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Abstract
The ability of machine learning (ML) algorithms
to generalize well to unseen data has been studied
through the lens of information theory, by bound-
ing the generalization error with the input-output
mutual information (MI), i.e. the MI between the
training data and the learned hypothesis. These
bounds have limited empirical use for modern
ML applications (e.g. deep learning) since the
evaluation of MI is difficult in high-dimensional
settings. Motivated by recent reports of significant
low-loss compressibility of neural networks, we
study the generalization capacity of algorithms
which slice the parameter space, i.e. train on a
random lower-dimensional subspace. We derive
information-theoretic bounds on the generaliza-
tion error in this regime, and discuss an intriguing
connection to the k-Sliced Mutual Information,
an alternative measure of statistical dependence
which scales well with dimension. The compu-
tational and statistical benefits of our approach
allow us to empirically estimate the input-output
information of these neural networks and compute
their information-theoretic generalization bounds,
a task which was previously out of reach.

1. Introduction
Generalization is a fundamental task of machine learning,
where a model that is optimized to perform well on train-
ing data must also perform well on test data drawn from
the same underlying data distribution. Neural networks
(NNs), in particular, are well suited to both achieving high
performance on training data and generalizing well to test
data, allowing them to achieve excellent test performance
on highly complex tasks. Despite this empirical success,
the architectural factors influencing how well a neural net-
work generalizes are still not fully understood theoretically,
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motivating a significant body of work utilizing a wide va-
riety of tools (e.g. PAC-Bayes (Dziugaite & Roy, 2017),
information theory (Xu & Raginsky, 2017)) to bound the
generalization error of NNs (Jiang et al., 2020).

We formally describe the generalization problem as fol-
lows. Let Z be the input data space (e.g. the set of feature-
label pairs z = (x, y)), µ a probability distribution on Z,
W ⊆ RD the hypothesis space (e.g. weights of a NN), and
ℓ : Z × W → R+ a loss function (e.g. the classification
error). The training procedure seeks to find a w ∈ W with
low population risk given by R(w) ≜ EZ∼µ[ℓ(w,Z)]. In
practice, obtaining R(w) is difficult since µ is generally
unknown: one only observes a dataset comprising a finite
number of samples from µ. Instead, given a training dataset
Sn ≜ {zi ∈ Z, i = 1, . . . , n}, (zi)ni=1 i.i.d. from µ, one
uses R̂n(w) ≜ 1

n

∑n
i=1 ℓ(w, zi), called the empirical risk.

A learning algorithm can then be described as a function
A : Zn → W which returns the optimal hypothesis W
learned from Sn. W is in general random, and we denote its
probability distribution by PW |Sn

. The generalization error
of A is gen(µ,A) = E[R(W )− R̂n(W )] where the expec-
tation E is taken with respect to (w.r.t.) the joint distribution
of (W,Sn), i.e. PW |Sn

⊗ µ⊗n.

In recent years, there has been a flurry of interest in us-
ing theoretical approaches to bound gen(µ,A) using mu-
tual information. The most common approach, introduced
in (Xu & Raginsky, 2017), considers mutual informa-
tion measures between Sn and the optimal hypothesis W
learned from Sn. We denote the Shannon mutual infor-
mation (MI) between two random variables X and Y as
I(X;Y ) =

∫∫
p(x, y) log p(x,y)

p(x)p(y)dxdy, with p(x, y) denot-
ing the joint distribution of (X,Y ) at (x, y), and p(x), p(y)
the marginals. Subsequently, (Bu et al., 2019) used the aver-
aging structure of the empirical loss to obtain the following
bound (which we have specialized to our setting).
Theorem 1.1 (Bu et al. (2019)). Assume there exists C > 0
such that for any (W̃ , Z̃) ∼ PW ⊗ µ, ℓ(W̃ , Z̃) ≤ C almost
surely. Then,

|gen(µ,A)| ≤ C

n

n∑
i=1

√
I(W ;Zi)

2
,

where W = A(Sn).

Note that in Theorem 1.1, the MI terms are between W
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and individual points in the dataset Zi rather than the entire
training dataset Sn, making the bound tighter in certain
problems (Bu et al., 2019, Section IV).

These approaches suffer from the fact that the dimension
of W can be very large in modern ML models, e.g. NNs,
and the sample complexity of MI estimation scales very
poorly with dimension (Paninski, 2003). These samples can
be very expensive to obtain, especially with NNs, as one
realization of W requires one complete training run.

For space reasons, we omit a full literature review of other
variants of information-theoretic generalization bounds (e.g.
conditional MI approaches (Steinke & Zakynthinou, 2020)
and followup works), and focus on (Bu et al., 2019).

Sliced neural networks. While modern neural networks
utilize very large numbers of parameters, common neural
network architectures can be highly compressible by ran-
dom slicing: Li et al. (2018) found that restricting W ∈ RD

during training to lie in a random d-dimensional subspace
(where d ≪ D) not only provided computational advan-
tages, but did not meaningfully damage the performance
of the learned neural network, for appropriate choice of d
often two orders of magnitude smaller than D. They inter-
preted this fact as indicating compressibility of the neural
network architecture up to some intrinsic dimension below
which performance degrades. Recently, this framework has
been applied by (Lotfi et al., 2022) to significantly improve
PAC-Bayes generalization bounds, to the point where they
closely match empirically observed generalization error.

