC [1], TEASER++
[2] are sensitive to image features. Unique features produce
consistent matches and transformations with such techniques,
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which lower rotation and translation errors. However, non-
unique features are always present in real-world datasets
due to various reasons. For example, outdoor datasets have
similar-looking objects like trees, sky, cars, and buildings.
Ignoring these non-unique features would improve the trans-
formation estimation process in algorithms like bundle ad-
justment. In this work, we propose a learning-based algo-
rithm that reduces the image features to a subset of the
most consistent features, likely most suitable for downstream
perception tasks.

Metrics from feature-based methods cannot be used for
learning due to two reasons: (i) using signals from the
same sensor would not reduce errors. Ideally, we would
like to use a signal from a different sensor and (ii) these
feature-matching functions are non-continuous. Threshold-
based feature matching methods have zero gradients almost
everywhere and are undefined for some inputs. Fortunately, a
plethora of signals (IMU, Wheel Encodings, etc) in robotics
are independent, continuous, and are good indicators of con-
sistency. In this work, we use IMU-based transformations as
our consistency signal to train our network. Rather than use
an end-to-end learning like [3], [4] to find feature matches
directly, we modify the input images highlighting areas for
the best feature-matching so that we can rely on robust and
well-tested methods in computer vision and robotics to do
the feature-matching in the reduced space.

Using features that are indicative of the estimates is just
as important as feature density in reducing estimation errors.
For instance, consistent features extracted from a distinct
portion of the scene, even in a lesser number, can assist
in a better-estimated trajectory. Apart from highlighting the
most relevant regions in the scene for feature matching,
our approach reduces the dimensionality of the input search
space. To handle the drift in the IMU-based transformations,
we use a window-based approach [5] to obtain the IMU-
based pose transformations, which help in supervising the
consistency-based loss shown in figure 1. We evaluate our
method on real-world autonomous driving datasets such as
KITTI[6] and EuRoC[7] and compare them with the popular
feature detector baselines. We also evaluate our method using
a custom dataset generated from a real robot car based upon
Fltenth [8] setup.

The main contributions of this work are as follows:

« We introduce an attention-based deep learning architecture
to determine which regions of a scene are important for
consistent feature detection.

+ We take advantage of the robot’s motion with an IMU-
based loss function in our learning module. We generate
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a representation between inertial sensing and consistent
image features by utilizing IMU consistency in extracting
most important image space.

« We benchmark our approach by performing evaluations on
various real-world datasets KITTI[6], EuRoC[7], and our
dataset recorded from a robot. We use different feature
detector baselines (both classical and learning-based) and
show the reduced number of outliers being produced using
our method.

« We compare our method with the baselines and show an
improvement in Average Trajectory Error for most of the
baselines shown in table III and a reduction in Average
Execution Time by 4.3% by reducing the image space up
to 49%.

o We further evaluate our image space by calculating re-
projection errors of all the baseline feature detectors.
We notice a reduction in the average reprojection error
which leverages accurate homography estimation for pose
recovery.

II. RELATED WORK

A. Classical and Learning-Based Feature Detectors

Traditional feature detection and matching methods are
still being used to achieve accurate relative pose estimation
through tracking visual features. Most VO methods depend
on the visual features from images using feature extraction
techniques like [9], [10], [11] and perform tracking using ge-
ometrically aligned methods such as LK-Tracking [12], brute
force matching with KNN [13] and FLANN-based matching
[14]. These techniques are highly sensitive to noise, which
may result in an inaccurate estimation of a trajectory when
influenced by a significant number of outliers. Once features
are detected, several geometrical techniques such as relative
pose estimation or epipolar geometry-based triangulation of
3D points can be used to estimate an accurate pose trajectory.
However, these geometric-based methods lack robustness
over large datasets and with time the odometry accumulates
drift [15]. Furthermore, various SLAM systems such as
ORB-SLAM [16], Lsd-SLAM [17], Svo [18] and Dso [19]
perform reasonably well in both detecting and computing
features followed by estimating the trajectory in an end-to-
end fashion.

