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Abstract

Standard context-aware neural machine trans-001
lation (NMT) typically relies on parallel002
document-level data, exploiting both source003
and target contexts. In this work, we investi-004
gate whether source context data could actu-005
ally be dispensed altogether within a standard006
concatenation-based approach to context-aware007
NMT, thus supporting further use of monolin-008
gual data without the need for a specific NMT009
architecture. We propose a simple approach010
based on prepending context sentences of the011
target language to both the source sentence to be012
translated and the target reference sentence. We013
show that this method can lead to significant im-014
provements over a strong baseline on discourse-015
level phenomena that depend on target language016
information, while achieving parity for phenom-017
ena where the relevant information is present in018
both source and target languages. Additionally,019
we show that target monolingual data can be bet-020
ter exploited via back-translation under this ap-021
proach, and that the use of machine-translated022
target context did not significantly impact trans-023
lation quality overall. We experimented in two024
language pairs, English-Russian and Basque-025
Spanish, for which challenge test sets are avail-026
able on multiple contextual phenomena.027

1 Introduction028

Significant progress has been achieved in Machine029

Translation within the Neural Machine Translation030

(NMT) paradigm (Sutskever et al., 2014; Bahdanau031

et al., 2015; Vaswani et al., 2017). For the most032

part though, most NMT models translate sentences033

in isolation, preventing the adequate translation for034

document-level phenomena such as cohesion, dis-035

course coherence or intersentential anaphora res-036

olution (Bawden et al., 2018; Läubli et al., 2018;037

Voita et al., 2019b; Lopes et al., 2020; Post and038

Junczys-Dowmunt, 2023).039

Several research paths have been explored to de-040

sign context-aware NMT models that can exploit041

the available context to provide more accurate trans- 042

lation. Among the main approaches are input aug- 043

mentation via concatenation of context sentences 044

(Tiedemann and Scherrer, 2017), alternative NMT 045

architectures (Jean et al., 2017; Zhang et al., 2018; 046

Voita et al., 2019b; Li et al., 2020; Bao et al., 2021), 047

or, more recently, pretrained large language mod- 048

els (Wu et al., 2022; Wang et al., 2023). Among 049

these approaches, simple concatenation of context 050

sentences, as initially proposed by Tiedemann and 051

Scherrer (2017), remains a solid baseline typically 052

used in practice with varying amounts of source- 053

target context pairs (Agrawal et al., 2018; Junczys- 054

Dowmunt, 2019; Majumder et al., 2022; Post and 055

Junczys-Dowmunt, 2023; Sun et al., 2022). 056

Context-aware models typically rely on parallel 057

document-level data, a scarce resource overall de- 058

spite recent efforts to provide this type of resource 059

(Barrault et al., 2019; Voita et al., 2019b; Gete et al., 060

2022). To the exception of approaches such as 061

the monolingual repair framework of Voita et al. 062

(2019a), context data in the source language is gen- 063

erally used to model context-awareness. However, 064

most, if not all, discourse-level phenomena feature 065

information that is either present mainly in the tar- 066

get language (e.g., lexical cohesion, deixis) or in 067

both the source and target languages (e.g., gender 068

selection, ellipsis). Considering this, we aimed to 069

further explore the use of target language data in 070

isolation, dispensing with source data altogether, 071

within a standard NMT architecture to avoid the 072

need for additional architectural complexity, pro- 073

cesses and resources. 074

Our approach consists in simply prepending, at 075

training time, context sentences from the target lan- 076

guage to both the source sentence to be translated 077

and the reference translation, discarding source con- 078

text data altogether. The underlying intuition is 079

that target-side context information would still help 080

model contextual phenomena at the decoder level, 081

whereas, on the encoder side, it will be either ig- 082
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nored and copied, as foreign data, or associated083