Sliced mutual information. It is a natural question whether
we can leverage the compression created by this slicing
to obtain tighter and computationally-friendly information-
theoretic generalization bounds. Intriguingly, a recent paral-
lel line of work has considered slicing mutual information
itself, yielding significant sample complexity and computa-
tional advantages in high-dimensional regimes. Goldfeld &
Greenewald (2021); Goldfeld et al. (2022) proposed to slice
the arguments of MI via random k-dimensional projections
and define the k-Sliced Mutual Information (SMI) between
X ∈ Rdx and Y ∈ Rdy as

SIk(X;Y ) =

∫∫
I(ATX; BTY ) dσk,dx⊗σk,dy (A,B) ,

where σk,d is the Haar measure on St(k, d), the Stiefel man-
ifold of d × k matrices with orthonormal columns. SIk
has been shown to retain many important properties of
MI, for instance X and Y are independent if and only if
SIk(X;Y ) = 0 (Goldfeld & Greenewald, 2021; Goldfeld
et al., 2022). More importantly, the statistical convergence
rate for estimating SIk(X;Y ) depends on k but not the am-
bient dimensions dx, dy, providing significant advantages
over MI (which in general requires an exponential number
of samples with max(dx, dy) (Paninski, 2003)).

Note that similar convergence rates can be achieved while
slicing in only one dimension (e.g. X), if samples from the
conditional distribution X|Y = y are available (Goldfeld &
Greenewald, 2021), yielding

SI
(1)
k (X;Y ) =

∫
St(k,dx)

I(ATX;Y ) dσk,dx
(A) . (1)

Recently (Wongso et al., 2023) empirically connected gener-
alization to SI

(1)
k (T ;Y ) between the hidden representations

T of neural networks and the true class labels Y .

Our contributions. Motivated by the above, we introduce
information-theoretic bounds studying the generalization ca-
pacity of learning algorithms trained on random subspaces.
Our bounds demonstrate that “compressible” neural net-
works (via random slicing) sense have significantly better
generalization guarantees. We also find an intriguing con-
nection to k-SMI, which we explore in learning problems
where the information-theoretic generalization bounds are
possible to analytically compute. We then leverage the com-
putational and statistical benefits of our sliced approach
to empirically compute nonvacuous information-theoretic
generalization bounds for various neural networks.

2. Sliced Information-Theoretic
Generalization Bounds

We establish information-theoretic generalization bounds
for any model A′ whose parameters lie on the constraint set
WΘ,d = {w ∈ RD : ∃w′ ∈ Rd s.t. w = Θw′}, where Θ
is a random projection matrix of size D × d with d < D
and Θ⊤Θ = ID. Training A′ consists in choosing d and
randomly sampling Θ, then optimizing w ∈ WΘ,d, which,
given Θ, boils down to optimizing the subspace coefficients
w′ ∈ Rd. We denote by W ′

Θ ∼ PW ′
Θ|Θ,Sn

the optimal sub-
space coefficients. The associated generalization error is
denoted by gend(µ,A′) to make explicit the intrinsic dimen-
sion d induced by WΘ,d. Note that since Θ is random (with
distribution PΘ), gend(µ,A′) is, by definition, computed as
an expectation over PW ′

Θ|Θ,Sn
⊗ PΘ ⊗ µ⊗n.

For clarity purposes, we will use the notation ℓ(w′, z) =
ℓ(w, z)∀w = Θw′ ∈ WΘ,d. For bounded loss (e.g. classi-
fication error), we have the following.

Theorem 2.1. Assume there exists C > 0 s.t. for any
(W̃ ′

Θ,Θ, Z̃) ∼ PW ′
Θ|Θ ⊗ PΘ ⊗ µ, ℓ(W̃ ′

Θ, Z̃) ≤ C almost
surely where PW ′

Θ|Θ is the conditional distribution of W ′
Θ

given Θ. Then,

|gend(µ,A′)| ≤ C

n

n∑
i=1

EΘ∼PΘ

[√
I(W ′

Θ;Zi)

2

]
. (2)

While state-of-the-art MI-based bounds depend on I(W ;Zi)
(e.g. Theorem 1.1), we leverage the constraint set WΘ,d
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to construct a bound in terms of I(W ′
Θ;Zi). As a result,

our bound can be estimated more easily in practice, since
W ′

Θ is lower-dimensional. Theorem 2.1 is a particular case
of more general bounds stated hereafter, which we derive
by adapting the proof techniques of (Bu et al., 2019, The-
orem 2). These bounds hold under milder conditions on
the cumulant-generating function (CGF)1 of ℓ(W̃ ′

Θ, Z̃) for
(W̃ ′

Θ, Z̃) ∼ PW ′
Θ|Θ ⊗ µ.

Theorem 2.2. If there exists C− ∈ R∗
+ ∪ {+∞} s.t. for

t ∈ (C−, 0], Kℓ(W̃ ′
Θ,Z̃)(t) ≤ ψ−(−t,Θ), where ψ−(·,Θ)

is convex and ψ−(0,Θ) = (ψ−)
′(0,Θ) = 0, then,

gend(µ,A′)

≤ 1

n

n∑
i=1

EΘ∼PΘ

[
inf

t∈[0,−C−)

I(W ′
Θ;Zi) + ψ−(t,Θ)

t

]
.

(3)

If there exists C+ ∈ R∗
+ ∪ {+∞} s.t. for t ∈ [0, C+),

Kℓ(W̃ ′
Θ,Z̃)(t) ≤ ψ+(t,Θ), where ψ+(·,Θ) is convex and

ψ+(0,Θ) = (ψ+)
′(0,Θ) = 0, then,

gend(µ,A′)

≥ 1

n

n∑
i=1

EΘ∼PΘ

[
inf

t∈[0,C+)

I(W ′
Θ;Zi) + ψ+(t,Θ)

t

]
. (4)

We illustrate Theorem 2.2 in the next section, by computing
the generalization bounds of two specific models. This also
allows us to draw an interesting connection with k-SMI.

