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Abstract

Pooling Magnetic Resonance Imaging (MRI) scans from different sites is difficult due to
uncontrolled variations introduced by different acquisition protocols or scanners. Image
harmonization is a way to remove site-specific bias while preserving the intrinsic image
properties. While multiple harmonization techniques exist, it is yet difficult to evaluate
their efficiencies in specific applications. In this paper, we propose a workflow to evaluate
harmonization techniques. We carried out five experiments, performed on synthetic and
real data, in order to be able to benchmark two different existing, but never compared in the
literature, harmonization approaches: comBat and cycleGAN. We focus on T1-weighted
MR images (one of the most widely used MR images) and propose to investigate the effects
of each harmonization approach using radiomic features to extract image properties and
Support Vector Machine (SVM) for classification. We show that both methods perform well
for removing various types of noises while preserving manually added synthetic lesions, but
also for removing site effects on data coming from 2 different sites while preserving biological
information. Moreover, while each method improves autism data classification, they have
different impacts on radiomic features and appear as complementary in several aspects.
Keywords: Brain, deep-learning, radiomic features, classification

1. Introduction

MR data acquired from the same patient but at different sites or scanners often lead to
different MR images. This is due to the qualitative nature of the acquisitions which produces
weighted images (like T1w or T2w) rather than quantitative maps. It affects the results
of multi-center studies and hinders the use of publicly available online datasets such as
ENIGMA, ADNI or ABIDE. It also prevents the large discrimination of machine learning
tools and networks trained from a specific site may produce poor results when data are
coming from different locations (Liu et al., 2020).

A possible solution to improve the results from multi-center studies is to first harmonize
the data, i.e. to remove confounding site, scanner, protocol effects while retaining the
biological information. Classical pre-processing steps as standardization, global scaling
Fortin et al. (2017) or intensity histogram matching Shinohara et al. (2014) are not enough
to counter this issue and often remove informative local variations in scans. Thus, the
need for a reference harmonization technique is real. More complex techniques have been
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proposed in the literature over the last decade, including Ravel (Fortin et al., 2016), comBat
(Fortin et al., 2017), improved comBat versions like comBat-GAM (Pomponio et al., 2019),
dictionary learning (St-Jean et al., 2020), and deep-learning methods like GANs (Dewey
et al., 2019). Techniques that do not require matching subjects between sites are particularly
interesting as most databases do not comprise such data. Moreover, they do not involve
supplemental acquisitions and allow retrospective studies. It is however not easy to compare
harmonization methods and evaluate their efficiency in the absence of ground truth.

In this study, we propose to compare 2 promising methods for the harmonization of
T1-weigthed MRIs. ComBat, a statistical method already used by Fortin et al. (2017) for
DTT harmonization, and cycleGAN a deep-learning model introduced by Zhu et al. (2018).
In order to describe the effects of both approaches comprehensively, we ran five different
experiments performed on synthetic data as well as real in vivo images. We first assessed the
capacity of the 2 methods to remove manually added global noises in the images as well as
the ability to preserve manually added lesions. We also investigated harmonization’s benefits
on image analysis like site classification and Autistic Syndrome Disorder (ASD) detection.
Harmonization effects were evaluated using radiomic features, known to be sensitive to
harmonization (Orlhac et al., 2019),(Da-ano et al., 2020)).

2. Materials and methods

2.1. Data

We used the open access ABIDE database, a multi-center project led in 2014 by Di Martino
et al. (2014), focusing on autism disorders among children. It gathers more than 800
pediatric autistic patients and controls. In this study, we used healthy 3DT1-MRI scans from
2 different sites. Age range was 8-14 years old for both sites with similar sex distribution.
Both acquisitions were realized on a 3T Siemens TIM trio scanner.

MR images were first co-registered to age specific 152-MNI templates publicly available
(Sanchez et al., 2012). Brain was then extracted using Robex (Iglesias et al., 2011) and
N4Bias (Tustison et al., 2010) was used to correct for inhomogeneities of intensity. After a
manual quality check, we removed 11 scans presenting either acquisition artifacts or brain
extraction issues. Finally, 51 scans were extracted for site A (56 for site B). Data was finally
rescaled between [-1;1].

2.2. comBat

The Combined Association Test (comBat) was first introduced for reducing batch effects
on genetic data (Johnson et al., 2007). It was then adapted for diffusion imaging harmo-
nization, it exhibited a good capacity to remove unwanted site effects while preserving the
desired biological (i.e. age) information (Fortin et al., 2017). (Orlhac et al., 2019) further
showed comBat’s efficiency for harmonizing radiomic features derived from positron emis-
sion tomography.