with source information to further model context.084

At the same time, this approach supports the use085

of a standard architecture and approach to context-086

aware NMT. We show that this use of target context087

data on both sides of the training pairs can provide088

significant improvements over the use of source089

data in combination or in isolation, for discourse-090

level phenomena that depend on target-language091

information, while achieving parity for phenomena092

where the relevant contextual information is present093

in both the source and target languages.094

We establish our results on two language pairs,095

English-Russian and Basque-Spanish, for which096

contrastive test sets are publicly available on a range097

of phenomena that depend on either only the target098

language or both the source and target languages. In099

addition to accuracy results on specific phenomena,100

we compare overall translation quality on parallel101

test sets as well. We also measure the impact of us-102

ing reference vs. machine-translated output as con-103

text at inference time, with only minor loss in our104

experiments. Finally, we evaluate the use of back-105

translated data, with similar comparative gains as106

when using parallel document-level data. Overall,107

our experimental results indicate that using only tar-108

get context data within a standard NMT architecture109

can be a promising alternative for context-aware110

machine translation.111

2 Related Work112

An increasing number of studies centred on context-113

aware NMT approaches have demonstrated that sig-114

nificant improvements can be achieved over non-115

contextual baselines, for typical discourse-level lin-116

guistic phenomena (Li et al., 2020; Ma et al., 2020;117

Lopes et al., 2020; Fernandes et al., 2021; Ma-118

jumder et al., 2022; Sun et al., 2022).119

One of the first methods proposed for the task120

is the concatenation of context sentences to the121

sentence to be translated, in either the source lan-122

guage only, or in both source and target languages123

(Tiedemann and Scherrer, 2017; Agrawal et al.,124

2018). This method does not require any archi-125

tectural change and uses a fixed contextual window126

of sentences. It provides a robust baseline that of-127

ten achieves performances comparable to that of128

more sophisticated methods, in particular in high-129

resource scenarios (Lopes et al., 2020; Sun et al.,130

2022; Post and Junczys-Dowmunt, 2023). Variants131

of this approach include discounting the loss gener-132

ated by the context (Lupo et al., 2022), extending 133

model capacity (Majumder et al., 2022; Post and 134

Junczys-Dowmunt, 2023) or encoding the specific 135

position of the context sentences (Lupo et al., 2023). 136

Alternative approaches include refining context- 137

agnostic translations (Voita et al., 2019a; Mansimov 138

et al., 2021) andmodelling context informationwith 139

specific NMT architectures (Jean et al., 2017; Li 140

et al., 2020; Bao et al., 2021). More recently, the use 141

of pretrained language models has been explored 142

for the task, using them to encode the context (Wu 143

et al., 2022) or to initialize NMT models (Huang 144

et al., 2023). Other studies directly use Large Lan- 145

guage Models to perform translations, showing that 146

competitive results can be obtained with this ap- 147

proach, although they might still make critical er- 148

rors in certain domains and sometimes perform 149

worse than conventional NMT models (Wang et al., 150

2023; Karpinska and Iyyer, 2023; Hendy et al., 151

2023). 152

Concatenation-based approaches vary regarding 153

their use of context, exploiting either the source 154

context (Zhang et al., 2018; Voita et al., 2018), the 155

target context (Voita et al., 2019a) or both (Baw- 156

den et al., 2018; Agrawal et al., 2018; Xu et al., 157

2021; Majumder et al., 2022). The benefits of using 158

context sentences in both the source and the target 159

languages are also discussed in Müller et al. (2018), 160

for a multi-encoder approach. 161

Close to the approach we propose in this work, 162

Gete et al. (2023) include a model variant where 163

target data is concatenated to the source sentence, 164

which was shown to be particularly beneficial to 165

address target-level phenomena in Basque-Spanish 166

translation. However, their experiments were lim- 167

ited to one target sentence, i.e. without prepending 168

context on the target side. We show in this work 169

that including the target context in both source and 170

target languages is critical to achieve significant 171

improvements overall. 172

Since standard NMT evaluation metrics such as 173

BLEU (Papineni et al., 2002) are not well equipped 174

to assess discourse phenomena, several challenge 175

test sets have been developed specifically to mea- 176

sure translations in context, via contrastive evalu- 177

ations (Bawden et al., 2018; Müller et al., 2018; 178

Voita et al., 2019b; Lopes et al., 2020; Nagata and 179

Morishita, 2020; Gete et al., 2022). We include 180

contrastive test sets that cover target-language phe- 181

nomena such as deixis or lexical cohesion, as well 182

as phenomena where the relevant context informa- 183
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SRC: Так эти фотографии снял ты ? Да . Так что произошло ночью ? [BR] she was there
posing , looking at you ?
TGT: Так эти фотографии снял ты ? Да . Так что произошло ночью ? [BR] Она позировала
глядя на тебя ?
(And you took those photos, right? Yeah. So what about last night? [BR] She was there posing,
looking at you?)