2.1. Connection to k-Sliced Mutual Information

Denote by ∥ · ∥ the Euclidean norm, ID the D × D iden-
tity matrix, and 0D the D-dimensional zero vector. We
denote by W (D) the solution of the unconstrained problem,
i.e. W (D) = argminw∈RD R̂n(w).

Gaussian mean estimation. We first study the problem
of estimating the mean of Z ∼ N (0D, ID) via empirical
risk minimization. The training dataset Sn = (Z1, . . . , Zn)
consists of n independently and identically distributed (i.i.d.)
samples from N (0D, σ

2ID). Our objective is,

argmin
w∈WΘ,d

R̂n(w) ≜
1

n

n∑
i=1

∥w − Zi∥2 . (5)

We prove in Appendix A.3 that W ′
Θ = Θ⊤Z̄ with Z̄ ≜

(1/n)
∑n

i=1 Zi, and gend(µ,A′) = 2σ2d/n. Applying
Theorem 2.2 yields

gend(µ,A′) ≤ 2

n

n∑
i=1

√
λSI

(1)
d (W (D);Zi) , (6)

1The CGF of a random variable X is KX(t) =

logE[et(X−E[X])].

where λ = EΘ[∥λΘ∥2], λΘ ∈ RD is the vector of eigen-
values of σ2(ID + ΘΘ⊤/n). Note that here, W (D) = Z̄
hence W ′

Θ = Θ⊤W (D), which explains the SMI term in
the upper-bound of gend(µ,A′). In the limit case d = D,
our bound (6) boils down to the one established in (Bu et al.,
2019), since λ = σ4D(n+ 1)2/n2 and SI

(1)
D (W (D);Zi) =

I(W (D);Zi).

Linear regression. Consider n samples (x1, . . . , xn), xi ∈
RD and a response variable y = (y1, . . . , yn), yi ∈ R.
Denote byX ∈ Rn×D the data matrix such that the i-th row
is xi. We assume n ≥ D and aim at solving

argmin
w∈WΘ,d

R̂n(w) ≜
1

n
∥y −Xw∥2 . (7)

We show that W ′
Θ = (ΘX⊤XΘ⊤)−1ΘX⊤y. Additionally,

we consider the fixed-design setting: X is deterministic
and there exists w⋆ s.t. yi = x⊤i w

⋆ + εi where (εi)
n
i=1 are

i.i.d. samples from N (0, σ2). Then, using Theorem 2.2,
we prove that gend(µ,A′) is upper-bounded by a function
of I(Θ⊤

XW
(D); yi) with Θ⊤

X ≜ (ΘX⊤XΘ⊤)−1Θ(X⊤X),
which can be interpreted as a generalized SMI with a non-
isotropic slicing distribution that depends on the fixed X .
The corresponding derivations are detailed in Appendix A.4.

2.2. Rate-distortion generalization bounds

The above bounds require the learned weights W to exactly
lie in the subspace spanned by Θ. While this does work
well empirically, it can be a restrictive assumption when d
is very small. Since our MI-based bounds generally scale
with increasing d, it is important to keep d small. Moti-
vated by recent work in applying rate-distortion theory to
input-output MI generalization bounds (Sefidgaran et al.,
2022), we have the following generalization result for ap-
proximately compressible weights and Lipschitz loss.
Theorem 2.3. Assume there exists C > 0 s.t. for any
(W̃ , Z̃) ∼ PW ⊗ µ, ℓ(W̃ , Z̃) ≤ C almost surely. Assume
for any z ∈ Z, ℓ(·, z) : W → R+ is L-Lipschitz. Then,

|gen(µ,A)| ≤ 2LEW (D)(Θ),W ′
Θ
∥W (D)(Θ)−ΘW ′

Θ∥

+
C

n

n∑
i=1

EΘ∼PΘ

[√
I(W ′

Θ;Zi)

2

]
.

where here, A may take Θ into account to output W (D)(Θ),
and W ′

Θ = ΘTW (D)(Θ).

If we instead apply (Xu & Raginsky, 2017), we can obtain
a rate-distortion type bound based on quantization that does
not require estimation of mutual information (Appendix B).

3. Empirical Analysis
Gausian mean estimation. We first study the mean estima-
tion problem described in Section 2.1. We choose n = 200,
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Figure 1. Empirical evaluation of IS-SMI bound (6) against d for
Gaussian mean estimation. y-axis is in log scale. IS-MI is only
evaluated for D = 20 since it cannot account for random slicing.
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Figure 2. Empirical evaluation of (2) against n for logistic regres-
sion, with varying d. y-axis is in log scale.

D = 20 and d ∈ {2, 5, 10, 15, 20}, and compute the an-
alytical generalization error for each d. We evaluate the
individual sample MI (IS-MI) generalization bound (Bu
et al., 2019) for D, which is available in closed form (Bu
et al., 2019, Section IV.A). Then, for each d, we evaluate
our bound (IS-SMI) (6), which requires approximating the
SMI term. To this end, we use a Monte Carlo approximation
based on 100 samples of Θ. Figure 1 confirms our bound,
and more interestingly, shows that IS-SMI and the general-
ization error exhibit the same behavior, as they both increase
with growing d. Besides, we observe that our bound boils
down to IS-MI bound when d = D.