With the advancements in the domain of deep learning for
SLAM, researchers have been attempting to replace classical
methods of detecting and tracking features with learning-
based methods. In terms of feature tracking, learning-based
VO methods perform well [20], [21], [22], [23], [24] but
many of them rely only on image features and do not con-
sider information from the robot’s dynamics, which adversely
affects transformation estimates if the tracked features are
inconsistent. In this work, we make use of the robot’s
inertial measurements, i.e. IMU (Inertial Measurement Unit)
in the loss function to supervise our training mechanism
to track consistent features and improve the generalizability
in learning methods [25], [26]. Many VO frameworks use
hand-crafted feature detectors [27], [16] and learning-based
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Fig. 1: Overview of the Pipeline: FeatureNet takes in the raw image
frame pairs and provides feature maps. Feature maps are passed to
an Attention Network that assigns weights to certain regions of the
image. These learned features go through an LSTM-based PoseNet
which provides 6-dof robot pose trained with a consistency-based
loss function formulated with IMU transformations.

feature descriptors [28], [29], [30]. However, our method
considers using information from the robot’s dynamics and
uses it as a supervision signal to train our learning pipeline.
Most of the feature descriptors incorporate outliers, which
hinders an accurate estimation of trajectory. More advanced
learning techniques involve attention-based neural networks
for feature detection and matching. In contrast, LoFTR [31]
COTR [32] E2EMVM [33] and SUPERGLUE [30] present
Graphical Neural Networks which perform well in estimating
correct feature correspondences with a wide baseline. The
receptive fields used in these methods help in determining
fine textures in a global context, which sets them apart from
standalone CNN-based learning methods.

B. Outlier Rejection Techniques

Thresholding-based techniques that restrain the flow of
outliers in a VO pipeline prevent the large influence of
outliers in the system, but the step function used in these
techniques hinders the computation of gradients in a learning
framework. RANSAC [1] and TEASER++ [2] are the two
examples of strategies used to deal with outliers. RANSAC
works by randomly sampling a subset of features detected
and fitting a model to this subset. The model is further
evaluated by measuring how well it fits the remaining fea-
tures. This technique may show a non-deterministic prop-
erty of selecting different data points in every iteration.
TEASER++ is a recently introduced method that rejects
outliers by incorporating additional techniques such as global
optimization and local refinement. Our method relies on
the same objective of ignoring outliers but considering only
specific attentive image regions. Our attention heads output
the attentive blocks that determine the image space required
to achieve both feature detection and tracking accuracy.

III. METHOD

The objective of this work is to reduce the number of
outlier features that are inconsistent with a motion sensor
(IMU). To achieve this, we aim to map the consistent visual
features with the IMU-based inertial consistency. For this,
we train a deep neural network that reduces the region of
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interest for feature detection with signals from robot motion
in our loss function L=[p’,, ¢,]. We introduce a differentiable
approach to create a feature selection pipeline that takes
supervised signals from an IMU. To handle drift accumulated
over time using IMU, we follow a window-based approach,
which takes small bursts of measurements and creates rela-
tive transformation proxies which are inherited consistently
throughout the trajectory formation. The overview of our
method is depicted in figure 1. In this section, we describe
the various components of our method. In section IV we
show results from our evaluations of our method compared
with other feature-based visual odometry methods.

Our training mechanism includes three main modules. We
name them as: FeatureNet, PoseNet, and AttentionNet. Since
IMU sensors have noise in their gyroscope and accelerome-
ters, we use a sliding window-based approach that includes
a short sequence of image pairs (t tot+1 V¢t € W ) and IMU
bursts within the same timestamp-based window (W) similar
to VIO (Visual and Inertial Odometry) methods [5] and this
helps reduce the effect of noise from IMU given by:

am =C; " (a, — 8) +ba—nq (1)
Wi = Wr + by — 1y )

Where: b, and n, are the bias and noise accumulated from
the true accelerometer a; due to external factors, g is the
gravity vector on the accelerometer and Cgq is the 3x3 rota-
tional matrix representing IMU orientation with respect to a
solid coordinate system. These parameters heavily influence
the measured acceleration a,,. A similar representation can be
seen for a gyroscope, where w; is the true angular velocity
void of any external disturbance and w,, is the measured
angular velocity from the sensor. We exploit these sensors
to create a consistent pose transformation and use them to
train the following subnetworks:

FeatureNet: The FeatureNet network includes a multi-
layered CNN block which takes the full-size input image
pairs and provides two feature maps of size 256 x M X N. In
figure 2, we can observe the extracted attentive blocks. We
use feature detector points from the baselines to overlay on
top of only these attentive blocks, instead of the whole image.
We show that this reduced search space extracted using
our method reduces translation, rotation, and pose errors in
section IV. These feature maps correspond to the pairwise
embedding vectors per image and store the information about
the features extracted. We do not use any pre-trained network
as a backbone in any of our training modules.

Attention Network: The output features from FeatureNet
are passed through a self-attention-based network, which
takes shared weights from the embeddings and selects only
attentive weights that improve the training stream. These
weights are saved and further passed for training in the next
batch. As an intermediate step, our AttentionNet provides
trained attention heads, which are treated as the image search
space and considered as the most important feature space.