Table 1: Example of input of the tgt-nton model, extracted from the corpus prepared in Voita et al. (2019b).

tion is available in both source and target languages.184

3 Exploiting Target Language Data185

Our approach operates within a standard NMT ar-186

chitecture. At training time, we simply discard187

source data from the equation and prepend context188

sentences in the target language to both the source189

sentence to be translated and the target reference190

sentence. In both cases, we add a special token to191

separate the context, as shown in Table 1. At in-192

ference time, the previously translated sentences193

would be prepended as source context. Due to the194

nature of the challenge sets, our contrastive results195

will be based on reference context translations.1196

The main incentive for choosing target language197

data instead of source data is the nature of the con-198

textual phenomena of interest for machine transla-199

tion, as these can be grouped into two broad cat-200

egories depending on the location of the relevant201

contextual information.202

In a first category would be discourse-level phe-203

nomena that require context information in the tar-204

get language side, typically related to discursive205

cohesion in a broad sense (see examples a and b206

in Table 2). For instance, to maintain lexical cohe-207

sion beyond the sentence level, a quality translation208

should feature lexical repetition when necessary, as209

it can mark emphasis or support question clarifi-210

cation. Another case is that of names with several211

possible translations, where translations must re-212

main consistent throughout. Degrees of politeness213

and linguistic register in general also involve trans-214

lation alternatives that are linguistically correct in215

isolation, but require consistency at the document216

level. In the case of pronouns, when the source217

antecedent has translation options in different gram-218

matical genders, translation choices should be co-219

herent throughout in the target language. In all of220

these cases, the relevant information involves pre-221

vious translations into the target language.222

1See Section 7 for a discussion and results with machine-
translated context in terms of reference metrics.

In a second major category are phenomena for 223

which either the source or the target context pro- 224

vides relevant information (examples c and d in 225

Table 2). This includes word sense disambiguation 226

scenarios, where different types of source or target 227

elements may be relevant to perform disambigua- 228

tion to some extent, in combination or in isolation. 229

Gender selection would also fall into this category, 230

in those cases where translation options for the rel- 231

evant contextual antecedent are unique or share the 232

same gender. The resolution of elliptical construc- 233

tions in the source language, with no equivalent 234

in the target language, may also require context in- 235

formation from the source or the target language. 236

Another instance for this type of phenomena would 237

be the translation of Japanese zero pronouns into 238

English (Nagata and Morishita, 2020), where in- 239

formation on both sides can become relevant to 240

determine the grammatical features of the target 241

pronoun. 242

Note that, even in those cases where contextual 243

information is present in both the source and tar- 244

get languages, using source information for disam- 245

biguation can result in a lack of consistency in the 246

target language, whenever incorrect translations are 247

involved. Bawden et al. (2018) provide a contrastive 248

test for these cases, where part of the source has 249

been translated incorrectly but the translation is still 250

required to be consistent overall. 251

4 Experimental Setup 252

4.1 Data 253

We describe in turn below the datasets used to train 254

and test our NMT models. All selected datasets 255

were normalised, tokenised and truecased using 256

Moses (Koehn et al., 2007) and segmented with 257

BPE (Sennrich et al., 2016), using 32,000 opera- 258

tions. Tables 3 and 4 show corpora statistics for 259

parallel and contrastive datasets respectively. 260

For Basque–Spanish, we selected the TANDO 261

corpus (Gete et al., 2022), which contains parallel 262
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(a) Lexical cohesion: name translation

EN: Not for Julia. Julia has a taste for taunting her victims.
RU: Не для Джулии[Julia].Юлия*[Julia] умеет дразнить своих жертв.

(b) Deixis: register coherence

EU: Ez dago martetarrik zuen artean. Guztiak ari zarete ereduak lotu eta...
ES: Ninguno de ustedes[form] es marciano. Todos vosotros estáis*[inf] siguiendo un modelo y...
(None of you are Martians. You are all following a model and...)

(c) Gender selection

EU: Hori nire arreba da. Berak[?] zaindu zituen nire argazkiak.
(That’s my sister. He/She took care of my photos.)
ES: Esa es mi hermana. Él* cuido mis fotos.
(That’s my sister. He* took care of my photos.)

(d) Verb phrase ellipsis

EN: Veronica, thank you, but you saw what happened. We all did[?].
RU: Вероника, спасибо, но ты видела, что произошло. Мы все хотели*.
(Veronica, thank you, but you saw what happened. We all wanted* it.)