Logistic regression. We move on to empirical settings
where I(W ′

Θ;Zi) does not have an analytical solution, as
opposed to the Gaussian mean estimation problem. We thus
resort to MI estimators to evaluate our bound. We consider
binary classification and for space constraints, refer to (Bu
et al., 2019, Section VI) for full details on the empirical
setting. Since the loss is bounded, we evaluate Theorem 2.1
using two types of MI estimators: k-nearest neighbor-based
(k-NN-MI, (Kraskov et al., 2004)) and MINE (Belghazi
et al., 2018). We observed in practice that kNN-MI returns
NaN values as soon as d > 2, hence only report the bounds
estimated with MINE. Figure 2 confirms our bound holds
and accurately reflects the behavior of the generalization
error as a function of d and n. We report the classification
errors in Appendix C.2.

Figure 3. Generalization bounds of NNs trained on Iris dataset

Neural networks. We demonstrate that our derived general-
ization bounds on random subspaces allow us compute gen-
eralization bounds on a simple machine learning classifica-
tion task involving neural networks, while also maintaining
performance. We classify the Iris dataset (Fisher, 1936) with
a two-hidden-layer NN with 10,903 parameters, and train
10,000 instantiations for 200 epochs. We estimate MI with
MINE. We report results for d ∈ {5, 10, 15, 20, 50, 100}
in Figure 3, and refer to Appendix C.3 for further details.
We obtain over 95% accuracy at d = 10 already, and both
the best train and test accuracy is achieved for d = 50. As
expected, our bound is an increasing function of d and all
bounds are non-vacuous.

4. Conclusion
In this work, we combined recent empirical schemes for find-
ing compressed models, including NNs, via random slicing
with generalization bounds based on input-output MI. Our
results indicate that architectures that are amenable to this
compression scheme yield tighter information-theoretic gen-
eralization bounds. We also explore a notion of approximate
compressibility, where the learned parameters are close to
the compressed subspace but do not lie on it exactly. This
framework provides more flexibility in the trained model,
allowing it to maintain good training error for even smaller
(approximate) projection dimension d, and ensuring that the
resulting generalization bounds are as tight as possible.

Our contributions motivate further analyses which leverage
compressibility to improve the tightness of information-
theoretic generalization bounds. They can also help inform
selection and design of NN architectures in practice. Future
work include an empirical study of our rate-distortion type
bound, and extension of the approach to other approximate
compression schemes such as quantization. This will also be
combined with an exploration of regularization approaches
that encourage trained NNs to be as approximately com-
pressible as possible to ensure that our bound is small in
practice, while also potentially providing empirical benefits
in observed test performance itself. Finally, we will explore
the optimization of the rate-distortion tradeoff in order to
obtain the best generalization bounds, potentially making
use of analytical bounds on information that do not require
estimating MI from multiple training runs of the network.
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A. Postponed Proofs for Section 2
A.1. Proof of Theorem 2.2

Consider a pair of random variables (X,Y ) ∈ RD ×RD′
, with joint distribution PX,Y and marginals PX , PY . Let X̃ (resp.,

Ỹ ) be an independent copy of X (resp., Y ) such that PX̃,Ỹ = PX ⊗ PY .

Let (Θ,Γ) be a pair of independent random matrices of size d ×D and d′ ×D′ respectively, with d < D and d′ < D′.
Denote by PΘ,Γ = PΘ ⊗ PΓ the joint distribution of (Θ,Γ).

Let f : Rd × Rd′ → R and given (Θ,Γ) ∼ PΘ ⊗ PΓ, denote by Kf(Θ⊤X̃,Γ⊤Ỹ ) the cumulant generating function of the
random variable f(Θ⊤X̃,Γ⊤Ỹ ), i.e. for t ∈ R,

Kf(Θ⊤X̃,Γ⊤Ỹ )(t) = logE
[
et(f(Θ

⊤X̃,Γ⊤Ỹ )−E[f(Θ⊤X̃,Γ⊤Ỹ )])
]

(8)

where the expectation is taken with respect to PΘ⊤X|Θ ⊗ PΓ⊤Y |Γ.
Lemma A.1. Suppose that for any (Θ,Γ), there exists b+ ∈ R∗

+ ∪ {+∞} and a convex function φ+(·,Θ,Γ) : [0, b+) → R
such that φ+(0,Θ,Γ) = φ′

+(0,Θ,Γ) = 0 and for t ∈ [0, b+), Kf(Θ⊤X̃,Γ⊤Ỹ )(t) ≤ ψ+(t,Θ,Γ). Then,

E[f(Θ⊤X,Γ⊤Y )]− E[f(Θ⊤X̃,Γ⊤Ỹ )] ≤ EPΘ⊗PΓ

[
inf

t∈[0,b+)

I(Θ⊤X; Γ⊤Y ) + ψ+(t,Θ,Γ)]

t

]
. (9)

Suppose that for any (Θ,Γ), there exists b− ∈ R∗
+ ∪ {+∞} and a convex function φ−(·,Θ,Γ) : [0, b−) → R such that

φ−(0,Θ,Γ) = φ′
−(0,Θ,Γ) = 0 and for t ∈ (b−, 0], Kf(Θ⊤X̃,Γ⊤Ỹ )(t) ≤ ψ−(−t,Θ,Γ). Then,

E[f(Θ⊤X̃,Γ⊤Ỹ )]− E[f(Θ⊤X,Γ⊤Y )] ≤ EPΘ⊗PΓ

[
inf

t∈[0,−b−)