PoseNet: Finally, an LSTM-based pose network takes the
attentive features and weights to estimate a stream of 6-

dof poses. This whole training mechanism iterates through
the attention maps from the AttentionNet and reduces the
consistency-based loss.

Consistency-based Loss: For loss minimization, we make
use of the robot’s transformation poses over the specified
window size. These transformations are from IMU. The es-
timated IMU can be concluded from the following equations:

b=, ®
Vi, = Cq, (am—ba+n,)—g, “4)
%:%mwﬁm#mm; 5)
be =y, ©)
by, = ny, (7N

Equations (3)-(7) are the kinematics model of an IMU
transformation. Consider the position of IMU in the World
frame pi, , the velocity of IMU in the World frame is v, with
dt = 1s, and the parameter representing the rotation from
World coordinate to IMU stationary coordinate is ¢',. We
have bias generated due to external factors b, and b,, in the
accelerometer and gyroscope. Further, C,i, represents the ro-
tation matrix that shows the transformation of a vector from
the relative frame to the world frame, and g is the vector due
to gravity. The transformed pose of the robot is represented
by [p,,q\,]. The integration of these differential equations
helps us estimate the pose from IMU measurements. The
PCM-based consistency metric calculates the relative poses
[Pl,,q.,] over a window(W) and constructs proxies of the
same. Further, we use MSE (Mean Squared Error) to reduce
the spatial gap between the 6-dof obtained from our PoseNet
module and the 6-dof obtained from [pi,,¢’].

1V. EVALUATION

Network Training: For the experiments, we use KITTI
and EuRoC sequences with their raw IMU as a loss func-
tion. We train the pipeline end-to-end on the RTX A100
graphics card. We use a standard MSE loss to balance out
the weights with our defined loss in section III. Figure 4
represents the loss convergence over time with respect to
the reduced error between the PoseNet module and de-
fined IMU-based transformation parameters. We show the

Attentive Image Space

Raw Image

Fig. 2: Feature to Descriptor: We obtain attentive features from
our AttentionNet output heads, which are further overlayed by
the baseline feature detectors. This overlaying of baseline feature
detectors on our attentive image space refines the outliers.
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Frame O

Frame 1

Frame 2

Fig. 3: Attentions(above) obtained from the input sequences (Seq:0 from KITTI dataset). We can notice the consistency maintained
throughout the images, which results in an accurate pose estimation explained in section.IV.

Mean Loss Loss Rotational Loss

Fig. 4: Training R,t loss from the complete pipeline.

associative convergence of loss in table I which shows the
reduced mean error between our IMU-based transformations
and resultant 6DOF poses from our PoseNet module. We
train our models on full-size input images for both KITTI
(376x1241) and EuRoc(480x752). We incorporate full-size
images to exploit complete image details in our AttentionNet
resulting in feature map generation. These feature maps in
figure 3 demonstrate the selective attention regions over a
sequential set of input images. In this section, we evaluate the
performance of our method with attentive regions with VO-
based pose errors, translation and rotation errors, distribution
of inliers/outliers, reprojection errors, and execution time.
We also demonstrate results using a real-world experiment
presented in Section IV-E.

From section III, we obtain attentive regions shown in
figure 3 which associates the feature consistency over a
sequence with the masked image space expressed as the
region with Important Features. As a qualitative analysis,
we can notice that the attentive region is consistent over the
input sequence shown in figure 3. The heat maps highlight
the area that represents the most attentive region, and we
can observe that these are on areas that are intuitively good
indicators of relative transformation.

A. Benchmarking between the Inliers and Outliers

We show the data association accuracy between the correct
features obtained using our method, by comparing them

Dataset T0 i T2

t-error | R-error | t-error | R-error | t-error | R-error
KITTI [6] 1.7m 2.2m 1.8m 1.1m 1.6m 2.3m
EuRoc [7] 1.6m 2.6m 2.3m 1.9m 1.6m 2.2m

TABLE I: Intermediate rotation and translation errors from the
PoseNet module with respect to the IMU transformations provided
for loss supervision.

against keypoints generated using current state-of-the-art
methods such as ORB [16], SIFT [34], BRISK [35], AKAZE
[36], KAZE [37] and SuperPoint [28]. We further compare
the distribution of inliers and outliers over the original
image space vs our reduced search space using RANSAC.
We overlay all the baseline features detected over both the
image spaces and obtain inliers vs outliers distribution using
RANSAC. Table II shows the mean and standard deviation
of inliers and outliers while using a standalone baseline over
the original image space vs using baseline feature detectors
over our Attentive Image Space obtained with our method.
We obtain a cumulative decrease in the number of outliers in
our method as compared to most of the baselines. In figure 5,
we qualitatively examine the difference in outliers from both
image spaces.