Table 2: Examples of inconsistencies extracted from (Voita et al., 2019b) and (Gete et al., 2022).

EU-ES EN-RU

Train 1,753,726 6,000,000
Dev 3,051 10,000
Test 6,078 10,000

Table 3: Parallel corpora statistics (number of sentences)

data from subtitles, news and literary documents.263

It includes two contrastive datasets for Basque to264

Spanish translation. The first one, GDR-SRC+TGT,265

centres on gender selection, with the disambiguat-266

ing information present in both the source and target267

languages. The second one, COH-TGT, is meant268

to evaluate cases where, despite the absence in269

the source language of the necessary information270

to make a correct selection of gender or register,271

the translation must be contextually coherent using272

target-side information.273

For English–Russian, we used the dataset de-274

scribed in Voita et al. (2019b), based on Open Sub-275

titles excerpts (Lison et al., 2018). It includes 4276

large-scale contrastive test sets for English to Rus-277

sian translation. Two of these tests are related to278

ellipsis and contain the disambiguating information279

in both the source and target-side context: Ellipsis280

(infl.) assesses the selection of correct morpholog-281

ical noun phrase forms in cases where the source282

verb is elided, whereas Ellipsis (VP) evaluates the283

EU-ES Size src tgt Dist.

GDR-SRC+TGT 300 ✓ ✓ ≤ 5
COH-TGT 300 ✓ ≤ 5

EN-RU Size src tgt Dist.

Ellipsis (infl.) 500 ✓ ✓ ≤ 3
Ellipsis (VP) 500 ✓ ✓ ≤ 3
Deixis 2,500 ✓ ≤ 3
Lex. cohesion 1,500 ✓ ≤ 3

Table 4: Contrastive test sets: size (number of instances),
required context information and distance to the disam-
biguating information (number of sentences)

ability to predict the verb in Russian from an En- 284

glish sentence in which the verb phrase is elided. In 285

the other two tests, the disambiguating information 286

is only present in the target-side context: Deixis 287

addresses politeness consistency in the target lan- 288

guage, without nominal markers, whereas Lexical 289

Cohesion focuses on the consistent translation of 290

named entities in Russian. 291

4.2 Models 292

All models in our experiments are based on 293

the Transformer-base architecture (Vaswani et al., 294

2017), trained with Marian (Junczys-Dowmunt 295

et al., 2018). 296
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As a general baseline, we trained a sentence-level297

model using all source-target sentence pairs in the298

selected training datasets for each language pair.299

We then trained the following context-aware mod-300

els, varying the type of context sentences prepended301

to the source and/or the target sentence, and adding302

a special token to separate the context:303

• nto1: n-1 source context sentences concate-304

nated to the source sentence, and a single ref-305

erence target sentence.306

• nton: n-1 source context sentences concate-307

nated to the source sentence and n-1 target308

context sentences to the target sentence.309

• tgt-nto1: n-1 context sentences from the target310

language concatenated to the source sentence,311

and a single reference target sentence.312

• tgt-nton: n-1 context sentences from the target313

language concatenated to both the source and314

target sentences.315

Given the size of the context for each language316

pair, we thus have n=6 for Basque–Spanish models317

and n=4 for English–Russian models. All context-318

aware models were initialised with the weights of319

the sentence-level baseline.320

5 Results321

5.1 Parallel Tests322

We first compared models in terms of BLEU on the323

parallel test sets, using SacreBLEU (Post, 2018)2.324

Statistical significance was computed via paired325

bootstrap resampling (Koehn, 2004), for p < 0.05.3326

The results are shown in Table 5. In Basque–327

Spanish, the nton and tgt-nton models performed328

better than the alternatives, with no statistically sig-329

nificant differences between the two. Both were330

significantly better than the baseline and the mod-331

els which used only a single reference in the target332

language. In English–Russian, the tgt-nton model333

outperformed all other models, including the stan-334

dard nton model, although with only a 1.09 BLEU335

point gain over the latter.336

Using only target context data was thus not detri-337

mental in terms of reference metrics on the large338

parallel test sets used in the experiments, and was339

2nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
3In all tables, best scores given the statistical test at hand

are shown in bold; statistically significant results between nton
and tgt-nton results are indicated with †.