I(Θ⊤X; Γ⊤Y ) + ψ−(t,Θ,Γ)

t

]
. (10)

Proof. Fix Θ,Γ. By Donsker-Varadhan variational representation,

KL(P(Θ⊤X,Γ⊤Y )|Θ,Γ∥PΘ⊤X|Θ ⊗ PΓ⊤Y |Γ) = sup
g∈G

E[g(Θ⊤X,Γ⊤Y )]− logE[exp(g(Θ⊤X̃,Γ⊤Ỹ ))] (11)

where G = {g : Rd × Rd′ → R : E[eg(Θ⊤X̃,Γ⊤Ỹ )] <∞}. Therefore, for any t ∈ [0, b+),

KL(P(Θ⊤X,Γ⊤Y )|Θ,Γ∥PΘ⊤X|Θ ⊗ PΓ⊤Y |Γ) ≥ tE[f(Θ⊤X,Γ⊤Y )]− logE[exp(tf(Θ⊤X̃,Γ⊤Ỹ ))] (12)

≥ t
(
E[f(Θ⊤X,Γ⊤Y )]− E[f(Θ⊤X̃,Γ⊤Ỹ )]

)
− ψ+(t,Θ,Γ) (13)

where (13) follows from the assumption that for t ∈ [0, b+),Kf(Θ⊤X̃,Γ⊤Ỹ )(t) ≤ ψ+(t,Θ,Γ). Hence,

E[f(Θ⊤X,Γ⊤Y )]− logE[exp(λf(Θ⊤X̃,Γ⊤Ỹ ))] ≤ inf
t∈[0,b+)

I(Θ⊤X; Γ⊤Y ) + ψ+(t,Θ,Γ)

t
. (14)

Our final result (9) follows from taking the expectation of (14) over (Θ,Γ) ∼ PΘ ⊗ PΓ.

We can prove analogously that (10) holds, assuming that for t ∈ [0, b−),Kf(Θ⊤X̃,Γ⊤Ỹ )(t) ≤ ψ−(−t,Θ,Γ).

Proof of Theorem 2.2. By definition, the generalization error is

gend(µ,A′) =
1

n

n∑
i=1

{
EPW ′

Θ
|Θ⊗PΘ⊗µ[ℓ(ΘW

′
Θ, Z)]− EPW ′

Θ
,Zi|Θ

⊗PΘ [ℓ(ΘW
′
Θ, Zi)]

}
, (15)

where given Θ ∼ PΘ, W ′
Θ ∈ Rd is such that there exists W ∈ RD, W ′

Θ = Θ⊤W . Assume Z ⊂ Rs and define
ℓ′ : Rd × Z → R s.t. given Θ ∼ PΘ, ℓ′(w′, z) = ℓ(Θw′, z). We can then reformulate (15) as,

gend(µ,A′) = EPW ′
Θ

|Θ⊗PΘ⊗µ⊗PΓ
[ℓ′(W ′

Θ,Γ
⊤Sn)]− EP

W ′
Θ

,Γ⊤Sn|Θ,Γ
⊗PΘ⊗PΓ [ℓ

′(W ′
Θ,Γ

⊤Sn)] , (16)

where PΓ is the uniform distribution over {e1, . . . , en}, with for i = 1, . . . , n, ei ∈ Rn s.t. ei,i = 1 and ei,j = 0 for
j ∈ {1, . . . , s}, j ̸= i. Our final bounds (4) and (3) result from applying Lemma A.1 on (15).
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A.2. Applications of Theorem 2.2 to sub-Gaussian or bounded loss

Corollary A.2 (Sub-Gaussian loss). Suppose that for all Θ ∼ PΘ, there exists C2
Θ such that for t ∈ R,

EPW ′
Θ

|Θ⊗µ

[
e
t{ℓ(ΘW ′

Θ,Z)−EP
W ′

Θ
|Θ⊗µ[ℓ(ΘW ′

Θ,Z)]}]
≤ eC

2
Θt2/2 (17)

Then,

|gend(µ,A′)| ≤
√
2

n

n∑
i=1

EΘ∼PΘ

[√
C2

ΘI(W
′
Θ;Zi)

]
. (18)

Proof. Let Θ ∼ PΘ. Assuming (17), implies that for any t ∈ R,

Kℓ(ΘW̃ ′
Θ,Z̃)(t) ≤

C2
Θt

2

2
. (19)

We conclude by applying Theorem 2.2 and the fact that for i ∈ {1, . . . , n},

inf
λ>0

I(W ′
Θ;Zi) + C2

Θt
2/2

t
=

√
2C2

ΘI(W
′
Θ;Zi) . (20)

Proof of Theorem 2.1. Let Θ ∼ PΘ. By Hoeffding’s lemma, for all t ∈ R,

EPW ′
Θ

|Θ⊗µ

[
e
t{ℓ(ΘW ′

Θ,Z)−EP
W ′

Θ
|Θ⊗µ[ℓ(ΘW ′

Θ,Z)]
)
]
≤ eM

2λ2/8 . (21)

Therefore, (17) is satisfied with C2
Θ = M2

4 for all Θ ∼ PΘ. Applying Corollary A.2 along with the linearity of the
expectation completes the proof.