B. Visual Odometry Estimation

RANSAC being a non-deterministic technique for estimat-
ing essential matrix [39] helps in recovering a robot’s relative
pose. We show the efficacy of the inliers and outliers obtained
using our method by performing trajectory estimation using
our feature space. In our method, we reduce the number
of candidate features by restricting the image to regions of
interest. In a 2d space W x H, our feature space corresponds
to M xN € W x H with a consistent reduction parameter
of 1/n over certain sequences of images. This search space
reduces the overall distribution of features by a margin factor
A.

In our search space, given a pair of corresponding points
Ap and Ap’ in normalized camera coordinates (where p and
p’ correspond to the feature points obtained using any base-
line shown in table II over the complete image area W x H,
the equation for the Essential matrix will be A(p'" Ep) = 0.
where E is the essential matrix from [39]. Before estimating
the current pose, we refine the poorly fitted point pairs using
RANSAC. We observe that our search space (M x N) results
in a reduced number of outliers in most of the baselines as
shown in table II. Using the current pose as an anchor node,
we estimate all the successive poses using E = [t], *R and
decompose all the R(rotations) and t(translations) using SVD
(Singular Value Decomposition) E = U +W VT | where U,
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Detectors KITTI [6] EuRoc [7]
) UIn | coIn | uOut | cOut | uIn | cIn | g Out | o Out

ORB [16] 882 248 | 274 98 394 | 35 214 30
Ours 587 320 101 92 388 | 31 109 44
SIFT [34] 998 257 335 81 411 44 302 58
Ours 1102 | 208 114 66 388 | 43 218 53
FAST [38] 912 129 | 473 137 481 76 498 53
Ours 822 108 | 205 136 460 | 82 402 54
KAZE [37] 675 346 | 435 84 397 | 58 372 61
Ours 412 237 319 86 402 | 73 389 52
AKAZE [36] 641 241 390 91 367 | 75 377 56
Ours 330 173 252 77 403 | 65 395 69
BRISK [35] 403 138 390 66 392 | 54 405 63
Ours 241 139 | 237 73 388 | 66 363 57
SuperPoint [28] 204 61 397 59 253 | 75 184 63
Ours 107 88 240 40 285 | 59 130 61

TABLE II: Mean and Standard Deviation evaluation of inliers and outliers between various baselines and ours. Our method quantitatively
reduces the number of outliers in the majority of the baselines. As we reduce the search space, the inlier candidates also get reduced. We

show that this inlier reduction works in our favor in section IV.

Detectors KITTI [6] EuRoc [7]

t-error | R-error | Pose Error | Rep Error | Time | t-error | R-error | Pose Error | Rep Error | Time
ORB [16] 3.37 0.02 L5 82 49.68 | 3.22 0.04 2.5 37 45.54
Ours 3.11 0.01 1.5 81 43.52 | 3.19 0.04 2.4 36 43.44
SIFT [34] 3.30 0.02 1.4 100 4490 | 3.86 0.04 2.4 55 38.46
Ours 3.16 0.02 1.1 98 40.11 | 3.79 0.05 2.3 52 36.44
FAST [27] 3.05 0.02 1.5 120 28.82 | 2.97 0.04 2.4 88 36.38
Ours 2.87 0.02 14 128 28.22 | 2.58 0.04 24 95 35.94
KAZE [37] 2.79 0.02 1.4 143 5785 | 3.14 0.04 2.5 134 448.6
Ours 2.59 0.02 0.9 139 558.2 | 3.06 0.04 2.4 134 443.1
AKAZE [36] 2.46 0.01 2.1 92 38.59 | 2.68 0.04 2.3 83 37.17
Ours 2.29 0.02 2.0 90 36.40 | 2.46 0.04 2.0 87 35.33
BRISK [35] 2.78 0.03 1.2 102 48.32 | 2.89 0.03 2.5 73 45.54
Ours 2.66 0.03 0.9 99 45.68 | 2.51 0.04 2.2 70 44.22
SuperPoint [28] 2.73 0.03 1.7 51 278.7 | 2.24 0.03 2.2 46 260.58
Ours 2.61 0.03 1.6 50 262.3 | 2.01 0.03 2.1 44 263.67

TABLE III: Trajectory error evaluation representing translation, rotational and pose error (m) followed by the Average Reprojection
Error (Pixels) and Average Execution Time (s) using baseline features overlayed on original image spaces of KITTI(376x1241) and
EuRoC(480x752) vs using baseline features overlayed on our attentive space.