EU-ES EN-RU

Sentence-level 31.20 31.09
nto1 29.91 31.48
tgt-nto1 29.43 31.03
nton 31.96 31.20
tgt-nton 31.82 32.29†

Table 5: BLEU results on the parallel test sets.

even optimal in one language pair. This is at least 340

indicative of an absence of unwarranted side-effects 341

in terms of translation quality. 342

5.2 Challenge Tests 343

We evaluated the models in the challenge test sets, 344

both in terms of BLEU and in terms of accuracy of 345

the contrastive evaluation. Statistical significance 346

of accuracy results was computed usingMcNemar’s 347

test (Mcnemar, 1947), for p < 0.05. The results 348

are shown in Tables 6 and 7. 349

Considering both language pairs, the first notable 350

results are the significant improvements obtained 351

with the tgt-nton models on the target-oriented test 352

sets. In terms of accuracy, in EU-ES on the COH- 353

TGT test, this model outperformed the baseline by 354

27.67 points and the nton model by 16.34 points. 355

In EN-RU, the gains were of 37.44 and 5 points in 356

Deixis against the baseline and ntonmodel, respec- 357

tively; on the Lexical Cohesion test set, the gains 358

were 3.6 and and 3.54 points, respectively. On these 359

target-oriented test-sets, the tgt-nton model also 360

achieved gains in terms of BLEU scores: +3.72 361

points in EU-ES, +7.02 in EN-RU on Deixis, and 362

+3.09 in EN-RU on the Lexical cohesion test. 363

Turning now to the test sets where relevant con- 364

text information is available in both the source and 365

target languages, the results are more balanced be- 366

tween methods and even apparently large score dif- 367

ferences are not always statistically significant, as 368

all these tests are significantly smaller. In EU-ES, 369

there is thus no statistical significance between the 370

two best methods, nton and tgt-nton, in terms of 371

accuracy or BLEU. The same was true for the El- 372

lipsis VP results in EN-RU between these two mod- 373

els, with similar BLEU and accuracy scores. On 374

Ellipsis infl., tgt-nton was significantly better than 375

nton in terms of BLEU, with a gain of +3.72 points, 376

whereas the reverse was true on accuracy, with a 377

difference of 5.20 points. 378

Regarding the other two contextual variants, nto1 379
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GDR-SRC+TGT COH-TGT

BLEU ACC. BLEU ACC.

Sentence-level 36.28 53.67 35.04 54.00
nto1 36.82 66.33 33.23 53.00
tgt-nto1 36.79 66.33 37.31 74.00
nton 40.45 77.67 35.89 65.33
tgt-nton 39.05 72.67 39.61† 81.67†

Table 6: BLEU and accuracy results on the Basque–Spanish challenge tests.

Ellipsis infl. Ellipsis VP Deixis Lex. Cohesion

BLEU ACC. BLEU ACC. BLEU ACC. BLEU ACC.

Sentence-level 30.81 51.80 22.20 27.80 28.10 50.04 31.52 45.87
nto1 32.69 54.60 30.24 65.40 28.20 50.04 29.47 45.87
tgt-nto1 32.28 53.60 23.59 29.00 28.30 50.56 30.37 45.87
nton 36.97 75.20† 29.59 62.60 27.15 82.48 27.89 45.93
tgt-nton 40.69† 70.00 30.75 60.00 34.17† 87.48† 30.98† 49.47†

Table 7: BLEU and accuracy results in English–Russian challenge tests.