Remark A.3. By applying Jensen’s inequality on the right-hand side term of (18), we obtain

|gend(µ,A′)| ≤
√
2C2

Θ

n

n∑
i=1

√
I(W ′

Θ;Zi|Θ) (22)

A.3. Detailed derivations for Gaussian mean estimation problem

First, we justify why, given Θ ∼ PΘ s.t. Θ⊤Θ = Id andW ′
Θ = Θ⊤Z̄,W = ΘW ′

Θ is the solution of argminw∈WΘ,d
R̂n(w),

with

∀w ∈ WΘ,d, R̂n(w) =
1

n

n∑
i=1

∥w − Zi∥2 . (23)

By writing w = Θw′ and deriving the gradient of (23) with respect to w′, we obtain

∇w′R̂n(Θw
′) =

2

n

n∑
i=1

Θ⊤(Θw′ − Zi) . (24)

Solving ∇w′R̂n(w
′) = 0 yields (Θ⊤Θ)w′ = Θ⊤Z̄. We conclude by using Θ⊤Θ = Id.

Generalization error. We recall that the generalization error is defined as

gend(µ,A′) = E[R(W )− R̂n(W )] , (25)

where the expectation is computed with respect to PW,Sn = PW ′
Θ|Sn

⊗ PΘ ⊗ µ⊗n.

7
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We prove that the expectation of R̂n(W ) over PW ′
Θ|Sn

⊗ PΘ ⊗ µ⊗n is E[R̂n(W )] = σ2(D − d/n).

E[R̂n(W )] = E[R̂n(ΘW
′
Θ)] =

1

n

n∑
i=1

E[∥ΘW ′
Θ − Zi∥2] (26)

=
1

n

n∑
i=1

{
E[∥ΘW ′

Θ∥2]− 2E[(W ′
Θ)

⊤Θ⊤Zi] + E[∥Zi∥2]
}

(27)

Since W ′
Θ = Θ⊤Z̄, Θ⊤Θ = Id, Z1, . . . , Zn are n i.i.d. samples from N (0D, ID), we deduce W ′

Θ ∼ N (0, (σ2/n)Id), and

E[∥ΘW ′
Θ∥2] = Tr(E[(ΘW ′

Θ)
⊤(ΘW ′

Θ)]) (28)

= Tr(E[(W ′
Θ)

⊤W ′]) (29)

=
σ2d

n
. (30)

Besides, for i ∈ {1, . . . , n},

E[∥Zi∥2] = Tr(E[Z⊤
i Zi]) = σ2D , (31)

and

E[(W ′
Θ)

⊤Θ⊤Zi] = E[Z̄⊤ΘΘ⊤Zi] (32)

=
1

n

n∑
j=1

E[Z⊤
j ΘΘ⊤Zi] (33)

=
1

n

n∑
j=1

Tr(E[Z⊤
j ΘΘ⊤Zi]) (34)

=
1

n
Tr(E[Z⊤

i ΘΘ⊤Zi]) (35)

=
σ2d

n
. (36)

We conclude that,

E[R̂n(W )] =
1

n

n∑
i=1

{
σ2d

n
− 2σ2d

n
+ σ2D

}
(37)

= σ2

(
D − d

n

)
. (38)

The true risk is defined forw ∈ WΘ,d as R(w) = E[∥w−Z̃∥2], where the expectation is computed over Z̃ ∼ N (0D, σ
2ID).

We have,

R(w) = R(Θw′) = E[Tr((Θw′ − Z̃)⊤(Θw′ − Z̃))] (39)

= Tr(w′⊤Θ⊤Θw′)− 2Tr(w′⊤Θ⊤E[Z̃]) + Tr(E[Z̃⊤Z̃]) (40)

= Tr(w′⊤w′) + σ2D (41)

where (41) results from Θ⊤Θ = Id and Z̃ ∼ N (0D, σ
2ID).

Taking the expectation of R(W ) over PW ′
Θ|Sn

yields,

E[R(W )] = E[R(ΘW ′
Θ)] = E[Tr((W ′

Θ)
⊤W ′

Θ) + σ2D] (42)

= Tr(E[(W ′
Θ)

⊤W ′
Θ]) + σ2D (43)

= σ2

(
D +

d

n

)
. (44)

8
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where (44) follows from (30).

We can now compute the generalization error using (38) and (44): we obtain,

gend(µ,A′) = E[R(W )− R̂n(W )] =
2σ2d

n
. (45)

Generalization error upper-bound. We study the cumulant generating function of

ℓ(W, Z̃) = ℓ(ΘW ′
Θ, Z̃) = ∥ΘW ′

Θ − Z̃∥2 , (46)

where Z̃,W ′
Θ are independent. Since W ′

Θ ∼ N (0d, (σ
2/n)Id) and Z̃ ∼ N (0d, Id), then

(ΘW ′
Θ − Z̃) ∼ N (0D, σ

2(ΘΘ⊤/nID)) . (47)

Therefore, ℓ(W, Z̃) is the sum of squares of D dependent Gaussian random variables, which can equivalently be written as,

ℓ(W, Z̃) =

D∑
k=1

λΘ,kU
2
Θ,k , (48)

UΘ = PΣ
−1/2
Θ (ΘW ′

Θ − Z̃) ∼ N (0D, ID) (49)

ΣΘ = σ2(ΘΘ⊤/n+ ID) (50)

where P ∈ RD×D and λΘ = (λΘ,1, . . . , λΘ,D) ∈ RD come from the eigendecomposition of ΣΘ, i.e. ΣΘ = PΛP⊤,
with Λ the diagonal matrix such that Λk,k = λΘ,k. Note that, since ΣΘ is positive definite, P is orthogonal and for any
k ∈ {1, . . . , D}, λΘ,k > 0.