The comBat model can be summarized as follows. Presuming that data come from m
imaging sites, with n; scans (i = 1,2,...,m). For every voxel position v of scan j acquired
at site 4, the intensity y;;, is modeled as below :

Yijo = Qp + Xijﬁv + Yiv + 5iv6ijv (1)


http://fcon_1000.projects.nitrc.org/indi/abide/
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Where «,, is the overall intensity measure for voxel v, X is the matrix of biological covari-
ates of interest (here age and gender) and (3, a vector of regression coefficients corresponding
to X at voxel v. The model assumes that the error term ¢;;, follows a normal distribution
N(0, 02). viv and 8, represent unwanted terms to be removed, follow normal A (;, 712) and
Inverse-Gamma(\;, #;) distributions respectively. Model parameters are updated through
empirical Bayes iterations to reduce their variance. Finally, a statistical distribution is
obtained for each parameter, allowing to remove the unwanted information:
comBat Yijo — Ozv - Xijﬂv - ’V;v
yijv = ~

5iv
Although it relies on a strong hypothesis for parameters priors distributions, comBat
is known to be robust to small sample sizes and is considered as state of the art statistical
harmonization technique for diffusion images.

+ ay + Xij@, (2)

2.3. cycleGAN

CycleGAN is a deep-learning model that can resolve Image-to-Image translation tasks (Zhu
et al., 2018). The principle relies on two Generative Adversarial Models (GAN) learning
how to map images translation in opposite order (GAN1 : A — B; GAN2 : B — A).
When their training is successful, it is possible to recover the original input at the output
of the second GAN. In the context of data harmonization, an important feature of this
model is that training is unsupervised. As no ground truth is required for training, the only
requirement is that the output of the second GAN matches the input of the first one. There
is no need for the same subject acquisition at each site.

We used cycleGAN and developed 2D models (using axial slices) as a way to increase our
sample size. Each GAN had a Pix2Pix (Isola et al., 2018) architecture with a Unet generator
as presented by Ronneberger et al. (2015) and a 34*34 patch GAN as discriminator. The
choice of the discriminator’s field of view size was motivated by the results obtained by
Modanwal et al. (2020). We used LeakyReLU activation function for the encoder part
of the generators and discriminators. Classical ReLU function was used for the decoder
part of the generators. Downsampling (resp. upsampling) was done through convolutional
(transposed-convolutional) layers. Model loss was composed of classical Wasserstein GAN
loss (Wloss), a l1-cycle loss consistency (Rloss) and a 11-loss (Dloss) between the input
and output of each generator. This final term was found to be helpful for training and led
to better convergence.

Leyciecan = MWloss + AaRloss + A3Dloss
)\1 = 1;)\2 == 100;)\3 =3

Our model was trained through 1500 epochs divided in 250 steps, on batches of size
8. Learning rate was initialized to 6.107* and then reduced (model independently) on
validation loss plateau by a factor 0.8. All training was done using Tensorflow 2.0 on a
Quadro P2000 GPU / Intel Core i7-8700K CPU. A training took about 2 hours and each
model was trained twice. Training procedure is detailed in A.

2.4. Experiments

To compare the 2 harmonization methods, we ran 3 experiments on synthetic data and 2 on
real in vivo data (see below). Synthetic data were used to assess the ability to remove noise
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or preserve known local structures. Real data were used to estimate methods efficiency to
remove site effects, and their ability to improve further clinical analyses once data were
harmonized.

cycleGAN was trained from scratch for each experiment. We used SVM with a radial
basis function kernel to classify data before and after harmonization. To evaluate the
specificity and sensitivity of our classifier, we used the Area Under Curve (AUC) of the
receiver Operating Characteristic (ROC) curve. As visual inspection (C) is not enough to
evaluate the effect of harmonization on the images, we extracted radiomic features known to
be sensitive to site effects (Orlhac et al., 2019). We used the pyradiomics python API (van
Griethuysen et al., 2017) to extract 101 features. These features aim to represent different
aspects of MRIs like its shape, contrast or texture. Features are organized by families which
are describe on the API’s website. In all cases, we first selected the 'most correlated features’
using Pearson tests (ran independently for each feature) with the characteristic of interest
(site affiliation, added noise presence, etc...) using 10~3 as p-value threshold. This step was
essential to focus on methods effects on characteristics of interest only. We also ran Pearson
tests after harmonization on previously selected radiomic features to better understand
the impact of both methods on these features. Finally, we investigated correlation between
radiomic features and biological ones (sex and age). Our hypothesis was that harmonization
should increase or at least preserve correlation when existing.