and tgt-nto1, which used no context information in380

the target side of the input, the results in accuracy381

were similar overall, performing on a par with the382

baseline on Lexical Cohesion, Deixis and COH-383

TGT for nto1. This was was expected for the nto1384

models, as the relevant information is in the target385

language in these cases, which these models have386

no access to. For the tgt-nton1 model, the gains387

achieved over the nto1model on COH-TGT in both388

BLEU and accuracy (also outperforming the nton389

model) were not unexpected, as the target context390

information is exploitable by this model, although391

on the encoder side rather than the decoder side.392

Similar gains could have been expected on Lexi-393

cal Cohesion and Deixis with the tgt-nto1 model,394

but it performed on a par with the baseline and nto1395

model on these test sets. In terms of lexical cohe-396

sion, this might be due to the fact that named entities397

are usually translated into a single default variant398

in the training data, a strong tendency reflected by399

the model4. In the COH-TGT test however, register400

and gender options are all equally valid and more401

equally distributed (modulo typical bias), which402

might give more relative weight to contextual infor-403

mation. The same should hold true for the EN-RU404

Deixis test set, however, it was not the case here. In405

this case, we hypothesise that this could result from406

a similar unbalanced register distribution training407

4Some illustrative examples are discussed in Appendix A

and contrastive sets, both extracted from OpenSub- 408

titles, again strongly biasing the model towards de- 409

fault translations irrespective of context. Similarly 410

unexpected was the performance of the nto1model 411

on Ellipsis VP, on a par with or outperforming the 412

nton variants. We left further exploration of both 413

nto1 models aside, as they were outperformed by 414

the nton variants overall. 415

From these results, the tgt-nton model proved 416

optimal overall in terms of accuracy and BLEU 417

on the contrastive test sets, matching the strong 418

nton variant where relevant context information is 419

available in both source and target languages, and 420

providing large improvements over all alternatives 421

in the other cases. 422

6 Using Back-translated Data 423

When document-level parallel data are lacking, 424

monolingual data in the target language can be 425

exploited within concatenation-based approaches 426

via back-translation (Junczys-Dowmunt, 2019; 427

Sugiyama and Yoshinaga, 2019; Huo et al., 2020). 428

Some level of degradation is expected, depending 429

on the quality of the model used to back-translate 430

the target data, and we also expect the models to be 431

impacted differently: for both the nton and tgt-nton 432

models, the target sentence and its back-translation 433

would be identical, as would be the original tar- 434

get context sentences, but the nton model will also 435
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require back-translated target context sentences, un-436

like the tgt-nton model.437

For comparison purposes we back-translated the438

target side of the training data for both language439

pairs, and trained the two main model variants440

strictly on the back-translated data. The results441

are shown in Table 8, contrasting the use of paral-442

lel (PA) and back-translated (BT) data. The over-443

all degradation using BT data was more salient in444

EU-ES than in EN-RU, which is likely due to the445

differences in training data size and the resulting446

quality of the respective models. In both cases, the447

tgt-nton model proved more robust with around448

1 and 2 BLEU point gains over the nton model.449

This is also likely due to the latter being affected450

by back-translation quality of the translated con-451

text, whereas the former only requires the back-452

translation of the non-context target sentence.5453

EU-ES EN-RU

nton (PA) 31.96 31.20
tgt-nton (PA) 31.82 32.29
nton (BT) 25.46 29.21
tgt-nton (BT) 27.33† 30.10†

Table 8: BLEU results on the parallel test sets using
parallel (PA) and back-translated (BT) data.

Accuracy and BLEU results on the contrastive454

test sets are shown in Table 9 and Table 10 for455

Basque–Spanish and English–Russian, respectively.456

In EU-ES on the COH-TGT test, there is marked457

degradation in terms of BLEU for both models458

when using BT data, although the tgt-nton model459

was still closer to the best model; in terms of ac-460

curacy, both models maintained parity or achieve461

slight gains using BT data, with the tgt-ntonmodel462

still largely outperforming the nton baseline. On463

the GDR-SRT+TGT test, there were almost no464

changes in terms of BLEU. In terms of accuracy,465

only a slight degradation was observed for the nton466

model using BT data, and slight gains for the tgt-467

nton model.468

In English–Russian, BLEU degradation was ob-469

served for the nton model on all but the lexical470

cohesion test, and for the tgt-nton model on all but471

the Ellipsis VP test, with only minor losses overall472

and the largest losses for both models, at around 2473

BLEU points, on Deixis. In terms of accuracy, both474

5On practical grounds, the tgt-nton model is also less re-
source consuming, as the context sentences do not need to be
back-translated.