V are unitary matrices

W is a diagonal matrix. To calculate the Average Trajec-
tory Error between all the poses obtained using our method
and the ground truth, we calculate RMSE (Root Mean
Square) between the estimated poses and ground truth poses.
We evaluate ATE using image sequences from test data
and the results are shown in table III. We observe that our
approach focuses on the reduction of image space without
compromising the trajectory estimation accuracy.

C. Reprojection Error

We support the inlier selection overlayed on our attention
space by calculating the reprojection errors using homog-
raphy metric between all incremental image sequences. Ta-
ble III represents the pixels accounting for reprojection errors
after triangulation of corresponding feature points.

To record the change in positional uncertainties, we create
covariance matrixes as mentioned in [40]. The baseline-
based feature detector and descriptor extractor are created.

Key points and descriptors are computed for imgl and img2
using the ORB detector and extractor. Baseline descriptors
overlayed into the image space inferred from L-DYNO are
matched between imgl and img2 using the BFMatcher, and
matches are sorted by distance. We calculate a homography
matrix H using RANSAC. This matrix estimates the geo-
metric transformation between keypoints in sequential image
pairs. Next, we calculate the reprojection error for each key
point in image n after applying the estimated homography to
project them into the image n+1 space. This error quantifies
the dissimilarity between matched points.

D. Execution Time

Another axis in which our approach yields positive results
is the execution time of the VO pipeline. Intuitively, reduced
feature candidates from our method should result in reduced
time taken by the E matrix estimation. We take account of
this evaluation by comparing the execution time spent by the
VO pipeline from PYSLAMvV2 [41] module to perform an
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Fig. 5: ORB features on the original space(Left) vs ORB features on our reduced space(Right). Our method removes the outliers by
reducing the search space area resulting in a more accurate estimation of homography without compromising the transformation accuracy

shown in table III.

Detectors Pose Error(mm) | Rep Error(Pixel) | Time(Sec)
SIFT 49 85 20
Ours 22 63 18
ORB 23 58 10
Ours 57 61 10
Fast 63 61 11
Ours 23 45 9
KAZE 62 62 46
Ours 30 46 42
AKAZE 24 39 17
Ours 5 26 15
BRISK 41 77 14
Ours 38 75 13
SUPERPOINT 22 34 39
Ours 21 31 36

TABLE 1IV: Evaluations on the real robot data recorded. We notice
a big noticeable reduction in pose and reprojection errors with
optimized inference time.

end-to-end pose estimation using our search space area and
compare it to other methods in table III. We experienced a
noticeable drop of an average of 8.51 seconds in the time
taken by our method to execute the complete pipeline. This
validation supports our initial motive to refine the features
and select the features that are most important.

E. Real World Robot Experiment

We demonstrate the performance of L-DYNO using a
custom odometry dataset. Figure 6 represents the over-
all setup used in recording RGB (Realsense D455), IMU
(Realsense D455), and ground truth data (Realsense t265).
Table IV represents the quantitative results based on the
evaluation methods mentioned in Section IV-B IV-C, and I'V-
D. We induce inconsistency in the scene by having a person
walk across the robot as shown in Figure 6. These sudden
movements produce more outliers in a standard case. The
training data contains over 1006 images of size 640x480
sequences with corresponding IMU and t265 base ground
truth poses. L-DYNO reduces the image space by 20% for
all the 300 completely unseen test images. Additionally, in
order to validate the performance of L-DYNO under the high
influence of noise in IMU, we avoid using the window-based
(W) approach to form a trajectory using IMU. Table IV
shows the improvements in the pose, reprojection errors, and
time when we compare L-DYNO image space using baseline
detectors.

Fig. 6: Experiment Setup(Top Left), Raw Image(Top Right) with
dynamic objects inducing outliers using an orthogonal range of
movements. [nliers vs Outliers distribution on raw image space vs
L-DYNO (Bottom Right).

V. CONCLUSION

We present a representation learning-based approach that
learns the region of interest for selecting consistent features
in order to execute accurate camera-based perception tasks
like localization, mapping, and tracking. We demonstrate
how to leverage the information from the robot’s motion and
use it to supervise the training network. By doing this, we
investigate the possibilities of bridging the computer vision
and robotics domains together and utilize the interchangeable
signals from each domain using representation learning. We
demonstrate a method to accomplish consistent feature se-
lection with reduced outlier candidates. Our method achieves
improved trajectory estimations, reduced reprojection errors,
and shows improved results in execution time even after
reducing the image space by 49%. Our method shows
substantial improvements over all the evaluations performed
using both real-world datasets like KITTI [6] and EuRoC [7]
as well as dataset recorded from a real robot.
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