All results were validated by an 8 folds cross-validation. To visualize the results, we
reduced the dimension with PCA and TSNE (Maaten and Hinton, 2008). PCA was first
used to assure orthogonal representation of our data (8 components used, representing
around 95% of total variance), and then TSNE to represent our data visually along 2 axes.
Once dimensions were reduced, it was possible to visualize clusters of points corresponding
to different sites or data types. For validation, we only used PCA-reduced data (8D, > 95%
of variance), as there was no need for data visualization.

Finally Welch’s t-tests (Welch, 1947) were run to validate if results were statistically
significant or not. We ran these tests on every combination of data under the null hypotheses
”method does not impact SVM accuracy” and ”both methods have same performances”.
We then observed the p-values of these tests and rejected the Hy if p < 0.05. Because
variances of the results obtained by the two methods could not be considered as equal,
we used the Welch-t test to compare whether the differences observed were statistically
significant.

2.4.1. EXPERIMENTS 1-2: ABILITY TO REMOVE SYNTHETIC GLOBAL NOISES

We evaluated the ability of both methods to remove global noises added manually on the
images. We first added Gaussian intensity shifts centered in the middle of images in order
to simulate variations in MRI RF coil homogeneity. Added Gaussian noise followed a
2D Normal(0,0.3%) distribution, we then multiplied the added noise by a factor 0.6 so that
the intensity in the middle of the images was increased by about 60%. Secondly, we added
Gaussian noise to induce multiple artifacts and reduce contrast in the images, this was done
by adding independently e ~ N(0,0.6%) to every voxel. Removal of added noise would lead
to a poor SVM accuracy for classifying the presence of noise.


https://pyradiomics.readthedocs.io/en/latest/features.html##
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2.4.2. EXPERIMENT 3: ABILITY TO PRESERVE SYNTHETIC LESIONS

To assess that local changes in image intensities (equivalent to local lesions) were retained
after harmonization, we added a localized spherical Gaussian intensity shift to some ran-
domly taken data. Hyper-intensities preservation was estimated by SVM accuracy before
and after harmonization. Moreover, we computed first order statistics (mean and variance)
in the altered region to probe possible geometrical modifications due to the harmonization
process. To verify that harmonization improved synthetic lesions classification, we used
SVM to classify the presence of synthetic lesions using radiomic features extracted on a
region of interest (where the lesion was added). CycleGAN was trained on control data
only and inferences were run on all patients from site B.

2.4.3. EXPERIMENT 4: SITE EFFECT REMOVAL

We evaluated harmonization of the 2 selected sites through SVM accuracy as it should
not be able to detect data origin. To estimate impact of harmonization on image features,
we also ran Pearson tests with all radiomic features independently for site affiliation and
age correlation. We looked for the number of features correlated with site affiliation after
harmonization (expected to decrease), as well as features correlated with age (expected to
increase).

2.4.4. EXPERIMENT 5: ASD PATIENTS CLASSIFICATION

We ran a classification task (ASD patients vs healthy controls) on data from site A and
B to evaluate if SVM performs better on harmonized data than on raw data. Similarly to
2.4.2 cycleGAN was trained on control data only and inferences done on all patients from
site B.

3. Results

Table 1 (expl-2) shows that comBat performs well on removing simple global noises, as
SVM AUC metrics drop from 1 to 0.56 +0.1 while it remains close to 1 after cycleGAN. On
the opposite, we show that cycleGAN performs better than comBat in the case of preserving
local noises(exp3). Table 2 presents SVM AUC metrics on synthetic lesions classification.
We show that, in all cases, each method does not penalize the accuracy of the SVM. For
small synthetic lesions we cannot assure a benefit from both methods, whereas on larger
lesions radius (> 24mm) it is clear that SVM performs better on harmonized data. We also
show that in this case, cycleGAN better improves SVM performance, reaching an AUC of
1 for a radius larger than 32mm.

For experiment 4(2.4.3) Figure 1 demonstrates the need of site harmonization as we can
easily distinct two clusters representing both sites when classifying raw data (left). These
clusters vanish after harmonization from both methods (all data-points are then confounded
in one same cluster). Moreover, using SVM AUC metrics, Figure 2 shows that in both cases,
AUC drops, attaining a minimal value (0.62 / 0.57) after cycleGAN harmonization.