models achieved gains on Ellipsis infl. and Deixis, 475

and minor losses or parity otherwise. 476

Overall, the tendencies observed using parallel 477

data are translated to the use of back-translated data, 478

with the tgt-nton model being the top-performing 479

variant overall. Larger test sets would be warranted 480

to assess the performance of these models using BT 481

data, as some gains are somewhat surprising, e.g. 482

those of the nton model on Ellipsis infl. using BT 483

data, which are likely to include errors due to the na- 484

ture of back-translation. BLEU results in particular 485

are more likely to be representative of underlying 486

tendencies on the parallel test sets, as shown by the 487

losses described in Table 8. Nonetheless, the results 488

on the available datasets in terms of accuracy seem 489

to indicate that the use of BT data is viable, and 490

particularly exploitable by the tgt-nton model con- 491

sidering the large gains obtained on target-language 492

phenomena, and the parity achieved on the other 493

discourse-level phenomena. 494

7 Machine-translated Target Context 495

Following standard practice, for all results reported 496

so far, we used the reference target context instead 497

of the machine-translated output. This is meant to 498

remove potential noise in terms of context trans- 499

lation errors and evaluate the approaches on their 500

ability to translate with a correct context. Using ref- 501

erence translations also allows for an evaluation 502

of phenomena where more than one translation 503

in the context would be correct – e.g. box trans- 504

lated as boîte (fem.) instead of carton (masc.) in 505

French – but the contrastive evaluation relies on 506

one of these translations being selected as the cor- 507

rect one and further phenomena, such as coherence, 508

are measured accordingly. A correct but different 509

context translation would be unfairly penalised in 510

these cases. 511

Nonetheless, in practice, at inference time there 512

are no reference translations, of course. Whereas 513

the nton model should not be impacted at all, since 514

it only translates the source sentences and any trans- 515

lated target material before the generated separator 516

is discarded, the tgt-nton models are more suscep- 517

tible to suffer from errors in the translation of the 518

context sentences. To measure this aspect, we com- 519

puted BLEU scores using the machine-translated 520

target sentences with the tgt-nton model. The re- 521

sults are shown in Table 11 on the larger parallel 522

test sets. 523

From these results, using MT output does not 524
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GDR-SRC+TGT COH-TGT

BLEU ACC. BLEU ACC.

nton (PA) 40.45 77.67 35.89 65.33
tgt-nton (PA) 39.05 72.67 39.61 81.67
nton (BT) 41.58 76.00 31.02 67.00
tgt-nton (BT) 40.22 74.00 34.62† 81.33†

Table 9: BLEU and accuracy results on Basque–Spanish contrastive tests with parallel (PA) and back-translated (BT)
data.

Ellipsis infl. Ellipsis VP Deixis Lex. cohesion

BLEU ACC. BLEU ACC. BLEU ACC. BLEU ACC.

nton (PA) 36.97 75.20 29.59 62.60 27.15 82.48 27.89 45.93
tgt-nton (PA) 40.69 70.00 30.75 60.00 34.17 87.48 30.98 49.47
nton (BT) 35.63 78.60† 28.84 69.40† 25.66 83.92 28.29 46.20
tgt-nton (BT) 39.25† 73.60 31.86† 57.60 31.84† 87.84† 29.81† 49.20†

Table 10: BLEU and accuracy results on English–Russian contrastive tests with parallel (PA) and back-translated
(BT) data.

EU-ES EN-RU

nton (RF) 31.96 31.20
tgt-nton (RF) 31.82 32.29
tgt-nton (MT) 31.08 31.52

Table 11: BLEU results on the parallel test sets using
reference (RF) and machine-translated (MT) context.

seem to markedly impact translation quality, at least525

in terms of BLEU scores. As previously noted, mea-526

suring its impact on contrastive accuracy would re-527

quire challenge sets that take into account different528

correct choices in the translation of context sen-529

tences, a task which we left for future work consid-530

ering the effort required in designing and preparing531

this type of dataset. Additionally, a proper assess-532

ment of the impact of machine-translated context on533

the tgt-ntonmodel would need to take into account534

the quality of the translation model, with larger535

models expected to minimise context translation536

errors for this approach.537

8 Conclusions538

We proposed a novel variant for context-aware539

NMT, where target-language context is prepended540

to both source and target sentences. Our results, in541

terms of BLEU and contrastive accuracy, showed542

that this approach significantly outperformed state-543

of-the-art models for target-language phenomena, 544

while achieving parity overall for discourse-level 545

phenomena where the relevant contextual informa- 546

tion is in both the source and target languages. 547

We further evaluated the use of back-translated 548

data, showing that the tendencies observed on paral- 549

lel data were maintained. We also measured the im- 550

pact of using machine-translated output instead of 551

reference translations, which could have impacted 552

the proposed approach but were shown to have only 553

a marginal effect, on the parallel test sets at least. 554

In addition, the use of more robust baseline mod- 555

els, trained on larger volumes of data, should mit- 556

igate these effects. New challenge datasets might 557

be needed to support a more precise evaluation of 558

these aspects, as current challenge datasets can be 559

dependent on arbitrary context translation decisions 560

depending on the phenomena at hand. 561

Overall, the proposed approach requires no 562

changes to the standard NMT architecture, supports 563

simplified back-translation where the context need 564

not be back-translated, and provides either signif- 565

icant gains or parity against strong baselines. In 566

future work, we will further explore this approach 567

in different languages and domains, notably testing 568

its limits by seeking specific context-level trans- 569

lation phenomena, for which source context data 570

might actually be of higher relevance, if any, beyond 571

current evaluation suites. 572
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Limitations573