By (48), ℓ(W, Z̃) is a linear combination of independent chi-square variables (each with 1 degree of freedom), and
is thus distributed from a generalized chi-square distribution. We deduce that the CGF of ℓ(W, Z̃) is given for s ≤
1
2 mink∈{1,...,D} λΘ,k as,

Kℓ(W,Z̃)(s) = −s
D∑

k=1

λΘ,k − 1

2

D∑
k=1

log(1− 2λΘ,ks) (51)

=
1

2

D∑
k=1

[−2λΘ,ks− log(1− 2λΘ,ks)] . (52)

Since for t < 0, −t− log(1− t) ≤ t2/2, we can bound Kℓ(W,Z̃)(s) for s < 0 as follows.

Kℓ(W ′,Z̃)(s) ≤
1

2

D∑
k=1

(2λΘ,ks)
2

2
= ∥λΘ∥2s2 . (53)

We then apply Theorem 2.2 along with (53) and Jensen’s inequality to prove (6).

A.4. Detailed derivations for linear regression

Problem statement. Consider n samples of a D-dimensional random variable (x1, . . . , xn) and a response variable
y = (y1, . . . , yn) where yi ∈ R. Denote by X ∈ Rn×D the data matrix such that the i-th row is xi. The empirical risk is
defined for any w ∈ RD as

R̂n(w) =
1

n

n∑
i=1

(yi − x⊤i w)
2 =

1

n
∥y −Xw∥2 (54)

Let d ∈ N∗, d < D and Θ ∼ PΘ, Θ⊤Θ = Id. Our objective is,

argmin
w∈WΘ,d

R̂n(w) (55)

9



Slicing Mutual Information Generalization Bounds for Neural Networks

We consider that the problem is over-determined, the rank of X is D, thus D ≤ n. X⊤X is then invertible, and since X⊤X
is always positive semi-definite, this implies that X⊤X is positive definite. The solution of (55) is unique and given by,

W ′
Θ = (ΘX⊤XΘ⊤)−1ΘX⊤y (56)

Note that the solution of argminw∈RD R̂n(w) in the over-determined setting yields the ordinary least squares (OLS)
estimator, given by

W (D) = (X⊤X)−1X⊤y . (57)

Hence, by comparing (57) and (56), we have

W ′
Θ = (ΘX⊤XΘ⊤)−1Θ(X⊤X)W (D) (58)

Generalization error bounds. We consider the fixed-design setting, i.e. for i = 1, . . . , n, yi = x⊤i W
⋆ + εi and

εi ∼ N (0, 1). First, by using analogous derivations as in Appendix A.3, we can show that

gend(µ,A′) =
2σ2d

n
. (59)

Since yi ∼ N (x⊤i W
⋆, σ2), then by using (56),

x⊤i Θ
⊤W ′ ∼ N (x⊤i ΘXW

⋆, σ2x⊤i Θ
⊤[ΘX⊤XΘ⊤]−1Θxi) (60)

where ΘX = Θ⊤(ΘX⊤XΘ⊤)−1Θ(X⊤X) ∈ RD×D. Therefore, (ỹi − x⊤i Θ
⊤W ′) ∼ N (x⊤i (I − ΘX)W ⋆, σ2(1 +

x⊤i Θ
⊤[ΘX⊤XΘ⊤]−1Θxi)), and for W = ΘW ′

Θ and ỹi s.t. W and ỹi are independent,

ℓ(W, ỹi) ∼ σ2
i χ

2(1, λi) (61)

where σ2
i = σ2(1+x⊤i Θ

⊤[ΘX⊤XΘ⊤]−1Θxi), λi = (x⊤i (I−ΘX)W ⋆)2 and χ2(k, λ) denotes the noncentral chi-squared
distribution with k degrees of freedom and noncentrality parameter λ. We deduce that the moment-generating function of
ℓ(W, ỹi) is given for s < 1/(2σ2

i ) by,

E[exp(s ℓ(W, ỹi))] =
e(λiσ

2
i s)/(1−2σ2

i s)

(1− 2σ2
i s)

1/2
(62)

and its expectation is E[ℓ(W, ỹi)] = σ2
i (1 + λi). Therefore, for s < 1/(2σ2

i ),

Kℓ(W,ỹi)(s) =
λiui

2(1− ui)
− 1

2
log(1− ui)−

1

2
(1 + λi)ui (63)

=
1

2
{− log(1− ui)− ui}+

λiu
2
i

2(1− ui)
(64)

with ui = 2σ2
i s. Since − log(1− x)− x ≤ x2

2 for x < 0, we deduce that for s < 0,

Kℓ(W ′,ỹi)(s) ≤
u2i
4

+
λiu

2
i

2(1− ui)
(65)

= σ4
i s

2 +
2λiσ

4
i s

2

1− 2σ2
i s
. (66)

Then, by applying Theorem 2.2,

gend(µ,A′) ≤ 1

n

n∑
i=1

EΘ

[
inf
s>0

I(W ′
Θ; yi) + σ4

i s
2
(
1 + 2λi(1 + 2σ2

i s)
−1

)
s

]
(67)
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Discussion. By (58), W ′
Θ is equal to a projection of the unconstrained problem’s solution W (D), hence the right-hand side

term in (67) can be interpreted as a generalized SMI.