Finally for experiment 5(2.4.4), Figure 3 confirms the results from previous ones. Our
SVM achieves better performance on patient classification on harmonized data with the
highest AUC score reached on cycleGAN harmonized data. Table 3 confirms these results
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as for both experiments on site and ASD classification we have a significant improvement
of SVM accuracy after both methods. Moreover, while comBat and cycleGAN show simi-
lar performances for site classification, we observe better results after cycleGAN for ASD
classification.

Additionally, we show in Table Suppl.1 that each method significantly reduces the num-
ber of features correlated to site affiliation while increasing number of correlated features
with age. Note that the two methods do not impact the same feature (last column), sug-
gesting their complementarity:.

Experiment | Noise Raw data | After comBat | After
cycleGAN
1 Intensity ~ Gaus- 1/1 0.64 /0.43 |0.99 /1
sian shift
2 Gaussian noise 0.94 /0.96 | 0.58 /0.46 | 0.83/0.85
3 Local  intensity | 0.9 / 0.92 0.62 / 0.5 0.82 / 0.76
gaussian shift

Table 1: Train / test SVM AUC for synthetic noises classification (Expl-2-3). In bold, the
best ’test’ performances.

Synthetic le- | Raw data | After comBat | After

sion radius cycleGAN
8 0.61 /0.50 | 0.68 /0.50 |0.77 / 0.50
16 0.65 /0.50 | 0.69 /0.50 | 0.83 /0.50
24 0.76 / 0.50 | 0.79 /0.57 | 0.91 /0.70
32 098 /0.83| 0.96/0.75 |098/1

40 1/1 1/1 1/1

Table 2: Train / test SVM AUC evolution for synthetic lesion classification (Exp3). In

bold, the best 'test’ performances.
Classification | raw_data vs. | raw_data vs. | comBat vs.
comBat cycleGAN cycleGAN
Site 6.5%x1075 241075 0.13
ASD 9.4% 1072 7x10~3 4x1072

Table 3: P-values of Welch’s t-test comparing SVM performances on different kind of data
(Exp4 and Expb). In bold significant differences of performance.

4. Discussion

Our results strongly support the need for harmonization and the effectiveness of comBat and
cycleGAN to tackle multi-center study issues. We have shown that both methods reduced
global added noises and site effects, while retaining local modifications, and improved the
accuracy of the SVM for classifying synthetic lesions and ASD patients. However, it is
important to point out differences between both methods performances. While comBat
seems to be more adapted to remove global noises and to improve correlation between
radiomic features and site affiliation or age, cycleGAN shows better results at preserving
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Figure 1: Sites SVM classification (Exp4), on raw data(left) and after harmonization with
comBat (center) and cycleGAN (right). Corresponding classification AUC met-
rics are shown in Fig. 2
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Figure 2: SVM train / test AUC metric, for site classification on control subjects (Exp4).

local modifications and at improving statistical analysis of clinical studies.

Differences between numbers of significantly correlated features in Table Suppl.1 can
be explained by the fact that comBat algorithms is built to remove site affiliations effects
while preserving correlations with age (as it takes age and site affiliation as inputs). On
the opposite, cycleGAN only takes MRI images as input. It might be interesting to add
other biological inputs like age and sex in the network to see how this affects the results of
Table Suppl.1.

Giving a closer look to Pearson’s tests on radiomic features, we found that both methods
preserved shape-related features, as expected. The impacts of methods on other features
families were found to be complementary: comBat performed well on GLRLM features while
GLSZM ones benefited better from cycleGAN. Other families were similarly impacted by
both algorithms. An interesting point would thus be to investigate combinations of both
methods (e.g. feed cycleGAN with data harmonized by comBat, or the other way around).

Another point worth to mention is that comBat harmonizes all data when cycleGAN only
modifies data from one site. This fact has an impact on our experiments. If transformations
induce a noise while harmonizing, we should favor the one impacting the least images,
here cycleGAN. Moreover, comBat algorithm relies on strong prior hypothesis for modeling
voxels intensities, when cycleGAN tries to map the parameters directly without priors.
CycleGAN also requires a much bigger sample size to be trained than comBat. (Fortin
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Figure 3: SVM train / test AUC metric, for ASD classification on data from sites A and B
(Exp5).

et al., 2017) pointed out that comBat performs well even on small sample sizes. To illustrate
this point, we also ran experiment 2.4.3 on different sites with 20 control subjects and found
that cycleGAN was limited by the sample size and was not able to correct for site effects.
Finally, we can point out that for each method, a new model has to be fitted for every new
site encountered. This can be very time consuming and redundant, especially for cycleGAN
which takes longer to be fitted than comBat. Thus, it could be very useful to investigate a
way to generalize cycleGAN harmonization to every site and look for predictable features
or biomarkers directly impacted by site or scanner noises.