The evaluation of possible losses when using574

machine-translated output was limited to BLEU575

scores on parallel test sets, as contrastive test sets576

could not be used in this case due to the nec-577

essary arbitrary selection of context translations578

among various equally correct options. A correct579

machine-translation choice could thus result in ar-580

tificially erroneous answers on some contrastive581

tests. This limited our evaluation of the impact582

of machine-translated output, which could in the-583

ory impact our proposed approach where target584

translations are used in the source, whereas a stan-585

dard concatenation-based approach would not be586

affected. Designing and constructing datasets that587

support a fair evaluation on these grounds was be-588

yond the scope of this work.589

We also used BLEU as our sole reference metric,590

although its limitations are fairly well known and591

other metrics such as COMET (Rei et al., 2020)592

might provide results that better correlate with hu-593

man judgements in some cases. We did not re-594

port reference metrics results beyond BLEU for595

presentation convenience, as those results corre-596

lated strongly with COMET results in our experi-597

ments. Additionally, reference-based metrics are598

not sufficiently precise for document-level trans-599

lation in general, and should be mainly valued as600

complementary to the results in terms of contrastive601

accuracy which we provide in our work.602

Ethics Statement603

Context-aware machine translation models may604

help reduce some of the biases of sentence-level605

models, by more adequately translating cases where606

a context-agnostic translation would be biased due607

to training data distribution, in terms of gender for608

instance. However, this work does not address nor609

measure the impact of the proposed approach on610

translation bias specifically.611
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options for translating proper nouns, the training900

data for this language pair consists exclusively of901

OpenSubtitles data, where these names tend to be902

systematically translated in a certain way, leading903

the models to exhibit a strong bias towards this904

translation option. While verifying this theory can905

be challenging, as it would require identifying all906

the names and their corresponding translations in907

the training data, we manually examined some of908

the names featured in the test.909

One example is the name Spence, which has910

two possible valid translations in the test, Спен-911

сер and Спенс. These are two possible translations912

of Spencer in the training data, however: whereas913

Спенс is almost always related to Spence, Спен-914

сер is only a translation of Spence in 3% of the915

cases; in the other 97% of the cases, this word is916

a translation of Spencer. It would thus be logical917

to think that the concatenation-based models re-918

late Spence to Спенс and Spencer to Спенсер, a919

translation bias which might be difficult to mitigate920

even when adding contextual information. Table 12921

shows a few other examples of cases that might be922

challenging to handle along these lines.923

While our results align with other publications924

(Zheng et al., 2020; Lupo et al., 2022; Sun et al.,925

2022), alternative approaches such as Voita et al.926

(2019a), have achieved better results on this task.927

Their approach relies on a monolingual repair928

model which does not rely on source information,929

thus obviating the obsevred training data bias al-930

together. Alternatively, models like CADec (Voita931

et al., 2019b) intentionally introduce artificial errors932

in their data, potentially making them less conser-933

vative and more prone to corrections, while nton934

models are more influenced by the default transla-935

tion of the source sentence. Moreover, when these936

artificial errors are not introduced, the CADec accu-937

racy in this test also falls below 50%, supporting the938

hypothesis that training data bias is a relevant factor939

for the observed results on the lexical cohesion test940

set.941
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Source Posible translations

Spence Спенсер (Spence 3%, Spencer 97%), Спенс (Spence 99%, Spencer 1%)
Darius Дария (Darius 46%, Daria 54%), Дариуса (Darius 100%)
Sidney Сидней (Sidney 50%, Sydney 50%), Сидни (Sidney 25%, Sydney 75%)
Hillary Хиллари (Hillary 92%, Hilary 8%), Хилари (Hillary73%, Hilary 27%)
Fausto Фауст (Fausto 62%, Faust 38%), Фаусто (Fausto 100%)

Table 12: Examples of names and their plausible translations selected from the challenge test and their relationship
in the training data.
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