As d gets closer to D, λ = (λ1, . . . , λn) ∈ Rn decreases to 0n. Indeed, consider the compact singular value decomposition
(SVD) of XΘT = USV T , where S ∈ Rd×d is diagonal, U ∈ Rn×d and V ∈ Rd×m, such that U⊤U = V ⊤V = Id. Then,
using the pseudo-inverse expression of SVD,

XΘX = XΘ⊤(V S−1U⊤)X (68)

= USV ⊤V S−1U⊤X (69)

= UU⊤X (70)

Therefore, √
λ = (In − UU⊤)XW ⋆ (71)

Since U⊤U = In and U is of size n× d, we can consider Ū ∈ Rn×(n−d) such that [U, Ū ] is an orthogonal n× n matrix.
Then, In = [U, Ū ][U, Ū ]⊤ = UUT + Ū ŪT , so In − UUT = Ū ŪT . We deduce that In − UU⊤ is a matrix with (n− d)
eigenvalues equal to 1, and the d remaining eigenvalues are zero. Hence, increasing d corresponds to increasing the number
of null eigenvalues, which implies that λ converges to 0n.

A.5. Proof of Theorem 2.3

Proof of Theorem 2.3. By the triangle inequality,

|gen(µ,A)| ≤ |gen(µ,A)− gend(µ,A′)|+ |gend(µ,A′)| (72)

The final result follows from bounding (72) from above, by applying Theorem 2.1 to bound gend(µ,A′), and using the
L-Lipschitz assumption on the loss to show

|gen(µ,A)− gend(µ,A′)| ≤ 2LEW (D)(Θ),W ′
Θ
∥W (D)(Θ)−ΘW ′

Θ∥ . (73)

B. Generalization Bounds with Quantization
By using analogous arguments as in (Xu & Raginsky, 2017, Section 4.1), we refine Theorem 2.1 when W ′

Θ is assumed to lie
on a countable space. We state the formal result below.

Corollary B.1. Assume there exists C > 0 s.t. for any Θ and (W̃ ′
Θ, Z̃) ∼ PW ′

Θ|Θ ⊗ µ, ℓ(W̃ ′
Θ, Z) ≤ C almost surely.

Additionally, assume that for Θ ∼ PΘ, W ′
Θ ∈ W′ s.t. the cardinality of W′ is k. Then,

|gend(µ,A′)| ≤ C

√
log(k)

2
. (74)

Theorem B.2. Assume the conditions of Theorem 2.3 hold. Furthermore, suppose that ∥W ′
Θ∥ ≤ M (e.g. as a result of

enforcing the Lipschitz constant L), and consider a function q(W ′
Θ) quantizing the coordinates of W ′

Θ with stepsize ϵ. Then,

|gen(µ,A)| ≤ 2L
(
EW (D)(Θ),W ′

Θ
[∥W (D)(Θ)−ΘW ′

Θ∥] + ϵ
√
d
)
+ CEΘ∼PΘ

[√
I(q(W ′

Θ);Zi)

2n

]
(75)

≤ 2L
(
EW (D)(Θ),W ′

Θ
[∥W (D)(Θ)−ΘW ′

Θ∥] + ϵ
√
d
)
+ C

√
d log(2M/ϵ)

2n
. (76)

Proof of Theorem B.2. The proof follows by slicing the bound in (Xu & Raginsky, 2017) and applying the rate-distortion
argument from Theorem 2.3. Finally, we upper-bound the mutual information of a discrete random variable q(W ′) by its
discrete entropy, which is in turn upper bounded by the logarithm of the number of states it can take.
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Figure 4. Empirical evaluation of (left) training/test classification errors, and (right) IS-SMI bound (6) against n for binary classification
with logistic regression, with varying d. y-axis is in log scale.

C. Additional Experimental Details for Section 3
C.1. Gaussian mean estimation

Evaluating (6) involves estimating SI
(1)
k (W ;Zi). The expectation defining SMI (1) is in general intractable (Goldfeld et al.,

2022), thus we approximate it with a Monte Carlo estimate. This amounts to evaluating I(Θ⊤W ;Zi) for each sampled Θ:
to this end, we use the analytical formula of MI between Gaussian random variables (Bu et al., 2019, Appendix B), since as
shown in Appendix A.3, Zi and Θ⊤W are both Gaussian.

C.2. Logistic regression

We use the binary classification problem as described in (Bu et al., 2019, Section VI). For each value of (n, d), we
approximate the generalization error and its bound over 500 runs, using 50 random projections for each run.

Regarding the evaluation of our generalization bounds, MI is estimated via MINE (Belghazi et al., 2018) based on the
following neural network architecture: we implement a fully-connected neural network with a single hidden layer with
dimension 100. We train for 200 epochs using the Adam optimizer with a batch-size of 64 and learning rate of 0.001.

We report additional errors for this experiment on Figure 4.

C.3. Neural networks

For our neural network experiment, we use the Iris dataset (Fisher, 1936), which contains measured properties from three
species of Iris flowers with 50 samples from each species. Each data point has four features (sepal length in cm, sepal
width in cm, petal length in cm, and petal width in cm) and the task consists of predicting the correct species. We use
a two-hidden-layer NN with 10, 903 parameters; specifically, each inner layer has a hidden dimension of 100. For each
d-value (5, 10, 15, 20, 50, 100) we sample 20 projection matrices Θ, and for each such Θ, we train 500 randomly initialized
NNs for 200 epochs. This amounts to training 10, 000 NNs. In addition, we use the Adam optimizer (Kingma & Ba, 2017)
with a batch size of 64 and a learning rate of 0.1.

We estimate MI using MINE (Belghazi et al., 2018). For MI estimation via MINE, we use a fully-connected neural network
with one hidden layer of dimension 100. We train for 200 epochs using the Adam optimizer with a batch-size of 64 and
learning rate of 0.001.
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