5. Conclusion

In this paper we presented a workflow to evaluate harmonization techniques. We showed
the importance of harmonization when dealing with data from at least 2 centers. Indeed,
we were able to precisely distinguish data from two acquisition sites, even though they both
used the same type of scanners. We used our workflow to investigate the performances
of two harmonization algorithms for anatomical MRI multi-center studies, comBat and
cycleGAN. The two aproaches can remove unwanted site effects while preserving biological
information. CycleGAN results demonstrated that a deep-learning method (non linear)
was well-suited for harmonization and could outperform state of the art statistical methods
(linear) such as comBat in certain conditions. We could have expected that the former
outperformed the latter. Surprisingly, we showed that this was not always the case. The
two methods appear as complementary in several aspects and had not the same effects on
radiomic features. This could determine the choice of the techniques depending on the goal
to achieve. Additionally, this opens a pathway to harmonization protocols composed of
several methods, such as the recently proposed Combat-GAM (Pomponio et al., 2019).
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Appendix A. Material and Methods

Protocol 1 Training-Validation-Inference protocol
Gather same sequence MRIs from 2 sites : OHSU & GU sites from the ABIDE database

#Prepocessing steps

Brain extraction with Robex algorithm

Co-registration to age-specific MNI templates

Intensity Biais field correction using N4 Bias algorithm
Visual quality check : brain extraction & image acquisition
Rescaling data between [—1;1]

Extracting 2d axials slices while removing background slices

#Training steps — Inferring control subjects

Splitting control data in 10 folds for cross validation

for i = 0;i < 10;7 4+ + do
Train cycleGAN using (F; : Figyi)%11) as training sets, Fig;4)9%11 as validation set, and
F(10+i)%11 as test/inference set.

end for

# Second training phase — Inferring ASD subjects

Gather all control subjects in one fold and ASD ones in another
Select randomly 10 control subjects for validation steps

Train cycleGAN on training control subjects

Once the model trained, run inference on ASD subjects

The cycleGAN architecture was preserved. The differences from the original paper

come from the use of a Unet as generator (instead of a modified Resnet) and of a small
DLoss term in the loss function. The rationale was that Unet tends to preserve object’s
shape (which is an important aspect in MRI harmonization) thanks to its skip connections.
Note that this type of implementation is commonly used: for instance with TensorFlow
( https://www.tensorflow.org/tutorials/generative/cyclegan) or for dMRI harmonization
using dualGAN Yi et al. (2018).
The DLoss term was added to prevent the model from well-known instabilities leading to
drastic changes to the image (we expected smooth shape). This term was also helpful for
training (as this kind of models are known to be hard to train). The order of magnitude
of the DLoss was however small (10E-4) compared to our training loss (order of magnitude
was 10E0). We thus do not expect major impact on training results.
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Appendix B. Results: Pearson’s tests results

Raw data | After comBat | After cycleGAN | common features
Site 71 6 19 3
Age 27 49 34 22

Table Suppl.1: Number of radiomic features significantly correlated with site affiliation and
age, among the 101 extracted. Obtained with a Pearson’s test. The last col-
umn corresponds to the number of significantly correlated features common

to both methods.
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Appendix C. Results: Visualisation

Figure Suppl.1: Method’s effects on global noises 2.4.1 : Gaussian intensity shift (exp. 1)in
top row, and global Gaussian noise (exp. 2) in bottom row. From left to
right : Noise added to the image; absolute difference between original scan
and comBat-denoised image; absolute difference between original scan and
cycleGAN-denoised image
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Figure Suppl.2: Impact of cycleGAN method. From left to right : Ground Truth data before
harmonization; cycleGAN harmonized result; differential image showing

modifications by cycleGAN for exp.4-5

Figure Suppl.3: Impact of comBat method. From left to right : Ground Truth data be-
fore harmonization; comBat harmonized result; differential image showing
modifications by comBat for exp.4-5

Appendix D. Results: Intensity distributions
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Figure Suppl.4: Intensity distribution across sites before and after both methods. From left
to right : Ground Truth data; after comBat; after cycleGAN
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